Peristaltic activity of blood–titanium nanofluid subject to endoscope and entropy generation

Entropy generation and endoscopic effects on peristalsis of nanofluid are addressed. Inner tube is taken rigid, while sinusoidal wave travels along the outer tube. Blood is used as the base fluid, whereas titanium is considered as nanoparticle. Maxwell model of effective thermal conductivity is util...

Full description

Saved in:
Bibliographic Details
Published inJournal of the Brazilian Society of Mechanical Sciences and Engineering Vol. 40; no. 12; pp. 1 - 10
Main Authors Hayat, Tasawar, Nawaz, Sadaf, Alsaedi, Ahmed, Ahmad, Bashir
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Entropy generation and endoscopic effects on peristalsis of nanofluid are addressed. Inner tube is taken rigid, while sinusoidal wave travels along the outer tube. Blood is used as the base fluid, whereas titanium is considered as nanoparticle. Maxwell model of effective thermal conductivity is utilized. Velocity and thermal slip conditions are imposed at outer tube. Moreover, the walls of tubes are complaint in nature. Viscous dissipation is also utilized. Long wavelength and small Reynolds number consideration is employed. Series solutions are obtained for small Grashof number. Analysis is carried out for physical parameters on velocity, temperature, entropy generation and Bejan number. Heat transfer rate at wall is also analyzed via bar charts for different pertinent parameters. Results reveal that an enhancement in nanomaterial volume fraction causes decay in temperature and velocity, whereas it leads to increase the heat transfer rate at the wall. Grashof number causes an enhancement in velocity and temperature. The study also declared that elastance coefficients of walls lead to enhancement, whereas damping coefficient results in decay of velocity, temperature and entropy generation.
AbstractList Entropy generation and endoscopic effects on peristalsis of nanofluid are addressed. Inner tube is taken rigid, while sinusoidal wave travels along the outer tube. Blood is used as the base fluid, whereas titanium is considered as nanoparticle. Maxwell model of effective thermal conductivity is utilized. Velocity and thermal slip conditions are imposed at outer tube. Moreover, the walls of tubes are complaint in nature. Viscous dissipation is also utilized. Long wavelength and small Reynolds number consideration is employed. Series solutions are obtained for small Grashof number. Analysis is carried out for physical parameters on velocity, temperature, entropy generation and Bejan number. Heat transfer rate at wall is also analyzed via bar charts for different pertinent parameters. Results reveal that an enhancement in nanomaterial volume fraction causes decay in temperature and velocity, whereas it leads to increase the heat transfer rate at the wall. Grashof number causes an enhancement in velocity and temperature. The study also declared that elastance coefficients of walls lead to enhancement, whereas damping coefficient results in decay of velocity, temperature and entropy generation.
ArticleNumber 574
Author Ahmad, Bashir
Hayat, Tasawar
Alsaedi, Ahmed
Nawaz, Sadaf
Author_xml – sequence: 1
  givenname: Tasawar
  surname: Hayat
  fullname: Hayat, Tasawar
  organization: Department of Mathematics, Quaid-I-Azam University 45320, NAAM Research Group, Nonlinear and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University
– sequence: 2
  givenname: Sadaf
  orcidid: 0000-0002-4176-7692
  surname: Nawaz
  fullname: Nawaz, Sadaf
  email: sadafnawaz26@gmail.com
  organization: Department of Mathematics, Quaid-I-Azam University 45320
– sequence: 3
  givenname: Ahmed
  surname: Alsaedi
  fullname: Alsaedi, Ahmed
  organization: NAAM Research Group, Nonlinear and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University
– sequence: 4
  givenname: Bashir
  surname: Ahmad
  fullname: Ahmad, Bashir
  organization: NAAM Research Group, Nonlinear and Applied Mathematics (NAAM) Research Group, Department of Mathematics, King Abdulaziz University
BookMark eNp9kM1KAzEQgIMoWKsP4C3geTXTNMnuUYp_UNCDXg3Z_JSUbVKTrNib7-Ab-iRuqSAIepoZmG9-viO0H2KwCJ0COQdCxEWekiklFYG6gmlDq7c9NIKa8IryBvaHnIu6YrWoD9FRzktC6IRxNkLPDzb5XFRXvMZKF__qywZHh9suRvP5_lF8UcH3KxxUiK7rvcG5b5dWF1witsHErOPaYhXMUJUU1xu8sMEmVXwMx-jAqS7bk-84Rk_XV4-z22p-f3M3u5xXmgIvlWsYmzqAlhMBnCkhFKW14tYRRVtjoDGOtUyAbllNCVO8BhDOGm2ZUbqhY3S2m7tO8aW3uchl7FMYVsoJUMGIEIQPXbDr0inmnKyT6-RXKm0kELnVKHca5aBRbjXKt4ERvxg9GNn-VpLy3b_kZEfmYUtY2PRz09_QF2SqjI0
CitedBy_id crossref_primary_10_1016_j_physa_2019_04_082
crossref_primary_10_1007_s10973_020_10307_8
crossref_primary_10_1140_epjp_s13360_020_00293_z
crossref_primary_10_1002_zamm_202300260
crossref_primary_10_1140_epjp_s13360_020_00421_9
crossref_primary_10_1016_j_cmpb_2019_105013
crossref_primary_10_1007_s10973_020_09576_0
crossref_primary_10_1016_j_jtice_2021_03_024
crossref_primary_10_1142_S0217979224502084
Cites_doi 10.1016/j.ijheatmasstransfer.2016.02.060
10.1016/j.physa.2014.09.053
10.1016/j.compbiomed.2016.09.007
10.1016/j.aej.2016.04.041
10.1115/1.2150834
10.1016/j.jmmm.2015.02.017
10.1016/j.aej.2016.07.011
10.1016/j.apm.2010.11.031
10.1016/j.molliq.2016.06.002
10.1016/j.cmpb.2016.07.001
10.3390/e18030090
10.1016/j.molliq.2016.05.072
10.1016/j.ijheatmasstransfer.2017.06.072
10.3390/e18100355
10.1016/j.rinp.2017.02.022
10.1016/j.cnsns.2007.02.008
10.1371/journal.pone.0153537
10.1016/j.ijheatmasstransfer.2016.05.033
10.1016/S0017-9310(03)00156-X
10.1016/j.molliq.2014.01.021
10.1016/j.rinp.2015.04.003
10.1016/j.molliq.2015.03.042
10.1016/j.icheatmasstransfer.2007.08.011
10.1016/j.asej.2016.03.020
10.1016/j.ijheatmasstransfer.2006.09.034
10.1371/journal.pone.0111417
10.1016/j.ijheatmasstransfer.2015.01.099
10.1016/j.ijheatmasstransfer.2017.06.066
10.1016/j.mvr.2016.11.007
ContentType Journal Article
Copyright The Brazilian Society of Mechanical Sciences and Engineering 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: The Brazilian Society of Mechanical Sciences and Engineering 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s40430-018-1493-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1806-3691
EndPage 10
ExternalDocumentID 10_1007_s40430_018_1493_x
GroupedDBID -EM
06D
0R~
203
29L
29~
2WC
30V
4.4
406
5GY
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACCUX
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
APOWU
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BGNMA
C1A
CS3
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
PT4
RIG
RLLFE
RNS
ROL
RSC
RSV
SCD
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
OVT
ABRTQ
ID FETCH-LOGICAL-c316t-f9554f11b607165a77a338a6ef0a3bdd19df5b571cb58305a68117fedce5dac93
IEDL.DBID AGYKE
ISSN 1678-5878
IngestDate Fri Jul 25 11:13:46 EDT 2025
Thu Apr 24 22:56:45 EDT 2025
Tue Jul 01 03:57:28 EDT 2025
Fri Feb 21 02:31:46 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords Complaint walls
Velocity and thermal slip conditions
Entropy generation
Titanium
Mixed convection
Blood
Endoscope
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-f9554f11b607165a77a338a6ef0a3bdd19df5b571cb58305a68117fedce5dac93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4176-7692
PQID 2137507706
PQPubID 2043642
PageCount 10
ParticipantIDs proquest_journals_2137507706
crossref_primary_10_1007_s40430_018_1493_x
crossref_citationtrail_10_1007_s40430_018_1493_x
springer_journals_10_1007_s40430_018_1493_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Journal of the Brazilian Society of Mechanical Sciences and Engineering
PublicationTitleAbbrev J Braz. Soc. Mech. Sci. Eng
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References SayedHMAlyEHVajraveluKInfluence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channelAlex Eng J2016552209222010.1016/j.aej.2016.04.041
Abd. ElmaboudYMekheimerKhSNon-linear peristaltic transport of a second-order fluid through a porous mediumAppl Math Model20113526952710277619110.1016/j.apm.2010.11.031
HayatTAbbasiFMAl-YamiMMonaquelSSlip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effectsJ Mol Liq2014194939910.1016/j.molliq.2014.01.021
HayatTNawazSAlsaediARafiqMInfluence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channelResults Phys2017798299010.1016/j.rinp.2017.02.022
KhanaferKVafaiKLightstoneMBuoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluidsInt J. Heat Mass Transf2003463639365310.1016/S0017-9310(03)00156-X
LinYZhengLZhangXMaLChenGMHD pseudoplastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generationInt J Heat Mass Transf20158490391110.1016/j.ijheatmasstransfer.2015.01.099
AbbasiFMHayatTAhmadBPeristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug deliveryJ Mol Liq201520724825510.1016/j.molliq.2015.03.042
HayatTSaleemATanveerAAlsaadiFNumerical study for MHD peristaltic flow of Williamson nanofluid in an endoscope with partial slip and wall propertiesInt J Heat Mass Transf20171141181118710.1016/j.ijheatmasstransfer.2017.06.066
AkbarNSRazaMEllahiRPeristaltic flow with thermal conductivity of H2O + Cu nanofluid and entropy generationResults Phys2015511512410.1016/j.rinp.2015.04.003
Latham TW (1966) Fluid motion in a peristaltic pump, MS Thesis, MIT, Cambridge, MA
HayatTAhmadNAliNEffects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluidCommun Nonlinear Sci Numer Simul20081315811591239869110.1016/j.cnsns.2007.02.008
SankadGDhangeMPeristaltic pumping of an incompressible viscous fluid in a porous medium with wall effects and chemical reactionsAlex Eng J2016552015202110.1016/j.aej.2016.07.011
SheikholeslamiMGanjiDDEntropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann MethodPhys A201541727328610.1016/j.physa.2014.09.053
ShehzadSAAbbasiFMHayatTAlsaadiFMHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effectsPLoS One20149e11141710.1371/journal.pone.0111417
Weinberg SL (1970) Theoretical and experimental treatment of peristaltic pumping and its relation to ureteral function, Ph.D. Thesis, MIT, Cambridge, MA
NadeemSShahzadiISingle wall carbon nanotube (SWCNT) analysis on peristaltic flow in an inclined tube with permeable wallsInt J Heat Mass Transf20169779480210.1016/j.ijheatmasstransfer.2016.02.060
Shapiro AH (1967) Pumping and retrograde diffusion in peristaltic waves. In: Proceedings of the workshop ureteral Reftm children, Nat Acad Sci Washington, DC 1:109–126
Abd-AllaAMAbo-DahabSMKilicmanAPeristaltic flow of a Jeffrey fluid under the effect of radially varying magnetic field in a tube with an endoscopeJ Magn Magn Mater2015384798610.1016/j.jmmm.2015.02.017
HayatTNawazSAlsaadiARafiqMAnalysis of entropy generation in mixed convective peristaltic flow of nanofluidEntropy20161835510.3390/e18100355
ShitGCRanjitNKRole of slip velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: application to digestive systemJ Mol Liq201622130531510.1016/j.molliq.2016.06.002
BhattiMMZeeshanAEllahiREndoscope analysis on peristaltic blood flow of Sisko fluid with titanium magneto-nanoparticlesComput Biol Med201678294110.1016/j.compbiomed.2016.09.007
HayatTNawazSAlsaadiARafiqMImpact of second-order velocity and thermal slips in the mixed convective peristalsis with carbon nanotubes and porous mediumJ Mol Liq201622143444210.1016/j.molliq.2016.05.072
MaxwellJCA treatise on electricity and magnetism19042CambridgeOxford University Press435441
TripathiDPeristaltic transport of fractional Maxwell fluids in uniform tubes: applications in endoscopyComput Math App2011621116112628247001228.65204
TiwariRKDasMKHeat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluidsInt J Heat Mass Transf2007502002201810.1016/j.ijheatmasstransfer.2006.09.034
AbbasMABaiYRashidiMMBhattiMMAnalysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant wallsEntropy20161890351025610.3390/e18030090
ChoiSUSEnhancing thermal conductivity of the fluids with nanoparticlesASME Fluids Eng Div199523199105
HayatTNawazSAlsaadiARafiqMMixed convective peristaltic flow of water based nanofluids with Joule heating and convective boundary conditionsPLoS One201611e015353710.1371/journal.pone.0153537
HayatTNawazSAlsaadiFRafiqMMustafaMA model for an application to biomedical engineering through nanoparticlesInt J Heat Mass Transf201610111212010.1016/j.ijheatmasstransfer.2016.05.033
HayatTSaleemATanveerAAlsaadiFNumerical analysis for peristalsis of Williamson nanofluid in the presence of an endoscopeInt. J. Heat Mass Transf201711439540110.1016/j.ijheatmasstransfer.2017.06.072
BuongiornoJConvective transport in nanofluidsASME J Heat Transf200612824025010.1115/1.2150834
RameshKEffects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous mediumComput Methods Prog Biomed201613511410.1016/j.cmpb.2016.07.001
BhattiMMZeeshanAEllahiRSimultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganismMicrovasc Res2017110324210.1016/j.mvr.2016.11.007
BabuVRSreenadhSSrinivasANSPeristaltic transport of a viscous fluid in a porous channel with suction and injectionAin Shams Eng J201610.1016/j.asej.2016.03.020
SrinivasSKothandapaniMPeristaltic transport in an asymmetric channel with heat transfer—a noteInt Commun Heat Mass Transf20083551452210.1016/j.icheatmasstransfer.2007.08.011
G Sankad (1493_CR11) 2016; 55
S Srinivas (1493_CR4) 2008; 35
K Ramesh (1493_CR10) 2016; 135
T Hayat (1493_CR18) 2016; 11
GC Shit (1493_CR8) 2016; 221
SA Shehzad (1493_CR19) 2014; 9
AM Abd-Alla (1493_CR27) 2015; 384
T Hayat (1493_CR29) 2017; 114
HM Sayed (1493_CR7) 2016; 55
MM Bhatti (1493_CR9) 2017; 110
T Hayat (1493_CR21) 2016; 101
Y Lin (1493_CR15) 2015; 84
J Buongiorno (1493_CR16) 2006; 128
FM Abbasi (1493_CR22) 2015; 207
T Hayat (1493_CR34) 2016; 18
MA Abbas (1493_CR33) 2016; 18
T Hayat (1493_CR24) 2008; 13
MM Bhatti (1493_CR30) 2016; 78
Y Abd. Elmaboud (1493_CR6) 2011; 35
D Tripathi (1493_CR25) 2011; 62
T Hayat (1493_CR26) 2017; 114
SUS Choi (1493_CR13) 1995; 231
VR Babu (1493_CR12) 2016
RK Tiwari (1493_CR17) 2007; 50
NS Akbar (1493_CR32) 2015; 5
T Hayat (1493_CR20) 2014; 194
S Nadeem (1493_CR28) 2016; 97
T Hayat (1493_CR23) 2016; 221
JC Maxwell (1493_CR35) 1904
K Khanafer (1493_CR14) 2003; 46
T Hayat (1493_CR5) 2017; 7
1493_CR1
1493_CR2
1493_CR3
M Sheikholeslami (1493_CR31) 2015; 417
References_xml – reference: SheikholeslamiMGanjiDDEntropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann MethodPhys A201541727328610.1016/j.physa.2014.09.053
– reference: SrinivasSKothandapaniMPeristaltic transport in an asymmetric channel with heat transfer—a noteInt Commun Heat Mass Transf20083551452210.1016/j.icheatmasstransfer.2007.08.011
– reference: SankadGDhangeMPeristaltic pumping of an incompressible viscous fluid in a porous medium with wall effects and chemical reactionsAlex Eng J2016552015202110.1016/j.aej.2016.07.011
– reference: MaxwellJCA treatise on electricity and magnetism19042CambridgeOxford University Press435441
– reference: HayatTSaleemATanveerAAlsaadiFNumerical analysis for peristalsis of Williamson nanofluid in the presence of an endoscopeInt. J. Heat Mass Transf201711439540110.1016/j.ijheatmasstransfer.2017.06.072
– reference: AbbasMABaiYRashidiMMBhattiMMAnalysis of entropy generation in the flow of peristaltic nanofluids in channels with compliant wallsEntropy20161890351025610.3390/e18030090
– reference: Latham TW (1966) Fluid motion in a peristaltic pump, MS Thesis, MIT, Cambridge, MA
– reference: HayatTNawazSAlsaediARafiqMInfluence of radial magnetic field on the peristaltic flow of Williamson fluid in a curved complaint walls channelResults Phys2017798299010.1016/j.rinp.2017.02.022
– reference: HayatTNawazSAlsaadiARafiqMAnalysis of entropy generation in mixed convective peristaltic flow of nanofluidEntropy20161835510.3390/e18100355
– reference: BabuVRSreenadhSSrinivasANSPeristaltic transport of a viscous fluid in a porous channel with suction and injectionAin Shams Eng J201610.1016/j.asej.2016.03.020
– reference: KhanaferKVafaiKLightstoneMBuoyancy-driven heat transfer enhancement in a two dimensional enclosure utilizing nanofluidsInt J. Heat Mass Transf2003463639365310.1016/S0017-9310(03)00156-X
– reference: Abd-AllaAMAbo-DahabSMKilicmanAPeristaltic flow of a Jeffrey fluid under the effect of radially varying magnetic field in a tube with an endoscopeJ Magn Magn Mater2015384798610.1016/j.jmmm.2015.02.017
– reference: LinYZhengLZhangXMaLChenGMHD pseudoplastic nanofluid unsteady flow and heat transfer in a finite thin film over stretching surface with internal heat generationInt J Heat Mass Transf20158490391110.1016/j.ijheatmasstransfer.2015.01.099
– reference: TripathiDPeristaltic transport of fractional Maxwell fluids in uniform tubes: applications in endoscopyComput Math App2011621116112628247001228.65204
– reference: Weinberg SL (1970) Theoretical and experimental treatment of peristaltic pumping and its relation to ureteral function, Ph.D. Thesis, MIT, Cambridge, MA
– reference: ChoiSUSEnhancing thermal conductivity of the fluids with nanoparticlesASME Fluids Eng Div199523199105
– reference: ShehzadSAAbbasiFMHayatTAlsaadiFMHD mixed convective peristaltic motion of nanofluid with Joule heating and thermophoresis effectsPLoS One20149e11141710.1371/journal.pone.0111417
– reference: NadeemSShahzadiISingle wall carbon nanotube (SWCNT) analysis on peristaltic flow in an inclined tube with permeable wallsInt J Heat Mass Transf20169779480210.1016/j.ijheatmasstransfer.2016.02.060
– reference: ShitGCRanjitNKRole of slip velocity on peristaltic transport of couple stress fluid through an asymmetric non-uniform channel: application to digestive systemJ Mol Liq201622130531510.1016/j.molliq.2016.06.002
– reference: BhattiMMZeeshanAEllahiRSimultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganismMicrovasc Res2017110324210.1016/j.mvr.2016.11.007
– reference: HayatTNawazSAlsaadiFRafiqMMustafaMA model for an application to biomedical engineering through nanoparticlesInt J Heat Mass Transf201610111212010.1016/j.ijheatmasstransfer.2016.05.033
– reference: SayedHMAlyEHVajraveluKInfluence of slip and convective boundary conditions on peristaltic transport of non-Newtonian nanofluids in an inclined asymmetric channelAlex Eng J2016552209222010.1016/j.aej.2016.04.041
– reference: HayatTNawazSAlsaadiARafiqMMixed convective peristaltic flow of water based nanofluids with Joule heating and convective boundary conditionsPLoS One201611e015353710.1371/journal.pone.0153537
– reference: BhattiMMZeeshanAEllahiREndoscope analysis on peristaltic blood flow of Sisko fluid with titanium magneto-nanoparticlesComput Biol Med201678294110.1016/j.compbiomed.2016.09.007
– reference: RameshKEffects of slip and convective conditions on the peristaltic flow of couple stress fluid in an asymmetric channel through porous mediumComput Methods Prog Biomed201613511410.1016/j.cmpb.2016.07.001
– reference: Shapiro AH (1967) Pumping and retrograde diffusion in peristaltic waves. In: Proceedings of the workshop ureteral Reftm children, Nat Acad Sci Washington, DC 1:109–126
– reference: AbbasiFMHayatTAhmadBPeristalsis of silver-water nanofluid in the presence of Hall and Ohmic heating effects: applications in drug deliveryJ Mol Liq201520724825510.1016/j.molliq.2015.03.042
– reference: HayatTNawazSAlsaadiARafiqMImpact of second-order velocity and thermal slips in the mixed convective peristalsis with carbon nanotubes and porous mediumJ Mol Liq201622143444210.1016/j.molliq.2016.05.072
– reference: Abd. ElmaboudYMekheimerKhSNon-linear peristaltic transport of a second-order fluid through a porous mediumAppl Math Model20113526952710277619110.1016/j.apm.2010.11.031
– reference: HayatTAbbasiFMAl-YamiMMonaquelSSlip and Joule heating effects in mixed convection peristaltic transport of nanofluid with Soret and Dufour effectsJ Mol Liq2014194939910.1016/j.molliq.2014.01.021
– reference: AkbarNSRazaMEllahiRPeristaltic flow with thermal conductivity of H2O + Cu nanofluid and entropy generationResults Phys2015511512410.1016/j.rinp.2015.04.003
– reference: TiwariRKDasMKHeat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluidsInt J Heat Mass Transf2007502002201810.1016/j.ijheatmasstransfer.2006.09.034
– reference: HayatTSaleemATanveerAAlsaadiFNumerical study for MHD peristaltic flow of Williamson nanofluid in an endoscope with partial slip and wall propertiesInt J Heat Mass Transf20171141181118710.1016/j.ijheatmasstransfer.2017.06.066
– reference: HayatTAhmadNAliNEffects of an endoscope and magnetic field on the peristalsis involving Jeffrey fluidCommun Nonlinear Sci Numer Simul20081315811591239869110.1016/j.cnsns.2007.02.008
– reference: BuongiornoJConvective transport in nanofluidsASME J Heat Transf200612824025010.1115/1.2150834
– volume: 97
  start-page: 794
  year: 2016
  ident: 1493_CR28
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.02.060
– volume: 417
  start-page: 273
  year: 2015
  ident: 1493_CR31
  publication-title: Phys A
  doi: 10.1016/j.physa.2014.09.053
– volume: 62
  start-page: 1116
  year: 2011
  ident: 1493_CR25
  publication-title: Comput Math App
– volume: 78
  start-page: 29
  year: 2016
  ident: 1493_CR30
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2016.09.007
– volume: 55
  start-page: 2209
  year: 2016
  ident: 1493_CR7
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2016.04.041
– volume: 128
  start-page: 240
  year: 2006
  ident: 1493_CR16
  publication-title: ASME J Heat Transf
  doi: 10.1115/1.2150834
– volume: 384
  start-page: 79
  year: 2015
  ident: 1493_CR27
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2015.02.017
– volume: 55
  start-page: 2015
  year: 2016
  ident: 1493_CR11
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2016.07.011
– volume: 35
  start-page: 2695
  year: 2011
  ident: 1493_CR6
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2010.11.031
– volume: 221
  start-page: 305
  year: 2016
  ident: 1493_CR8
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.06.002
– volume: 135
  start-page: 1
  year: 2016
  ident: 1493_CR10
  publication-title: Comput Methods Prog Biomed
  doi: 10.1016/j.cmpb.2016.07.001
– volume: 18
  start-page: 90
  year: 2016
  ident: 1493_CR33
  publication-title: Entropy
  doi: 10.3390/e18030090
– volume: 221
  start-page: 434
  year: 2016
  ident: 1493_CR23
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.05.072
– ident: 1493_CR2
– volume: 114
  start-page: 395
  year: 2017
  ident: 1493_CR29
  publication-title: Int. J. Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.06.072
– volume: 18
  start-page: 355
  year: 2016
  ident: 1493_CR34
  publication-title: Entropy
  doi: 10.3390/e18100355
– start-page: 435
  volume-title: A treatise on electricity and magnetism
  year: 1904
  ident: 1493_CR35
– volume: 7
  start-page: 982
  year: 2017
  ident: 1493_CR5
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2017.02.022
– volume: 13
  start-page: 1581
  year: 2008
  ident: 1493_CR24
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2007.02.008
– volume: 11
  start-page: e0153537
  year: 2016
  ident: 1493_CR18
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0153537
– volume: 101
  start-page: 112
  year: 2016
  ident: 1493_CR21
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2016.05.033
– volume: 46
  start-page: 3639
  year: 2003
  ident: 1493_CR14
  publication-title: Int J. Heat Mass Transf
  doi: 10.1016/S0017-9310(03)00156-X
– volume: 194
  start-page: 93
  year: 2014
  ident: 1493_CR20
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2014.01.021
– volume: 5
  start-page: 115
  year: 2015
  ident: 1493_CR32
  publication-title: Results Phys
  doi: 10.1016/j.rinp.2015.04.003
– volume: 207
  start-page: 248
  year: 2015
  ident: 1493_CR22
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2015.03.042
– volume: 35
  start-page: 514
  year: 2008
  ident: 1493_CR4
  publication-title: Int Commun Heat Mass Transf
  doi: 10.1016/j.icheatmasstransfer.2007.08.011
– year: 2016
  ident: 1493_CR12
  publication-title: Ain Shams Eng J
  doi: 10.1016/j.asej.2016.03.020
– volume: 50
  start-page: 2002
  year: 2007
  ident: 1493_CR17
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2006.09.034
– volume: 9
  start-page: e111417
  year: 2014
  ident: 1493_CR19
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0111417
– volume: 84
  start-page: 903
  year: 2015
  ident: 1493_CR15
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2015.01.099
– volume: 114
  start-page: 1181
  year: 2017
  ident: 1493_CR26
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2017.06.066
– volume: 231
  start-page: 99
  year: 1995
  ident: 1493_CR13
  publication-title: ASME Fluids Eng Div
– volume: 110
  start-page: 32
  year: 2017
  ident: 1493_CR9
  publication-title: Microvasc Res
  doi: 10.1016/j.mvr.2016.11.007
– ident: 1493_CR1
– ident: 1493_CR3
SSID ssj0032565
Score 2.1687138
Snippet Entropy generation and endoscopic effects on peristalsis of nanofluid are addressed. Inner tube is taken rigid, while sinusoidal wave travels along the outer...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Blood
Computational fluid dynamics
Damping
Decay
Endoscopes
Engineering
Entropy
Fluid flow
Grashof number
Heat transfer
Mechanical Engineering
Nanofluids
Nanomaterials
Nanoparticles
Parameters
Physical properties
Reynolds number
Technical Paper
Thermal conductivity
Titanium
Tubes
Velocity
Title Peristaltic activity of blood–titanium nanofluid subject to endoscope and entropy generation
URI https://link.springer.com/article/10.1007/s40430-018-1493-x
https://www.proquest.com/docview/2137507706
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDI7QdoED_4jBQDlwAnVq15-0xwltTCAQh00aF6q0SdHESCfWSsCJd-ANeRLsrN1gAqSdm0Zt7NhfYvszISee8FgzbjKDx9zCFmaO4UsRGA6ToM0SAIeOnl_feN2-czlwB0Ud96TMdi9DktpSz4rdkAcGk6jg1OMEtgHAsQrww3QqpNq6uLtqlwbYBi-OmYsW2GHD9ZlfBjN_m-SnO5pjzIWwqPY2nQ3SK79zmmTy2MizqBG_LVA4Lvkjm2S9QJ-0NVWXLbIi1TZZ-8ZJuEPubzV5M0dWDopVD9hcgqYJ1Snun-8fWJWmhvkTVVylySgfCjrJI7zOoVlKpRKprnShXAmKV8fp-JU-aHJr1IFd0u-0e-ddo2jCYMS25WVGEgDgSCwrQiI6z-WMcTjVck8mJrcjIaxAJG7kMiuOXB-MB_ewdDXB5FJX8Diw90hFpUruEwrO0uc-ALaEw6kc-xwD_EFhxQHoiwxqxCxlEcYFQzk2yhiFM25lvXQhLF2ISxe-1Mjp7JXxlJ7jv8H1UsBhsVMnYdOyATQxZno1clbKa_74z8kOlhp9SFabWuCYB1Mnlew5l0eAZrLouNDeL6ZD7M8
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTsMwDI7QdgAO_CMGA3LgBOq0_qY9TmgwGEwchgQXorRJ0QS0iLUScOIdeEOeBDtrB0yAtHPTqI1d-3NtfyZkz5MesyKLGSISJo4wcwxfycBwmAJtVgA4dPb8vOd1Lp3TK_eq6OMeltXuZUpSW-pxsxvywGARFUQ9TmAbAByrDoTgoNbV1vF1t10aYBu8OFYummCHDddnfpnM_G2Tn-7oC2NOpEW1tzlaJP3yOUdFJneNPAsb0esEheOUL7JEFgr0SVsjdVkmMypZIfPfOAlXyc2FJm8WyMpBsesBh0vQNKa6xP3j7R270pJB_kATkaTxfT6QdJiH-DuHZilViUx1pwsViaT46zh9fKG3mtwadWCNXB61-4cdoxjCYES26WVGHADgiE0zRCI6zxWMCYhqhafiprBDKc1Axm7oMjMKXR-Mh_CwdTXG4lJXiiiw10klSRO1QSg4S1_4ANhiAVE5zjkG-IPCigLQFxXUSLOUBY8KhnIclHHPx9zK-ug4HB3Ho-PPNbI_vuVxRM_x3-J6KWBefKlDbpk2gCbGml6NHJTy-rr852abU63eJbOd_vkZPzvpdbfInKWFjzUxdVLJnnK1DcgmC3cKTf4E7lnvvg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kBdGDb3F95uBJqW63j7RHUde3eFDQizVtEhE1XdwW1JP_wX_oL3Gm264PVBDPTUObmWa-dL75BmDJlz5vJk1uiUTY1MLMtQIlQ8vlCr1ZIeAosueHR_7Oqbt35p2VfU47Fdu9Skl2axpIpclka22p13qFb6QJQ4QqPAG5oWMhiOx3SdquBv3r2-f7W9Vm7GBEJxajjXuy5QU8qBKb303yOTS9480vKdIi8rRG4LJ65i7h5GY1z-LV5OmLnOM_XmoUhktUyta7bjQGfcqMw9AHrcIJuDguRJ0FqXUwqoagphMs1aygvr8-v1C1mrnO75gRJtW3-bVknTym3zwsS5kyMi0qYJgwktEv5bT9yK4K0WvyjUk4bW2dbOxYZXMGK3FsP7N0iEBE23ZMAnW-JzgXeNoVvtIN4cRS2qHUXuxxO4m9ADcV4VNJqybSqSdFEjpTUDOpUdPAMIgGIkAgpwWe1qn_McIiMlwSoh-psA6Nyi5RUiqXUwON26inuVwsXYRLF9HSRQ91WO7d0u7Kdvw2eK4ydlR-wZ2oaTsIpjhv-HVYqWz3fvnHyWb-NHoRBo43W9HB7tH-LAw2C9sTVWYOatl9ruYR8GTxQunUb49P-KI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Peristaltic+activity+of+blood%E2%80%93titanium+nanofluid+subject+to+endoscope+and+entropy+generation&rft.jtitle=Journal+of+the+Brazilian+Society+of+Mechanical+Sciences+and+Engineering&rft.au=Tasawar+Hayat&rft.au=Nawaz%2C+Sadaf&rft.au=Alsaedi%2C+Ahmed&rft.au=Bashir%2C+Ahmad&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=1678-5878&rft.eissn=1806-3691&rft.volume=40&rft.issue=12&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1007%2Fs40430-018-1493-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1678-5878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1678-5878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1678-5878&client=summon