Network Performance Enhancement of Multi-sink Enabled Low Power Lossy Networks in SDN Based Internet of Things
Software Defined Network (SDN) brought revolution in the network field with the partnership of Academia and Industry. SDN bridges the gap to overcome issues of IoT deployment, optimization and better utilization of network resources. The escalation in resource congestion in Wireless Sensor Networks...
Saved in:
Published in | International journal of parallel programming Vol. 48; no. 2; pp. 367 - 398 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Software Defined Network (SDN) brought revolution in the network field with the partnership of Academia and Industry. SDN bridges the gap to overcome issues of IoT deployment, optimization and better utilization of network resources. The escalation in resource congestion in Wireless Sensor Networks (WSNs) can usually lead to scalability, data computation or storage, and energy efficiency problems with only a single sink node for data acquisition. Internet of Things (IoT) has resource and energy constraints for WSN devices. Low Power and Lossy Networks (LLNs) ought to be optimized for traffic with multiple sinks. RPL routing has constraints to support this approach. However, RPL inherits the ability to offer features like Auto-Configuration, Self-Healing, Loop avoidance, and detection. These features of RPL can be transformed into the improved performance of a WSN by increasing the number of sinks with a linear increase of data transmitting nodes in the network. Further, to mitigate the escalated computing needs, edge computing has emerged as a new paradigm to resolve SDN-enabled IoT and localized computing needs. This study proposes an SDN-based solution to the interconnectivity of resource constraint LLN devices with edge computing routers in mesh and cluster topological scenario using RPL as IoT routing protocol. Performance evaluation concerning different routing metrics and objective functions: Minimum Rank with Hysteresis Function (MRHOF) and Zero (OF0) are analyzed. COOJA simulator is used for emulation of random as well as linear grid topologies for the creation of WSN static nodes. Simulation results confirm that the gradual increase of a number of nodes from 16, 32, 48, 64 and a simultaneous increase in sinks nodes as 1, 2, 3, 4 respectively in LLN network reflects the desired advantages with the stable network. |
---|---|
AbstractList | Software Defined Network (SDN) brought revolution in the network field with the partnership of Academia and Industry. SDN bridges the gap to overcome issues of IoT deployment, optimization and better utilization of network resources. The escalation in resource congestion in Wireless Sensor Networks (WSNs) can usually lead to scalability, data computation or storage, and energy efficiency problems with only a single sink node for data acquisition. Internet of Things (IoT) has resource and energy constraints for WSN devices. Low Power and Lossy Networks (LLNs) ought to be optimized for traffic with multiple sinks. RPL routing has constraints to support this approach. However, RPL inherits the ability to offer features like Auto-Configuration, Self-Healing, Loop avoidance, and detection. These features of RPL can be transformed into the improved performance of a WSN by increasing the number of sinks with a linear increase of data transmitting nodes in the network. Further, to mitigate the escalated computing needs, edge computing has emerged as a new paradigm to resolve SDN-enabled IoT and localized computing needs. This study proposes an SDN-based solution to the interconnectivity of resource constraint LLN devices with edge computing routers in mesh and cluster topological scenario using RPL as IoT routing protocol. Performance evaluation concerning different routing metrics and objective functions: Minimum Rank with Hysteresis Function (MRHOF) and Zero (OF0) are analyzed. COOJA simulator is used for emulation of random as well as linear grid topologies for the creation of WSN static nodes. Simulation results confirm that the gradual increase of a number of nodes from 16, 32, 48, 64 and a simultaneous increase in sinks nodes as 1, 2, 3, 4 respectively in LLN network reflects the desired advantages with the stable network. |
Author | Shabbir, Ghulam Chaudhry, Junaid Jabbar, Sohail Akram, Adeel Alfawair, Mai Iqbal, Muhammad Munwar |
Author_xml | – sequence: 1 givenname: Ghulam surname: Shabbir fullname: Shabbir, Ghulam organization: Department of Telecom Engineering, University of Engineering and Technology – sequence: 2 givenname: Adeel surname: Akram fullname: Akram, Adeel organization: Department of Telecom Engineering, University of Engineering and Technology – sequence: 3 givenname: Muhammad Munwar orcidid: 0000-0001-7212-1408 surname: Iqbal fullname: Iqbal, Muhammad Munwar organization: Department of Computer Science, University of Engineering and Technology – sequence: 4 givenname: Sohail orcidid: 0000-0002-2127-1235 surname: Jabbar fullname: Jabbar, Sohail email: sjabbar.research@gmail.com organization: Department of Computer Science, National Textile University – sequence: 5 givenname: Mai surname: Alfawair fullname: Alfawair, Mai organization: Prince Abdullah bin Ghazi Faculty of Information Technology, Al-Balqa Applied University – sequence: 6 givenname: Junaid surname: Chaudhry fullname: Chaudhry, Junaid organization: College of Security and Intelligence, Embry-Riddle Aeronautical University |
BookMark | eNp9kFtLAzEQhYMo2FZ_gG8Bn6OTTTabffSuUC-gPod0d1ZX26QmKaX_3tQKgqBPMzDnOzNzhmTbeYeEHHA44gDVceRQKcWAawaqAKa3yICXlWCVkrBNBqB1ySpZ6l0yjPENAOpK6wFxd5iWPrzTBwydDzPrGqQX7nVdZ-gS9R29XUxTz2Lv3vPETqbY0rFf0ge_xJC7GFf02yXS3tHH8zt6amNW3biEweGXydNr717iHtnp7DTi_ncdkefLi6ezaza-v7o5OxmzRnCVWFfkA5uSW84RAZELJVosa6nlBNoSeB52RStqK1XdCKyV5RKkEko2dVtMxIgcbnznwX8sMCbz5hfB5ZWm4KWWUBRSZFW1UTUhfxGwM02fbOq9S8H2U8PBrMM1m3BNDteswzU6k_wXOQ_9zIbVv0yxYWLWuhcMPzf9DX0CFCKNPw |
CitedBy_id | crossref_primary_10_1109_TNSM_2020_3035315 crossref_primary_10_1007_s12083_022_01347_y crossref_primary_10_3390_app14114951 crossref_primary_10_1007_s11390_022_1027_y crossref_primary_10_1007_s11277_020_07089_5 crossref_primary_10_4018_IJIDE_349724 crossref_primary_10_1007_s12083_021_01101_w crossref_primary_10_1007_s42979_024_02747_y crossref_primary_10_1007_s11276_022_02925_x crossref_primary_10_1109_JIOT_2021_3094275 crossref_primary_10_1155_2021_8306479 crossref_primary_10_1142_S0219265923500226 crossref_primary_10_1155_2022_1841066 crossref_primary_10_21078_JSSI_2020_578_11 crossref_primary_10_1109_ACCESS_2022_3212728 |
Cites_doi | 10.1007/978-3-319-03071-5_20 10.1109/SOCA.2014.58 10.1109/MCOM.2013.6553676 10.1109/IMIS.2012.93 10.1109/JSAC.2002.1003042 10.1109/CEEC.2016.7835913 10.1109/SMARTGRID.2010.5622015 10.17487/rfc7228 10.1016/j.adhoc.2015.01.020 10.1109/ICITEED.2016.7863270 10.1109/IPSN.2016.7460720 10.4018/ijaeis.2013100102 10.1109/JIOT.2014.2306328 10.1186/1687-1499-2014-91 10.3390/s150202473 10.1109/COMST.2015.2444095 10.1109/JPROC.2014.2371999 10.1109/MIE.2012.2207489 10.1109/MWC.2013.6704479 10.17487/RFC7547 10.1109/TSUSC.2017.2714344 10.17487/RFC7554 10.1109/COMST.2017.2751617 10.1155/2010/205407 10.1007/s11227-015-1488-7 10.17487/rfc4919 10.1016/j.future.2013.01.010 10.3390/s150819507 10.1145/1278972.1278992 10.1186/1687-1499-2011-153 10.1155/2010/476598 10.1109/SURV.2012.111412.00158 10.1186/1687-1499-2013-139 10.1109/iThings.2014.22 10.1002/dac.1228 10.1109/CISS.2010.5464820 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 International Journal of Parallel Programming is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: International Journal of Parallel Programming is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10766-018-0620-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-7640 |
EndPage | 398 |
ExternalDocumentID | 10_1007_s10766_018_0620_8 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 2.D 203 28- 29J 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 7WY 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYJJ AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARAPS ARCSS ARMRJ AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BKOMP BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO E.L EAD EAP EAS EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- MS~ N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TAE TEORI TN5 TSG TSK TSV TUC TUS U2A U5U UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c316t-f2000c51a11ee0ee1363de59484b0d5010c5f2d39a469c3e96a14046364c9d2b3 |
IEDL.DBID | U2A |
ISSN | 0885-7458 |
IngestDate | Fri Jul 25 22:32:26 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Tue Jul 01 00:50:32 EDT 2025 Fri Feb 21 02:37:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Internet of thing MQTT RPLs Constrained devices LLNs Multi-sink CoAP DODAG SDN Edge computing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-f2000c51a11ee0ee1363de59484b0d5010c5f2d39a469c3e96a14046364c9d2b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7212-1408 0000-0002-2127-1235 |
PQID | 2158402243 |
PQPubID | 48389 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2158402243 crossref_citationtrail_10_1007_s10766_018_0620_8 crossref_primary_10_1007_s10766_018_0620_8 springer_journals_10_1007_s10766_018_0620_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200400 2020-4-00 20200401 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 4 year: 2020 text: 20200400 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | International journal of parallel programming |
PublicationTitleAbbrev | Int J Parallel Prog |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | JabbarSMinhasAAImranMKhalidSSaleemKEnergy efficient strategy for throughput improvement in wireless sensor networksSensors2015152473249510.3390/s150202473 LodhiMARehmanAKhanMMHussainFBTransient Multipath routing protocol for low power and lossy networksKSII Trans. Internet Inf. Syst. (TIIS)20171120022019 OliveiraLMDe SousaAFRodriguesJJRouting and mobility approaches in IPv6 over LoWPAN mesh networksInt. J. Commun Syst2011241445146610.1002/dac.1228 Pradeska, N., Najib, W., Kusumawardani, S.S.: Performance analysis of objective function MRHOF and OF0 in routing protocol RPL IPV6 over low power wireless personal area networks (6LoWPAN). In: 8th International Conference on Information Technology and Electrical Engineering (ICITEE). pp. 1–6 (2016) Deru, L., Dawans, S., Ocaña, M., Quoitin, B., Bonaventure, O.: Redundant border routers for mission- critical 6lowpan networks. In: Real-World Wireless Sensor Networks, pp. 195–203. Springer, Berlin (2014) Iwanicki, K.: RNFD: routing-layer detection of DODAG (root) node failures in low-power wireless networks. In: Proceedings of the 15th International Conference on Information Processing in Sensor Networks. IEEE Press, p. 13 (2016) Hui, J., Vasseur, J.: RPL: IPv6 routing protocol for low-power and lossy networks. Internet Requests for Comment, RFC Editor, Fremont, CA, USA, Tech. Rep, vol. 6550 (2012) GriloAMHeidrichMRouting metrics for cache-based reliable transport in wireless sensor networksEURASIP J. Wirel. Commun. Netw.2013201313910.1186/1687-1499-2013-139 ChenYChanetJ-PHouKMShiHLExtending the RPL routing protocol to agricultural low power and lossy networks (A-LLNs)In. J. Agric. Environ. Inf. Syst. (IJAEIS)20134254710.4018/ijaeis.2013100102 ZhaoZHuangfuWSunLShiZGanWAn open conformance test system towards the standardization of wireless sensor networksInt. J. Distrib. Sens. Netw.20128115 GomezCBoixAParadellsJImpact of LQI-based routing metrics on the performance of a one-to-one routing protocol for IEEE 802.15. 4 multihop networksEURASIP J. Wirel. Commun. Netw.2010201020540710.1155/2010/205407 DeepalakshmiPRadhakrishnanSAn ant colony-based multi objective quality of service routing for mobile ad hoc networksEURASIP J. Wirel. Commun. Netw.2011201115310.1186/1687-1499-2011-153 ShengZYangSYuYVasilakosAMccannJLeungKA survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunitiesIEEE Wirel. Commun.201320919810.1109/MWC.2013.6704479 Villaverde, B.C., Pesch, D., Alberola, R.D.P., Fedor, S., Boubekeur, M.: Constrained application protocol ubiquitous computing (IMIS). In: Sixth International Conference on for Low Power Embedded Networks: A Survey, in Innovative. pp. 702–707 (2012) Ha, M., Kwon, K., Kim, D., Kong, P-Y.: Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN. In: Internet of Things (iThings), 2014 IEEE International Conference on, and Green Computing and Communications (GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom), IEEE, pp. 87–94 (2014) Palattella, M., Grieco, L., Watteyne, T.: Using IEEE 802.15. 4e time-slotted channel hopping (TSCH) in the internet of things (IoT): problem statement (2015) AlishahiMMoghaddamMHYPourrezaHRMulti-class routing protocol using virtualization and SDN-enabled architecture for smart gridPeer-to-Peer Netw. Appl.201611117 JabbarSMinhasAARashidTRhoSHeuristic approach for stagnation free energy aware routing in wireless sensor networksAdhoc Sens. Wirel. Netw.2016312145 Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals. pp. 1721–2070 (2007) ZanellaABuiNCastellaniAVangelistaLZorziMInternet of things for smart citiesIEEE Internet Things J.20141223210.1109/JIOT.2014.2306328 IovaOTheoleyreFNoelTUsing multiparent routing in RPL to increase the stability and the lifetime of the networkAd Hoc Netw.201529456210.1016/j.adhoc.2015.01.020 Al-FuqahaAGuizaniMMohammadiMAledhariMAyyashMInternet of things: a survey on enabling technologies, protocols, and applicationsIEEE Commun. Surv. Tutor.2015172347237610.1109/COMST.2015.2444095 FortzBThorupMOptimizing OSPF/IS-IS weights in a changing worldIEEE J. Sel. Areas Commun.20022075676710.1109/JSAC.2002.1003042 JabbarSNaseerKGoharMRhoSChangHTrust model at service layer of cloud computing for educational institutesJ. Supercomput.201672588310.1007/s11227-015-1488-7 Fortz, B., Thorup, M.: Robust optimization of OSPF/IS-IS weights. In: Proc. INOC. vol. 20, pp. 225–230, 756–767 (2003) CarelsDDerdaeleNDe PoorterEVandenbergheWMoermanIDemeesterPSupport of multiple sinks via a virtual root for the RPL routing protocolEURASIP J. Wirel. Commun. Netw.201420149110.1186/1687-1499-2014-91 ShenGZetikRHirschOThomäRSRange-based localization for UWB sensor networks in realistic environmentsEURASIP J. Wirel. Commun. Netw.2009201047659810.1155/2010/476598 Hui, J.W., Vasseur, J.-P.: Estimated transmission overhead (ETO) metrics for variable data rate communication links. Google Patents (2014) KimH-SKoJCullerDEPaekJChallenging the IPv6 routing protocol for low-power and lossy networks (RPL): a surveyIEEE Commun. Surv. Tutor.201719250210.1109/COMST.2017.2751617 GubbiJBuyyaRMarusicSPalaniswamiMInternet of things (IoT): a vision, architectural elements, and future directionsFuture Gener. Comput. Syst.2013291645166010.1016/j.future.2013.01.010 Ko, J.G., Dawson-Haggerty, S., Gnawali, O., Culler, D., Terzis, A:. Evaluating the performance of RPL and 6LoWPAN in TinyOS. In: Workshop on Extending the Internet to Low Power and Lossy Networks (IP + SN), vol. 80, pp. 85–90 (2011) SezerSScott-HaywardSChouhanPKFraserBLakeDFinneganJAre we ready for SDN? Implementation challenges for software-defined networksIEEE Commun. Mag.201351364310.1109/MCOM.2013.6553676 Zhang, Z.-K., Cho, M.C.Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K., Shieh, S.: IoT security: ongoing challenges and research opportunities. In: Book IoT Security: Ongoing Challenges and Research Opportunities, pp. 230–234. IEEE (2014) Ersue, M., Romascanu, D., Schoenwaelder, J., Herberg, U.: Management of networks with constrained devices: problem statement and requirements. pp. 1721–2070 (2015) Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks. pp. 1721–2070 (2014) ChenYChanetJ-PHouK-MShiHDe SousaGA scalable context-aware objective function (SCAOF) of routing protocol for agricultural low-power and lossy networks (RPAL)Sensors201515195071954010.3390/s150819507 Mulligan, G.: The 6LoWPAN architecture. In: Proceedings of the 4th Workshop on Embedded Networked Sensors, pp. 78–82 (2007) KoJTerzisADawson-HaggertySCullerDEHuiJWLevisPConnecting low-power and lossy networks to the internetIEEE Commun. Mag20114996101 Guo, J., Liu, X., Bhatti, G., Orlik, P., Parsons, K.: Load balanced routing for low power and lossy networks. Google Patents (2013) Tripathi, J., de Oliveira, J.C., Vasseur, J.-P.: A performance evaluation study of RPL: routing protocol for low power and lossy networks. In: 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2010) de Oliveira, B.T., Alves, R.C.A., Margi, C.B.: Software-defined wireless sensor networks and internet of things standardization synergism. In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 60–65 (2015) KhanMMLodhiMARehmanAKhanAHussainFBSink-to-sink coordination framework using RPL: routing protocol for low power and lossy networksJ. Sens.2016201611 VermesanOFriessPGuilleminPGusmeroliSSundmaekerHBassiAInternet of things strategic research roadmapInternet Things-Glob. Technol. Soc. Trends20111952 Twayej, W., Al-Raweshidy, H., Khan, M., El-Geder, S.: Energy-efficient M2 M routing protocol based on Tiny-SDCWN with 6LoWPAN. In: 8th, Computer Science and Electronic Engineering (CEEC), pp. 198–203 (2016) Bressan, N., Bazzaco, L., Bui, N., Casari, P., Vangelista, L., Zorzi, M.: The deployment of a smart monitoring system using wireless sensor and actuator networks. In: First IEEE International Conference on Smart Grid Communications (SmartGridComm). pp. 49–54 (2010) PalattellaMRAccetturaNVilajosanaXWatteyneTGriecoLABoggiaGStandardized protocol stack for the internet of (important) thingsIEEE Commun. Surv. Tutor.2013151389140610.1109/SURV.2012.111412.00158 KreutzDRamosFMVerissimoPERothenbergCEAzodolmolkySUhligSSoftware-defined networking: a comprehensive surveyProc. IEEE2015103147610.1109/JPROC.2014.2371999 AhmadAPaulAKhanMJabbarSRathoreMMUChilamkurtiNEnergy efficient hierarchical resource management for mobile cloud computingIEEE Trans. Sustain. Comput.2017210011210.1109/TSUSC.2017.2714344 GungorVCSahinDKocakTErgutSBuccellaCCecatiCSmart grid and smart homes: key players and pilot projectsIEEE Ind. Electron. Mag.20126183410.1109/MIE.2012.2207489 620_CR11 620_CR12 620_CR10 AM Grilo (620_CR29) 2013; 2013 620_CR16 620_CR14 D Carels (620_CR6) 2014; 2014 Y Chen (620_CR23) 2013; 4 A Al-Fuqaha (620_CR9) 2015; 17 J Ko (620_CR25) 2011; 49 MM Khan (620_CR45) 2016; 2016 O Iova (620_CR42) 2015; 29 Y Chen (620_CR24) 2015; 15 J Gubbi (620_CR2) 2013; 29 620_CR43 S Jabbar (620_CR30) 2016; 72 P Deepalakshmi (620_CR35) 2011; 2011 620_CR47 C Gomez (620_CR22) 2010; 2010 Z Sheng (620_CR13) 2013; 20 620_CR40 620_CR41 MA Lodhi (620_CR46) 2017; 11 M Alishahi (620_CR49) 2016; 11 A Zanella (620_CR15) 2014; 1 620_CR39 A Ahmad (620_CR31) 2017; 2 S Jabbar (620_CR32) 2015; 15 620_CR34 VC Gungor (620_CR5) 2012; 6 620_CR38 620_CR36 Z Zhao (620_CR33) 2012; 8 G Shen (620_CR37) 2009; 2010 H-S Kim (620_CR44) 2017; 19 O Vermesan (620_CR3) 2011; 1 620_CR28 LM Oliveira (620_CR18) 2011; 24 MR Palattella (620_CR26) 2013; 15 D Kreutz (620_CR20) 2015; 103 620_CR1 S Sezer (620_CR21) 2013; 51 620_CR4 620_CR8 620_CR7 620_CR19 S Jabbar (620_CR48) 2016; 31 620_CR17 B Fortz (620_CR27) 2002; 20 |
References_xml | – reference: Twayej, W., Al-Raweshidy, H., Khan, M., El-Geder, S.: Energy-efficient M2 M routing protocol based on Tiny-SDCWN with 6LoWPAN. In: 8th, Computer Science and Electronic Engineering (CEEC), pp. 198–203 (2016) – reference: Hui, J.W., Vasseur, J.-P.: Estimated transmission overhead (ETO) metrics for variable data rate communication links. Google Patents (2014) – reference: Ko, J.G., Dawson-Haggerty, S., Gnawali, O., Culler, D., Terzis, A:. Evaluating the performance of RPL and 6LoWPAN in TinyOS. In: Workshop on Extending the Internet to Low Power and Lossy Networks (IP + SN), vol. 80, pp. 85–90 (2011) – reference: IovaOTheoleyreFNoelTUsing multiparent routing in RPL to increase the stability and the lifetime of the networkAd Hoc Netw.201529456210.1016/j.adhoc.2015.01.020 – reference: Ersue, M., Romascanu, D., Schoenwaelder, J., Herberg, U.: Management of networks with constrained devices: problem statement and requirements. pp. 1721–2070 (2015) – reference: Tripathi, J., de Oliveira, J.C., Vasseur, J.-P.: A performance evaluation study of RPL: routing protocol for low power and lossy networks. In: 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2010) – reference: CarelsDDerdaeleNDe PoorterEVandenbergheWMoermanIDemeesterPSupport of multiple sinks via a virtual root for the RPL routing protocolEURASIP J. Wirel. Commun. Netw.201420149110.1186/1687-1499-2014-91 – reference: KreutzDRamosFMVerissimoPERothenbergCEAzodolmolkySUhligSSoftware-defined networking: a comprehensive surveyProc. IEEE2015103147610.1109/JPROC.2014.2371999 – reference: JabbarSNaseerKGoharMRhoSChangHTrust model at service layer of cloud computing for educational institutesJ. Supercomput.201672588310.1007/s11227-015-1488-7 – reference: Guo, J., Liu, X., Bhatti, G., Orlik, P., Parsons, K.: Load balanced routing for low power and lossy networks. Google Patents (2013) – reference: Zhang, Z.-K., Cho, M.C.Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K., Shieh, S.: IoT security: ongoing challenges and research opportunities. In: Book IoT Security: Ongoing Challenges and Research Opportunities, pp. 230–234. IEEE (2014) – reference: KimH-SKoJCullerDEPaekJChallenging the IPv6 routing protocol for low-power and lossy networks (RPL): a surveyIEEE Commun. Surv. Tutor.201719250210.1109/COMST.2017.2751617 – reference: KhanMMLodhiMARehmanAKhanAHussainFBSink-to-sink coordination framework using RPL: routing protocol for low power and lossy networksJ. Sens.2016201611 – reference: Mulligan, G.: The 6LoWPAN architecture. In: Proceedings of the 4th Workshop on Embedded Networked Sensors, pp. 78–82 (2007) – reference: GomezCBoixAParadellsJImpact of LQI-based routing metrics on the performance of a one-to-one routing protocol for IEEE 802.15. 4 multihop networksEURASIP J. Wirel. Commun. Netw.2010201020540710.1155/2010/205407 – reference: Iwanicki, K.: RNFD: routing-layer detection of DODAG (root) node failures in low-power wireless networks. In: Proceedings of the 15th International Conference on Information Processing in Sensor Networks. IEEE Press, p. 13 (2016) – reference: Villaverde, B.C., Pesch, D., Alberola, R.D.P., Fedor, S., Boubekeur, M.: Constrained application protocol ubiquitous computing (IMIS). In: Sixth International Conference on for Low Power Embedded Networks: A Survey, in Innovative. pp. 702–707 (2012) – reference: ShengZYangSYuYVasilakosAMccannJLeungKA survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunitiesIEEE Wirel. Commun.201320919810.1109/MWC.2013.6704479 – reference: SezerSScott-HaywardSChouhanPKFraserBLakeDFinneganJAre we ready for SDN? Implementation challenges for software-defined networksIEEE Commun. Mag.201351364310.1109/MCOM.2013.6553676 – reference: AhmadAPaulAKhanMJabbarSRathoreMMUChilamkurtiNEnergy efficient hierarchical resource management for mobile cloud computingIEEE Trans. Sustain. Comput.2017210011210.1109/TSUSC.2017.2714344 – reference: Hui, J., Vasseur, J.: RPL: IPv6 routing protocol for low-power and lossy networks. Internet Requests for Comment, RFC Editor, Fremont, CA, USA, Tech. Rep, vol. 6550 (2012) – reference: Fortz, B., Thorup, M.: Robust optimization of OSPF/IS-IS weights. In: Proc. INOC. vol. 20, pp. 225–230, 756–767 (2003) – reference: DeepalakshmiPRadhakrishnanSAn ant colony-based multi objective quality of service routing for mobile ad hoc networksEURASIP J. Wirel. Commun. Netw.2011201115310.1186/1687-1499-2011-153 – reference: GubbiJBuyyaRMarusicSPalaniswamiMInternet of things (IoT): a vision, architectural elements, and future directionsFuture Gener. Comput. Syst.2013291645166010.1016/j.future.2013.01.010 – reference: ShenGZetikRHirschOThomäRSRange-based localization for UWB sensor networks in realistic environmentsEURASIP J. Wirel. Commun. Netw.2009201047659810.1155/2010/476598 – reference: AlishahiMMoghaddamMHYPourrezaHRMulti-class routing protocol using virtualization and SDN-enabled architecture for smart gridPeer-to-Peer Netw. Appl.201611117 – reference: ZanellaABuiNCastellaniAVangelistaLZorziMInternet of things for smart citiesIEEE Internet Things J.20141223210.1109/JIOT.2014.2306328 – reference: JabbarSMinhasAAImranMKhalidSSaleemKEnergy efficient strategy for throughput improvement in wireless sensor networksSensors2015152473249510.3390/s150202473 – reference: Ha, M., Kwon, K., Kim, D., Kong, P-Y.: Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN. In: Internet of Things (iThings), 2014 IEEE International Conference on, and Green Computing and Communications (GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom), IEEE, pp. 87–94 (2014) – reference: Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks. pp. 1721–2070 (2014) – reference: Pradeska, N., Najib, W., Kusumawardani, S.S.: Performance analysis of objective function MRHOF and OF0 in routing protocol RPL IPV6 over low power wireless personal area networks (6LoWPAN). In: 8th International Conference on Information Technology and Electrical Engineering (ICITEE). pp. 1–6 (2016) – reference: LodhiMARehmanAKhanMMHussainFBTransient Multipath routing protocol for low power and lossy networksKSII Trans. Internet Inf. Syst. (TIIS)20171120022019 – reference: de Oliveira, B.T., Alves, R.C.A., Margi, C.B.: Software-defined wireless sensor networks and internet of things standardization synergism. In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 60–65 (2015) – reference: PalattellaMRAccetturaNVilajosanaXWatteyneTGriecoLABoggiaGStandardized protocol stack for the internet of (important) thingsIEEE Commun. Surv. Tutor.2013151389140610.1109/SURV.2012.111412.00158 – reference: ChenYChanetJ-PHouK-MShiHDe SousaGA scalable context-aware objective function (SCAOF) of routing protocol for agricultural low-power and lossy networks (RPAL)Sensors201515195071954010.3390/s150819507 – reference: ChenYChanetJ-PHouKMShiHLExtending the RPL routing protocol to agricultural low power and lossy networks (A-LLNs)In. J. Agric. Environ. Inf. Syst. (IJAEIS)20134254710.4018/ijaeis.2013100102 – reference: Bressan, N., Bazzaco, L., Bui, N., Casari, P., Vangelista, L., Zorzi, M.: The deployment of a smart monitoring system using wireless sensor and actuator networks. In: First IEEE International Conference on Smart Grid Communications (SmartGridComm). pp. 49–54 (2010) – reference: GriloAMHeidrichMRouting metrics for cache-based reliable transport in wireless sensor networksEURASIP J. Wirel. Commun. Netw.2013201313910.1186/1687-1499-2013-139 – reference: Palattella, M., Grieco, L., Watteyne, T.: Using IEEE 802.15. 4e time-slotted channel hopping (TSCH) in the internet of things (IoT): problem statement (2015) – reference: FortzBThorupMOptimizing OSPF/IS-IS weights in a changing worldIEEE J. Sel. Areas Commun.20022075676710.1109/JSAC.2002.1003042 – reference: OliveiraLMDe SousaAFRodriguesJJRouting and mobility approaches in IPv6 over LoWPAN mesh networksInt. J. Commun Syst2011241445146610.1002/dac.1228 – reference: Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals. pp. 1721–2070 (2007) – reference: GungorVCSahinDKocakTErgutSBuccellaCCecatiCSmart grid and smart homes: key players and pilot projectsIEEE Ind. Electron. Mag.20126183410.1109/MIE.2012.2207489 – reference: ZhaoZHuangfuWSunLShiZGanWAn open conformance test system towards the standardization of wireless sensor networksInt. J. Distrib. Sens. Netw.20128115 – reference: JabbarSMinhasAARashidTRhoSHeuristic approach for stagnation free energy aware routing in wireless sensor networksAdhoc Sens. Wirel. Netw.2016312145 – reference: Deru, L., Dawans, S., Ocaña, M., Quoitin, B., Bonaventure, O.: Redundant border routers for mission- critical 6lowpan networks. In: Real-World Wireless Sensor Networks, pp. 195–203. Springer, Berlin (2014) – reference: Al-FuqahaAGuizaniMMohammadiMAledhariMAyyashMInternet of things: a survey on enabling technologies, protocols, and applicationsIEEE Commun. Surv. Tutor.2015172347237610.1109/COMST.2015.2444095 – reference: KoJTerzisADawson-HaggertySCullerDEHuiJWLevisPConnecting low-power and lossy networks to the internetIEEE Commun. Mag20114996101 – reference: VermesanOFriessPGuilleminPGusmeroliSSundmaekerHBassiAInternet of things strategic research roadmapInternet Things-Glob. Technol. Soc. Trends20111952 – ident: 620_CR4 – ident: 620_CR47 doi: 10.1007/978-3-319-03071-5_20 – ident: 620_CR1 doi: 10.1109/SOCA.2014.58 – volume: 51 start-page: 36 year: 2013 ident: 620_CR21 publication-title: IEEE Commun. Mag. doi: 10.1109/MCOM.2013.6553676 – ident: 620_CR16 doi: 10.1109/IMIS.2012.93 – volume: 8 start-page: 1 year: 2012 ident: 620_CR33 publication-title: Int. J. Distrib. Sens. Netw. – ident: 620_CR28 doi: 10.1109/JSAC.2002.1003042 – ident: 620_CR8 doi: 10.1109/CEEC.2016.7835913 – ident: 620_CR34 doi: 10.1109/SMARTGRID.2010.5622015 – volume: 2016 start-page: 11 year: 2016 ident: 620_CR45 publication-title: J. Sens. – ident: 620_CR10 doi: 10.17487/rfc7228 – ident: 620_CR7 – volume: 29 start-page: 45 year: 2015 ident: 620_CR42 publication-title: Ad Hoc Netw. doi: 10.1016/j.adhoc.2015.01.020 – ident: 620_CR38 doi: 10.1109/ICITEED.2016.7863270 – ident: 620_CR39 doi: 10.1109/IPSN.2016.7460720 – volume: 4 start-page: 25 year: 2013 ident: 620_CR23 publication-title: In. J. Agric. Environ. Inf. Syst. (IJAEIS) doi: 10.4018/ijaeis.2013100102 – volume: 1 start-page: 22 year: 2014 ident: 620_CR15 publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2014.2306328 – volume: 11 start-page: 2002 year: 2017 ident: 620_CR46 publication-title: KSII Trans. Internet Inf. Syst. (TIIS) – ident: 620_CR40 – volume: 2014 start-page: 91 year: 2014 ident: 620_CR6 publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/1687-1499-2014-91 – volume: 15 start-page: 2473 year: 2015 ident: 620_CR32 publication-title: Sensors doi: 10.3390/s150202473 – volume: 17 start-page: 2347 year: 2015 ident: 620_CR9 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2015.2444095 – volume: 103 start-page: 14 year: 2015 ident: 620_CR20 publication-title: Proc. IEEE doi: 10.1109/JPROC.2014.2371999 – volume: 6 start-page: 18 year: 2012 ident: 620_CR5 publication-title: IEEE Ind. Electron. Mag. doi: 10.1109/MIE.2012.2207489 – volume: 20 start-page: 91 year: 2013 ident: 620_CR13 publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2013.6704479 – ident: 620_CR36 – ident: 620_CR12 doi: 10.17487/RFC7547 – volume: 31 start-page: 21 year: 2016 ident: 620_CR48 publication-title: Adhoc Sens. Wirel. Netw. – volume: 2 start-page: 100 year: 2017 ident: 620_CR31 publication-title: IEEE Trans. Sustain. Comput. doi: 10.1109/TSUSC.2017.2714344 – ident: 620_CR11 doi: 10.17487/RFC7554 – ident: 620_CR41 – volume: 19 start-page: 2502 year: 2017 ident: 620_CR44 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2017.2751617 – volume: 2010 start-page: 205407 year: 2010 ident: 620_CR22 publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1155/2010/205407 – volume: 1 start-page: 9 year: 2011 ident: 620_CR3 publication-title: Internet Things-Glob. Technol. Soc. Trends – volume: 72 start-page: 58 year: 2016 ident: 620_CR30 publication-title: J. Supercomput. doi: 10.1007/s11227-015-1488-7 – ident: 620_CR14 doi: 10.17487/rfc4919 – volume: 29 start-page: 1645 year: 2013 ident: 620_CR2 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2013.01.010 – volume: 49 start-page: 96 year: 2011 ident: 620_CR25 publication-title: IEEE Commun. Mag – volume: 15 start-page: 19507 year: 2015 ident: 620_CR24 publication-title: Sensors doi: 10.3390/s150819507 – ident: 620_CR17 doi: 10.1145/1278972.1278992 – volume: 2011 start-page: 153 year: 2011 ident: 620_CR35 publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/1687-1499-2011-153 – volume: 2010 start-page: 476598 year: 2009 ident: 620_CR37 publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1155/2010/476598 – volume: 15 start-page: 1389 year: 2013 ident: 620_CR26 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2012.111412.00158 – volume: 20 start-page: 756 year: 2002 ident: 620_CR27 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2002.1003042 – volume: 2013 start-page: 139 year: 2013 ident: 620_CR29 publication-title: EURASIP J. Wirel. Commun. Netw. doi: 10.1186/1687-1499-2013-139 – volume: 11 start-page: 1 year: 2016 ident: 620_CR49 publication-title: Peer-to-Peer Netw. Appl. – ident: 620_CR43 doi: 10.1109/iThings.2014.22 – volume: 24 start-page: 1445 year: 2011 ident: 620_CR18 publication-title: Int. J. Commun Syst doi: 10.1002/dac.1228 – ident: 620_CR19 doi: 10.1109/CISS.2010.5464820 |
SSID | ssj0009788 |
Score | 2.269839 |
Snippet | Software Defined Network (SDN) brought revolution in the network field with the partnership of Academia and Industry. SDN bridges the gap to overcome issues of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 367 |
SubjectTerms | Computer Science Computer simulation Edge computing Energy management Energy storage Finite element method Internet of Things Network topologies Nodes Performance enhancement Performance evaluation Power management Processor Architectures Remote sensors Routers Software Engineering/Programming and Operating Systems Software-defined networking Special Issue on Emerging Technology for Software Defined Network Enabled Internet of Things Theory of Computation Wireless sensor networks |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6Xbz4LU6n5OBJCbZLk7QncboxRMdQB7uVNklRkG7aifjf-16bWhT01ELad3gveZ9570fIiVUizUwvZYHQHgu08ViSKc2iSAmlEHs7w27ku7EcTYObmZi5hFvhrlXWOrFU1GauMUd-DqYJYhEwOPxi8coQNQqrqw5CY5W0QQWHYYu0-4Px5L4Zu6tK5Ek4SoKpQIR1XbNqnlMSo-mQeRJiqPCnZWrczV8V0tLwDDfJuvMY6WUl4i2yYvNtslGjMVB3OHdIPq5udNNJ0wtAB_kTPjEFSOcZLdttWQHxJ6xg05Sht_MPOkGoNHgrik_qqBT0OacP12PaBzNnaJU4tCWRCupzl0yHg8erEXNoCkxzXy5Zhk05WviJ71vrWetzyY3FaS1B6hkBcZkWWc_wKIGIWXMbyQRH70guAx2BNPkeaeXz3O4TCk5hKnAWfWI5yFhEmQJNYcEZMyGXvt8hXs3JWLtR44h48RI3Q5KR-TEwP0bmx2GHnH7_sqjmbPz3cbcWT-yOXBE3G6RDzmqRNct_Ejv4n9ghWethiF1e1umS1vLt3R6BH7JMj91m-wKSZtdG priority: 102 providerName: ProQuest |
Title | Network Performance Enhancement of Multi-sink Enabled Low Power Lossy Networks in SDN Based Internet of Things |
URI | https://link.springer.com/article/10.1007/s10766-018-0620-8 https://www.proquest.com/docview/2158402243 |
Volume | 48 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c9uKL3-J0jjz4pATapUnax027DT_GUAfzqbRpioJ0Yifif--lH1ZFBZ9SSHrQuyb5XXL3O4AjLXmUxL2IOlxZ1FGxRcNEKup5kktpam8nJhv5aiLGM-d8zudlHndWRbtXV5L5Sv0p2U0K4_261BLo87gNaHF03U0c16zXr5l2ZV5sEmcPp9LhbnWV-ZOIr5tRjTC_XYrme81wA9ZKkEj6hVU3YUWnW7BeFWAg5XzchnRSBHGTaR3-T_z03rTm1I8sEpJn2NIMPxh7TJ5UTC4Xr2RqqqPhU5a9kVJKRh5ScnM2IQPc2WJSnBXqXEhR3XMHZkP_9nRMywIKVDFbLGli8nAUt0Pb1trS2maCxdoQtDiRFXN0xRRPejHzQnSSFdOeCA3bjmDCUR4akO1CM12keg8I4sCIG_r5UDM0K_cSiYuDRvwVu0zYdhusSpOBKtnFTZGLx6DmRTbKD1D5gVF-4Lbh-OOVp4Ja46_Bnco8QTnLsgDhCvqnCEJYG04qk9Xdvwrb_9foA1jtGSc7D9fpQHP5_KIPEYksoy403OGoC63-6O7Cx3bgT6bX3fx_fAeX29aT |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOMAFaKHq8mh9aC9FFkkc28kBIV7LUpYVEiBxSxPbUZFQFsgixJ_iNzKTR6MiwY1TIiUZKePxzHy2Zz6AH07LLLdBxkNpPB4a6_E014bHsZZaE_d2TtXIpyM1uAx_X8mrKXhua2HoWGXrEytHbceG1si3MDQhFsGAI3Zu7zixRtHuakuhUZvFiXt6RMhWbh8f4Pj-DIL-4cX-gDesAtwIX014TsUpRvqp7zvnOecLJayjriVh5lmJ-MTIPLAiThE5GuFilVILGiVUaGL8K4Fyp2E2FBjJqTK9f9Q1-dUVzyVOXMl1KKN2F7Uu1dOKsHvEPYWILfo_DnbJ7av92CrM9ZdgoclP2W5tUJ9gyhWfYbHlfmCNK1iGYlSfH2dnXeUBOyz-0pUWHNk4Z1VxLy8R7eITKtGybDh-ZGdEzIZ3ZfnEGikluy7Y-cGI7WFQtaxepnSVkJpYdAUuP0TLX2CmGBfuKzBMQTNJne9TJ9CiZJxr9EsOUz8bCeX7PfBaTSamaWxO_Bo3SdeSmZSfoPITUn4S9eDXv09u664e77283g5P0kzwMunMsQeb7ZB1j98Utvq-sO8wN7g4HSbD49HJGswHBO6rY0LrMDO5f3AbmAFNsm-V2TH489F2_gKJtBE7 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRap6gT6oWF71ob20skji2E4OCEF3V1BotGpB4pYmtqNWQtmFLEL8NX4dM3k0olK5cUqkJCNlPPbMZ8_MB_DRaZkXNsh5KI3HQ2M9nhXa8DjWUmvi3i6oGvl7oo7Ow28X8mIJ7rtaGEqr7NbEeqG2M0N75LvomhCLoMMRu0WbFjEdTfbnV5wYpOiktaPTaEzkxN3dInyr9o5HONafgmAyPvt6xFuGAW6Erxa8oEIVI_3M953znPOFEtZRB5Mw96xErGJkEVgRZ4gijXCxyqgdjRIqNDH-oUC5L2BZEyoawPLhOJn-6Fv-6pr1Eqex5DqUUXem2hTuaUVIPuKeQvwWPfaKfaj7z-ls7fQmr2GljVbZQWNeb2DJlW9htWOCYO3C8A7KpMkmZ9O-DoGNy990pe1HNitYXerLK8S--IQKtiw7nd2yKdG04V1V3bFWSsX-lOznKGGH6GItazYtXS2koRldg_Nn0fN7GJSz0q0Dw4A0l9QHP3MC7UvGhcZVymEgaCOhfH8IXqfJ1LRtzolt4zLtGzST8lNUfkrKT6MhfP77ybzp8fHUy1vd8KTtdK_S3jiH8KUbsv7xf4VtPC3sA7xEG09Pj5OTTXgVENKvc4a2YLC4vnHbGA4t8p3W7hj8em5TfwAjYhbN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Performance+Enhancement+of+Multi-sink+Enabled+Low+Power+Lossy+Networks+in+SDN+Based+Internet+of+Things&rft.jtitle=International+journal+of+parallel+programming&rft.au=Shabbir%2C+Ghulam&rft.au=Akram%2C+Adeel&rft.au=Iqbal%2C+Muhammad+Munwar&rft.au=Jabbar%2C+Sohail&rft.date=2020-04-01&rft.pub=Springer+US&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=48&rft.issue=2&rft.spage=367&rft.epage=398&rft_id=info:doi/10.1007%2Fs10766-018-0620-8&rft.externalDocID=10_1007_s10766_018_0620_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon |