Peristaltic activity of blood–titanium nanofluid subject to endoscope and entropy generation
Entropy generation and endoscopic effects on peristalsis of nanofluid are addressed. Inner tube is taken rigid, while sinusoidal wave travels along the outer tube. Blood is used as the base fluid, whereas titanium is considered as nanoparticle. Maxwell model of effective thermal conductivity is util...
Saved in:
Published in | Journal of the Brazilian Society of Mechanical Sciences and Engineering Vol. 40; no. 12; pp. 1 - 10 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Entropy generation and endoscopic effects on peristalsis of nanofluid are addressed. Inner tube is taken rigid, while sinusoidal wave travels along the outer tube. Blood is used as the base fluid, whereas titanium is considered as nanoparticle. Maxwell model of effective thermal conductivity is utilized. Velocity and thermal slip conditions are imposed at outer tube. Moreover, the walls of tubes are complaint in nature. Viscous dissipation is also utilized. Long wavelength and small Reynolds number consideration is employed. Series solutions are obtained for small Grashof number. Analysis is carried out for physical parameters on velocity, temperature, entropy generation and Bejan number. Heat transfer rate at wall is also analyzed via bar charts for different pertinent parameters. Results reveal that an enhancement in nanomaterial volume fraction causes decay in temperature and velocity, whereas it leads to increase the heat transfer rate at the wall. Grashof number causes an enhancement in velocity and temperature. The study also declared that elastance coefficients of walls lead to enhancement, whereas damping coefficient results in decay of velocity, temperature and entropy generation. |
---|---|
AbstractList | Entropy generation and endoscopic effects on peristalsis of nanofluid are addressed. Inner tube is taken rigid, while sinusoidal wave travels along the outer tube. Blood is used as the base fluid, whereas titanium is considered as nanoparticle. Maxwell model of effective thermal conductivity is utilized. Velocity and thermal slip conditions are imposed at outer tube. Moreover, the walls of tubes are complaint in nature. Viscous dissipation is also utilized. Long wavelength and small Reynolds number consideration is employed. Series solutions are obtained for small Grashof number. Analysis is carried out for physical parameters on velocity, temperature, entropy generation and Bejan number. Heat transfer rate at wall is also analyzed via bar charts for different pertinent parameters. Results reveal that an enhancement in nanomaterial volume fraction causes decay in temperature and velocity, whereas it leads to increase the heat transfer rate at the wall. Grashof number causes an enhancement in velocity and temperature. The study also declared that elastance coefficients of walls lead to enhancement, whereas damping coefficient results in decay of velocity, temperature and entropy generation. |
ArticleNumber | 574 |
Author | Ahmad, Bashir Hayat, Tasawar Alsaedi, Ahmed Nawaz, Sadaf |
Author_xml | – sequence: 1 givenname: Tasawar surname: Hayat fullname: Hayat, Tasawar organization: Department of Mathematics, Quaid-I-Azam University 45320, NAAM Research Group, Nonlinear and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University – sequence: 2 givenname: Sadaf orcidid: 0000-0002-4176-7692 surname: Nawaz fullname: Nawaz, Sadaf email: sadafnawaz26@gmail.com organization: Department of Mathematics, Quaid-I-Azam University 45320 – sequence: 3 givenname: Ahmed surname: Alsaedi fullname: Alsaedi, Ahmed organization: NAAM Research Group, Nonlinear and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University – sequence: 4 givenname: Bashir surname: Ahmad fullname: Ahmad, Bashir organization: NAAM Research Group, Nonlinear and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University |
BookMark | eNp9kM1KAzEQgIMoWKsP4C3geTXTNMnuUYp_UNCDXg3Z_JSUbVKTrNib7-Ab-iRuqSAIepoZmG9-viO0H2KwCJ0COQdCxEWekiklFYG6gmlDq7c9NIKa8IryBvaHnIu6YrWoD9FRzktC6IRxNkLPDzb5XFRXvMZKF__qywZHh9suRvP5_lF8UcH3KxxUiK7rvcG5b5dWF1witsHErOPaYhXMUJUU1xu8sMEmVXwMx-jAqS7bk-84Rk_XV4-z22p-f3M3u5xXmgIvlWsYmzqAlhMBnCkhFKW14tYRRVtjoDGOtUyAbllNCVO8BhDOGm2ZUbqhY3S2m7tO8aW3uchl7FMYVsoJUMGIEIQPXbDr0inmnKyT6-RXKm0kELnVKHca5aBRbjXKt4ERvxg9GNn-VpLy3b_kZEfmYUtY2PRz09_QF2SqjI0 |
CitedBy_id | crossref_primary_10_1016_j_physa_2019_04_082 crossref_primary_10_1007_s10973_020_10307_8 crossref_primary_10_1140_epjp_s13360_020_00293_z crossref_primary_10_1002_zamm_202300260 crossref_primary_10_1140_epjp_s13360_020_00421_9 crossref_primary_10_1016_j_cmpb_2019_105013 crossref_primary_10_1007_s10973_020_09576_0 crossref_primary_10_1016_j_jtice_2021_03_024 crossref_primary_10_1142_S0217979224502084 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2016.02.060 10.1016/j.physa.2014.09.053 10.1016/j.compbiomed.2016.09.007 10.1016/j.aej.2016.04.041 10.1115/1.2150834 10.1016/j.jmmm.2015.02.017 10.1016/j.aej.2016.07.011 10.1016/j.apm.2010.11.031 10.1016/j.molliq.2016.06.002 10.1016/j.cmpb.2016.07.001 10.3390/e18030090 10.1016/j.molliq.2016.05.072 10.1016/j.ijheatmasstransfer.2017.06.072 10.3390/e18100355 10.1016/j.rinp.2017.02.022 10.1016/j.cnsns.2007.02.008 10.1371/journal.pone.0153537 10.1016/j.ijheatmasstransfer.2016.05.033 10.1016/S0017-9310(03)00156-X 10.1016/j.molliq.2014.01.021 10.1016/j.rinp.2015.04.003 10.1016/j.molliq.2015.03.042 10.1016/j.icheatmasstransfer.2007.08.011 10.1016/j.asej.2016.03.020 10.1016/j.ijheatmasstransfer.2006.09.034 10.1371/journal.pone.0111417 10.1016/j.ijheatmasstransfer.2015.01.099 10.1016/j.ijheatmasstransfer.2017.06.066 10.1016/j.mvr.2016.11.007 |
ContentType | Journal Article |
Copyright | The Brazilian Society of Mechanical Sciences and Engineering 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: The Brazilian Society of Mechanical Sciences and Engineering 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s40430-018-1493-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1806-3691 |
EndPage | 10 |
ExternalDocumentID | 10_1007_s40430_018_1493_x |
GroupedDBID | -EM 06D 0R~ 203 29L 29~ 2WC 30V 4.4 406 5GY 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAZMS ABAKF ABDZT ABECU ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABTEG ABTHY ABTKH ABTMW ABXHO ABXPI ACAOD ACCUX ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACREN ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH APOWU ASPBG AUKKA AVWKF AXYYD AYJHY AZFZN BGNMA C1A CS3 CSCUP DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 HZ~ I0C IKXTQ IWAJR IXD J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9G O9J OK1 PT4 RIG RLLFE RNS ROL RSC RSV SCD SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TR2 TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 XSB Z5O Z7R Z7V Z7X Z7Y Z7Z ZMTXR AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION OVT ABRTQ |
ID | FETCH-LOGICAL-c316t-f9554f11b607165a77a338a6ef0a3bdd19df5b571cb58305a68117fedce5dac93 |
IEDL.DBID | AGYKE |
ISSN | 1678-5878 |
IngestDate | Fri Jul 25 11:13:46 EDT 2025 Thu Apr 24 22:56:45 EDT 2025 Tue Jul 01 03:57:28 EDT 2025 Fri Feb 21 02:31:46 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Keywords | Complaint walls Velocity and thermal slip conditions Entropy generation Titanium Mixed convection Blood Endoscope |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-f9554f11b607165a77a338a6ef0a3bdd19df5b571cb58305a68117fedce5dac93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-4176-7692 |
PQID | 2137507706 |
PQPubID | 2043642 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2137507706 crossref_primary_10_1007_s40430_018_1493_x crossref_citationtrail_10_1007_s40430_018_1493_x springer_journals_10_1007_s40430_018_1493_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of the Brazilian Society of Mechanical Sciences and Engineering |
PublicationTitleAbbrev | J Braz. Soc. Mech. Sci. Eng |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | SayedHMAlyEHVajraveluKInfluence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channelAlex Eng J2016552209222010.1016/j.aej.2016.04.041 Abd. ElmaboudYMekheimerKhSNon-linear peristaltic transport of a second-order fluid through a porous mediumAppl Math Model20113526952710277619110.1016/j.apm.2010.11.031 HayatTAbbasiFMAl-YamiMMonaquelSSlip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effectsJ Mol Liq2014194939910.1016/j.molliq.2014.01.021 HayatTNawazSAlsaediARafiqMInfluence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channelResults Phys2017798299010.1016/j.rinp.2017.02.022 KhanaferKVafaiKLightstoneMBuoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluidsInt J. Heat Mass Transf2003463639365310.1016/S0017-9310(03)00156-X LinYZhengLZhangXMaLChenGMHD pseudoplastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generationInt J Heat Mass Transf20158490391110.1016/j.ijheatmasstransfer.2015.01.099 AbbasiFMHayatTAhmadBPeristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug deliveryJ Mol Liq201520724825510.1016/j.molliq.2015.03.042 HayatTSaleemATanveerAAlsaadiFNumerical study for MHD peristaltic flow of Williamson nanofluid in an endoscope with partial slip and wall propertiesInt J Heat Mass Transf20171141181118710.1016/j.ijheatmasstransfer.2017.06.066 AkbarNSRazaMEllahiRPeristaltic flow with thermal conductivity of H2O + Cu nanofluid and entropy generationResults Phys2015511512410.1016/j.rinp.2015.04.003 Latham TW (1966) Fluid motion in a peristaltic pump, MS Thesis, MIT, Cambridge, MA HayatTAhmadNAliNEffects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluidCommun Nonlinear Sci Numer Simul20081315811591239869110.1016/j.cnsns.2007.02.008 SankadGDhangeMPeristaltic pumping of an incompressible viscous fluid in a porous medium with wall effects and chemical reactionsAlex Eng J2016552015202110.1016/j.aej.2016.07.011 SheikholeslamiMGanjiDDEntropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann MethodPhys A201541727328610.1016/j.physa.2014.09.053 ShehzadSAAbbasiFMHayatTAlsaadiFMHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effectsPLoS One20149e11141710.1371/journal.pone.0111417 Weinberg SL (1970) Theoretical and experimental treatment of peristaltic pumping and its relation to ureteral function, Ph.D. Thesis, MIT, Cambridge, MA NadeemSShahzadiISingle wall carbon nanotube (SWCNT) analysis on peristaltic flow in an inclined tube with permeable wallsInt J Heat Mass Transf20169779480210.1016/j.ijheatmasstransfer.2016.02.060 Shapiro AH (1967) Pumping and retrograde diffusion in peristaltic waves. In: Proceedings of the workshop ureteral Reftm children, Nat Acad Sci Washington, DC 1:109–126 Abd-AllaAMAbo-DahabSMKilicmanAPeristaltic flow of a Jeffrey fluid under the effect of radially varying magnetic field in a tube with an endoscopeJ Magn Magn Mater2015384798610.1016/j.jmmm.2015.02.017 HayatTNawazSAlsaadiARafiqMAnalysis of entropy generation in mixed convective peristaltic flow of nanofluidEntropy20161835510.3390/e18100355 ShitGCRanjitNKRole of slip velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: application to digestive systemJ Mol Liq201622130531510.1016/j.molliq.2016.06.002 BhattiMMZeeshanAEllahiREndoscope analysis on peristaltic blood flow of Sisko fluid with titanium magneto-nanoparticlesComput Biol Med201678294110.1016/j.compbiomed.2016.09.007 HayatTNawazSAlsaadiARafiqMImpact of second-order velocity and thermal slips in the mixed convective peristalsis with carbon nanotubes and porous mediumJ Mol Liq201622143444210.1016/j.molliq.2016.05.072 MaxwellJCA treatise on electricity and magnetism19042CambridgeOxford University Press435441 TripathiDPeristaltic transport of fractional Maxwell fluids in uniform tubes: applications in endoscopyComput Math App2011621116112628247001228.65204 TiwariRKDasMKHeat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluidsInt J Heat Mass Transf2007502002201810.1016/j.ijheatmasstransfer.2006.09.034 AbbasMABaiYRashidiMMBhattiMMAnalysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant wallsEntropy20161890351025610.3390/e18030090 ChoiSUSEnhancing thermal conductivity of the fluids with nanoparticlesASME Fluids Eng Div199523199105 HayatTNawazSAlsaadiARafiqMMixed convective peristaltic flow of water based nanofluids with Joule heating and convective boundary conditionsPLoS One201611e015353710.1371/journal.pone.0153537 HayatTNawazSAlsaadiFRafiqMMustafaMA model for an application to biomedical engineering through nanoparticlesInt J Heat Mass Transf201610111212010.1016/j.ijheatmasstransfer.2016.05.033 HayatTSaleemATanveerAAlsaadiFNumerical analysis for peristalsis of Williamson nanofluid in the presence of an endoscopeInt. J. Heat Mass Transf201711439540110.1016/j.ijheatmasstransfer.2017.06.072 BuongiornoJConvective transport in nanofluidsASME J Heat Transf200612824025010.1115/1.2150834 RameshKEffects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous mediumComput Methods Prog Biomed201613511410.1016/j.cmpb.2016.07.001 BhattiMMZeeshanAEllahiRSimultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganismMicrovasc Res2017110324210.1016/j.mvr.2016.11.007 BabuVRSreenadhSSrinivasANSPeristaltic transport of a viscous fluid in a porous channel with suction and injectionAin Shams Eng J201610.1016/j.asej.2016.03.020 SrinivasSKothandapaniMPeristaltic transport in an asymmetric channel with heat transfer—a noteInt Commun Heat Mass Transf20083551452210.1016/j.icheatmasstransfer.2007.08.011 G Sankad (1493_CR11) 2016; 55 S Srinivas (1493_CR4) 2008; 35 K Ramesh (1493_CR10) 2016; 135 T Hayat (1493_CR18) 2016; 11 GC Shit (1493_CR8) 2016; 221 SA Shehzad (1493_CR19) 2014; 9 AM Abd-Alla (1493_CR27) 2015; 384 T Hayat (1493_CR29) 2017; 114 HM Sayed (1493_CR7) 2016; 55 MM Bhatti (1493_CR9) 2017; 110 T Hayat (1493_CR21) 2016; 101 Y Lin (1493_CR15) 2015; 84 J Buongiorno (1493_CR16) 2006; 128 FM Abbasi (1493_CR22) 2015; 207 T Hayat (1493_CR34) 2016; 18 MA Abbas (1493_CR33) 2016; 18 T Hayat (1493_CR24) 2008; 13 MM Bhatti (1493_CR30) 2016; 78 Y Abd. Elmaboud (1493_CR6) 2011; 35 D Tripathi (1493_CR25) 2011; 62 T Hayat (1493_CR26) 2017; 114 SUS Choi (1493_CR13) 1995; 231 VR Babu (1493_CR12) 2016 RK Tiwari (1493_CR17) 2007; 50 NS Akbar (1493_CR32) 2015; 5 T Hayat (1493_CR20) 2014; 194 S Nadeem (1493_CR28) 2016; 97 T Hayat (1493_CR23) 2016; 221 JC Maxwell (1493_CR35) 1904 K Khanafer (1493_CR14) 2003; 46 T Hayat (1493_CR5) 2017; 7 1493_CR1 1493_CR2 1493_CR3 M Sheikholeslami (1493_CR31) 2015; 417 |
References_xml | – reference: SheikholeslamiMGanjiDDEntropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann MethodPhys A201541727328610.1016/j.physa.2014.09.053 – reference: SrinivasSKothandapaniMPeristaltic transport in an asymmetric channel with heat transfer—a noteInt Commun Heat Mass Transf20083551452210.1016/j.icheatmasstransfer.2007.08.011 – reference: SankadGDhangeMPeristaltic pumping of an incompressible viscous fluid in a porous medium with wall effects and chemical reactionsAlex Eng J2016552015202110.1016/j.aej.2016.07.011 – reference: MaxwellJCA treatise on electricity and magnetism19042CambridgeOxford University Press435441 – reference: HayatTSaleemATanveerAAlsaadiFNumerical analysis for peristalsis of Williamson nanofluid in the presence of an endoscopeInt. J. Heat Mass Transf201711439540110.1016/j.ijheatmasstransfer.2017.06.072 – reference: AbbasMABaiYRashidiMMBhattiMMAnalysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant wallsEntropy20161890351025610.3390/e18030090 – reference: Latham TW (1966) Fluid motion in a peristaltic pump, MS Thesis, MIT, Cambridge, MA – reference: HayatTNawazSAlsaediARafiqMInfluence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channelResults Phys2017798299010.1016/j.rinp.2017.02.022 – reference: HayatTNawazSAlsaadiARafiqMAnalysis of entropy generation in mixed convective peristaltic flow of nanofluidEntropy20161835510.3390/e18100355 – reference: BabuVRSreenadhSSrinivasANSPeristaltic transport of a viscous fluid in a porous channel with suction and injectionAin Shams Eng J201610.1016/j.asej.2016.03.020 – reference: KhanaferKVafaiKLightstoneMBuoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluidsInt J. Heat Mass Transf2003463639365310.1016/S0017-9310(03)00156-X – reference: Abd-AllaAMAbo-DahabSMKilicmanAPeristaltic flow of a Jeffrey fluid under the effect of radially varying magnetic field in a tube with an endoscopeJ Magn Magn Mater2015384798610.1016/j.jmmm.2015.02.017 – reference: LinYZhengLZhangXMaLChenGMHD pseudoplastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generationInt J Heat Mass Transf20158490391110.1016/j.ijheatmasstransfer.2015.01.099 – reference: TripathiDPeristaltic transport of fractional Maxwell fluids in uniform tubes: applications in endoscopyComput Math App2011621116112628247001228.65204 – reference: Weinberg SL (1970) Theoretical and experimental treatment of peristaltic pumping and its relation to ureteral function, Ph.D. Thesis, MIT, Cambridge, MA – reference: ChoiSUSEnhancing thermal conductivity of the fluids with nanoparticlesASME Fluids Eng Div199523199105 – reference: ShehzadSAAbbasiFMHayatTAlsaadiFMHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effectsPLoS One20149e11141710.1371/journal.pone.0111417 – reference: NadeemSShahzadiISingle wall carbon nanotube (SWCNT) analysis on peristaltic flow in an inclined tube with permeable wallsInt J Heat Mass Transf20169779480210.1016/j.ijheatmasstransfer.2016.02.060 – reference: ShitGCRanjitNKRole of slip velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: application to digestive systemJ Mol Liq201622130531510.1016/j.molliq.2016.06.002 – reference: BhattiMMZeeshanAEllahiRSimultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganismMicrovasc Res2017110324210.1016/j.mvr.2016.11.007 – reference: HayatTNawazSAlsaadiFRafiqMMustafaMA model for an application to biomedical engineering through nanoparticlesInt J Heat Mass Transf201610111212010.1016/j.ijheatmasstransfer.2016.05.033 – reference: SayedHMAlyEHVajraveluKInfluence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channelAlex Eng J2016552209222010.1016/j.aej.2016.04.041 – reference: HayatTNawazSAlsaadiARafiqMMixed convective peristaltic flow of water based nanofluids with Joule heating and convective boundary conditionsPLoS One201611e015353710.1371/journal.pone.0153537 – reference: BhattiMMZeeshanAEllahiREndoscope analysis on peristaltic blood flow of Sisko fluid with titanium magneto-nanoparticlesComput Biol Med201678294110.1016/j.compbiomed.2016.09.007 – reference: RameshKEffects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous mediumComput Methods Prog Biomed201613511410.1016/j.cmpb.2016.07.001 – reference: Shapiro AH (1967) Pumping and retrograde diffusion in peristaltic waves. In: Proceedings of the workshop ureteral Reftm children, Nat Acad Sci Washington, DC 1:109–126 – reference: AbbasiFMHayatTAhmadBPeristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug deliveryJ Mol Liq201520724825510.1016/j.molliq.2015.03.042 – reference: HayatTNawazSAlsaadiARafiqMImpact of second-order velocity and thermal slips in the mixed convective peristalsis with carbon nanotubes and porous mediumJ Mol Liq201622143444210.1016/j.molliq.2016.05.072 – reference: Abd. ElmaboudYMekheimerKhSNon-linear peristaltic transport of a second-order fluid through a porous mediumAppl Math Model20113526952710277619110.1016/j.apm.2010.11.031 – reference: HayatTAbbasiFMAl-YamiMMonaquelSSlip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effectsJ Mol Liq2014194939910.1016/j.molliq.2014.01.021 – reference: AkbarNSRazaMEllahiRPeristaltic flow with thermal conductivity of H2O + Cu nanofluid and entropy generationResults Phys2015511512410.1016/j.rinp.2015.04.003 – reference: TiwariRKDasMKHeat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluidsInt J Heat Mass Transf2007502002201810.1016/j.ijheatmasstransfer.2006.09.034 – reference: HayatTSaleemATanveerAAlsaadiFNumerical study for MHD peristaltic flow of Williamson nanofluid in an endoscope with partial slip and wall propertiesInt J Heat Mass Transf20171141181118710.1016/j.ijheatmasstransfer.2017.06.066 – reference: HayatTAhmadNAliNEffects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluidCommun Nonlinear Sci Numer Simul20081315811591239869110.1016/j.cnsns.2007.02.008 – reference: BuongiornoJConvective transport in nanofluidsASME J Heat Transf200612824025010.1115/1.2150834 – volume: 97 start-page: 794 year: 2016 ident: 1493_CR28 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.02.060 – volume: 417 start-page: 273 year: 2015 ident: 1493_CR31 publication-title: Phys A doi: 10.1016/j.physa.2014.09.053 – volume: 62 start-page: 1116 year: 2011 ident: 1493_CR25 publication-title: Comput Math App – volume: 78 start-page: 29 year: 2016 ident: 1493_CR30 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2016.09.007 – volume: 55 start-page: 2209 year: 2016 ident: 1493_CR7 publication-title: Alex Eng J doi: 10.1016/j.aej.2016.04.041 – volume: 128 start-page: 240 year: 2006 ident: 1493_CR16 publication-title: ASME J Heat Transf doi: 10.1115/1.2150834 – volume: 384 start-page: 79 year: 2015 ident: 1493_CR27 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2015.02.017 – volume: 55 start-page: 2015 year: 2016 ident: 1493_CR11 publication-title: Alex Eng J doi: 10.1016/j.aej.2016.07.011 – volume: 35 start-page: 2695 year: 2011 ident: 1493_CR6 publication-title: Appl Math Model doi: 10.1016/j.apm.2010.11.031 – volume: 221 start-page: 305 year: 2016 ident: 1493_CR8 publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.06.002 – volume: 135 start-page: 1 year: 2016 ident: 1493_CR10 publication-title: Comput Methods Prog Biomed doi: 10.1016/j.cmpb.2016.07.001 – volume: 18 start-page: 90 year: 2016 ident: 1493_CR33 publication-title: Entropy doi: 10.3390/e18030090 – volume: 221 start-page: 434 year: 2016 ident: 1493_CR23 publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.05.072 – ident: 1493_CR2 – volume: 114 start-page: 395 year: 2017 ident: 1493_CR29 publication-title: Int. J. Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.06.072 – volume: 18 start-page: 355 year: 2016 ident: 1493_CR34 publication-title: Entropy doi: 10.3390/e18100355 – start-page: 435 volume-title: A treatise on electricity and magnetism year: 1904 ident: 1493_CR35 – volume: 7 start-page: 982 year: 2017 ident: 1493_CR5 publication-title: Results Phys doi: 10.1016/j.rinp.2017.02.022 – volume: 13 start-page: 1581 year: 2008 ident: 1493_CR24 publication-title: Commun Nonlinear Sci Numer Simul doi: 10.1016/j.cnsns.2007.02.008 – volume: 11 start-page: e0153537 year: 2016 ident: 1493_CR18 publication-title: PLoS One doi: 10.1371/journal.pone.0153537 – volume: 101 start-page: 112 year: 2016 ident: 1493_CR21 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2016.05.033 – volume: 46 start-page: 3639 year: 2003 ident: 1493_CR14 publication-title: Int J. Heat Mass Transf doi: 10.1016/S0017-9310(03)00156-X – volume: 194 start-page: 93 year: 2014 ident: 1493_CR20 publication-title: J Mol Liq doi: 10.1016/j.molliq.2014.01.021 – volume: 5 start-page: 115 year: 2015 ident: 1493_CR32 publication-title: Results Phys doi: 10.1016/j.rinp.2015.04.003 – volume: 207 start-page: 248 year: 2015 ident: 1493_CR22 publication-title: J Mol Liq doi: 10.1016/j.molliq.2015.03.042 – volume: 35 start-page: 514 year: 2008 ident: 1493_CR4 publication-title: Int Commun Heat Mass Transf doi: 10.1016/j.icheatmasstransfer.2007.08.011 – year: 2016 ident: 1493_CR12 publication-title: Ain Shams Eng J doi: 10.1016/j.asej.2016.03.020 – volume: 50 start-page: 2002 year: 2007 ident: 1493_CR17 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2006.09.034 – volume: 9 start-page: e111417 year: 2014 ident: 1493_CR19 publication-title: PLoS One doi: 10.1371/journal.pone.0111417 – volume: 84 start-page: 903 year: 2015 ident: 1493_CR15 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2015.01.099 – volume: 114 start-page: 1181 year: 2017 ident: 1493_CR26 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2017.06.066 – volume: 231 start-page: 99 year: 1995 ident: 1493_CR13 publication-title: ASME Fluids Eng Div – volume: 110 start-page: 32 year: 2017 ident: 1493_CR9 publication-title: Microvasc Res doi: 10.1016/j.mvr.2016.11.007 – ident: 1493_CR1 – ident: 1493_CR3 |
SSID | ssj0032565 |
Score | 2.1687138 |
Snippet | Entropy generation and endoscopic effects on peristalsis of nanofluid are addressed. Inner tube is taken rigid, while sinusoidal wave travels along the outer... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Blood Computational fluid dynamics Damping Decay Endoscopes Engineering Entropy Fluid flow Grashof number Heat transfer Mechanical Engineering Nanofluids Nanomaterials Nanoparticles Parameters Physical properties Reynolds number Technical Paper Thermal conductivity Titanium Tubes Velocity |
Title | Peristaltic activity of blood–titanium nanofluid subject to endoscope and entropy generation |
URI | https://link.springer.com/article/10.1007/s40430-018-1493-x https://www.proquest.com/docview/2137507706 |
Volume | 40 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDI7QdoED_4jBQDlwAnVq15-0xwltTCAQh00aF6q0SdHESCfWSsCJd-ANeRLsrN1gAqSdm0Zt7NhfYvszISee8FgzbjKDx9zCFmaO4UsRGA6ToM0SAIeOnl_feN2-czlwB0Ud96TMdi9DktpSz4rdkAcGk6jg1OMEtgHAsQrww3QqpNq6uLtqlwbYBi-OmYsW2GHD9ZlfBjN_m-SnO5pjzIWwqPY2nQ3SK79zmmTy2MizqBG_LVA4Lvkjm2S9QJ-0NVWXLbIi1TZZ-8ZJuEPubzV5M0dWDopVD9hcgqYJ1Snun-8fWJWmhvkTVVylySgfCjrJI7zOoVlKpRKprnShXAmKV8fp-JU-aHJr1IFd0u-0e-ddo2jCYMS25WVGEgDgSCwrQiI6z-WMcTjVck8mJrcjIaxAJG7kMiuOXB-MB_ewdDXB5FJX8Diw90hFpUruEwrO0uc-ALaEw6kc-xwD_EFhxQHoiwxqxCxlEcYFQzk2yhiFM25lvXQhLF2ISxe-1Mjp7JXxlJ7jv8H1UsBhsVMnYdOyATQxZno1clbKa_74z8kOlhp9SFabWuCYB1Mnlew5l0eAZrLouNDeL6ZD7M8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDI7QdgAO_CMGA3LgBOq0_qY9TmgwGEwchgQXorRJ0QS0iLUScOIdeEOeBDtrB0yAtHPTqI1d-3NtfyZkz5MesyKLGSISJo4wcwxfycBwmAJtVgA4dPb8vOd1Lp3TK_eq6OMeltXuZUpSW-pxsxvywGARFUQ9TmAbAByrDoTgoNbV1vF1t10aYBu8OFYummCHDddnfpnM_G2Tn-7oC2NOpEW1tzlaJP3yOUdFJneNPAsb0esEheOUL7JEFgr0SVsjdVkmMypZIfPfOAlXyc2FJm8WyMpBsesBh0vQNKa6xP3j7R270pJB_kATkaTxfT6QdJiH-DuHZilViUx1pwsViaT46zh9fKG3mtwadWCNXB61-4cdoxjCYES26WVGHADgiE0zRCI6zxWMCYhqhafiprBDKc1Axm7oMjMKXR-Mh_CwdTXG4lJXiiiw10klSRO1QSg4S1_4ANhiAVE5zjkG-IPCigLQFxXUSLOUBY8KhnIclHHPx9zK-ug4HB3Ho-PPNbI_vuVxRM_x3-J6KWBefKlDbpk2gCbGml6NHJTy-rr852abU63eJbOd_vkZPzvpdbfInKWFjzUxdVLJnnK1DcgmC3cKTf4E7lnvvg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kBdGDb3F95uBJqW63j7RHUde3eFDQizVtEhE1XdwW1JP_wX_oL3Gm264PVBDPTUObmWa-dL75BmDJlz5vJk1uiUTY1MLMtQIlQ8vlCr1ZIeAosueHR_7Oqbt35p2VfU47Fdu9Skl2axpIpclka22p13qFb6QJQ4QqPAG5oWMhiOx3SdquBv3r2-f7W9Vm7GBEJxajjXuy5QU8qBKb303yOTS9480vKdIi8rRG4LJ65i7h5GY1z-LV5OmLnOM_XmoUhktUyta7bjQGfcqMw9AHrcIJuDguRJ0FqXUwqoagphMs1aygvr8-v1C1mrnO75gRJtW3-bVknTym3zwsS5kyMi0qYJgwktEv5bT9yK4K0WvyjUk4bW2dbOxYZXMGK3FsP7N0iEBE23ZMAnW-JzgXeNoVvtIN4cRS2qHUXuxxO4m9ADcV4VNJqybSqSdFEjpTUDOpUdPAMIgGIkAgpwWe1qn_McIiMlwSoh-psA6Nyi5RUiqXUwON26inuVwsXYRLF9HSRQ91WO7d0u7Kdvw2eK4ydlR-wZ2oaTsIpjhv-HVYqWz3fvnHyWb-NHoRBo43W9HB7tH-LAw2C9sTVWYOatl9ruYR8GTxQunUb49P-KI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peristaltic+activity+of+blood%E2%80%93titanium+nanofluid+subject+to+endoscope+and+entropy+generation&rft.jtitle=Journal+of+the+Brazilian+Society+of+Mechanical+Sciences+and+Engineering&rft.au=Tasawar+Hayat&rft.au=Nawaz%2C+Sadaf&rft.au=Alsaedi%2C+Ahmed&rft.au=Bashir%2C+Ahmad&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1678-5878&rft.eissn=1806-3691&rft.volume=40&rft.issue=12&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1007%2Fs40430-018-1493-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1678-5878&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1678-5878&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1678-5878&client=summon |