Electromyographic Signal-Driven Continuous Locomotion Mode Identification Module Design for Lower Limb Prosthesis Control
The purpose of current research work is to extract physiological information form surface electromyographic signal (sEMG) in efficient manner for different human locomotion and utilize it for lower limb prosthesis control. The proposed locomotion mode identification approach conserves the novelty in...
Saved in:
Published in | Arabian journal for science and engineering (2011) Vol. 43; no. 12; pp. 7817 - 7835 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The purpose of current research work is to extract physiological information form surface electromyographic signal (sEMG) in efficient manner for different human locomotion and utilize it for lower limb prosthesis control. The proposed locomotion mode identification approach conserves the novelty in terms of its dependency on only single muscle electromyographic signal and independency on human gait phase. For current study, 18 healthy subjects of 21–42-year age group were engaged and their sEMG signal form two lower limb muscles has been recorded for three daily life locomotion’s. The presented approach of locomotion mode identification covers the wide group of designing factors. Here, twelve different window sizes, twelve types of feature vectors and six classifiers were compared on the ground of predictive performance and stability. The results show the best performance of overlapped windowing technique with window size of 256 ms and a shift of 32 ms. LDA emerges as best performing classifier (
p
value < 0.05) with a classification accuracy ranging from 89 to 99% for diverse feature subsets. Feature vector carrying time domain information reflected better performance. The multifactorial analysis reveals that the choice of feature vector as the most dominant source of performance variation (39.17% of total variance) and muscle selection as the least (1.35% of total variance). The proposed locomotion mode identification approach proves its applicability for rehabilitation and lower limb prosthesis control applications. Also, the protocol leads the researches for determining the appropriate values of designing factors involves in the model. |
---|---|
AbstractList | The purpose of current research work is to extract physiological information form surface electromyographic signal (sEMG) in efficient manner for different human locomotion and utilize it for lower limb prosthesis control. The proposed locomotion mode identification approach conserves the novelty in terms of its dependency on only single muscle electromyographic signal and independency on human gait phase. For current study, 18 healthy subjects of 21–42-year age group were engaged and their sEMG signal form two lower limb muscles has been recorded for three daily life locomotion’s. The presented approach of locomotion mode identification covers the wide group of designing factors. Here, twelve different window sizes, twelve types of feature vectors and six classifiers were compared on the ground of predictive performance and stability. The results show the best performance of overlapped windowing technique with window size of 256 ms and a shift of 32 ms. LDA emerges as best performing classifier (
p
value < 0.05) with a classification accuracy ranging from 89 to 99% for diverse feature subsets. Feature vector carrying time domain information reflected better performance. The multifactorial analysis reveals that the choice of feature vector as the most dominant source of performance variation (39.17% of total variance) and muscle selection as the least (1.35% of total variance). The proposed locomotion mode identification approach proves its applicability for rehabilitation and lower limb prosthesis control applications. Also, the protocol leads the researches for determining the appropriate values of designing factors involves in the model. The purpose of current research work is to extract physiological information form surface electromyographic signal (sEMG) in efficient manner for different human locomotion and utilize it for lower limb prosthesis control. The proposed locomotion mode identification approach conserves the novelty in terms of its dependency on only single muscle electromyographic signal and independency on human gait phase. For current study, 18 healthy subjects of 21–42-year age group were engaged and their sEMG signal form two lower limb muscles has been recorded for three daily life locomotion’s. The presented approach of locomotion mode identification covers the wide group of designing factors. Here, twelve different window sizes, twelve types of feature vectors and six classifiers were compared on the ground of predictive performance and stability. The results show the best performance of overlapped windowing technique with window size of 256 ms and a shift of 32 ms. LDA emerges as best performing classifier (p value < 0.05) with a classification accuracy ranging from 89 to 99% for diverse feature subsets. Feature vector carrying time domain information reflected better performance. The multifactorial analysis reveals that the choice of feature vector as the most dominant source of performance variation (39.17% of total variance) and muscle selection as the least (1.35% of total variance). The proposed locomotion mode identification approach proves its applicability for rehabilitation and lower limb prosthesis control applications. Also, the protocol leads the researches for determining the appropriate values of designing factors involves in the model. |
Author | Agarwal, Ravinder Gupta, Rohit |
Author_xml | – sequence: 1 givenname: Rohit surname: Gupta fullname: Gupta, Rohit email: rohit.udai@yahoo.co.in organization: EIED, Thapar University – sequence: 2 givenname: Ravinder surname: Agarwal fullname: Agarwal, Ravinder organization: EIED, Thapar University |
BookMark | eNp9kNFKwzAUhoMoOOcewLuC19GcZEnbS9mmDiYKKngX0jTdIl0zk1bZ25utiiDoTRJyzvfn5DtBh41rDEJnQC6AkPQyAGMixwQyzCBnmB2gAYUc8JhmcLg_M8xF-nKMRiHYgowzlnMANkDbWW10691665ZebVZWJ4922agaT719N00ycU1rm851IVk47dauta5J7lxpknlpYq2yWn3fdbVJpibEgKRyPgIfJq52XSQP3oV2FUthn-hdfYqOKlUHM_rah-j5evY0ucWL-5v55GqBNQPR4kpnWhTaFKJMqcg4SxUpaaUrapRIFeNQElEWZaaBUy2E0ZXmpqA85wx0VrAhOu9zN969dSa08tV1Pv4wSAoMaErHXMQu6Lt0HDR4U8mNt2vltxKI3EmWvWQZJcudZMkik_5itG33LlqvbP0vSXsyxFeapfE_M_0NfQL81JXF |
CitedBy_id | crossref_primary_10_1016_j_bspc_2020_101968 crossref_primary_10_3390_app14188209 crossref_primary_10_1109_ACCESS_2023_3305674 crossref_primary_10_3390_app10082638 crossref_primary_10_3390_s24217087 crossref_primary_10_1016_j_bspc_2022_103487 crossref_primary_10_1109_ACCESS_2020_3008901 crossref_primary_10_1007_s11062_019_09812_w crossref_primary_10_1080_03772063_2022_2101555 crossref_primary_10_1080_03772063_2021_1973589 crossref_primary_10_1007_s12647_023_00706_1 crossref_primary_10_1016_j_bbe_2019_07_002 crossref_primary_10_1007_s11062_020_09873_2 crossref_primary_10_1109_TMRB_2023_3282325 crossref_primary_10_1007_s11062_022_09922_y crossref_primary_10_3390_e22080852 |
Cites_doi | 10.1088/1741-2560/11/5/056021 10.1186/1743-0003-12-1 10.1109/TBME.2009.2034734 10.1109/TBME.2011.2161671 10.1109/TBME.2012.2208641 10.1109/TMECH.2014.2309708 10.1109/TNSRE.2015.2420539 10.1007/978-3-642-12654-3 10.1109/TMECH.2014.2360119 10.1109/TBME.2013.2264466 10.1109/TBME.2008.2003293 10.1109/TNSRE.2016.2529581 10.1016/j.eswa.2009.11.072 10.1109/10.204774 10.1007/s10439-015-1407-3 10.1038/srep13087 10.1007/s10439-013-0909-0 10.1115/1.4006674 10.1109/JBHI.2012.2236563 10.1371/journal.pone.0094137 10.1109/TMECH.2009.2032688 10.1023/A:1009744630224 10.1016/j.mechatronics.2015.09.002 10.1016/j.apmr.2007.11.005 10.1109/TNSRE.2016.2585962 10.1016/j.patrec.2005.12.001 10.1109/TNSRE.2013.2285101 10.1080/00221309.1995.9921220 10.1016/j.neucom.2014.08.016 10.1109/TIT.1967.1053964 10.1109/TBME.2014.2334316 10.1016/j.visres.2004.09.021 10.1186/1743-0003-9-55 10.1109/5326.897072 10.1088/1741-2560/7/5/056005 10.1016/S0966-6362(00)00070-9 10.1023/A:1010920819831 10.1109/TNSRE.2013.2262952 10.1016/j.patrec.2005.10.010 10.1109/TNSRE.2015.2412461 10.1016/j.neunet.2008.03.006 10.3390/s140712349 10.1109/NER.2015.7146704 10.3389/fnbot.2016.00015 10.1109/ICIET.2010.5625677 10.1109/EMBC.2012.6347389 10.1109/IEMBS.2011.6091493 |
ContentType | Journal Article |
Copyright | King Fahd University of Petroleum & Minerals 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: King Fahd University of Petroleum & Minerals 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s13369-018-3193-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2191-4281 |
EndPage | 7835 |
ExternalDocumentID | 10_1007_s13369_018_3193_3 |
GroupedDBID | -EM 0R~ 203 2KG 406 AAAVM AACDK AAHNG AAIAL AAJBT AANZL AARHV AASML AATNV AATVU AAUYE AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACHSB ACMDZ ACMLO ACOKC ACPIV ACUHS ACZOJ ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEJRE AEMSY AEOHA AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AGAYW AGJBK AGMZJ AGQEE AGQMX AGRTI AHAVH AHBYD AHSBF AIAKS AIGIU AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMXSW AMYLF AOCGG AXYYD BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESX FERAY FIGPU FINBP FNLPD FSGXE GGCAI GQ6 GQ7 H13 HG6 I-F IKXTQ IWAJR J-C JBSCW JZLTJ L8X LLZTM M4Y MK~ NPVJJ NQJWS NU0 O9J PT4 ROL RSV SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG TUS UOJIU UTJUX UZXMN VFIZW Z5O Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 06D 0VY 23M 29~ 2KM 30V 408 5GY 96X AAJKR AARTL AAYIU AAYQN AAZMS ABTHY ACGFS ACKNC ADHHG ADHIR AEGNC AEJHL AENEX AEPYU AETCA AFWTZ AFZKB AGDGC AGWZB AGYKE AHYZX AIIXL AMKLP AMYQR ANMIH AYJHY ESBYG FFXSO FRRFC FYJPI GGRSB GJIRD GX1 HMJXF HRMNR HZ~ I0C IXD J9A KOV O93 OVT P9P R9I RLLFE S27 S3B SEG SHX T13 U2A UG4 VC2 W48 WK8 ~A9 |
ID | FETCH-LOGICAL-c316t-fc8c6bceb6d7268537a0d2fcf2ea67a351d06dbd8c152c66ecfc5eb259531c8b3 |
ISSN | 2193-567X 1319-8025 |
IngestDate | Mon Jun 30 09:03:52 EDT 2025 Thu Jul 10 08:10:53 EDT 2025 Thu Apr 24 22:57:03 EDT 2025 Fri Feb 21 02:36:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Prosthetic control Classifiers Locomotion mode Statistical analysis Rehabilitation Electromyographic signal |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c316t-fc8c6bceb6d7268537a0d2fcf2ea67a351d06dbd8c152c66ecfc5eb259531c8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2131272456 |
PQPubID | 2044268 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2131272456 crossref_primary_10_1007_s13369_018_3193_3 crossref_citationtrail_10_1007_s13369_018_3193_3 springer_journals_10_1007_s13369_018_3193_3 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Arabian journal for science and engineering (2011) |
PublicationTitleAbbrev | Arab J Sci Eng |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Young, Simon, Eey, Hargrove (CR8) 2014; 42 Joshi, Hahn (CR23) 2016; 44 Huang, Zhang, Sun, He (CR28) 2010; 7 Chen, Wang, Wang, Huang, Wei, Wang (CR12) 2015; 32 Rouhani, Favre, Crevoisier, Aminian (CR34) 2012; 134 Yuan, Wang, Wang (CR13) 2015; 20 CR38 Young, Hargrove (CR14) 2016; 24 CR33 Sreerama (CR44) 1998; 2 Huang, Zhang, Hargrove, Dou, Rogers, Englehart (CR24) 2011; 58 Sadeghi, Allard, Prince, Labelle (CR31) 2000; 12 Young, Simon, Hargrove (CR11) 2014; 22 Varol, Sup, Goldfarb (CR7) 2010; 57 Sup, Varol, Mitchell, Withrow, Goldfarb (CR2) 2009; 14 CR6 Du, Lin, Shyu, Chen (CR40) 2010; 37 Chen, Zheng, Wang (CR10) 2014; 14 Tucker, Olivier, Pagel, Bleuler, Bouri, Lambercy (CR5) 2015; 12 Wilson, Atkeson (CR25) 2010; 6030 Cover, Hart (CR45) 1967; 13 Huang, Ferris (CR52) 2012; 9 CR16 CR15 Warren, Member, Kellis, Nieveen, Wendelken, Davis, Clark, Normann, Hutchinson, Fellow (CR50) 2016; 104 Zheng, Wang (CR36) 2017; 25 Liu, Wang, Huang (CR20) 2016; 24 Amancio, Comin, Casanova, Travieso, Bruno, Rodrigues, Da Fontoura Costa (CR41) 2014; 9 Zhang (CR43) 2000; 30 Miller, Beazer, Hahn (CR18) 2013; 60 Fawcett (CR47) 2006; 27 Kuncheva (CR46) 2006; 27 Chen, Zheng, Fan, Liang, Wang, Wei, Wang, Member, Zheng, Fan, Liang, Wang, Wei, Wang (CR9) 2013; 21 Au, Berniker, Herr (CR3) 2008; 21 Parmar, Grossmann, Bussink, Lambin, Aerts (CR49) 2015; 5 Chao, Volokh, Yoshida, Shiba, Ide (CR35) 2010; 7 Zhang, Huang (CR19) 2013; 17 Gentry, Gabbard (CR32) 1995; 122 Huang, Lipschutz, Kuiken (CR4) 2009; 56 Young, Kuiken, Hargrove (CR21) 2014; 11 CR29 Wang, Wang, Zheng, Wang, Wei, Wang (CR26) 2014; 61 Chen, Zheng, Wang, Wang (CR37) 2015; 149 CR27 Du, Zhang, Liu, Huang (CR17) 2012; 59 Spry, Zebas, Visser, Hamill (CR30) 1993 Geethanjali, Ray (CR51) 2015; 20 CR22 Ziegler-Graham, MacKenzie, Ephraim, Travison, Brookmeyer (CR1) 2008; 89 Hand, Till (CR48) 2001; 45 Hudgins, Parker, Scott (CR39) 1993; 40 Afzal, Iqbal, White, Wright (CR42) 2017; 25 V Gentry (3193_CR32) 1995; 122 HA Varol (3193_CR7) 2010; 57 DJ Warren (3193_CR50) 2016; 104 S Huang (3193_CR52) 2012; 9 T Fawcett (3193_CR47) 2006; 27 MR Tucker (3193_CR5) 2015; 12 L Du (3193_CR17) 2012; 59 3193_CR33 3193_CR38 L Wang (3193_CR26) 2014; 61 DJ Hand (3193_CR48) 2001; 45 M Liu (3193_CR20) 2016; 24 H Rouhani (3193_CR34) 2012; 134 C Parmar (3193_CR49) 2015; 5 Robert D Huang (3193_CR4) 2009; 56 AJ Young (3193_CR8) 2014; 42 H Huang (3193_CR24) 2011; 58 F Zhang (3193_CR19) 2013; 17 3193_CR22 EYS Chao (3193_CR35) 2010; 7 D Joshi (3193_CR23) 2016; 44 3193_CR27 3193_CR29 B Chen (3193_CR37) 2015; 149 S Au (3193_CR3) 2008; 21 Ludmila I. Kuncheva (3193_CR46) 2006; 27 3193_CR6 AJ Young (3193_CR21) 2014; 11 K Ziegler-Graham (3193_CR1) 2008; 89 B Chen (3193_CR9) 2013; 21 H Huang (3193_CR28) 2010; 7 F Sup (3193_CR2) 2009; 14 KM Sreerama (3193_CR44) 1998; 2 T Cover (3193_CR45) 1967; 13 3193_CR15 B Hudgins (3193_CR39) 1993; 40 3193_CR16 AJ Young (3193_CR11) 2014; 22 DH Wilson (3193_CR25) 2010; 6030 K Yuan (3193_CR13) 2015; 20 DR Amancio (3193_CR41) 2014; 9 Y-C Du (3193_CR40) 2010; 37 B Chen (3193_CR10) 2014; 14 P Geethanjali (3193_CR51) 2015; 20 S Spry (3193_CR30) 1993 AJ Young (3193_CR14) 2016; 24 JD Miller (3193_CR18) 2013; 60 T Afzal (3193_CR42) 2017; 25 E Zheng (3193_CR36) 2017; 25 H Sadeghi (3193_CR31) 2000; 12 GP Zhang (3193_CR43) 2000; 30 B Chen (3193_CR12) 2015; 32 |
References_xml | – ident: CR22 – volume: 11 start-page: 1 year: 2014 end-page: 12 ident: CR21 article-title: Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/5/056021 – ident: CR16 – volume: 12 start-page: 1 year: 2015 end-page: 29 ident: CR5 article-title: Control strategies for active lower extremity prosthetics and orthotics: a review publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-12-1 – volume: 57 start-page: 542 year: 2010 end-page: 551 ident: CR7 article-title: Multiclass real-time intent recognition of a powered lower limb prosthesis publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2034734 – ident: CR29 – volume: 58 start-page: 2867 year: 2011 end-page: 2875 ident: CR24 article-title: Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2161671 – volume: 59 start-page: 2716 year: 2012 end-page: 2725 ident: CR17 article-title: Toward design of an environment-aware adaptive locomotion-mode-recognition system publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2208641 – volume: 20 start-page: 618 year: 2015 end-page: 630 ident: CR13 article-title: Fuzzy-logic-based terrain identification with multisensor fusion for transtibial amputees publication-title: IEEE Trans. Mechatron. doi: 10.1109/TMECH.2014.2309708 – volume: 24 start-page: 434 year: 2016 end-page: 443 ident: CR20 article-title: Development of an environment-aware locomotion mode recognition system for powered lower limb prostheses publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2420539 – volume: 6030 start-page: 319 year: 2010 end-page: 336 ident: CR25 article-title: Active capacitive sensing: exploring a new wearable sensing modality for activity recognition publication-title: Pervasive Comput. doi: 10.1007/978-3-642-12654-3 – volume: 20 start-page: 1948 year: 2015 end-page: 1955 ident: CR51 article-title: A low-cost real-time research platform for EMG pattern recognition-based prosthetic hand publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2014.2360119 – ident: CR15 – start-page: 165 year: 1993 end-page: 168 ident: CR30 article-title: What is leg dominance publication-title: ISBS -XI Conference Proceedings Archive – volume: 60 start-page: 2745 year: 2013 end-page: 2750 ident: CR18 article-title: Myoelectric walking mode classification for transtibial amputees publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2264466 – volume: 56 start-page: 65 year: 2009 end-page: 73 ident: CR4 article-title: A strategy for identifying locomotion modes using surface electromyography publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2003293 – volume: 25 start-page: 161 year: 2017 end-page: 170 ident: CR36 article-title: Noncontact capacitive sensing based locomotion transition recognition for amputees with robotic transtibial prostheses publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2529581 – volume: 37 start-page: 4283 year: 2010 end-page: 4291 ident: CR40 article-title: Portable hand motion classifier for multi-channel surface electromyography recognition using grey relational analysis publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.11.072 – volume: 40 start-page: 82 year: 1993 end-page: 94 ident: CR39 article-title: A new strategy for multifunction myoelectric control publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.204774 – volume: 44 start-page: 1275 year: 2016 end-page: 1284 ident: CR23 article-title: Terrain and direction classification of locomotion transitions using neuromuscular and mechanical input publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1407-3 – volume: 5 start-page: 1 issue: 13087 year: 2015 end-page: 11 ident: CR49 article-title: Machine learning methods for quantitative radiomic biomarkers publication-title: Sci. Rep. doi: 10.1038/srep13087 – volume: 42 start-page: 631 year: 2014 end-page: 641 ident: CR8 article-title: Intent recognition in a powered lower limb prosthesis using time history information publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0909-0 – volume: 134 start-page: 61006 year: 2012 ident: CR34 article-title: Measurement of multi-segment foot joint angles during gait using a wearable system publication-title: J. Biomech. Eng. doi: 10.1115/1.4006674 – volume: 17 start-page: 907 year: 2013 end-page: 914 ident: CR19 article-title: Source selection for real-time user intent recognition toward volitional control of artificial legs publication-title: IEEE J. Biomed. Heal. Inform. doi: 10.1109/JBHI.2012.2236563 – volume: 9 start-page: 1 year: 2014 end-page: 14 ident: CR41 article-title: A systematic comparison of supervised classifiers publication-title: PLoS ONE doi: 10.1371/journal.pone.0094137 – volume: 14 start-page: 667 year: 2009 end-page: 676 ident: CR2 article-title: Preliminary evaluations of a self-contained anthropomorphic transfemoral prosthesis publication-title: IEEE Trans. Mechatron. doi: 10.1109/TMECH.2009.2032688 – volume: 7 start-page: 175 year: 2010 end-page: 92 ident: CR35 article-title: Discrete element analysis in musculoskeletal biomechanics publication-title: Mol. Cell. Biomech. – volume: 2 start-page: 345 year: 1998 end-page: 389 ident: CR44 article-title: Automatic construction of decision trees from data: a multi-disciplinary survey publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009744630224 – volume: 32 start-page: 12 year: 2015 end-page: 21 ident: CR12 article-title: A foot-wearable interface for locomotion mode recognition based on discrete contact force distribution publication-title: Mechatronics doi: 10.1016/j.mechatronics.2015.09.002 – ident: CR33 – volume: 89 start-page: 422 year: 2008 end-page: 429 ident: CR1 article-title: Estimating the prevalence of limb loss in the United States: 2005 to 2050 publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2007.11.005 – volume: 25 start-page: 608 year: 2017 end-page: 617 ident: CR42 article-title: A method for locomotion mode identification using muscle synergies publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2585962 – ident: CR6 – volume: 27 start-page: 830 issue: 7 year: 2006 end-page: 837 ident: CR46 article-title: On the optimality of Naïve Bayes with dependent binary features publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.12.001 – volume: 22 start-page: 671 year: 2014 end-page: 677 ident: CR11 article-title: A training method for locomotion mode prediction using powered lower limb prostheses publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2285101 – ident: CR27 – volume: 122 start-page: 37-27 year: 1995 ident: CR32 article-title: Foot-preference behavior: a developmental perspective publication-title: J. Gen. Psychol. doi: 10.1080/00221309.1995.9921220 – volume: 149 start-page: 585 year: 2015 end-page: 593 ident: CR37 article-title: A new strategy for parameter optimization to improve phase-dependent locomotion mode recognition publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.016 – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: CR45 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 61 start-page: 2911 year: 2014 end-page: 2920 ident: CR26 article-title: A non-contact capacitive sensing system for recognizing locomotion modes of transtibial publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2334316 – volume: 104 start-page: 374 year: 2016 end-page: 391 ident: CR50 article-title: Recording and decoding for neural prostheses publication-title: Proc. IEEE doi: 10.1016/j.visres.2004.09.021 – volume: 9 start-page: 55 year: 2012 ident: CR52 article-title: Muscle activation patterns during walking from transtibial amputees recorded within the residual limb-prosthetic interface publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-9-55 – ident: CR38 – volume: 30 start-page: 451 year: 2000 end-page: 462 ident: CR43 article-title: Neural networks for classification: a survey publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/5326.897072 – volume: 7 start-page: 56005 year: 2010 ident: CR28 article-title: Design of a robust EMG sensing interface for pattern classification publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/5/056005 – volume: 12 start-page: 34 year: 2000 end-page: 45 ident: CR31 article-title: Symmetry and limb dominance in able-bodied gait: a review publication-title: Gait Posture doi: 10.1016/S0966-6362(00)00070-9 – volume: 45 start-page: 171 year: 2001 end-page: 186 ident: CR48 article-title: A simple generalisation of the area under the ROC curve for multiple class classification problems publication-title: Mach. Learn. doi: 10.1023/A:1010920819831 – volume: 21 start-page: 744 year: 2013 end-page: 755 ident: CR9 article-title: Locomotion mode classification using a wearable capacitive sensing system publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2262952 – volume: 27 start-page: 861 year: 2006 end-page: 874 ident: CR47 article-title: An introduction to ROC analysis publication-title: Pattern Recog. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 24 start-page: 217 year: 2016 end-page: 225 ident: CR14 article-title: A classification method for user-independent intent recognition for transfemoral amputees using powered lower limb prostheses publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2412461 – volume: 21 start-page: 654 year: 2008 end-page: 666 ident: CR3 article-title: Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits publication-title: Neural Netw. doi: 10.1016/j.neunet.2008.03.006 – volume: 14 start-page: 12349 year: 2014 end-page: 12369 ident: CR10 article-title: A locomotion intent prediction system based on multi-sensor fusion publication-title: Sensors doi: 10.3390/s140712349 – start-page: 165 volume-title: ISBS -XI Conference Proceedings Archive year: 1993 ident: 3193_CR30 – volume: 9 start-page: 55 year: 2012 ident: 3193_CR52 publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-9-55 – volume: 42 start-page: 631 year: 2014 ident: 3193_CR8 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-013-0909-0 – volume: 12 start-page: 1 year: 2015 ident: 3193_CR5 publication-title: J. Neuroeng. Rehabil. doi: 10.1186/1743-0003-12-1 – volume: 13 start-page: 21 year: 1967 ident: 3193_CR45 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1967.1053964 – volume: 22 start-page: 671 year: 2014 ident: 3193_CR11 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2285101 – volume: 58 start-page: 2867 year: 2011 ident: 3193_CR24 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2011.2161671 – volume: 61 start-page: 2911 year: 2014 ident: 3193_CR26 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2014.2334316 – volume: 6030 start-page: 319 year: 2010 ident: 3193_CR25 publication-title: Pervasive Comput. doi: 10.1007/978-3-642-12654-3 – volume: 25 start-page: 161 year: 2017 ident: 3193_CR36 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2529581 – volume: 89 start-page: 422 year: 2008 ident: 3193_CR1 publication-title: Arch. Phys. Med. Rehabil. doi: 10.1016/j.apmr.2007.11.005 – ident: 3193_CR6 – ident: 3193_CR22 doi: 10.1109/NER.2015.7146704 – volume: 27 start-page: 861 year: 2006 ident: 3193_CR47 publication-title: Pattern Recog. Lett. doi: 10.1016/j.patrec.2005.10.010 – volume: 21 start-page: 654 year: 2008 ident: 3193_CR3 publication-title: Neural Netw. doi: 10.1016/j.neunet.2008.03.006 – volume: 104 start-page: 374 year: 2016 ident: 3193_CR50 publication-title: Proc. IEEE doi: 10.1016/j.visres.2004.09.021 – volume: 37 start-page: 4283 year: 2010 ident: 3193_CR40 publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.11.072 – volume: 7 start-page: 56005 year: 2010 ident: 3193_CR28 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/7/5/056005 – volume: 2 start-page: 345 year: 1998 ident: 3193_CR44 publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009744630224 – volume: 57 start-page: 542 year: 2010 ident: 3193_CR7 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2009.2034734 – volume: 21 start-page: 744 year: 2013 ident: 3193_CR9 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2013.2262952 – volume: 59 start-page: 2716 year: 2012 ident: 3193_CR17 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2012.2208641 – ident: 3193_CR38 – volume: 27 start-page: 830 issue: 7 year: 2006 ident: 3193_CR46 publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2005.12.001 – volume: 122 start-page: 37-27 year: 1995 ident: 3193_CR32 publication-title: J. Gen. Psychol. doi: 10.1080/00221309.1995.9921220 – volume: 14 start-page: 667 year: 2009 ident: 3193_CR2 publication-title: IEEE Trans. Mechatron. doi: 10.1109/TMECH.2009.2032688 – ident: 3193_CR29 doi: 10.3389/fnbot.2016.00015 – volume: 11 start-page: 1 year: 2014 ident: 3193_CR21 publication-title: J. Neural Eng. doi: 10.1088/1741-2560/11/5/056021 – ident: 3193_CR27 doi: 10.1109/ICIET.2010.5625677 – volume: 7 start-page: 175 year: 2010 ident: 3193_CR35 publication-title: Mol. Cell. Biomech. – ident: 3193_CR16 doi: 10.1109/EMBC.2012.6347389 – volume: 24 start-page: 434 year: 2016 ident: 3193_CR20 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2420539 – volume: 45 start-page: 171 year: 2001 ident: 3193_CR48 publication-title: Mach. Learn. doi: 10.1023/A:1010920819831 – volume: 20 start-page: 1948 year: 2015 ident: 3193_CR51 publication-title: IEEE/ASME Trans. Mechatron. doi: 10.1109/TMECH.2014.2360119 – volume: 134 start-page: 61006 year: 2012 ident: 3193_CR34 publication-title: J. Biomech. Eng. doi: 10.1115/1.4006674 – volume: 44 start-page: 1275 year: 2016 ident: 3193_CR23 publication-title: Ann. Biomed. Eng. doi: 10.1007/s10439-015-1407-3 – volume: 25 start-page: 608 year: 2017 ident: 3193_CR42 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2016.2585962 – ident: 3193_CR33 – volume: 56 start-page: 65 year: 2009 ident: 3193_CR4 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2008.2003293 – volume: 40 start-page: 82 year: 1993 ident: 3193_CR39 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.204774 – volume: 24 start-page: 217 year: 2016 ident: 3193_CR14 publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2015.2412461 – volume: 12 start-page: 34 year: 2000 ident: 3193_CR31 publication-title: Gait Posture doi: 10.1016/S0966-6362(00)00070-9 – volume: 5 start-page: 1 issue: 13087 year: 2015 ident: 3193_CR49 publication-title: Sci. Rep. doi: 10.1038/srep13087 – volume: 17 start-page: 907 year: 2013 ident: 3193_CR19 publication-title: IEEE J. Biomed. Heal. Inform. doi: 10.1109/JBHI.2012.2236563 – volume: 30 start-page: 451 year: 2000 ident: 3193_CR43 publication-title: IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) doi: 10.1109/5326.897072 – volume: 149 start-page: 585 year: 2015 ident: 3193_CR37 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.016 – volume: 14 start-page: 12349 year: 2014 ident: 3193_CR10 publication-title: Sensors doi: 10.3390/s140712349 – volume: 20 start-page: 618 year: 2015 ident: 3193_CR13 publication-title: IEEE Trans. Mechatron. doi: 10.1109/TMECH.2014.2309708 – volume: 9 start-page: 1 year: 2014 ident: 3193_CR41 publication-title: PLoS ONE doi: 10.1371/journal.pone.0094137 – volume: 60 start-page: 2745 year: 2013 ident: 3193_CR18 publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2013.2264466 – volume: 32 start-page: 12 year: 2015 ident: 3193_CR12 publication-title: Mechatronics doi: 10.1016/j.mechatronics.2015.09.002 – ident: 3193_CR15 doi: 10.1109/IEMBS.2011.6091493 |
SSID | ssib048395113 ssj0001916267 ssj0061873 |
Score | 2.2308772 |
Snippet | The purpose of current research work is to extract physiological information form surface electromyographic signal (sEMG) in efficient manner for different... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7817 |
SubjectTerms | Classifiers Dependence Engineering Gait Humanities and Social Sciences Identification Locomotion multidisciplinary Muscles Performance prediction Prostheses Rehabilitation Research Article - Computer Engineering and Computer Science Science |
Title | Electromyographic Signal-Driven Continuous Locomotion Mode Identification Module Design for Lower Limb Prosthesis Control |
URI | https://link.springer.com/article/10.1007/s13369-018-3193-3 https://www.proquest.com/docview/2131272456 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLe67cIFgQBR9iEfOFEFJXZie8du7ENo2gE2qbcoduJRabRTloDGH7O_lffiOEnLhhgXq3Jrp8n75fnn5_dByHsZ6syyPA6kiVkQW2GDfZFDo4TQoYnxnBC9Lc7F6WX8eZbMRqP7gddSXemP5teDcSX_I1XoA7lilOwTJNtNCh3wGeQLLUgY2n-S8ZGrYfP9zuWdnpvJ1_kVjAo-lajEMJyvmi9q9HI9W5qlq9jTlD-buABd21rssK--Rhci9OdoXA_PsHwaxj9pDCa4BZ6IqUsOnWf7kNJOywzzlnc5KHCwDxZCq3zRZzxEOotUYGB-OKlvWv66_DbvXHCmV1n5sylFMPmS_cCMjuXQPBGpgatHo8VAI_IgEXLmFhzfBxtX5mq1eDXssjV5uLGBUpXKhXe2CzTaqh5U_mEbDM25QB8wtPvCtXm_0vnT_bUFsHNL7FM44xQpTJHiFCnfIFsMtiGgR7emxwcH515jxUAvgbHy3qoHbJs1ZYu7-_ZH6U285tpfWyVD_Q5n7VC-4ToXL8jzdpNCpw5xL8moWLwid3-gja6gjfZooz3aKKKNrqKNOrRRhzYKgKEN2iiijfZooy3aXpPL46OLw9OgLdwRGB6JKrBGGaFNoUUumQBCKLMwZ9ZYVmRCZjyJ8lDkOlcG2KMRojDWJIWGnTisCEZp_oZsLpaL4i2hNo_1vlSWYxmBwmilsihLoJGhNMaoMQn9E0xNm9Uei6tcp48Kc0w-dENuXEqXv_14x4slbd-j25RFPGISXQbGZOJF1X_96GTvnnLlbfKsf592yGZV1sUuEOBK77Uo3CMbJ7PoN_7Crss |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electromyographic+Signal-Driven+Continuous+Locomotion+Mode+Identification+Module+Design+for+Lower+Limb+Prosthesis+Control&rft.jtitle=Arabian+journal+for+science+and+engineering+%282011%29&rft.au=Gupta%2C+Rohit&rft.au=Agarwal%2C+Ravinder&rft.date=2018-12-01&rft.issn=2193-567X&rft.eissn=2191-4281&rft.volume=43&rft.issue=12&rft.spage=7817&rft.epage=7835&rft_id=info:doi/10.1007%2Fs13369-018-3193-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s13369_018_3193_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2193-567X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2193-567X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2193-567X&client=summon |