Deep learning based diagnosis of Parkinson’s disease using convolutional neural network
Parkinson’s disease is the second most common degenerative disease caused by loss of dopamine producing neurons. The substantia nigra region is deprived of its neuronal functions causing striatal dopamine deficiency which remains as hallmark in Parkinson’s disease. Clinical diagnosis reveals a range...
Saved in:
Published in | Multimedia tools and applications Vol. 79; no. 21-22; pp. 15467 - 15479 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.06.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Parkinson’s disease is the second most common degenerative disease caused by loss of dopamine producing neurons. The substantia nigra region is deprived of its neuronal functions causing striatal dopamine deficiency which remains as hallmark in Parkinson’s disease. Clinical diagnosis reveals a range of motor to non motor symptoms in these patients. Magnetic Resonance (MR) Imaging is able to capture the structural changes in the brain due to dopamine deficiency in Parkinson’s disease subjects. In this work, an attempt has been made to classify the MR images of healthy control and Parkinson’s disease subjects using deep learning neural network. The Convolutional Neural Network architecture AlexNet is used to refine the diagnosis of Parkinson’s disease. The MR images are trained by the transfer learned network and tested to give the accuracy measures. An accuracy of 88.9% is achieved with the proposed system. Deep learning models are able to help the clinicians in the diagnosis of Parkinson’s disease and yield an objective and better patient group classification in the near future. |
---|---|
AbstractList | Parkinson’s disease is the second most common degenerative disease caused by loss of dopamine producing neurons. The substantia nigra region is deprived of its neuronal functions causing striatal dopamine deficiency which remains as hallmark in Parkinson’s disease. Clinical diagnosis reveals a range of motor to non motor symptoms in these patients. Magnetic Resonance (MR) Imaging is able to capture the structural changes in the brain due to dopamine deficiency in Parkinson’s disease subjects. In this work, an attempt has been made to classify the MR images of healthy control and Parkinson’s disease subjects using deep learning neural network. The Convolutional Neural Network architecture AlexNet is used to refine the diagnosis of Parkinson’s disease. The MR images are trained by the transfer learned network and tested to give the accuracy measures. An accuracy of 88.9% is achieved with the proposed system. Deep learning models are able to help the clinicians in the diagnosis of Parkinson’s disease and yield an objective and better patient group classification in the near future. |
Author | Sivaranjini, S. Sujatha, C. M. |
Author_xml | – sequence: 1 givenname: S. orcidid: 0000-0003-0050-9432 surname: Sivaranjini fullname: Sivaranjini, S. email: sivaranjinipragasam@gmail.com organization: Department of Electronics and Communication Engineering, CEG Campus, Anna University – sequence: 2 givenname: C. M. surname: Sujatha fullname: Sujatha, C. M. organization: Department of Electronics and Communication Engineering, CEG Campus, Anna University |
BookMark | eNp9kM1KxDAURoOM4MzoA7gruK7mJk3TLGX8hQFd6MJVSNt0yExNxqRV3Pkavp5PYmoFQdDVvXDPuXx8MzSxzmqEDgEfA8b8JADgjKQYRMqzXKTFDpoC4zTlnMAk7rTAKWcY9tAshDXGkDOSTdHDmdbbpNXKW2NXSamCrpPaqJV1wYTENcmt8htjg7Mfb-8hnoKOTNKHAa-cfXZt3xlnVZtY3fuv0b04v9lHu41qgz74nnN0f3F-t7hKlzeX14vTZVpRyLu0KRjPm7okrGJ5mWfABIWsLCgQDhp4nQEmpQCFC6UECJ4JgkmlCCOM4lLQOToa_269e-p16OTa9T7mCZKAiBXQgg4UH6nKuxC8bmRlOjUE77wyrQQshx7l2KOMPcqhR1lEE36ZW28elX_91yGjEyJrV9r_ZPpb-gQ02odT |
CitedBy_id | crossref_primary_10_31590_ejosat_817151 crossref_primary_10_1155_2021_3112771 crossref_primary_10_1016_j_arr_2023_102013 crossref_primary_10_1016_j_procs_2024_04_015 crossref_primary_10_3390_diagnostics11081402 crossref_primary_10_3389_fneur_2021_648548 crossref_primary_10_1007_s12559_023_10175_y crossref_primary_10_1109_TCBB_2023_3252577 crossref_primary_10_1111_exsy_12739 crossref_primary_10_1109_TAI_2022_3193651 crossref_primary_10_54097_hset_v36i_6105 crossref_primary_10_3389_fnagi_2022_908143 crossref_primary_10_1007_s11042_024_18186_z crossref_primary_10_1007_s11277_024_11464_x crossref_primary_10_1016_j_bspc_2023_105872 crossref_primary_10_1016_j_pscychresns_2024_111845 crossref_primary_10_7717_peerj_cs_1702 crossref_primary_10_1007_s13534_023_00319_2 crossref_primary_10_7717_peerj_cs_1663 crossref_primary_10_1016_j_compbiolchem_2024_108228 crossref_primary_10_1038_s41598_024_54680_y crossref_primary_10_1007_s11831_022_09710_1 crossref_primary_10_4018_IJSI_292027 crossref_primary_10_1109_TIM_2023_3315407 crossref_primary_10_1186_s40658_022_00472_0 crossref_primary_10_4015_S1016237224500054 crossref_primary_10_1016_j_artmed_2022_102251 crossref_primary_10_1007_s00500_022_07275_6 crossref_primary_10_1155_acis_5582371 crossref_primary_10_3390_diagnostics13172827 crossref_primary_10_3390_info14030174 crossref_primary_10_1016_j_biosystems_2023_105006 crossref_primary_10_3389_fnins_2020_00779 crossref_primary_10_3390_math11020376 crossref_primary_10_3390_s24185957 crossref_primary_10_1007_s42979_023_02313_y crossref_primary_10_1111_exsy_13790 crossref_primary_10_56294_sctconf20251353 crossref_primary_10_1109_ACCESS_2022_3150774 crossref_primary_10_1007_s40846_022_00701_y crossref_primary_10_32604_csse_2022_021164 crossref_primary_10_4018_IJSI_309720 crossref_primary_10_3390_diagnostics13010167 crossref_primary_10_1186_s40708_020_00112_2 crossref_primary_10_1016_j_bspc_2024_107416 crossref_primary_10_3390_s23218936 crossref_primary_10_1080_01969722_2022_2157599 crossref_primary_10_1007_s12652_021_02994_4 crossref_primary_10_1007_s11042_022_12967_0 crossref_primary_10_1093_braincomms_fcac311 crossref_primary_10_3390_app12063048 crossref_primary_10_1002_int_23046 crossref_primary_10_3389_fnagi_2024_1393841 crossref_primary_10_47992_IJCSBE_2581_6942_0177 crossref_primary_10_1007_s11390_021_0801_6 crossref_primary_10_3390_bioengineering11090889 crossref_primary_10_1007_s11042_020_10114_1 crossref_primary_10_3390_technologies12070095 crossref_primary_10_3390_diagnostics12051173 crossref_primary_10_1155_2022_9276579 crossref_primary_10_2478_ijssis_2024_0008 crossref_primary_10_1016_j_neuroscience_2024_11_030 crossref_primary_10_1111_srt_70016 crossref_primary_10_3390_diagnostics13111924 crossref_primary_10_1007_s11042_023_14860_w crossref_primary_10_1016_j_bspc_2023_104904 crossref_primary_10_1007_s13369_022_07249_8 crossref_primary_10_1016_j_media_2021_102179 crossref_primary_10_1016_j_compbiomed_2025_110029 crossref_primary_10_1007_s11760_023_02586_z crossref_primary_10_1093_bib_bbaf088 crossref_primary_10_1002_hbm_26399 crossref_primary_10_3389_fbioe_2022_985692 crossref_primary_10_3389_fnagi_2024_1397896 crossref_primary_10_3390_diagnostics11122379 crossref_primary_10_1016_j_cmpb_2020_105793 crossref_primary_10_1016_j_compbiomed_2022_105610 crossref_primary_10_1016_j_bspc_2021_103006 crossref_primary_10_1109_ACCESS_2024_3421302 crossref_primary_10_1007_s00500_023_08535_9 crossref_primary_10_32604_csse_2023_030134 crossref_primary_10_3390_diagnostics14192181 crossref_primary_10_1109_ACCESS_2023_3319248 crossref_primary_10_7717_peerj_cs_1862 crossref_primary_10_1016_j_compbiomed_2022_106141 crossref_primary_10_3389_fnimg_2022_952084 crossref_primary_10_1016_j_bspc_2023_105140 crossref_primary_10_3390_biomedicines10112746 crossref_primary_10_1186_s12883_024_04001_7 crossref_primary_10_1016_j_jtcms_2022_05_001 crossref_primary_10_3390_diagnostics12112708 crossref_primary_10_1111_exsy_12787 crossref_primary_10_1007_s11042_023_16419_1 crossref_primary_10_1038_s41598_021_01681_w crossref_primary_10_1186_s12880_024_01335_z crossref_primary_10_1109_TPAMI_2023_3298332 crossref_primary_10_32628_CSEIT2062105 crossref_primary_10_3390_app14219747 crossref_primary_10_1049_ipr2_12820 crossref_primary_10_1007_s42979_024_03366_3 crossref_primary_10_3390_app11178227 crossref_primary_10_1007_s11042_023_15414_w crossref_primary_10_3390_a15120474 crossref_primary_10_1007_s00702_024_02830_x crossref_primary_10_1007_s10278_024_01316_2 crossref_primary_10_1016_j_compbiomed_2025_109767 crossref_primary_10_1007_s11042_023_16940_3 crossref_primary_10_1007_s42979_024_02728_1 crossref_primary_10_1016_j_cmpb_2022_107030 crossref_primary_10_4103_bbrj_bbrj_56_24 crossref_primary_10_1109_ACCESS_2022_3181985 crossref_primary_10_1109_ACCESS_2024_3487001 crossref_primary_10_35784_acs_2023_19 crossref_primary_10_3390_electronics12122608 crossref_primary_10_1007_s11042_023_16881_x crossref_primary_10_1007_s11042_024_18906_5 crossref_primary_10_3390_app13042698 crossref_primary_10_1016_j_compbiomed_2023_107031 crossref_primary_10_1007_s11042_024_20466_7 crossref_primary_10_1007_s10462_021_10084_2 crossref_primary_10_3390_biology11030469 |
Cites_doi | 10.1371/journal.pone.0147947 10.1016/j.engappai.2018.04.024 10.1016/j.neurobiolaging.2017.03.012 10.1016/j.jocs.2018.11.008 10.1002/ana.21995 10.3389/fnsys.2015.00140 10.1016/j.jneumeth.2013.11.016 10.1002/mds.25945 10.1016/j.nicl.2017.11.009 10.1016/j.parkreldis.2015.09.034 10.1007/s11432-015-5470-z 10.1007/s10916-017-0845-x 10.1016/j.pneurobio.2011.09.005 10.1371/journal.pone.0047714 10.1109/TMI.2016.2535302 10.1016/j.media.2018.05.004 10.1016/j.neurobiolaging.2014.07.010 10.1016/S1474-4422(06)70373-8 10.1109/JBHI.2016.2547901 10.1016/j.neuroimage.2017.04.039 10.1109/TMI.2016.2538465 10.1007/s10916-018-0932-7 10.1212/01.wnl.0000247740.47667.03 10.1038/s41598-017-05300-5 10.1038/nrdp.2017.13 10.1002/mds.26060 10.1109/CIBCB.2018.8404980 10.1109/SIU.2018.8404697 10.1007/978-3-319-65172-9_33 10.1109/CBMS.2018.00067 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Springer Science+Business Media, LLC, part of Springer Nature 2019. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s11042-019-7469-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (ProQuest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) ProQuest Advanced Technologies & Aerospace Database (NC LIVE) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 15479 |
ExternalDocumentID | 10_1007_s11042_019_7469_8 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c316t-f8576fdb25c56b64159314b831271e17d4102b91a08aa919749202ca252530b93 |
IEDL.DBID | BENPR |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 23:43:30 EDT 2025 Tue Jul 01 02:06:58 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Feb 21 02:37:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21-22 |
Keywords | Deep learning AlexNet Convolutional neural networks MRI Parkinson’s disease |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-f8576fdb25c56b64159314b831271e17d4102b91a08aa919749202ca252530b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0050-9432 |
PQID | 2195733839 |
PQPubID | 54626 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2195733839 crossref_citationtrail_10_1007_s11042_019_7469_8 crossref_primary_10_1007_s11042_019_7469_8 springer_journals_10_1007_s11042_019_7469_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200600 2020-6-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 6 year: 2020 text: 20200600 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Cheng, Ulane, Burke (CR5) 2010; 67 Aarsland (CR1) 2016; 22 Lu, Lu, Zhang (CR20) 2018; 30 Poewe, Seppi, Tanner, Halliday, Brundin, Volkmann, Schrag, Lang (CR26) 2017; 3 Lebedev, Westman, Simmons, Lebedeva, Siepel, Pereira, Aarsland (CR17) 2014; 8 CR16 CR15 CR14 CR13 Salvatore, Cerasa, Castiglioni, Gallivanone, Augimeri, Lopez, Arabia, Morelli, Gilardi, Quattrone (CR30) 2014; 222 Ghafoorian, Karssemeijer, Heskes, Uden, Sanchez, Litjens, Leeuw, Ginneken, Marchiori, Platel (CR10) 2017; 7 CR33 Szegedy, Ioffe, Vanhoucke, Alemi (CR32) 2017; 4 Dolz, Desrosiers, Ayed (CR7) 2017; 170 Gao, Zhou (CR9) 2016; 59 Hopes, Grolez, Moreau, Lopes, Ryckewaert, Carrière, Auger, Laloux, Petrault, Devedjian, Bordet (CR12) 2016; 11 Nemmi, Sabatini, Rascol, Péran (CR23) 2015; 36 Marek, Jennings, Lasch, Siderowf, Tanner, Simuni, Coffey, Kieburtz, Flagg, Chowdhury, Poewe (CR22) 2011; 95 Wang, Lv, Sui, Liu, Wang, Zhang (CR37) 2018; 42 CR2 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (CR31) 2014; 15 Vogado, Veras, Araujo, Silva, Aires (CR35) 2018; 72 Wang, Phillips, Sui, Liu, Yang, Cheng (CR36) 2018; 42 CR6 Pereira, Pinto, Alves, Silva (CR24) 2016; 35 Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (CR34) 2016; 35 Pringsheim, Jette, Frolkis, Steeves (CR28) 2014; 29 Prashanth, Roy, Mandal, Ghosh (CR27) 2017; 21 Provost, Hanganu, Monchi (CR29) 2015; 9 Amoroso, La Rocca, Monaco, Bellotti, Tangaro (CR3) 2018; 48 Dorsey, Constantinescu, Thompson, Biglan, Holloway, Kieburtz, Marshall, Ravina, Schifitto, Siderowf, Tanner (CR8) 2007; 68 Li, Xing, Martin-Bastida, Piccini, Auer (CR18) 2018; 17 Hermessi, Mourali, Zagrouba (CR11) 2018; 120 Long, Wang, Xuan, Gu, Xu, Kong, Zhang (CR19) 2012; 7 Chaudhuri, Healy, Schapira (CR4) 2006; 5 Mak, Su, Williams, Firbank, Lawson, Yarnall, Duncan, Mollenhauer, Owen, Khoo, Brooks (CR21) 2017; 55 Pinter, Diem Zangerl, Wenning, Scherfler, Oberaigner, Seppi, Poewe (CR25) 2015; 30 S Lu (7469_CR20) 2018; 30 JS Provost (7469_CR29) 2015; 9 B Pinter (7469_CR25) 2015; 30 C Szegedy (7469_CR32) 2017; 4 L Hopes (7469_CR12) 2016; 11 7469_CR6 H Hermessi (7469_CR11) 2018; 120 S Pereira (7469_CR24) 2016; 35 D Aarsland (7469_CR1) 2016; 22 E Dorsey (7469_CR8) 2007; 68 R Prashanth (7469_CR27) 2017; 21 LH Vogado (7469_CR35) 2018; 72 J Dolz (7469_CR7) 2017; 170 M Ghafoorian (7469_CR10) 2017; 7 K Marek (7469_CR22) 2011; 95 SH Wang (7469_CR36) 2018; 42 7469_CR2 C Salvatore (7469_CR30) 2014; 222 HC Cheng (7469_CR5) 2010; 67 AV Lebedev (7469_CR17) 2014; 8 KR Chaudhuri (7469_CR4) 2006; 5 F Nemmi (7469_CR23) 2015; 36 W Gao (7469_CR9) 2016; 59 W Poewe (7469_CR26) 2017; 3 T Pringsheim (7469_CR28) 2014; 29 N Srivastava (7469_CR31) 2014; 15 7469_CR33 7469_CR13 SH Wang (7469_CR37) 2018; 42 7469_CR14 E Mak (7469_CR21) 2017; 55 7469_CR15 D Long (7469_CR19) 2012; 7 7469_CR16 N Tajbakhsh (7469_CR34) 2016; 35 N Amoroso (7469_CR3) 2018; 48 X Li (7469_CR18) 2018; 17 |
References_xml | – volume: 8 start-page: 45 year: 2014 ident: CR17 article-title: Large-scale resting state network correlates of cognitive impairment in Parkinson's disease and related dopaminergic deficits publication-title: Front Syst Neurosci – volume: 11 start-page: e0147947 issue: 4 year: 2016 ident: CR12 article-title: Magnetic resonance imaging features of the nigrostriatal system: biomarkers of Parkinson’s disease stages? publication-title: PLoS One doi: 10.1371/journal.pone.0147947 – volume: 72 start-page: 15 year: 2018 end-page: 422 ident: CR35 article-title: Leukemia diagnosis in blood slides using transfer learning in CNNs and SVM for classification publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.04.024 – volume: 55 start-page: 78 year: 2017 end-page: 90 ident: CR21 article-title: Longitudinal whole-brain atrophy and ventricular enlargement in nondemented Parkinson's disease publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2017.03.012 – volume: 30 start-page: 41 year: 2018 end-page: 47 ident: CR20 article-title: Pathological brain detection based on AlexNet and transfer learning publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.11.008 – ident: CR14 – volume: 4 start-page: 12 year: 2017 ident: CR32 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: AAAI – ident: CR2 – ident: CR16 – volume: 67 start-page: 715 issue: 6 year: 2010 end-page: 725 ident: CR5 article-title: Clinical progression in Parkinson disease and the neurobiology of axons publication-title: Ann Neurol doi: 10.1002/ana.21995 – volume: 9 start-page: 140 year: 2015 ident: CR29 article-title: Neuroimaging studies of the striatum in cognition part I: healthy individuals publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2015.00140 – volume: 15 start-page: 1929 issue: 1 year: 2014 end-page: 1958 ident: CR31 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J Mach Learn Res – ident: CR33 – volume: 222 start-page: 230 year: 2014 end-page: 237 ident: CR30 article-title: Machine learning on brain MRI data for differential diagnosis of Parkinson's disease and progressive supranuclear palsy publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2013.11.016 – ident: CR6 – volume: 29 start-page: 1583 issue: 13 year: 2014 end-page: 1590 ident: CR28 article-title: The prevalence of Parkinson's disease: a systematic review and meta-analysis publication-title: Mov Disord doi: 10.1002/mds.25945 – volume: 17 start-page: 498 year: 2018 end-page: 504 ident: CR18 article-title: Patterns of grey matter loss associated with motor subscores in early Parkinson's disease publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2017.11.009 – volume: 22 start-page: S144 year: 2016 end-page: S148 ident: CR1 article-title: Cognitive impairment in Parkinson's disease and dementia with Lewy bodies publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2015.09.034 – volume: 59 start-page: 072104 issue: 7 year: 2016 ident: CR9 article-title: Dropout Rademacher complexity of deep neural networks publication-title: SCIENCE CHINA Inf Sci doi: 10.1007/s11432-015-5470-z – volume: 42 start-page: 2 issue: 1 year: 2018 ident: CR37 article-title: Alcoholism detection by data augmentation and convolutional neural network with stochastic pooling publication-title: J Med Syst doi: 10.1007/s10916-017-0845-x – volume: 95 start-page: 629 issue: 4 year: 2011 end-page: 635 ident: CR22 article-title: The parkinson progression marker initiative (PPMI) publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2011.09.005 – volume: 7 start-page: e47714 issue: 11 year: 2012 ident: CR19 article-title: Automatic classification of early Parkinson's disease with multi-modal MR imaging publication-title: PLoS One doi: 10.1371/journal.pone.0047714 – volume: 35 start-page: 1299 issue: 5 year: 2016 end-page: 1312 ident: CR34 article-title: Convolutional neural networks for medical image analysis: full training or fine tuning? publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535302 – volume: 48 start-page: 12 year: 2018 end-page: 24 ident: CR3 article-title: Complex networks reveal early MRI markers of Parkinson’s disease publication-title: Med Image Anal doi: 10.1016/j.media.2018.05.004 – ident: CR15 – volume: 36 start-page: 424 issue: 1 year: 2015 end-page: 433 ident: CR23 article-title: Parkinson's disease and local atrophy in subcortical nuclei: insight from shape analysis publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2014.07.010 – volume: 5 start-page: 235 issue: 3 year: 2006 end-page: 245 ident: CR4 article-title: Non-motor symptoms of Parkinson's disease: diagnosis and management publication-title: Lancet Neurol doi: 10.1016/S1474-4422(06)70373-8 – volume: 21 start-page: 794 issue: 3 year: 2017 end-page: 802 ident: CR27 article-title: High-accuracy classification of parkinson's disease through shape analysis and surface fitting in 123I-Ioflupane SPECT imaging publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2016.2547901 – ident: CR13 – volume: 170 start-page: 456 year: 2017 end-page: 470 ident: CR7 article-title: 3D fully convolutional networks for subcortical segmentation in MRI: a large-scale study publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.04.039 – volume: 35 start-page: 1240 issue: 5 year: 2016 end-page: 1251 ident: CR24 article-title: Brain tumor segmentation using convolutional neural networks in MRI images publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2538465 – volume: 42 start-page: 85 issue: 5 year: 2018 ident: CR36 article-title: Classification of Alzheimer’s disease based on eight-layer convolutional neural network with leaky rectified linear unit and max pooling publication-title: J Med Syst doi: 10.1007/s10916-018-0932-7 – volume: 68 start-page: 384 issue: 5 year: 2007 end-page: 386 ident: CR8 article-title: Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030 publication-title: Neurology doi: 10.1212/01.wnl.0000247740.47667.03 – volume: 120 start-page: 166 year: 2018 end-page: 127 ident: CR11 article-title: Deep feature learning for soft tissue sarcoma classification in MR images via transfer learning publication-title: Expert Syst Appl – volume: 7 start-page: 5110 issue: 1 year: 2017 ident: CR10 article-title: Location sensitive deep convolutional neural networks for segmentation of white matter hyperintensities publication-title: Sci Rep doi: 10.1038/s41598-017-05300-5 – volume: 3 start-page: 17013 year: 2017 ident: CR26 article-title: Parkinson disease publication-title: Nat Rev Dis Primers doi: 10.1038/nrdp.2017.13 – volume: 30 start-page: 266 issue: 2 year: 2015 end-page: 269 ident: CR25 article-title: Mortality in Parkinson's disease: a 38-year follow-up study publication-title: Mov Disord doi: 10.1002/mds.26060 – volume: 42 start-page: 2 issue: 1 year: 2018 ident: 7469_CR37 publication-title: J Med Syst doi: 10.1007/s10916-017-0845-x – volume: 15 start-page: 1929 issue: 1 year: 2014 ident: 7469_CR31 publication-title: J Mach Learn Res – volume: 5 start-page: 235 issue: 3 year: 2006 ident: 7469_CR4 publication-title: Lancet Neurol doi: 10.1016/S1474-4422(06)70373-8 – volume: 120 start-page: 166 year: 2018 ident: 7469_CR11 publication-title: Expert Syst Appl – volume: 68 start-page: 384 issue: 5 year: 2007 ident: 7469_CR8 publication-title: Neurology doi: 10.1212/01.wnl.0000247740.47667.03 – volume: 4 start-page: 12 year: 2017 ident: 7469_CR32 publication-title: AAAI – ident: 7469_CR15 – volume: 30 start-page: 41 year: 2018 ident: 7469_CR20 publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.11.008 – ident: 7469_CR13 doi: 10.1109/CIBCB.2018.8404980 – volume: 11 start-page: e0147947 issue: 4 year: 2016 ident: 7469_CR12 publication-title: PLoS One doi: 10.1371/journal.pone.0147947 – volume: 67 start-page: 715 issue: 6 year: 2010 ident: 7469_CR5 publication-title: Ann Neurol doi: 10.1002/ana.21995 – volume: 36 start-page: 424 issue: 1 year: 2015 ident: 7469_CR23 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2014.07.010 – ident: 7469_CR6 doi: 10.1109/SIU.2018.8404697 – volume: 42 start-page: 85 issue: 5 year: 2018 ident: 7469_CR36 publication-title: J Med Syst doi: 10.1007/s10916-018-0932-7 – volume: 9 start-page: 140 year: 2015 ident: 7469_CR29 publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2015.00140 – volume: 8 start-page: 45 year: 2014 ident: 7469_CR17 publication-title: Front Syst Neurosci – volume: 21 start-page: 794 issue: 3 year: 2017 ident: 7469_CR27 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2016.2547901 – volume: 22 start-page: S144 year: 2016 ident: 7469_CR1 publication-title: Parkinsonism Relat Disord doi: 10.1016/j.parkreldis.2015.09.034 – volume: 59 start-page: 072104 issue: 7 year: 2016 ident: 7469_CR9 publication-title: SCIENCE CHINA Inf Sci doi: 10.1007/s11432-015-5470-z – volume: 35 start-page: 1299 issue: 5 year: 2016 ident: 7469_CR34 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2535302 – ident: 7469_CR14 – volume: 30 start-page: 266 issue: 2 year: 2015 ident: 7469_CR25 publication-title: Mov Disord doi: 10.1002/mds.26060 – volume: 7 start-page: e47714 issue: 11 year: 2012 ident: 7469_CR19 publication-title: PLoS One doi: 10.1371/journal.pone.0047714 – ident: 7469_CR33 doi: 10.1007/978-3-319-65172-9_33 – volume: 3 start-page: 17013 year: 2017 ident: 7469_CR26 publication-title: Nat Rev Dis Primers doi: 10.1038/nrdp.2017.13 – ident: 7469_CR16 – volume: 72 start-page: 15 year: 2018 ident: 7469_CR35 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2018.04.024 – volume: 35 start-page: 1240 issue: 5 year: 2016 ident: 7469_CR24 publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2016.2538465 – ident: 7469_CR2 doi: 10.1109/CBMS.2018.00067 – volume: 170 start-page: 456 year: 2017 ident: 7469_CR7 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2017.04.039 – volume: 222 start-page: 230 year: 2014 ident: 7469_CR30 publication-title: J Neurosci Methods doi: 10.1016/j.jneumeth.2013.11.016 – volume: 7 start-page: 5110 issue: 1 year: 2017 ident: 7469_CR10 publication-title: Sci Rep doi: 10.1038/s41598-017-05300-5 – volume: 95 start-page: 629 issue: 4 year: 2011 ident: 7469_CR22 publication-title: Prog Neurobiol doi: 10.1016/j.pneurobio.2011.09.005 – volume: 17 start-page: 498 year: 2018 ident: 7469_CR18 publication-title: NeuroImage Clin doi: 10.1016/j.nicl.2017.11.009 – volume: 48 start-page: 12 year: 2018 ident: 7469_CR3 publication-title: Med Image Anal doi: 10.1016/j.media.2018.05.004 – volume: 29 start-page: 1583 issue: 13 year: 2014 ident: 7469_CR28 publication-title: Mov Disord doi: 10.1002/mds.25945 – volume: 55 start-page: 78 year: 2017 ident: 7469_CR21 publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2017.03.012 |
SSID | ssj0016524 |
Score | 2.575999 |
Snippet | Parkinson’s disease is the second most common degenerative disease caused by loss of dopamine producing neurons. The substantia nigra region is deprived of its... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15467 |
SubjectTerms | Artificial neural networks Brain Computer Communication Networks Computer Science Data Structures and Information Theory Deep learning Diagnosis Disease control Dopamine Image classification Magnetic resonance imaging Medical imaging Motors Multimedia Information Systems Neural networks Parkinson's disease Signs and symptoms Special Purpose and Application-Based Systems |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV29TsMwED5BWWDgp4AoFOSBCWQpdmLXGSugqhiYqFSmyE6cCgm1FSk7r8Hr8SScXacBBEhMGWI70p3t-y733R3AuS5swU2aU55LSRMcQ1VhEcgpraXOVZJYT5C9k8NRcjsW45DHXdVs9zok6W_qJtmNuVQShCS0hz4dVeuwIdB1dzyuEe-vQgdShE62KqJoDlkdyvxpia_GqEGY34Ki3tYMdmE7gETSX2p1D9bstA07dQMGEs5jG7Y-VRPch4dra-cktIGYEGefClIsqXSPFZmVxKU4-2yv99e3ioTYDHHU9wlx9POwDfHTrsylf3iS-AGMBjf3V0MaOifQPGZyQUuFbkRZGC5yIY1EI53GLDEqZrzHLOsVCeIKkzIdoUpShj5FipLMNRdcxJFJ40NoTWdTewQkklpGCjWmbJEYqY0DHS6MzCNbCm06ENUizPJQVtx1t3jKmoLITuoZSj1zUs9UBy5WU-bLmhp_De7WesnC8aoyvGZdHUcEdx24rHXVvP51seN_jT6BTe68a__PpQutxfOLPUUIsjBnfst9AC1K0ow priority: 102 providerName: Springer Nature |
Title | Deep learning based diagnosis of Parkinson’s disease using convolutional neural network |
URI | https://link.springer.com/article/10.1007/s11042-019-7469-8 https://www.proquest.com/docview/2195733839 |
Volume | 79 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NTuMwEB5Be2EPLH8rykLlAyeQRewkrnNC7W4LAqlCiEpwiuzYRUioLbTceQ1ejydhJnUoIMHJBzuONDP2fOP5A9g3zjtps4LLQime4BqunUcgp41RptBJ4ssA2b46HSRn1-l1eHCbhrDK6k4sL2o3LuiN_AhPFpXuQ31-PHng1DWKvKuhhcYy1PEK1roG9U63f3H57kdQaWhrqyOOulFUfs0yeU5QagpCHN5CG5Hrz5ppATe_eEhLxdNbg9WAGFl7zuJ1WPKjDfhddWNg4XBuwK8PpQU34ea_9xMWekLcMlJWjrl5XN3dlI2HjPKdy9Sv1-eXKQuOGkZx8LeMYtGDTOKvqeZlOZQR41sw6HWv_p3y0EaBF7FQMz7UaFMMnZVpkSqrUGNnsUisjoVsCS9aLkGQYTNhIuRPJtDAyGQkCyNTmcaRzeI_UBuNR34bWKSMijSyT3uXWGUsIRDyKcvID1NjGxBVJMyLUGOcWl3c54vqyET1HKmeE9Vz3YCD908m8wIbPy3erfiSh7M2zReS0YDDileL6W832_l5s7-wIsm2Ll9cdqE2e3zyewhAZrYJy7p30oR6u9fp9Gk8uTnvNoPs4exAtt8ALKjcSg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxEB5F7QE4tBCKCG3Bh_YCslh7dx3vAVUVISSk9JRK7Wmx106FVCWBBFW99TV4CR6KJ-mM400Aid5y2sPuelfj8XyfPX8AB8Z5J21RcVkpxTN8hmvnkchpY5SpdJb5ECB7qnpn2afz_LwBv-pcGAqrrG1iMNRuUtEZ-VtcWVS6D_H8aPqNU9co8q7WLTQWajHwN9e4ZZu963dwfg-l7H4Yvu_x2FWAV6lQcz7SSLFHzsq8ypVVCGBFKjKrUyHbwou2yxBzbSFMgr9bCOTbhUxkZWQu8zSxVHwJTf5mliKSU2Z69-PSa6Hy2ERXJxyRWNRe1JCqJygRBgkVb-OOlOu_cXBFbv_xxwaY6z6GrchP2fFCoZ5Aw4-bsF33fmDRFDTh0R-FDJ_CRcf7KYsdKC4ZQaNjbhHF93XGJiNG2dUh0ez37c8Zi24hRlH3l4wi3-MKwE9Thc1wCfHpO3C2FvE-g43xZOyfA0uUUYlGZdHeZVYZS3yHPNgy8aPc2BYktQjLKlY0p8YaV-WqFjNJvUSplyT1Urfg9fKV6aKcx30P79XzUsaVPStXetiCN_VcrW7_d7AX9w_2Ch70hp9PypP-6WAXHkra1Yeznj3YmH__4feR-szty6BvDL6sW8HvAC8nD54 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NThsxEB6hIFX0ABSoCFDqA1xAFmtn1_EeqqoQIv4UIQQSPW3ttTdCQkkgQYgbr9FX4XF4ks5svKRUKjdOe1jbuxqPZ77x_AFsGOedtGnOZa4Uj3EM184jkNPGKJPrOPZlgGxHHVzER5fJ5RQ8VbkwFFZZycRSULt-TnfkO3iyqHQf6vOdIoRFnLba3wc3nDpIkae1aqcxZpFj_3CP5tvw22EL93pTyvb--d4BDx0GeN4QasQLjXC7cFYmeaKsQmWWNkRsdUPIpvCi6WLUvzYVJsJfTwVi71RGMjcykUkjslSICcX_dJOsohpM7-53Ts9efBgqCS11dcRRL4vKp1om7glKi0F4xZton3L9WitOoO4_3tlS6bXnYTagVfZjzF6fYMr3FmCu6gTBgmBYgI9_lTVchJ8t7wcs9KPoMlKUjrlxTN_VkPULRrnWZdrZ8-PvIQtOIkYx-F1GcfDhPOCnqd5m-Sij1Zfg4l0I_BlqvX7PLwOLlFGRRtbR3sVWGUvoh_zZMvJFYmwdooqEWR7qm1ObjetsUpmZqJ4h1TOieqbrsPUyZTAu7vHW4LVqX7JwzofZhCvrsF3t1eT1fxdbeXuxr_ABmTs7Oewcr8KMJBO_vPhZg9ro9s5_QRw0suuB4Rj8em8e_wOszhUw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+based+diagnosis+of+Parkinson%E2%80%99s+disease+using+convolutional+neural+network&rft.jtitle=Multimedia+tools+and+applications&rft.au=Sivaranjini%2C+S.&rft.au=Sujatha%2C+C.+M.&rft.date=2020-06-01&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=79&rft.issue=21-22&rft.spage=15467&rft.epage=15479&rft_id=info:doi/10.1007%2Fs11042-019-7469-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11042_019_7469_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |