Electromyographic Signal-Driven Continuous Locomotion Mode Identification Module Design for Lower Limb Prosthesis Control

The purpose of current research work is to extract physiological information form surface electromyographic signal (sEMG) in efficient manner for different human locomotion and utilize it for lower limb prosthesis control. The proposed locomotion mode identification approach conserves the novelty in...

Full description

Saved in:
Bibliographic Details
Published inArabian journal for science and engineering (2011) Vol. 43; no. 12; pp. 7817 - 7835
Main Authors Gupta, Rohit, Agarwal, Ravinder
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The purpose of current research work is to extract physiological information form surface electromyographic signal (sEMG) in efficient manner for different human locomotion and utilize it for lower limb prosthesis control. The proposed locomotion mode identification approach conserves the novelty in terms of its dependency on only single muscle electromyographic signal and independency on human gait phase. For current study, 18 healthy subjects of 21–42-year age group were engaged and their sEMG signal form two lower limb muscles has been recorded for three daily life locomotion’s. The presented approach of locomotion mode identification covers the wide group of designing factors. Here, twelve different window sizes, twelve types of feature vectors and six classifiers were compared on the ground of predictive performance and stability. The results show the best performance of overlapped windowing technique with window size of 256 ms and a shift of 32 ms. LDA emerges as best performing classifier ( p value < 0.05) with a classification accuracy ranging from 89 to 99% for diverse feature subsets. Feature vector carrying time domain information reflected better performance. The multifactorial analysis reveals that the choice of feature vector as the most dominant source of performance variation (39.17% of total variance) and muscle selection as the least (1.35% of total variance). The proposed locomotion mode identification approach proves its applicability for rehabilitation and lower limb prosthesis control applications. Also, the protocol leads the researches for determining the appropriate values of designing factors involves in the model.
AbstractList The purpose of current research work is to extract physiological information form surface electromyographic signal (sEMG) in efficient manner for different human locomotion and utilize it for lower limb prosthesis control. The proposed locomotion mode identification approach conserves the novelty in terms of its dependency on only single muscle electromyographic signal and independency on human gait phase. For current study, 18 healthy subjects of 21–42-year age group were engaged and their sEMG signal form two lower limb muscles has been recorded for three daily life locomotion’s. The presented approach of locomotion mode identification covers the wide group of designing factors. Here, twelve different window sizes, twelve types of feature vectors and six classifiers were compared on the ground of predictive performance and stability. The results show the best performance of overlapped windowing technique with window size of 256 ms and a shift of 32 ms. LDA emerges as best performing classifier ( p value < 0.05) with a classification accuracy ranging from 89 to 99% for diverse feature subsets. Feature vector carrying time domain information reflected better performance. The multifactorial analysis reveals that the choice of feature vector as the most dominant source of performance variation (39.17% of total variance) and muscle selection as the least (1.35% of total variance). The proposed locomotion mode identification approach proves its applicability for rehabilitation and lower limb prosthesis control applications. Also, the protocol leads the researches for determining the appropriate values of designing factors involves in the model.
The purpose of current research work is to extract physiological information form surface electromyographic signal (sEMG) in efficient manner for different human locomotion and utilize it for lower limb prosthesis control. The proposed locomotion mode identification approach conserves the novelty in terms of its dependency on only single muscle electromyographic signal and independency on human gait phase. For current study, 18 healthy subjects of 21–42-year age group were engaged and their sEMG signal form two lower limb muscles has been recorded for three daily life locomotion’s. The presented approach of locomotion mode identification covers the wide group of designing factors. Here, twelve different window sizes, twelve types of feature vectors and six classifiers were compared on the ground of predictive performance and stability. The results show the best performance of overlapped windowing technique with window size of 256 ms and a shift of 32 ms. LDA emerges as best performing classifier (p value < 0.05) with a classification accuracy ranging from 89 to 99% for diverse feature subsets. Feature vector carrying time domain information reflected better performance. The multifactorial analysis reveals that the choice of feature vector as the most dominant source of performance variation (39.17% of total variance) and muscle selection as the least (1.35% of total variance). The proposed locomotion mode identification approach proves its applicability for rehabilitation and lower limb prosthesis control applications. Also, the protocol leads the researches for determining the appropriate values of designing factors involves in the model.
Author Agarwal, Ravinder
Gupta, Rohit
Author_xml – sequence: 1
  givenname: Rohit
  surname: Gupta
  fullname: Gupta, Rohit
  email: rohit.udai@yahoo.co.in
  organization: EIED, Thapar University
– sequence: 2
  givenname: Ravinder
  surname: Agarwal
  fullname: Agarwal, Ravinder
  organization: EIED, Thapar University
BookMark eNp9kNFKwzAUhoMoOOcewLuC19GcZEnbS9mmDiYKKngX0jTdIl0zk1bZ25utiiDoTRJyzvfn5DtBh41rDEJnQC6AkPQyAGMixwQyzCBnmB2gAYUc8JhmcLg_M8xF-nKMRiHYgowzlnMANkDbWW10691665ZebVZWJ4922agaT719N00ycU1rm851IVk47dauta5J7lxpknlpYq2yWn3fdbVJpibEgKRyPgIfJq52XSQP3oV2FUthn-hdfYqOKlUHM_rah-j5evY0ucWL-5v55GqBNQPR4kpnWhTaFKJMqcg4SxUpaaUrapRIFeNQElEWZaaBUy2E0ZXmpqA85wx0VrAhOu9zN969dSa08tV1Pv4wSAoMaErHXMQu6Lt0HDR4U8mNt2vltxKI3EmWvWQZJcudZMkik_5itG33LlqvbP0vSXsyxFeapfE_M_0NfQL81JXF
CitedBy_id crossref_primary_10_1016_j_bspc_2020_101968
crossref_primary_10_3390_app14188209
crossref_primary_10_1109_ACCESS_2023_3305674
crossref_primary_10_3390_app10082638
crossref_primary_10_3390_s24217087
crossref_primary_10_1016_j_bspc_2022_103487
crossref_primary_10_1109_ACCESS_2020_3008901
crossref_primary_10_1007_s11062_019_09812_w
crossref_primary_10_1080_03772063_2022_2101555
crossref_primary_10_1080_03772063_2021_1973589
crossref_primary_10_1007_s12647_023_00706_1
crossref_primary_10_1016_j_bbe_2019_07_002
crossref_primary_10_1007_s11062_020_09873_2
crossref_primary_10_1109_TMRB_2023_3282325
crossref_primary_10_1007_s11062_022_09922_y
crossref_primary_10_3390_e22080852
Cites_doi 10.1088/1741-2560/11/5/056021
10.1186/1743-0003-12-1
10.1109/TBME.2009.2034734
10.1109/TBME.2011.2161671
10.1109/TBME.2012.2208641
10.1109/TMECH.2014.2309708
10.1109/TNSRE.2015.2420539
10.1007/978-3-642-12654-3
10.1109/TMECH.2014.2360119
10.1109/TBME.2013.2264466
10.1109/TBME.2008.2003293
10.1109/TNSRE.2016.2529581
10.1016/j.eswa.2009.11.072
10.1109/10.204774
10.1007/s10439-015-1407-3
10.1038/srep13087
10.1007/s10439-013-0909-0
10.1115/1.4006674
10.1109/JBHI.2012.2236563
10.1371/journal.pone.0094137
10.1109/TMECH.2009.2032688
10.1023/A:1009744630224
10.1016/j.mechatronics.2015.09.002
10.1016/j.apmr.2007.11.005
10.1109/TNSRE.2016.2585962
10.1016/j.patrec.2005.12.001
10.1109/TNSRE.2013.2285101
10.1080/00221309.1995.9921220
10.1016/j.neucom.2014.08.016
10.1109/TIT.1967.1053964
10.1109/TBME.2014.2334316
10.1016/j.visres.2004.09.021
10.1186/1743-0003-9-55
10.1109/5326.897072
10.1088/1741-2560/7/5/056005
10.1016/S0966-6362(00)00070-9
10.1023/A:1010920819831
10.1109/TNSRE.2013.2262952
10.1016/j.patrec.2005.10.010
10.1109/TNSRE.2015.2412461
10.1016/j.neunet.2008.03.006
10.3390/s140712349
10.1109/NER.2015.7146704
10.3389/fnbot.2016.00015
10.1109/ICIET.2010.5625677
10.1109/EMBC.2012.6347389
10.1109/IEMBS.2011.6091493
ContentType Journal Article
Copyright King Fahd University of Petroleum & Minerals 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: King Fahd University of Petroleum & Minerals 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s13369-018-3193-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2191-4281
EndPage 7835
ExternalDocumentID 10_1007_s13369_018_3193_3
GroupedDBID -EM
0R~
203
2KG
406
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANZL
AARHV
AASML
AATNV
AATVU
AAUYE
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACHSB
ACMDZ
ACMLO
ACOKC
ACPIV
ACUHS
ACZOJ
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEJRE
AEMSY
AEOHA
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AGAYW
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AHAVH
AHBYD
AHSBF
AIAKS
AIGIU
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
AOCGG
AXYYD
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESX
FERAY
FIGPU
FINBP
FNLPD
FSGXE
GGCAI
GQ6
GQ7
H13
HG6
I-F
IKXTQ
IWAJR
J-C
JBSCW
JZLTJ
L8X
LLZTM
M4Y
MK~
NPVJJ
NQJWS
NU0
O9J
PT4
ROL
RSV
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
TUS
UOJIU
UTJUX
UZXMN
VFIZW
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
06D
0VY
23M
29~
2KM
30V
408
5GY
96X
AAJKR
AARTL
AAYIU
AAYQN
AAZMS
ABTHY
ACGFS
ACKNC
ADHHG
ADHIR
AEGNC
AEJHL
AENEX
AEPYU
AETCA
AFWTZ
AFZKB
AGDGC
AGWZB
AGYKE
AHYZX
AIIXL
AMKLP
AMYQR
ANMIH
AYJHY
ESBYG
FFXSO
FRRFC
FYJPI
GGRSB
GJIRD
GX1
HMJXF
HRMNR
HZ~
I0C
IXD
J9A
KOV
O93
OVT
P9P
R9I
RLLFE
S27
S3B
SEG
SHX
T13
U2A
UG4
VC2
W48
WK8
~A9
ID FETCH-LOGICAL-c316t-fc8c6bceb6d7268537a0d2fcf2ea67a351d06dbd8c152c66ecfc5eb259531c8b3
ISSN 2193-567X
1319-8025
IngestDate Mon Jun 30 09:03:52 EDT 2025
Thu Jul 10 08:10:53 EDT 2025
Thu Apr 24 22:57:03 EDT 2025
Fri Feb 21 02:36:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Prosthetic control
Classifiers
Locomotion mode
Statistical analysis
Rehabilitation
Electromyographic signal
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c316t-fc8c6bceb6d7268537a0d2fcf2ea67a351d06dbd8c152c66ecfc5eb259531c8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2131272456
PQPubID 2044268
PageCount 19
ParticipantIDs proquest_journals_2131272456
crossref_primary_10_1007_s13369_018_3193_3
crossref_citationtrail_10_1007_s13369_018_3193_3
springer_journals_10_1007_s13369_018_3193_3
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Arabian journal for science and engineering (2011)
PublicationTitleAbbrev Arab J Sci Eng
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Young, Simon, Eey, Hargrove (CR8) 2014; 42
Joshi, Hahn (CR23) 2016; 44
Huang, Zhang, Sun, He (CR28) 2010; 7
Chen, Wang, Wang, Huang, Wei, Wang (CR12) 2015; 32
Rouhani, Favre, Crevoisier, Aminian (CR34) 2012; 134
Yuan, Wang, Wang (CR13) 2015; 20
CR38
Young, Hargrove (CR14) 2016; 24
CR33
Sreerama (CR44) 1998; 2
Huang, Zhang, Hargrove, Dou, Rogers, Englehart (CR24) 2011; 58
Sadeghi, Allard, Prince, Labelle (CR31) 2000; 12
Young, Simon, Hargrove (CR11) 2014; 22
Varol, Sup, Goldfarb (CR7) 2010; 57
Sup, Varol, Mitchell, Withrow, Goldfarb (CR2) 2009; 14
CR6
Du, Lin, Shyu, Chen (CR40) 2010; 37
Chen, Zheng, Wang (CR10) 2014; 14
Tucker, Olivier, Pagel, Bleuler, Bouri, Lambercy (CR5) 2015; 12
Wilson, Atkeson (CR25) 2010; 6030
Cover, Hart (CR45) 1967; 13
Huang, Ferris (CR52) 2012; 9
CR16
CR15
Warren, Member, Kellis, Nieveen, Wendelken, Davis, Clark, Normann, Hutchinson, Fellow (CR50) 2016; 104
Zheng, Wang (CR36) 2017; 25
Liu, Wang, Huang (CR20) 2016; 24
Amancio, Comin, Casanova, Travieso, Bruno, Rodrigues, Da Fontoura Costa (CR41) 2014; 9
Zhang (CR43) 2000; 30
Miller, Beazer, Hahn (CR18) 2013; 60
Fawcett (CR47) 2006; 27
Kuncheva (CR46) 2006; 27
Chen, Zheng, Fan, Liang, Wang, Wei, Wang, Member, Zheng, Fan, Liang, Wang, Wei, Wang (CR9) 2013; 21
Au, Berniker, Herr (CR3) 2008; 21
Parmar, Grossmann, Bussink, Lambin, Aerts (CR49) 2015; 5
Chao, Volokh, Yoshida, Shiba, Ide (CR35) 2010; 7
Zhang, Huang (CR19) 2013; 17
Gentry, Gabbard (CR32) 1995; 122
Huang, Lipschutz, Kuiken (CR4) 2009; 56
Young, Kuiken, Hargrove (CR21) 2014; 11
CR29
Wang, Wang, Zheng, Wang, Wei, Wang (CR26) 2014; 61
Chen, Zheng, Wang, Wang (CR37) 2015; 149
CR27
Du, Zhang, Liu, Huang (CR17) 2012; 59
Spry, Zebas, Visser, Hamill (CR30) 1993
Geethanjali, Ray (CR51) 2015; 20
CR22
Ziegler-Graham, MacKenzie, Ephraim, Travison, Brookmeyer (CR1) 2008; 89
Hand, Till (CR48) 2001; 45
Hudgins, Parker, Scott (CR39) 1993; 40
Afzal, Iqbal, White, Wright (CR42) 2017; 25
V Gentry (3193_CR32) 1995; 122
HA Varol (3193_CR7) 2010; 57
DJ Warren (3193_CR50) 2016; 104
S Huang (3193_CR52) 2012; 9
T Fawcett (3193_CR47) 2006; 27
MR Tucker (3193_CR5) 2015; 12
L Du (3193_CR17) 2012; 59
3193_CR33
3193_CR38
L Wang (3193_CR26) 2014; 61
DJ Hand (3193_CR48) 2001; 45
M Liu (3193_CR20) 2016; 24
H Rouhani (3193_CR34) 2012; 134
C Parmar (3193_CR49) 2015; 5
Robert D Huang (3193_CR4) 2009; 56
AJ Young (3193_CR8) 2014; 42
H Huang (3193_CR24) 2011; 58
F Zhang (3193_CR19) 2013; 17
3193_CR22
EYS Chao (3193_CR35) 2010; 7
D Joshi (3193_CR23) 2016; 44
3193_CR27
3193_CR29
B Chen (3193_CR37) 2015; 149
S Au (3193_CR3) 2008; 21
Ludmila I. Kuncheva (3193_CR46) 2006; 27
3193_CR6
AJ Young (3193_CR21) 2014; 11
K Ziegler-Graham (3193_CR1) 2008; 89
B Chen (3193_CR9) 2013; 21
H Huang (3193_CR28) 2010; 7
F Sup (3193_CR2) 2009; 14
KM Sreerama (3193_CR44) 1998; 2
T Cover (3193_CR45) 1967; 13
3193_CR15
B Hudgins (3193_CR39) 1993; 40
3193_CR16
AJ Young (3193_CR11) 2014; 22
DH Wilson (3193_CR25) 2010; 6030
K Yuan (3193_CR13) 2015; 20
DR Amancio (3193_CR41) 2014; 9
Y-C Du (3193_CR40) 2010; 37
B Chen (3193_CR10) 2014; 14
P Geethanjali (3193_CR51) 2015; 20
S Spry (3193_CR30) 1993
AJ Young (3193_CR14) 2016; 24
JD Miller (3193_CR18) 2013; 60
T Afzal (3193_CR42) 2017; 25
E Zheng (3193_CR36) 2017; 25
H Sadeghi (3193_CR31) 2000; 12
GP Zhang (3193_CR43) 2000; 30
B Chen (3193_CR12) 2015; 32
References_xml – ident: CR22
– volume: 11
  start-page: 1
  year: 2014
  end-page: 12
  ident: CR21
  article-title: Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056021
– ident: CR16
– volume: 12
  start-page: 1
  year: 2015
  end-page: 29
  ident: CR5
  article-title: Control strategies for active lower extremity prosthetics and orthotics: a review
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-12-1
– volume: 57
  start-page: 542
  year: 2010
  end-page: 551
  ident: CR7
  article-title: Multiclass real-time intent recognition of a powered lower limb prosthesis
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2034734
– ident: CR29
– volume: 58
  start-page: 2867
  year: 2011
  end-page: 2875
  ident: CR24
  article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2161671
– volume: 59
  start-page: 2716
  year: 2012
  end-page: 2725
  ident: CR17
  article-title: Toward design of an environment-aware adaptive locomotion-mode-recognition system
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2208641
– volume: 20
  start-page: 618
  year: 2015
  end-page: 630
  ident: CR13
  article-title: Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees
  publication-title: IEEE Trans. Mechatron.
  doi: 10.1109/TMECH.2014.2309708
– volume: 24
  start-page: 434
  year: 2016
  end-page: 443
  ident: CR20
  article-title: Development of an environment-aware locomotion mode recognition system for powered lower limb prostheses
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2420539
– volume: 6030
  start-page: 319
  year: 2010
  end-page: 336
  ident: CR25
  article-title: Active capacitive sensing: exploring a new wearable sensing modality for activity recognition
  publication-title: Pervasive Comput.
  doi: 10.1007/978-3-642-12654-3
– volume: 20
  start-page: 1948
  year: 2015
  end-page: 1955
  ident: CR51
  article-title: A low-cost real-time research platform for EMG pattern recognition-based prosthetic hand
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2014.2360119
– ident: CR15
– start-page: 165
  year: 1993
  end-page: 168
  ident: CR30
  article-title: What is leg dominance
  publication-title: ISBS -XI Conference Proceedings Archive
– volume: 60
  start-page: 2745
  year: 2013
  end-page: 2750
  ident: CR18
  article-title: Myoelectric walking mode classification for transtibial amputees
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2264466
– volume: 56
  start-page: 65
  year: 2009
  end-page: 73
  ident: CR4
  article-title: A strategy for identifying locomotion modes using surface electromyography
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2003293
– volume: 25
  start-page: 161
  year: 2017
  end-page: 170
  ident: CR36
  article-title: Noncontact capacitive sensing based locomotion transition recognition for amputees with robotic transtibial prostheses
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2529581
– volume: 37
  start-page: 4283
  year: 2010
  end-page: 4291
  ident: CR40
  article-title: Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.11.072
– volume: 40
  start-page: 82
  year: 1993
  end-page: 94
  ident: CR39
  article-title: A new strategy for multifunction myoelectric control
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.204774
– volume: 44
  start-page: 1275
  year: 2016
  end-page: 1284
  ident: CR23
  article-title: Terrain and direction classification of locomotion transitions using neuromuscular and mechanical input
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1407-3
– volume: 5
  start-page: 1
  issue: 13087
  year: 2015
  end-page: 11
  ident: CR49
  article-title: Machine learning methods for quantitative radiomic biomarkers
  publication-title: Sci. Rep.
  doi: 10.1038/srep13087
– volume: 42
  start-page: 631
  year: 2014
  end-page: 641
  ident: CR8
  article-title: Intent recognition in a powered lower limb prosthesis using time history information
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0909-0
– volume: 134
  start-page: 61006
  year: 2012
  ident: CR34
  article-title: Measurement of multi-segment foot joint angles during gait using a wearable system
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4006674
– volume: 17
  start-page: 907
  year: 2013
  end-page: 914
  ident: CR19
  article-title: Source selection for real-time user intent recognition toward volitional control of artificial legs
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2012.2236563
– volume: 9
  start-page: 1
  year: 2014
  end-page: 14
  ident: CR41
  article-title: A systematic comparison of supervised classifiers
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0094137
– volume: 14
  start-page: 667
  year: 2009
  end-page: 676
  ident: CR2
  article-title: Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis
  publication-title: IEEE Trans. Mechatron.
  doi: 10.1109/TMECH.2009.2032688
– volume: 7
  start-page: 175
  year: 2010
  end-page: 92
  ident: CR35
  article-title: Discrete element analysis in musculoskeletal biomechanics
  publication-title: Mol. Cell. Biomech.
– volume: 2
  start-page: 345
  year: 1998
  end-page: 389
  ident: CR44
  article-title: Automatic construction of decision trees from data: a multi-disciplinary survey
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009744630224
– volume: 32
  start-page: 12
  year: 2015
  end-page: 21
  ident: CR12
  article-title: A foot-wearable interface for locomotion mode recognition based on discrete contact force distribution
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2015.09.002
– ident: CR33
– volume: 89
  start-page: 422
  year: 2008
  end-page: 429
  ident: CR1
  article-title: Estimating the prevalence of limb loss in the United States: 2005 to 2050
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2007.11.005
– volume: 25
  start-page: 608
  year: 2017
  end-page: 617
  ident: CR42
  article-title: A method for locomotion mode identification using muscle synergies
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2585962
– ident: CR6
– volume: 27
  start-page: 830
  issue: 7
  year: 2006
  end-page: 837
  ident: CR46
  article-title: On the optimality of Naïve Bayes with dependent binary features
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.12.001
– volume: 22
  start-page: 671
  year: 2014
  end-page: 677
  ident: CR11
  article-title: A training method for locomotion mode prediction using powered lower limb prostheses
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2285101
– ident: CR27
– volume: 122
  start-page: 37-27
  year: 1995
  ident: CR32
  article-title: Foot-preference behavior: a developmental perspective
  publication-title: J. Gen. Psychol.
  doi: 10.1080/00221309.1995.9921220
– volume: 149
  start-page: 585
  year: 2015
  end-page: 593
  ident: CR37
  article-title: A new strategy for parameter optimization to improve phase-dependent locomotion mode recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.016
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: CR45
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 61
  start-page: 2911
  year: 2014
  end-page: 2920
  ident: CR26
  article-title: A non-contact capacitive sensing system for recognizing locomotion modes of transtibial
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2334316
– volume: 104
  start-page: 374
  year: 2016
  end-page: 391
  ident: CR50
  article-title: Recording and decoding for neural prostheses
  publication-title: Proc. IEEE
  doi: 10.1016/j.visres.2004.09.021
– volume: 9
  start-page: 55
  year: 2012
  ident: CR52
  article-title: Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-9-55
– ident: CR38
– volume: 30
  start-page: 451
  year: 2000
  end-page: 462
  ident: CR43
  article-title: Neural networks for classification: a survey
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/5326.897072
– volume: 7
  start-page: 56005
  year: 2010
  ident: CR28
  article-title: Design of a robust EMG sensing interface for pattern classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/5/056005
– volume: 12
  start-page: 34
  year: 2000
  end-page: 45
  ident: CR31
  article-title: Symmetry and limb dominance in able-bodied gait: a review
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(00)00070-9
– volume: 45
  start-page: 171
  year: 2001
  end-page: 186
  ident: CR48
  article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010920819831
– volume: 21
  start-page: 744
  year: 2013
  end-page: 755
  ident: CR9
  article-title: Locomotion mode classification using a wearable capacitive sensing system
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2262952
– volume: 27
  start-page: 861
  year: 2006
  end-page: 874
  ident: CR47
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recog. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 24
  start-page: 217
  year: 2016
  end-page: 225
  ident: CR14
  article-title: A classification method for user-independent intent recognition for transfemoral amputees using powered lower limb prostheses
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2412461
– volume: 21
  start-page: 654
  year: 2008
  end-page: 666
  ident: CR3
  article-title: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2008.03.006
– volume: 14
  start-page: 12349
  year: 2014
  end-page: 12369
  ident: CR10
  article-title: A locomotion intent prediction system based on multi-sensor fusion
  publication-title: Sensors
  doi: 10.3390/s140712349
– start-page: 165
  volume-title: ISBS -XI Conference Proceedings Archive
  year: 1993
  ident: 3193_CR30
– volume: 9
  start-page: 55
  year: 2012
  ident: 3193_CR52
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-9-55
– volume: 42
  start-page: 631
  year: 2014
  ident: 3193_CR8
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-013-0909-0
– volume: 12
  start-page: 1
  year: 2015
  ident: 3193_CR5
  publication-title: J. Neuroeng. Rehabil.
  doi: 10.1186/1743-0003-12-1
– volume: 13
  start-page: 21
  year: 1967
  ident: 3193_CR45
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 22
  start-page: 671
  year: 2014
  ident: 3193_CR11
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2285101
– volume: 58
  start-page: 2867
  year: 2011
  ident: 3193_CR24
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2011.2161671
– volume: 61
  start-page: 2911
  year: 2014
  ident: 3193_CR26
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2334316
– volume: 6030
  start-page: 319
  year: 2010
  ident: 3193_CR25
  publication-title: Pervasive Comput.
  doi: 10.1007/978-3-642-12654-3
– volume: 25
  start-page: 161
  year: 2017
  ident: 3193_CR36
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2529581
– volume: 89
  start-page: 422
  year: 2008
  ident: 3193_CR1
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1016/j.apmr.2007.11.005
– ident: 3193_CR6
– ident: 3193_CR22
  doi: 10.1109/NER.2015.7146704
– volume: 27
  start-page: 861
  year: 2006
  ident: 3193_CR47
  publication-title: Pattern Recog. Lett.
  doi: 10.1016/j.patrec.2005.10.010
– volume: 21
  start-page: 654
  year: 2008
  ident: 3193_CR3
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2008.03.006
– volume: 104
  start-page: 374
  year: 2016
  ident: 3193_CR50
  publication-title: Proc. IEEE
  doi: 10.1016/j.visres.2004.09.021
– volume: 37
  start-page: 4283
  year: 2010
  ident: 3193_CR40
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.11.072
– volume: 7
  start-page: 56005
  year: 2010
  ident: 3193_CR28
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/7/5/056005
– volume: 2
  start-page: 345
  year: 1998
  ident: 3193_CR44
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009744630224
– volume: 57
  start-page: 542
  year: 2010
  ident: 3193_CR7
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2009.2034734
– volume: 21
  start-page: 744
  year: 2013
  ident: 3193_CR9
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2013.2262952
– volume: 59
  start-page: 2716
  year: 2012
  ident: 3193_CR17
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2208641
– ident: 3193_CR38
– volume: 27
  start-page: 830
  issue: 7
  year: 2006
  ident: 3193_CR46
  publication-title: Pattern Recognition Letters
  doi: 10.1016/j.patrec.2005.12.001
– volume: 122
  start-page: 37-27
  year: 1995
  ident: 3193_CR32
  publication-title: J. Gen. Psychol.
  doi: 10.1080/00221309.1995.9921220
– volume: 14
  start-page: 667
  year: 2009
  ident: 3193_CR2
  publication-title: IEEE Trans. Mechatron.
  doi: 10.1109/TMECH.2009.2032688
– ident: 3193_CR29
  doi: 10.3389/fnbot.2016.00015
– volume: 11
  start-page: 1
  year: 2014
  ident: 3193_CR21
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/11/5/056021
– ident: 3193_CR27
  doi: 10.1109/ICIET.2010.5625677
– volume: 7
  start-page: 175
  year: 2010
  ident: 3193_CR35
  publication-title: Mol. Cell. Biomech.
– ident: 3193_CR16
  doi: 10.1109/EMBC.2012.6347389
– volume: 24
  start-page: 434
  year: 2016
  ident: 3193_CR20
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2420539
– volume: 45
  start-page: 171
  year: 2001
  ident: 3193_CR48
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010920819831
– volume: 20
  start-page: 1948
  year: 2015
  ident: 3193_CR51
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2014.2360119
– volume: 134
  start-page: 61006
  year: 2012
  ident: 3193_CR34
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4006674
– volume: 44
  start-page: 1275
  year: 2016
  ident: 3193_CR23
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1407-3
– volume: 25
  start-page: 608
  year: 2017
  ident: 3193_CR42
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2016.2585962
– ident: 3193_CR33
– volume: 56
  start-page: 65
  year: 2009
  ident: 3193_CR4
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2008.2003293
– volume: 40
  start-page: 82
  year: 1993
  ident: 3193_CR39
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.204774
– volume: 24
  start-page: 217
  year: 2016
  ident: 3193_CR14
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2015.2412461
– volume: 12
  start-page: 34
  year: 2000
  ident: 3193_CR31
  publication-title: Gait Posture
  doi: 10.1016/S0966-6362(00)00070-9
– volume: 5
  start-page: 1
  issue: 13087
  year: 2015
  ident: 3193_CR49
  publication-title: Sci. Rep.
  doi: 10.1038/srep13087
– volume: 17
  start-page: 907
  year: 2013
  ident: 3193_CR19
  publication-title: IEEE J. Biomed. Heal. Inform.
  doi: 10.1109/JBHI.2012.2236563
– volume: 30
  start-page: 451
  year: 2000
  ident: 3193_CR43
  publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.)
  doi: 10.1109/5326.897072
– volume: 149
  start-page: 585
  year: 2015
  ident: 3193_CR37
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.016
– volume: 14
  start-page: 12349
  year: 2014
  ident: 3193_CR10
  publication-title: Sensors
  doi: 10.3390/s140712349
– volume: 20
  start-page: 618
  year: 2015
  ident: 3193_CR13
  publication-title: IEEE Trans. Mechatron.
  doi: 10.1109/TMECH.2014.2309708
– volume: 9
  start-page: 1
  year: 2014
  ident: 3193_CR41
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0094137
– volume: 60
  start-page: 2745
  year: 2013
  ident: 3193_CR18
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2264466
– volume: 32
  start-page: 12
  year: 2015
  ident: 3193_CR12
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2015.09.002
– ident: 3193_CR15
  doi: 10.1109/IEMBS.2011.6091493
SSID ssib048395113
ssj0001916267
ssj0061873
Score 2.2308772
Snippet The purpose of current research work is to extract physiological information form surface electromyographic signal (sEMG) in efficient manner for different...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7817
SubjectTerms Classifiers
Dependence
Engineering
Gait
Humanities and Social Sciences
Identification
Locomotion
multidisciplinary
Muscles
Performance prediction
Prostheses
Rehabilitation
Research Article - Computer Engineering and Computer Science
Science
Title Electromyographic Signal-Driven Continuous Locomotion Mode Identification Module Design for Lower Limb Prosthesis Control
URI https://link.springer.com/article/10.1007/s13369-018-3193-3
https://www.proquest.com/docview/2131272456
Volume 43
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67cIFgQBR9iEfOFEFJXZie8du7ENo2gE2qbcoduJRabRTloDGH7O_lffiOEnLhhgXq3Jrp8n75fnn5_dByHsZ6syyPA6kiVkQW2GDfZFDo4TQoYnxnBC9Lc7F6WX8eZbMRqP7gddSXemP5teDcSX_I1XoA7lilOwTJNtNCh3wGeQLLUgY2n-S8ZGrYfP9zuWdnpvJ1_kVjAo-lajEMJyvmi9q9HI9W5qlq9jTlD-buABd21rssK--Rhci9OdoXA_PsHwaxj9pDCa4BZ6IqUsOnWf7kNJOywzzlnc5KHCwDxZCq3zRZzxEOotUYGB-OKlvWv66_DbvXHCmV1n5sylFMPmS_cCMjuXQPBGpgatHo8VAI_IgEXLmFhzfBxtX5mq1eDXssjV5uLGBUpXKhXe2CzTaqh5U_mEbDM25QB8wtPvCtXm_0vnT_bUFsHNL7FM44xQpTJHiFCnfIFsMtiGgR7emxwcH515jxUAvgbHy3qoHbJs1ZYu7-_ZH6U285tpfWyVD_Q5n7VC-4ToXL8jzdpNCpw5xL8moWLwid3-gja6gjfZooz3aKKKNrqKNOrRRhzYKgKEN2iiijfZooy3aXpPL46OLw9OgLdwRGB6JKrBGGaFNoUUumQBCKLMwZ9ZYVmRCZjyJ8lDkOlcG2KMRojDWJIWGnTisCEZp_oZsLpaL4i2hNo_1vlSWYxmBwmilsihLoJGhNMaoMQn9E0xNm9Uei6tcp48Kc0w-dENuXEqXv_14x4slbd-j25RFPGISXQbGZOJF1X_96GTvnnLlbfKsf592yGZV1sUuEOBK77Uo3CMbJ7PoN_7Crss
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromyographic+Signal-Driven+Continuous+Locomotion+Mode+Identification+Module+Design+for+Lower+Limb+Prosthesis+Control&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Gupta%2C+Rohit&rft.au=Agarwal%2C+Ravinder&rft.date=2018-12-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=43&rft.issue=12&rft.spage=7817&rft.epage=7835&rft_id=info:doi/10.1007%2Fs13369-018-3193-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_018_3193_3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon