Deep learning based diagnosis of Parkinson’s disease using convolutional neural network

Parkinson’s disease is the second most common degenerative disease caused by loss of dopamine producing neurons. The substantia nigra region is deprived of its neuronal functions causing striatal dopamine deficiency which remains as hallmark in Parkinson’s disease. Clinical diagnosis reveals a range...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 79; no. 21-22; pp. 15467 - 15479
Main Authors Sivaranjini, S., Sujatha, C. M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Parkinson’s disease is the second most common degenerative disease caused by loss of dopamine producing neurons. The substantia nigra region is deprived of its neuronal functions causing striatal dopamine deficiency which remains as hallmark in Parkinson’s disease. Clinical diagnosis reveals a range of motor to non motor symptoms in these patients. Magnetic Resonance (MR) Imaging is able to capture the structural changes in the brain due to dopamine deficiency in Parkinson’s disease subjects. In this work, an attempt has been made to classify the MR images of healthy control and Parkinson’s disease subjects using deep learning neural network. The Convolutional Neural Network architecture AlexNet is used to refine the diagnosis of Parkinson’s disease. The MR images are trained by the transfer learned network and tested to give the accuracy measures. An accuracy of 88.9% is achieved with the proposed system. Deep learning models are able to help the clinicians in the diagnosis of Parkinson’s disease and yield an objective and better patient group classification in the near future.
AbstractList Parkinson’s disease is the second most common degenerative disease caused by loss of dopamine producing neurons. The substantia nigra region is deprived of its neuronal functions causing striatal dopamine deficiency which remains as hallmark in Parkinson’s disease. Clinical diagnosis reveals a range of motor to non motor symptoms in these patients. Magnetic Resonance (MR) Imaging is able to capture the structural changes in the brain due to dopamine deficiency in Parkinson’s disease subjects. In this work, an attempt has been made to classify the MR images of healthy control and Parkinson’s disease subjects using deep learning neural network. The Convolutional Neural Network architecture AlexNet is used to refine the diagnosis of Parkinson’s disease. The MR images are trained by the transfer learned network and tested to give the accuracy measures. An accuracy of 88.9% is achieved with the proposed system. Deep learning models are able to help the clinicians in the diagnosis of Parkinson’s disease and yield an objective and better patient group classification in the near future.
Author Sivaranjini, S.
Sujatha, C. M.
Author_xml – sequence: 1
  givenname: S.
  orcidid: 0000-0003-0050-9432
  surname: Sivaranjini
  fullname: Sivaranjini, S.
  email: sivaranjinipragasam@gmail.com
  organization: Department of Electronics and Communication Engineering, CEG Campus, Anna University
– sequence: 2
  givenname: C. M.
  surname: Sujatha
  fullname: Sujatha, C. M.
  organization: Department of Electronics and Communication Engineering, CEG Campus, Anna University
BookMark eNp9kM1KxDAURoOM4MzoA7gruK7mJk3TLGX8hQFd6MJVSNt0yExNxqRV3Pkavp5PYmoFQdDVvXDPuXx8MzSxzmqEDgEfA8b8JADgjKQYRMqzXKTFDpoC4zTlnMAk7rTAKWcY9tAshDXGkDOSTdHDmdbbpNXKW2NXSamCrpPaqJV1wYTENcmt8htjg7Mfb-8hnoKOTNKHAa-cfXZt3xlnVZtY3fuv0b04v9lHu41qgz74nnN0f3F-t7hKlzeX14vTZVpRyLu0KRjPm7okrGJ5mWfABIWsLCgQDhp4nQEmpQCFC6UECJ4JgkmlCCOM4lLQOToa_269e-p16OTa9T7mCZKAiBXQgg4UH6nKuxC8bmRlOjUE77wyrQQshx7l2KOMPcqhR1lEE36ZW28elX_91yGjEyJrV9r_ZPpb-gQ02odT
CitedBy_id crossref_primary_10_31590_ejosat_817151
crossref_primary_10_1155_2021_3112771
crossref_primary_10_1016_j_arr_2023_102013
crossref_primary_10_1016_j_procs_2024_04_015
crossref_primary_10_3390_diagnostics11081402
crossref_primary_10_3389_fneur_2021_648548
crossref_primary_10_1007_s12559_023_10175_y
crossref_primary_10_1109_TCBB_2023_3252577
crossref_primary_10_1111_exsy_12739
crossref_primary_10_1109_TAI_2022_3193651
crossref_primary_10_54097_hset_v36i_6105
crossref_primary_10_3389_fnagi_2022_908143
crossref_primary_10_1007_s11042_024_18186_z
crossref_primary_10_1007_s11277_024_11464_x
crossref_primary_10_1016_j_bspc_2023_105872
crossref_primary_10_1016_j_pscychresns_2024_111845
crossref_primary_10_7717_peerj_cs_1702
crossref_primary_10_1007_s13534_023_00319_2
crossref_primary_10_7717_peerj_cs_1663
crossref_primary_10_1016_j_compbiolchem_2024_108228
crossref_primary_10_1038_s41598_024_54680_y
crossref_primary_10_1007_s11831_022_09710_1
crossref_primary_10_4018_IJSI_292027
crossref_primary_10_1109_TIM_2023_3315407
crossref_primary_10_1186_s40658_022_00472_0
crossref_primary_10_4015_S1016237224500054
crossref_primary_10_1016_j_artmed_2022_102251
crossref_primary_10_1007_s00500_022_07275_6
crossref_primary_10_1155_acis_5582371
crossref_primary_10_3390_diagnostics13172827
crossref_primary_10_3390_info14030174
crossref_primary_10_1016_j_biosystems_2023_105006
crossref_primary_10_3389_fnins_2020_00779
crossref_primary_10_3390_math11020376
crossref_primary_10_3390_s24185957
crossref_primary_10_1007_s42979_023_02313_y
crossref_primary_10_1111_exsy_13790
crossref_primary_10_56294_sctconf20251353
crossref_primary_10_1109_ACCESS_2022_3150774
crossref_primary_10_1007_s40846_022_00701_y
crossref_primary_10_32604_csse_2022_021164
crossref_primary_10_4018_IJSI_309720
crossref_primary_10_3390_diagnostics13010167
crossref_primary_10_1186_s40708_020_00112_2
crossref_primary_10_1016_j_bspc_2024_107416
crossref_primary_10_3390_s23218936
crossref_primary_10_1080_01969722_2022_2157599
crossref_primary_10_1007_s12652_021_02994_4
crossref_primary_10_1007_s11042_022_12967_0
crossref_primary_10_1093_braincomms_fcac311
crossref_primary_10_3390_app12063048
crossref_primary_10_1002_int_23046
crossref_primary_10_3389_fnagi_2024_1393841
crossref_primary_10_47992_IJCSBE_2581_6942_0177
crossref_primary_10_1007_s11390_021_0801_6
crossref_primary_10_3390_bioengineering11090889
crossref_primary_10_1007_s11042_020_10114_1
crossref_primary_10_3390_technologies12070095
crossref_primary_10_3390_diagnostics12051173
crossref_primary_10_1155_2022_9276579
crossref_primary_10_2478_ijssis_2024_0008
crossref_primary_10_1016_j_neuroscience_2024_11_030
crossref_primary_10_1111_srt_70016
crossref_primary_10_3390_diagnostics13111924
crossref_primary_10_1007_s11042_023_14860_w
crossref_primary_10_1016_j_bspc_2023_104904
crossref_primary_10_1007_s13369_022_07249_8
crossref_primary_10_1016_j_media_2021_102179
crossref_primary_10_1016_j_compbiomed_2025_110029
crossref_primary_10_1007_s11760_023_02586_z
crossref_primary_10_1093_bib_bbaf088
crossref_primary_10_1002_hbm_26399
crossref_primary_10_3389_fbioe_2022_985692
crossref_primary_10_3389_fnagi_2024_1397896
crossref_primary_10_3390_diagnostics11122379
crossref_primary_10_1016_j_cmpb_2020_105793
crossref_primary_10_1016_j_compbiomed_2022_105610
crossref_primary_10_1016_j_bspc_2021_103006
crossref_primary_10_1109_ACCESS_2024_3421302
crossref_primary_10_1007_s00500_023_08535_9
crossref_primary_10_32604_csse_2023_030134
crossref_primary_10_3390_diagnostics14192181
crossref_primary_10_1109_ACCESS_2023_3319248
crossref_primary_10_7717_peerj_cs_1862
crossref_primary_10_1016_j_compbiomed_2022_106141
crossref_primary_10_3389_fnimg_2022_952084
crossref_primary_10_1016_j_bspc_2023_105140
crossref_primary_10_3390_biomedicines10112746
crossref_primary_10_1186_s12883_024_04001_7
crossref_primary_10_1016_j_jtcms_2022_05_001
crossref_primary_10_3390_diagnostics12112708
crossref_primary_10_1111_exsy_12787
crossref_primary_10_1007_s11042_023_16419_1
crossref_primary_10_1038_s41598_021_01681_w
crossref_primary_10_1186_s12880_024_01335_z
crossref_primary_10_1109_TPAMI_2023_3298332
crossref_primary_10_32628_CSEIT2062105
crossref_primary_10_3390_app14219747
crossref_primary_10_1049_ipr2_12820
crossref_primary_10_1007_s42979_024_03366_3
crossref_primary_10_3390_app11178227
crossref_primary_10_1007_s11042_023_15414_w
crossref_primary_10_3390_a15120474
crossref_primary_10_1007_s00702_024_02830_x
crossref_primary_10_1007_s10278_024_01316_2
crossref_primary_10_1016_j_compbiomed_2025_109767
crossref_primary_10_1007_s11042_023_16940_3
crossref_primary_10_1007_s42979_024_02728_1
crossref_primary_10_1016_j_cmpb_2022_107030
crossref_primary_10_4103_bbrj_bbrj_56_24
crossref_primary_10_1109_ACCESS_2022_3181985
crossref_primary_10_1109_ACCESS_2024_3487001
crossref_primary_10_35784_acs_2023_19
crossref_primary_10_3390_electronics12122608
crossref_primary_10_1007_s11042_023_16881_x
crossref_primary_10_1007_s11042_024_18906_5
crossref_primary_10_3390_app13042698
crossref_primary_10_1016_j_compbiomed_2023_107031
crossref_primary_10_1007_s11042_024_20466_7
crossref_primary_10_1007_s10462_021_10084_2
crossref_primary_10_3390_biology11030469
Cites_doi 10.1371/journal.pone.0147947
10.1016/j.engappai.2018.04.024
10.1016/j.neurobiolaging.2017.03.012
10.1016/j.jocs.2018.11.008
10.1002/ana.21995
10.3389/fnsys.2015.00140
10.1016/j.jneumeth.2013.11.016
10.1002/mds.25945
10.1016/j.nicl.2017.11.009
10.1016/j.parkreldis.2015.09.034
10.1007/s11432-015-5470-z
10.1007/s10916-017-0845-x
10.1016/j.pneurobio.2011.09.005
10.1371/journal.pone.0047714
10.1109/TMI.2016.2535302
10.1016/j.media.2018.05.004
10.1016/j.neurobiolaging.2014.07.010
10.1016/S1474-4422(06)70373-8
10.1109/JBHI.2016.2547901
10.1016/j.neuroimage.2017.04.039
10.1109/TMI.2016.2538465
10.1007/s10916-018-0932-7
10.1212/01.wnl.0000247740.47667.03
10.1038/s41598-017-05300-5
10.1038/nrdp.2017.13
10.1002/mds.26060
10.1109/CIBCB.2018.8404980
10.1109/SIU.2018.8404697
10.1007/978-3-319-65172-9_33
10.1109/CBMS.2018.00067
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Springer Science+Business Media, LLC, part of Springer Nature 2019.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Springer Science+Business Media, LLC, part of Springer Nature 2019.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s11042-019-7469-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (ProQuest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 15479
ExternalDocumentID 10_1007_s11042_019_7469_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-f8576fdb25c56b64159314b831271e17d4102b91a08aa919749202ca252530b93
IEDL.DBID BENPR
ISSN 1380-7501
IngestDate Fri Jul 25 23:43:30 EDT 2025
Tue Jul 01 02:06:58 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Feb 21 02:37:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 21-22
Keywords Deep learning
AlexNet
Convolutional neural networks
MRI
Parkinson’s disease
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-f8576fdb25c56b64159314b831271e17d4102b91a08aa919749202ca252530b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0050-9432
PQID 2195733839
PQPubID 54626
PageCount 13
ParticipantIDs proquest_journals_2195733839
crossref_citationtrail_10_1007_s11042_019_7469_8
crossref_primary_10_1007_s11042_019_7469_8
springer_journals_10_1007_s11042_019_7469_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200600
2020-6-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 6
  year: 2020
  text: 20200600
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Cheng, Ulane, Burke (CR5) 2010; 67
Aarsland (CR1) 2016; 22
Lu, Lu, Zhang (CR20) 2018; 30
Poewe, Seppi, Tanner, Halliday, Brundin, Volkmann, Schrag, Lang (CR26) 2017; 3
Lebedev, Westman, Simmons, Lebedeva, Siepel, Pereira, Aarsland (CR17) 2014; 8
CR16
CR15
CR14
CR13
Salvatore, Cerasa, Castiglioni, Gallivanone, Augimeri, Lopez, Arabia, Morelli, Gilardi, Quattrone (CR30) 2014; 222
Ghafoorian, Karssemeijer, Heskes, Uden, Sanchez, Litjens, Leeuw, Ginneken, Marchiori, Platel (CR10) 2017; 7
CR33
Szegedy, Ioffe, Vanhoucke, Alemi (CR32) 2017; 4
Dolz, Desrosiers, Ayed (CR7) 2017; 170
Gao, Zhou (CR9) 2016; 59
Hopes, Grolez, Moreau, Lopes, Ryckewaert, Carrière, Auger, Laloux, Petrault, Devedjian, Bordet (CR12) 2016; 11
Nemmi, Sabatini, Rascol, Péran (CR23) 2015; 36
Marek, Jennings, Lasch, Siderowf, Tanner, Simuni, Coffey, Kieburtz, Flagg, Chowdhury, Poewe (CR22) 2011; 95
Wang, Lv, Sui, Liu, Wang, Zhang (CR37) 2018; 42
CR2
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR31) 2014; 15
Vogado, Veras, Araujo, Silva, Aires (CR35) 2018; 72
Wang, Phillips, Sui, Liu, Yang, Cheng (CR36) 2018; 42
CR6
Pereira, Pinto, Alves, Silva (CR24) 2016; 35
Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (CR34) 2016; 35
Pringsheim, Jette, Frolkis, Steeves (CR28) 2014; 29
Prashanth, Roy, Mandal, Ghosh (CR27) 2017; 21
Provost, Hanganu, Monchi (CR29) 2015; 9
Amoroso, La Rocca, Monaco, Bellotti, Tangaro (CR3) 2018; 48
Dorsey, Constantinescu, Thompson, Biglan, Holloway, Kieburtz, Marshall, Ravina, Schifitto, Siderowf, Tanner (CR8) 2007; 68
Li, Xing, Martin-Bastida, Piccini, Auer (CR18) 2018; 17
Hermessi, Mourali, Zagrouba (CR11) 2018; 120
Long, Wang, Xuan, Gu, Xu, Kong, Zhang (CR19) 2012; 7
Chaudhuri, Healy, Schapira (CR4) 2006; 5
Mak, Su, Williams, Firbank, Lawson, Yarnall, Duncan, Mollenhauer, Owen, Khoo, Brooks (CR21) 2017; 55
Pinter, Diem Zangerl, Wenning, Scherfler, Oberaigner, Seppi, Poewe (CR25) 2015; 30
S Lu (7469_CR20) 2018; 30
JS Provost (7469_CR29) 2015; 9
B Pinter (7469_CR25) 2015; 30
C Szegedy (7469_CR32) 2017; 4
L Hopes (7469_CR12) 2016; 11
7469_CR6
H Hermessi (7469_CR11) 2018; 120
S Pereira (7469_CR24) 2016; 35
D Aarsland (7469_CR1) 2016; 22
E Dorsey (7469_CR8) 2007; 68
R Prashanth (7469_CR27) 2017; 21
LH Vogado (7469_CR35) 2018; 72
J Dolz (7469_CR7) 2017; 170
M Ghafoorian (7469_CR10) 2017; 7
K Marek (7469_CR22) 2011; 95
SH Wang (7469_CR36) 2018; 42
7469_CR2
C Salvatore (7469_CR30) 2014; 222
HC Cheng (7469_CR5) 2010; 67
AV Lebedev (7469_CR17) 2014; 8
KR Chaudhuri (7469_CR4) 2006; 5
F Nemmi (7469_CR23) 2015; 36
W Gao (7469_CR9) 2016; 59
W Poewe (7469_CR26) 2017; 3
T Pringsheim (7469_CR28) 2014; 29
N Srivastava (7469_CR31) 2014; 15
7469_CR33
7469_CR13
SH Wang (7469_CR37) 2018; 42
7469_CR14
E Mak (7469_CR21) 2017; 55
7469_CR15
D Long (7469_CR19) 2012; 7
7469_CR16
N Tajbakhsh (7469_CR34) 2016; 35
N Amoroso (7469_CR3) 2018; 48
X Li (7469_CR18) 2018; 17
References_xml – volume: 8
  start-page: 45
  year: 2014
  ident: CR17
  article-title: Large-scale resting state network correlates of cognitive impairment in Parkinson's disease and related dopaminergic deficits
  publication-title: Front Syst Neurosci
– volume: 11
  start-page: e0147947
  issue: 4
  year: 2016
  ident: CR12
  article-title: Magnetic resonance imaging features of the nigrostriatal system: biomarkers of Parkinson’s disease stages?
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0147947
– volume: 72
  start-page: 15
  year: 2018
  end-page: 422
  ident: CR35
  article-title: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.04.024
– volume: 55
  start-page: 78
  year: 2017
  end-page: 90
  ident: CR21
  article-title: Longitudinal whole-brain atrophy and ventricular enlargement in nondemented Parkinson's disease
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2017.03.012
– volume: 30
  start-page: 41
  year: 2018
  end-page: 47
  ident: CR20
  article-title: Pathological brain detection based on AlexNet and transfer learning
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.11.008
– ident: CR14
– volume: 4
  start-page: 12
  year: 2017
  ident: CR32
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: AAAI
– ident: CR2
– ident: CR16
– volume: 67
  start-page: 715
  issue: 6
  year: 2010
  end-page: 725
  ident: CR5
  article-title: Clinical progression in Parkinson disease and the neurobiology of axons
  publication-title: Ann Neurol
  doi: 10.1002/ana.21995
– volume: 9
  start-page: 140
  year: 2015
  ident: CR29
  article-title: Neuroimaging studies of the striatum in cognition part I: healthy individuals
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2015.00140
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  end-page: 1958
  ident: CR31
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J Mach Learn Res
– ident: CR33
– volume: 222
  start-page: 230
  year: 2014
  end-page: 237
  ident: CR30
  article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and progressive supranuclear palsy
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2013.11.016
– ident: CR6
– volume: 29
  start-page: 1583
  issue: 13
  year: 2014
  end-page: 1590
  ident: CR28
  article-title: The prevalence of Parkinson's disease: a systematic review and meta-analysis
  publication-title: Mov Disord
  doi: 10.1002/mds.25945
– volume: 17
  start-page: 498
  year: 2018
  end-page: 504
  ident: CR18
  article-title: Patterns of grey matter loss associated with motor subscores in early Parkinson's disease
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2017.11.009
– volume: 22
  start-page: S144
  year: 2016
  end-page: S148
  ident: CR1
  article-title: Cognitive impairment in Parkinson's disease and dementia with Lewy bodies
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2015.09.034
– volume: 59
  start-page: 072104
  issue: 7
  year: 2016
  ident: CR9
  article-title: Dropout Rademacher complexity of deep neural networks
  publication-title: SCIENCE CHINA Inf Sci
  doi: 10.1007/s11432-015-5470-z
– volume: 42
  start-page: 2
  issue: 1
  year: 2018
  ident: CR37
  article-title: Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling
  publication-title: J Med Syst
  doi: 10.1007/s10916-017-0845-x
– volume: 95
  start-page: 629
  issue: 4
  year: 2011
  end-page: 635
  ident: CR22
  article-title: The parkinson progression marker initiative (PPMI)
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2011.09.005
– volume: 7
  start-page: e47714
  issue: 11
  year: 2012
  ident: CR19
  article-title: Automatic classification of early Parkinson's disease with multi-modal MR imaging
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047714
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  end-page: 1312
  ident: CR34
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning?
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 48
  start-page: 12
  year: 2018
  end-page: 24
  ident: CR3
  article-title: Complex networks reveal early MRI markers of Parkinson’s disease
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.05.004
– ident: CR15
– volume: 36
  start-page: 424
  issue: 1
  year: 2015
  end-page: 433
  ident: CR23
  article-title: Parkinson's disease and local atrophy in subcortical nuclei: insight from shape analysis
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2014.07.010
– volume: 5
  start-page: 235
  issue: 3
  year: 2006
  end-page: 245
  ident: CR4
  article-title: Non-motor symptoms of Parkinson's disease: diagnosis and management
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(06)70373-8
– volume: 21
  start-page: 794
  issue: 3
  year: 2017
  end-page: 802
  ident: CR27
  article-title: High-accuracy classification of parkinson's disease through shape analysis and surface fitting in 123I-Ioflupane SPECT imaging
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2016.2547901
– ident: CR13
– volume: 170
  start-page: 456
  year: 2017
  end-page: 470
  ident: CR7
  article-title: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.04.039
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  end-page: 1251
  ident: CR24
  article-title: Brain tumor segmentation using convolutional neural networks in MRI images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2538465
– volume: 42
  start-page: 85
  issue: 5
  year: 2018
  ident: CR36
  article-title: Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-0932-7
– volume: 68
  start-page: 384
  issue: 5
  year: 2007
  end-page: 386
  ident: CR8
  article-title: Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000247740.47667.03
– volume: 120
  start-page: 166
  year: 2018
  end-page: 127
  ident: CR11
  article-title: Deep feature learning for soft tissue sarcoma classification in MR images via transfer learning
  publication-title: Expert Syst Appl
– volume: 7
  start-page: 5110
  issue: 1
  year: 2017
  ident: CR10
  article-title: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-05300-5
– volume: 3
  start-page: 17013
  year: 2017
  ident: CR26
  article-title: Parkinson disease
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/nrdp.2017.13
– volume: 30
  start-page: 266
  issue: 2
  year: 2015
  end-page: 269
  ident: CR25
  article-title: Mortality in Parkinson's disease: a 38-year follow-up study
  publication-title: Mov Disord
  doi: 10.1002/mds.26060
– volume: 42
  start-page: 2
  issue: 1
  year: 2018
  ident: 7469_CR37
  publication-title: J Med Syst
  doi: 10.1007/s10916-017-0845-x
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 7469_CR31
  publication-title: J Mach Learn Res
– volume: 5
  start-page: 235
  issue: 3
  year: 2006
  ident: 7469_CR4
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(06)70373-8
– volume: 120
  start-page: 166
  year: 2018
  ident: 7469_CR11
  publication-title: Expert Syst Appl
– volume: 68
  start-page: 384
  issue: 5
  year: 2007
  ident: 7469_CR8
  publication-title: Neurology
  doi: 10.1212/01.wnl.0000247740.47667.03
– volume: 4
  start-page: 12
  year: 2017
  ident: 7469_CR32
  publication-title: AAAI
– ident: 7469_CR15
– volume: 30
  start-page: 41
  year: 2018
  ident: 7469_CR20
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.11.008
– ident: 7469_CR13
  doi: 10.1109/CIBCB.2018.8404980
– volume: 11
  start-page: e0147947
  issue: 4
  year: 2016
  ident: 7469_CR12
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0147947
– volume: 67
  start-page: 715
  issue: 6
  year: 2010
  ident: 7469_CR5
  publication-title: Ann Neurol
  doi: 10.1002/ana.21995
– volume: 36
  start-page: 424
  issue: 1
  year: 2015
  ident: 7469_CR23
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2014.07.010
– ident: 7469_CR6
  doi: 10.1109/SIU.2018.8404697
– volume: 42
  start-page: 85
  issue: 5
  year: 2018
  ident: 7469_CR36
  publication-title: J Med Syst
  doi: 10.1007/s10916-018-0932-7
– volume: 9
  start-page: 140
  year: 2015
  ident: 7469_CR29
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2015.00140
– volume: 8
  start-page: 45
  year: 2014
  ident: 7469_CR17
  publication-title: Front Syst Neurosci
– volume: 21
  start-page: 794
  issue: 3
  year: 2017
  ident: 7469_CR27
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2016.2547901
– volume: 22
  start-page: S144
  year: 2016
  ident: 7469_CR1
  publication-title: Parkinsonism Relat Disord
  doi: 10.1016/j.parkreldis.2015.09.034
– volume: 59
  start-page: 072104
  issue: 7
  year: 2016
  ident: 7469_CR9
  publication-title: SCIENCE CHINA Inf Sci
  doi: 10.1007/s11432-015-5470-z
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 7469_CR34
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2535302
– ident: 7469_CR14
– volume: 30
  start-page: 266
  issue: 2
  year: 2015
  ident: 7469_CR25
  publication-title: Mov Disord
  doi: 10.1002/mds.26060
– volume: 7
  start-page: e47714
  issue: 11
  year: 2012
  ident: 7469_CR19
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0047714
– ident: 7469_CR33
  doi: 10.1007/978-3-319-65172-9_33
– volume: 3
  start-page: 17013
  year: 2017
  ident: 7469_CR26
  publication-title: Nat Rev Dis Primers
  doi: 10.1038/nrdp.2017.13
– ident: 7469_CR16
– volume: 72
  start-page: 15
  year: 2018
  ident: 7469_CR35
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2018.04.024
– volume: 35
  start-page: 1240
  issue: 5
  year: 2016
  ident: 7469_CR24
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2016.2538465
– ident: 7469_CR2
  doi: 10.1109/CBMS.2018.00067
– volume: 170
  start-page: 456
  year: 2017
  ident: 7469_CR7
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2017.04.039
– volume: 222
  start-page: 230
  year: 2014
  ident: 7469_CR30
  publication-title: J Neurosci Methods
  doi: 10.1016/j.jneumeth.2013.11.016
– volume: 7
  start-page: 5110
  issue: 1
  year: 2017
  ident: 7469_CR10
  publication-title: Sci Rep
  doi: 10.1038/s41598-017-05300-5
– volume: 95
  start-page: 629
  issue: 4
  year: 2011
  ident: 7469_CR22
  publication-title: Prog Neurobiol
  doi: 10.1016/j.pneurobio.2011.09.005
– volume: 17
  start-page: 498
  year: 2018
  ident: 7469_CR18
  publication-title: NeuroImage Clin
  doi: 10.1016/j.nicl.2017.11.009
– volume: 48
  start-page: 12
  year: 2018
  ident: 7469_CR3
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2018.05.004
– volume: 29
  start-page: 1583
  issue: 13
  year: 2014
  ident: 7469_CR28
  publication-title: Mov Disord
  doi: 10.1002/mds.25945
– volume: 55
  start-page: 78
  year: 2017
  ident: 7469_CR21
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2017.03.012
SSID ssj0016524
Score 2.575999
Snippet Parkinson’s disease is the second most common degenerative disease caused by loss of dopamine producing neurons. The substantia nigra region is deprived of its...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15467
SubjectTerms Artificial neural networks
Brain
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Deep learning
Diagnosis
Disease control
Dopamine
Image classification
Magnetic resonance imaging
Medical imaging
Motors
Multimedia Information Systems
Neural networks
Parkinson's disease
Signs and symptoms
Special Purpose and Application-Based Systems
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BWWDgp4AoFOSBCWQpdmLXGSugqhiYqFSmyE6cCgm1FSk7r8Hr8SScXacBBEhMGWI70p3t-y733R3AuS5swU2aU55LSRMcQ1VhEcgpraXOVZJYT5C9k8NRcjsW45DHXdVs9zok6W_qJtmNuVQShCS0hz4dVeuwIdB1dzyuEe-vQgdShE62KqJoDlkdyvxpia_GqEGY34Ki3tYMdmE7gETSX2p1D9bstA07dQMGEs5jG7Y-VRPch4dra-cktIGYEGefClIsqXSPFZmVxKU4-2yv99e3ioTYDHHU9wlx9POwDfHTrsylf3iS-AGMBjf3V0MaOifQPGZyQUuFbkRZGC5yIY1EI53GLDEqZrzHLOsVCeIKkzIdoUpShj5FipLMNRdcxJFJ40NoTWdTewQkklpGCjWmbJEYqY0DHS6MzCNbCm06ENUizPJQVtx1t3jKmoLITuoZSj1zUs9UBy5WU-bLmhp_De7WesnC8aoyvGZdHUcEdx24rHXVvP51seN_jT6BTe68a__PpQutxfOLPUUIsjBnfst9AC1K0ow
  priority: 102
  providerName: Springer Nature
Title Deep learning based diagnosis of Parkinson’s disease using convolutional neural network
URI https://link.springer.com/article/10.1007/s11042-019-7469-8
https://www.proquest.com/docview/2195733839
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTuMwEB5Be2EPLH8rykLlAyeQRewkrnNC7W4LAqlCiEpwiuzYRUioLbTceQ1ejydhJnUoIMHJBzuONDP2fOP5A9g3zjtps4LLQime4BqunUcgp41RptBJ4ssA2b46HSRn1-l1eHCbhrDK6k4sL2o3LuiN_AhPFpXuQ31-PHng1DWKvKuhhcYy1PEK1roG9U63f3H57kdQaWhrqyOOulFUfs0yeU5QagpCHN5CG5Hrz5ppATe_eEhLxdNbg9WAGFl7zuJ1WPKjDfhddWNg4XBuwK8PpQU34ea_9xMWekLcMlJWjrl5XN3dlI2HjPKdy9Sv1-eXKQuOGkZx8LeMYtGDTOKvqeZlOZQR41sw6HWv_p3y0EaBF7FQMz7UaFMMnZVpkSqrUGNnsUisjoVsCS9aLkGQYTNhIuRPJtDAyGQkCyNTmcaRzeI_UBuNR34bWKSMijSyT3uXWGUsIRDyKcvID1NjGxBVJMyLUGOcWl3c54vqyET1HKmeE9Vz3YCD908m8wIbPy3erfiSh7M2zReS0YDDileL6W832_l5s7-wIsm2Ll9cdqE2e3zyewhAZrYJy7p30oR6u9fp9Gk8uTnvNoPs4exAtt8ALKjcSg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5F7QE4tBCKCG3Bh_YCslh7dx3vAVUVISSk9JRK7Wmx106FVCWBBFW99TV4CR6KJ-mM400Aid5y2sPuelfj8XyfPX8AB8Z5J21RcVkpxTN8hmvnkchpY5SpdJb5ECB7qnpn2afz_LwBv-pcGAqrrG1iMNRuUtEZ-VtcWVS6D_H8aPqNU9co8q7WLTQWajHwN9e4ZZu963dwfg-l7H4Yvu_x2FWAV6lQcz7SSLFHzsq8ypVVCGBFKjKrUyHbwou2yxBzbSFMgr9bCOTbhUxkZWQu8zSxVHwJTf5mliKSU2Z69-PSa6Hy2ERXJxyRWNRe1JCqJygRBgkVb-OOlOu_cXBFbv_xxwaY6z6GrchP2fFCoZ5Aw4-bsF33fmDRFDTh0R-FDJ_CRcf7KYsdKC4ZQaNjbhHF93XGJiNG2dUh0ez37c8Zi24hRlH3l4wi3-MKwE9Thc1wCfHpO3C2FvE-g43xZOyfA0uUUYlGZdHeZVYZS3yHPNgy8aPc2BYktQjLKlY0p8YaV-WqFjNJvUSplyT1Urfg9fKV6aKcx30P79XzUsaVPStXetiCN_VcrW7_d7AX9w_2Ch70hp9PypP-6WAXHkra1Yeznj3YmH__4feR-szty6BvDL6sW8HvAC8nD54
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB6hIFX0ABSoCFDqA1xAFmtn1_EeqqoQIv4UIQQSPW3ttTdCQkkgQYgbr9FX4XF4ks5svKRUKjdOe1jbuxqPZ77x_AFsGOedtGnOZa4Uj3EM184jkNPGKJPrOPZlgGxHHVzER5fJ5RQ8VbkwFFZZycRSULt-TnfkO3iyqHQf6vOdIoRFnLba3wc3nDpIkae1aqcxZpFj_3CP5tvw22EL93pTyvb--d4BDx0GeN4QasQLjXC7cFYmeaKsQmWWNkRsdUPIpvCi6WLUvzYVJsJfTwVi71RGMjcykUkjslSICcX_dJOsohpM7-53Ts9efBgqCS11dcRRL4vKp1om7glKi0F4xZton3L9WitOoO4_3tlS6bXnYTagVfZjzF6fYMr3FmCu6gTBgmBYgI9_lTVchJ8t7wcs9KPoMlKUjrlxTN_VkPULRrnWZdrZ8-PvIQtOIkYx-F1GcfDhPOCnqd5m-Sij1Zfg4l0I_BlqvX7PLwOLlFGRRtbR3sVWGUvoh_zZMvJFYmwdooqEWR7qm1ObjetsUpmZqJ4h1TOieqbrsPUyZTAu7vHW4LVqX7JwzofZhCvrsF3t1eT1fxdbeXuxr_ABmTs7Oewcr8KMJBO_vPhZg9ro9s5_QRw0suuB4Rj8em8e_wOszhUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+diagnosis+of+Parkinson%E2%80%99s+disease+using+convolutional+neural+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sivaranjini%2C+S.&rft.au=Sujatha%2C+C.+M.&rft.date=2020-06-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=21-22&rft.spage=15467&rft.epage=15479&rft_id=info:doi/10.1007%2Fs11042-019-7469-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_019_7469_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon