Network Performance Enhancement of Multi-sink Enabled Low Power Lossy Networks in SDN Based Internet of Things

Software Defined Network (SDN) brought revolution in the network field with the partnership of Academia and Industry. SDN bridges the gap to overcome issues of IoT deployment, optimization and better utilization of network resources. The escalation in resource congestion in Wireless Sensor Networks...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of parallel programming Vol. 48; no. 2; pp. 367 - 398
Main Authors Shabbir, Ghulam, Akram, Adeel, Iqbal, Muhammad Munwar, Jabbar, Sohail, Alfawair, Mai, Chaudhry, Junaid
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Software Defined Network (SDN) brought revolution in the network field with the partnership of Academia and Industry. SDN bridges the gap to overcome issues of IoT deployment, optimization and better utilization of network resources. The escalation in resource congestion in Wireless Sensor Networks (WSNs) can usually lead to scalability, data computation or storage, and energy efficiency problems with only a single sink node for data acquisition. Internet of Things (IoT) has resource and energy constraints for WSN devices. Low Power and Lossy Networks (LLNs) ought to be optimized for traffic with multiple sinks. RPL routing has constraints to support this approach. However, RPL inherits the ability to offer features like Auto-Configuration, Self-Healing, Loop avoidance, and detection. These features of RPL can be transformed into the improved performance of a WSN by increasing the number of sinks with a linear increase of data transmitting nodes in the network. Further, to mitigate the escalated computing needs, edge computing has emerged as a new paradigm to resolve SDN-enabled IoT and localized computing needs. This study proposes an SDN-based solution to the interconnectivity of resource constraint LLN devices with edge computing routers in mesh and cluster topological scenario using RPL as IoT routing protocol. Performance evaluation concerning different routing metrics and objective functions: Minimum Rank with Hysteresis Function (MRHOF) and Zero (OF0) are analyzed. COOJA simulator is used for emulation of random as well as linear grid topologies for the creation of WSN static nodes. Simulation results confirm that the gradual increase of a number of nodes from 16, 32, 48, 64 and a simultaneous increase in sinks nodes as 1, 2, 3, 4 respectively in LLN network reflects the desired advantages with the stable network.
AbstractList Software Defined Network (SDN) brought revolution in the network field with the partnership of Academia and Industry. SDN bridges the gap to overcome issues of IoT deployment, optimization and better utilization of network resources. The escalation in resource congestion in Wireless Sensor Networks (WSNs) can usually lead to scalability, data computation or storage, and energy efficiency problems with only a single sink node for data acquisition. Internet of Things (IoT) has resource and energy constraints for WSN devices. Low Power and Lossy Networks (LLNs) ought to be optimized for traffic with multiple sinks. RPL routing has constraints to support this approach. However, RPL inherits the ability to offer features like Auto-Configuration, Self-Healing, Loop avoidance, and detection. These features of RPL can be transformed into the improved performance of a WSN by increasing the number of sinks with a linear increase of data transmitting nodes in the network. Further, to mitigate the escalated computing needs, edge computing has emerged as a new paradigm to resolve SDN-enabled IoT and localized computing needs. This study proposes an SDN-based solution to the interconnectivity of resource constraint LLN devices with edge computing routers in mesh and cluster topological scenario using RPL as IoT routing protocol. Performance evaluation concerning different routing metrics and objective functions: Minimum Rank with Hysteresis Function (MRHOF) and Zero (OF0) are analyzed. COOJA simulator is used for emulation of random as well as linear grid topologies for the creation of WSN static nodes. Simulation results confirm that the gradual increase of a number of nodes from 16, 32, 48, 64 and a simultaneous increase in sinks nodes as 1, 2, 3, 4 respectively in LLN network reflects the desired advantages with the stable network.
Author Shabbir, Ghulam
Chaudhry, Junaid
Jabbar, Sohail
Akram, Adeel
Alfawair, Mai
Iqbal, Muhammad Munwar
Author_xml – sequence: 1
  givenname: Ghulam
  surname: Shabbir
  fullname: Shabbir, Ghulam
  organization: Department of Telecom Engineering, University of Engineering and Technology
– sequence: 2
  givenname: Adeel
  surname: Akram
  fullname: Akram, Adeel
  organization: Department of Telecom Engineering, University of Engineering and Technology
– sequence: 3
  givenname: Muhammad Munwar
  orcidid: 0000-0001-7212-1408
  surname: Iqbal
  fullname: Iqbal, Muhammad Munwar
  organization: Department of Computer Science, University of Engineering and Technology
– sequence: 4
  givenname: Sohail
  orcidid: 0000-0002-2127-1235
  surname: Jabbar
  fullname: Jabbar, Sohail
  email: sjabbar.research@gmail.com
  organization: Department of Computer Science, National Textile University
– sequence: 5
  givenname: Mai
  surname: Alfawair
  fullname: Alfawair, Mai
  organization: Prince Abdullah bin Ghazi Faculty of Information Technology, Al-Balqa Applied University
– sequence: 6
  givenname: Junaid
  surname: Chaudhry
  fullname: Chaudhry, Junaid
  organization: College of Security and Intelligence, Embry-Riddle Aeronautical University
BookMark eNp9kFtLAzEQhYMo2FZ_gG8Bn6OTTTabffSuUC-gPod0d1ZX26QmKaX_3tQKgqBPMzDnOzNzhmTbeYeEHHA44gDVceRQKcWAawaqAKa3yICXlWCVkrBNBqB1ySpZ6l0yjPENAOpK6wFxd5iWPrzTBwydDzPrGqQX7nVdZ-gS9R29XUxTz2Lv3vPETqbY0rFf0ge_xJC7GFf02yXS3tHH8zt6amNW3biEweGXydNr717iHtnp7DTi_ncdkefLi6ezaza-v7o5OxmzRnCVWFfkA5uSW84RAZELJVosa6nlBNoSeB52RStqK1XdCKyV5RKkEko2dVtMxIgcbnznwX8sMCbz5hfB5ZWm4KWWUBRSZFW1UTUhfxGwM02fbOq9S8H2U8PBrMM1m3BNDteswzU6k_wXOQ_9zIbVv0yxYWLWuhcMPzf9DX0CFCKNPw
CitedBy_id crossref_primary_10_1109_TNSM_2020_3035315
crossref_primary_10_1007_s12083_022_01347_y
crossref_primary_10_3390_app14114951
crossref_primary_10_1007_s11390_022_1027_y
crossref_primary_10_1007_s11277_020_07089_5
crossref_primary_10_4018_IJIDE_349724
crossref_primary_10_1007_s12083_021_01101_w
crossref_primary_10_1007_s42979_024_02747_y
crossref_primary_10_1007_s11276_022_02925_x
crossref_primary_10_1109_JIOT_2021_3094275
crossref_primary_10_1155_2021_8306479
crossref_primary_10_1142_S0219265923500226
crossref_primary_10_1155_2022_1841066
crossref_primary_10_21078_JSSI_2020_578_11
crossref_primary_10_1109_ACCESS_2022_3212728
Cites_doi 10.1007/978-3-319-03071-5_20
10.1109/SOCA.2014.58
10.1109/MCOM.2013.6553676
10.1109/IMIS.2012.93
10.1109/JSAC.2002.1003042
10.1109/CEEC.2016.7835913
10.1109/SMARTGRID.2010.5622015
10.17487/rfc7228
10.1016/j.adhoc.2015.01.020
10.1109/ICITEED.2016.7863270
10.1109/IPSN.2016.7460720
10.4018/ijaeis.2013100102
10.1109/JIOT.2014.2306328
10.1186/1687-1499-2014-91
10.3390/s150202473
10.1109/COMST.2015.2444095
10.1109/JPROC.2014.2371999
10.1109/MIE.2012.2207489
10.1109/MWC.2013.6704479
10.17487/RFC7547
10.1109/TSUSC.2017.2714344
10.17487/RFC7554
10.1109/COMST.2017.2751617
10.1155/2010/205407
10.1007/s11227-015-1488-7
10.17487/rfc4919
10.1016/j.future.2013.01.010
10.3390/s150819507
10.1145/1278972.1278992
10.1186/1687-1499-2011-153
10.1155/2010/476598
10.1109/SURV.2012.111412.00158
10.1186/1687-1499-2013-139
10.1109/iThings.2014.22
10.1002/dac.1228
10.1109/CISS.2010.5464820
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
International Journal of Parallel Programming is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: International Journal of Parallel Programming is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10766-018-0620-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7640
EndPage 398
ExternalDocumentID 10_1007_s10766_018_0620_8
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
2.D
203
28-
29J
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
7WY
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYJJ
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFSI
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARCSS
ARMRJ
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BKOMP
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
E.L
EAD
EAP
EAS
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
MS~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TAE
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U5U
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-f2000c51a11ee0ee1363de59484b0d5010c5f2d39a469c3e96a14046364c9d2b3
IEDL.DBID U2A
ISSN 0885-7458
IngestDate Fri Jul 25 22:32:26 EDT 2025
Thu Apr 24 23:06:43 EDT 2025
Tue Jul 01 00:50:32 EDT 2025
Fri Feb 21 02:37:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Internet of thing
MQTT
RPLs
Constrained devices
LLNs
Multi-sink
CoAP
DODAG
SDN
Edge computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-f2000c51a11ee0ee1363de59484b0d5010c5f2d39a469c3e96a14046364c9d2b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7212-1408
0000-0002-2127-1235
PQID 2158402243
PQPubID 48389
PageCount 32
ParticipantIDs proquest_journals_2158402243
crossref_citationtrail_10_1007_s10766_018_0620_8
crossref_primary_10_1007_s10766_018_0620_8
springer_journals_10_1007_s10766_018_0620_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200400
2020-4-00
20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 4
  year: 2020
  text: 20200400
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of parallel programming
PublicationTitleAbbrev Int J Parallel Prog
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References JabbarSMinhasAAImranMKhalidSSaleemKEnergy efficient strategy for throughput improvement in wireless sensor networksSensors2015152473249510.3390/s150202473
LodhiMARehmanAKhanMMHussainFBTransient Multipath routing protocol for low power and lossy networksKSII Trans. Internet Inf. Syst. (TIIS)20171120022019
OliveiraLMDe SousaAFRodriguesJJRouting and mobility approaches in IPv6 over LoWPAN mesh networksInt. J. Commun Syst2011241445146610.1002/dac.1228
Pradeska, N., Najib, W., Kusumawardani, S.S.: Performance analysis of objective function MRHOF and OF0 in routing protocol RPL IPV6 over low power wireless personal area networks (6LoWPAN). In: 8th International Conference on Information Technology and Electrical Engineering (ICITEE). pp. 1–6 (2016)
Deru, L., Dawans, S., Ocaña, M., Quoitin, B., Bonaventure, O.: Redundant border routers for mission- critical 6lowpan networks. In: Real-World Wireless Sensor Networks, pp. 195–203. Springer, Berlin (2014)
Iwanicki, K.: RNFD: routing-layer detection of DODAG (root) node failures in low-power wireless networks. In: Proceedings of the 15th International Conference on Information Processing in Sensor Networks. IEEE Press, p. 13 (2016)
Hui, J., Vasseur, J.: RPL: IPv6 routing protocol for low-power and lossy networks. Internet Requests for Comment, RFC Editor, Fremont, CA, USA, Tech. Rep, vol. 6550 (2012)
GriloAMHeidrichMRouting metrics for cache-based reliable transport in wireless sensor networksEURASIP J. Wirel. Commun. Netw.2013201313910.1186/1687-1499-2013-139
ChenYChanetJ-PHouKMShiHLExtending the RPL routing protocol to agricultural low power and lossy networks (A-LLNs)In. J. Agric. Environ. Inf. Syst. (IJAEIS)20134254710.4018/ijaeis.2013100102
ZhaoZHuangfuWSunLShiZGanWAn open conformance test system towards the standardization of wireless sensor networksInt. J. Distrib. Sens. Netw.20128115
GomezCBoixAParadellsJImpact of LQI-based routing metrics on the performance of a one-to-one routing protocol for IEEE 802.15. 4 multihop networksEURASIP J. Wirel. Commun. Netw.2010201020540710.1155/2010/205407
DeepalakshmiPRadhakrishnanSAn ant colony-based multi objective quality of service routing for mobile ad hoc networksEURASIP J. Wirel. Commun. Netw.2011201115310.1186/1687-1499-2011-153
ShengZYangSYuYVasilakosAMccannJLeungKA survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunitiesIEEE Wirel. Commun.201320919810.1109/MWC.2013.6704479
Villaverde, B.C., Pesch, D., Alberola, R.D.P., Fedor, S., Boubekeur, M.: Constrained application protocol ubiquitous computing (IMIS). In: Sixth International Conference on for Low Power Embedded Networks: A Survey, in Innovative. pp. 702–707 (2012)
Ha, M., Kwon, K., Kim, D., Kong, P-Y.: Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN. In: Internet of Things (iThings), 2014 IEEE International Conference on, and Green Computing and Communications (GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom), IEEE, pp. 87–94 (2014)
Palattella, M., Grieco, L., Watteyne, T.: Using IEEE 802.15. 4e time-slotted channel hopping (TSCH) in the internet of things (IoT): problem statement (2015)
AlishahiMMoghaddamMHYPourrezaHRMulti-class routing protocol using virtualization and SDN-enabled architecture for smart gridPeer-to-Peer Netw. Appl.201611117
JabbarSMinhasAARashidTRhoSHeuristic approach for stagnation free energy aware routing in wireless sensor networksAdhoc Sens. Wirel. Netw.2016312145
Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals. pp. 1721–2070 (2007)
ZanellaABuiNCastellaniAVangelistaLZorziMInternet of things for smart citiesIEEE Internet Things J.20141223210.1109/JIOT.2014.2306328
IovaOTheoleyreFNoelTUsing multiparent routing in RPL to increase the stability and the lifetime of the networkAd Hoc Netw.201529456210.1016/j.adhoc.2015.01.020
Al-FuqahaAGuizaniMMohammadiMAledhariMAyyashMInternet of things: a survey on enabling technologies, protocols, and applicationsIEEE Commun. Surv. Tutor.2015172347237610.1109/COMST.2015.2444095
FortzBThorupMOptimizing OSPF/IS-IS weights in a changing worldIEEE J. Sel. Areas Commun.20022075676710.1109/JSAC.2002.1003042
JabbarSNaseerKGoharMRhoSChangHTrust model at service layer of cloud computing for educational institutesJ. Supercomput.201672588310.1007/s11227-015-1488-7
Fortz, B., Thorup, M.: Robust optimization of OSPF/IS-IS weights. In: Proc. INOC. vol. 20, pp. 225–230, 756–767 (2003)
CarelsDDerdaeleNDe PoorterEVandenbergheWMoermanIDemeesterPSupport of multiple sinks via a virtual root for the RPL routing protocolEURASIP J. Wirel. Commun. Netw.201420149110.1186/1687-1499-2014-91
ShenGZetikRHirschOThomäRSRange-based localization for UWB sensor networks in realistic environmentsEURASIP J. Wirel. Commun. Netw.2009201047659810.1155/2010/476598
Hui, J.W., Vasseur, J.-P.: Estimated transmission overhead (ETO) metrics for variable data rate communication links. Google Patents (2014)
KimH-SKoJCullerDEPaekJChallenging the IPv6 routing protocol for low-power and lossy networks (RPL): a surveyIEEE Commun. Surv. Tutor.201719250210.1109/COMST.2017.2751617
GubbiJBuyyaRMarusicSPalaniswamiMInternet of things (IoT): a vision, architectural elements, and future directionsFuture Gener. Comput. Syst.2013291645166010.1016/j.future.2013.01.010
Ko, J.G., Dawson-Haggerty, S., Gnawali, O., Culler, D., Terzis, A:. Evaluating the performance of RPL and 6LoWPAN in TinyOS. In: Workshop on Extending the Internet to Low Power and Lossy Networks (IP + SN), vol. 80, pp. 85–90 (2011)
SezerSScott-HaywardSChouhanPKFraserBLakeDFinneganJAre we ready for SDN? Implementation challenges for software-defined networksIEEE Commun. Mag.201351364310.1109/MCOM.2013.6553676
Zhang, Z.-K., Cho, M.C.Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K., Shieh, S.: IoT security: ongoing challenges and research opportunities. In: Book IoT Security: Ongoing Challenges and Research Opportunities, pp. 230–234. IEEE (2014)
Ersue, M., Romascanu, D., Schoenwaelder, J., Herberg, U.: Management of networks with constrained devices: problem statement and requirements. pp. 1721–2070 (2015)
Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks. pp. 1721–2070 (2014)
ChenYChanetJ-PHouK-MShiHDe SousaGA scalable context-aware objective function (SCAOF) of routing protocol for agricultural low-power and lossy networks (RPAL)Sensors201515195071954010.3390/s150819507
Mulligan, G.: The 6LoWPAN architecture. In: Proceedings of the 4th Workshop on Embedded Networked Sensors, pp. 78–82 (2007)
KoJTerzisADawson-HaggertySCullerDEHuiJWLevisPConnecting low-power and lossy networks to the internetIEEE Commun. Mag20114996101
Guo, J., Liu, X., Bhatti, G., Orlik, P., Parsons, K.: Load balanced routing for low power and lossy networks. Google Patents (2013)
Tripathi, J., de Oliveira, J.C., Vasseur, J.-P.: A performance evaluation study of RPL: routing protocol for low power and lossy networks. In: 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2010)
de Oliveira, B.T., Alves, R.C.A., Margi, C.B.: Software-defined wireless sensor networks and internet of things standardization synergism. In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 60–65 (2015)
KhanMMLodhiMARehmanAKhanAHussainFBSink-to-sink coordination framework using RPL: routing protocol for low power and lossy networksJ. Sens.2016201611
VermesanOFriessPGuilleminPGusmeroliSSundmaekerHBassiAInternet of things strategic research roadmapInternet Things-Glob. Technol. Soc. Trends20111952
Twayej, W., Al-Raweshidy, H., Khan, M., El-Geder, S.: Energy-efficient M2 M routing protocol based on Tiny-SDCWN with 6LoWPAN. In: 8th, Computer Science and Electronic Engineering (CEEC), pp. 198–203 (2016)
Bressan, N., Bazzaco, L., Bui, N., Casari, P., Vangelista, L., Zorzi, M.: The deployment of a smart monitoring system using wireless sensor and actuator networks. In: First IEEE International Conference on Smart Grid Communications (SmartGridComm). pp. 49–54 (2010)
PalattellaMRAccetturaNVilajosanaXWatteyneTGriecoLABoggiaGStandardized protocol stack for the internet of (important) thingsIEEE Commun. Surv. Tutor.2013151389140610.1109/SURV.2012.111412.00158
KreutzDRamosFMVerissimoPERothenbergCEAzodolmolkySUhligSSoftware-defined networking: a comprehensive surveyProc. IEEE2015103147610.1109/JPROC.2014.2371999
AhmadAPaulAKhanMJabbarSRathoreMMUChilamkurtiNEnergy efficient hierarchical resource management for mobile cloud computingIEEE Trans. Sustain. Comput.2017210011210.1109/TSUSC.2017.2714344
GungorVCSahinDKocakTErgutSBuccellaCCecatiCSmart grid and smart homes: key players and pilot projectsIEEE Ind. Electron. Mag.20126183410.1109/MIE.2012.2207489
620_CR11
620_CR12
620_CR10
AM Grilo (620_CR29) 2013; 2013
620_CR16
620_CR14
D Carels (620_CR6) 2014; 2014
Y Chen (620_CR23) 2013; 4
A Al-Fuqaha (620_CR9) 2015; 17
J Ko (620_CR25) 2011; 49
MM Khan (620_CR45) 2016; 2016
O Iova (620_CR42) 2015; 29
Y Chen (620_CR24) 2015; 15
J Gubbi (620_CR2) 2013; 29
620_CR43
S Jabbar (620_CR30) 2016; 72
P Deepalakshmi (620_CR35) 2011; 2011
620_CR47
C Gomez (620_CR22) 2010; 2010
Z Sheng (620_CR13) 2013; 20
620_CR40
620_CR41
MA Lodhi (620_CR46) 2017; 11
M Alishahi (620_CR49) 2016; 11
A Zanella (620_CR15) 2014; 1
620_CR39
A Ahmad (620_CR31) 2017; 2
S Jabbar (620_CR32) 2015; 15
620_CR34
VC Gungor (620_CR5) 2012; 6
620_CR38
620_CR36
Z Zhao (620_CR33) 2012; 8
G Shen (620_CR37) 2009; 2010
H-S Kim (620_CR44) 2017; 19
O Vermesan (620_CR3) 2011; 1
620_CR28
LM Oliveira (620_CR18) 2011; 24
MR Palattella (620_CR26) 2013; 15
D Kreutz (620_CR20) 2015; 103
620_CR1
S Sezer (620_CR21) 2013; 51
620_CR4
620_CR8
620_CR7
620_CR19
S Jabbar (620_CR48) 2016; 31
620_CR17
B Fortz (620_CR27) 2002; 20
References_xml – reference: Twayej, W., Al-Raweshidy, H., Khan, M., El-Geder, S.: Energy-efficient M2 M routing protocol based on Tiny-SDCWN with 6LoWPAN. In: 8th, Computer Science and Electronic Engineering (CEEC), pp. 198–203 (2016)
– reference: Hui, J.W., Vasseur, J.-P.: Estimated transmission overhead (ETO) metrics for variable data rate communication links. Google Patents (2014)
– reference: Ko, J.G., Dawson-Haggerty, S., Gnawali, O., Culler, D., Terzis, A:. Evaluating the performance of RPL and 6LoWPAN in TinyOS. In: Workshop on Extending the Internet to Low Power and Lossy Networks (IP + SN), vol. 80, pp. 85–90 (2011)
– reference: IovaOTheoleyreFNoelTUsing multiparent routing in RPL to increase the stability and the lifetime of the networkAd Hoc Netw.201529456210.1016/j.adhoc.2015.01.020
– reference: Ersue, M., Romascanu, D., Schoenwaelder, J., Herberg, U.: Management of networks with constrained devices: problem statement and requirements. pp. 1721–2070 (2015)
– reference: Tripathi, J., de Oliveira, J.C., Vasseur, J.-P.: A performance evaluation study of RPL: routing protocol for low power and lossy networks. In: 44th Annual Conference on Information Sciences and Systems (CISS), pp. 1–6 (2010)
– reference: CarelsDDerdaeleNDe PoorterEVandenbergheWMoermanIDemeesterPSupport of multiple sinks via a virtual root for the RPL routing protocolEURASIP J. Wirel. Commun. Netw.201420149110.1186/1687-1499-2014-91
– reference: KreutzDRamosFMVerissimoPERothenbergCEAzodolmolkySUhligSSoftware-defined networking: a comprehensive surveyProc. IEEE2015103147610.1109/JPROC.2014.2371999
– reference: JabbarSNaseerKGoharMRhoSChangHTrust model at service layer of cloud computing for educational institutesJ. Supercomput.201672588310.1007/s11227-015-1488-7
– reference: Guo, J., Liu, X., Bhatti, G., Orlik, P., Parsons, K.: Load balanced routing for low power and lossy networks. Google Patents (2013)
– reference: Zhang, Z.-K., Cho, M.C.Y., Wang, C.-W., Hsu, C.-W., Chen, C.-K., Shieh, S.: IoT security: ongoing challenges and research opportunities. In: Book IoT Security: Ongoing Challenges and Research Opportunities, pp. 230–234. IEEE (2014)
– reference: KimH-SKoJCullerDEPaekJChallenging the IPv6 routing protocol for low-power and lossy networks (RPL): a surveyIEEE Commun. Surv. Tutor.201719250210.1109/COMST.2017.2751617
– reference: KhanMMLodhiMARehmanAKhanAHussainFBSink-to-sink coordination framework using RPL: routing protocol for low power and lossy networksJ. Sens.2016201611
– reference: Mulligan, G.: The 6LoWPAN architecture. In: Proceedings of the 4th Workshop on Embedded Networked Sensors, pp. 78–82 (2007)
– reference: GomezCBoixAParadellsJImpact of LQI-based routing metrics on the performance of a one-to-one routing protocol for IEEE 802.15. 4 multihop networksEURASIP J. Wirel. Commun. Netw.2010201020540710.1155/2010/205407
– reference: Iwanicki, K.: RNFD: routing-layer detection of DODAG (root) node failures in low-power wireless networks. In: Proceedings of the 15th International Conference on Information Processing in Sensor Networks. IEEE Press, p. 13 (2016)
– reference: Villaverde, B.C., Pesch, D., Alberola, R.D.P., Fedor, S., Boubekeur, M.: Constrained application protocol ubiquitous computing (IMIS). In: Sixth International Conference on for Low Power Embedded Networks: A Survey, in Innovative. pp. 702–707 (2012)
– reference: ShengZYangSYuYVasilakosAMccannJLeungKA survey on the ietf protocol suite for the internet of things: standards, challenges, and opportunitiesIEEE Wirel. Commun.201320919810.1109/MWC.2013.6704479
– reference: SezerSScott-HaywardSChouhanPKFraserBLakeDFinneganJAre we ready for SDN? Implementation challenges for software-defined networksIEEE Commun. Mag.201351364310.1109/MCOM.2013.6553676
– reference: AhmadAPaulAKhanMJabbarSRathoreMMUChilamkurtiNEnergy efficient hierarchical resource management for mobile cloud computingIEEE Trans. Sustain. Comput.2017210011210.1109/TSUSC.2017.2714344
– reference: Hui, J., Vasseur, J.: RPL: IPv6 routing protocol for low-power and lossy networks. Internet Requests for Comment, RFC Editor, Fremont, CA, USA, Tech. Rep, vol. 6550 (2012)
– reference: Fortz, B., Thorup, M.: Robust optimization of OSPF/IS-IS weights. In: Proc. INOC. vol. 20, pp. 225–230, 756–767 (2003)
– reference: DeepalakshmiPRadhakrishnanSAn ant colony-based multi objective quality of service routing for mobile ad hoc networksEURASIP J. Wirel. Commun. Netw.2011201115310.1186/1687-1499-2011-153
– reference: GubbiJBuyyaRMarusicSPalaniswamiMInternet of things (IoT): a vision, architectural elements, and future directionsFuture Gener. Comput. Syst.2013291645166010.1016/j.future.2013.01.010
– reference: ShenGZetikRHirschOThomäRSRange-based localization for UWB sensor networks in realistic environmentsEURASIP J. Wirel. Commun. Netw.2009201047659810.1155/2010/476598
– reference: AlishahiMMoghaddamMHYPourrezaHRMulti-class routing protocol using virtualization and SDN-enabled architecture for smart gridPeer-to-Peer Netw. Appl.201611117
– reference: ZanellaABuiNCastellaniAVangelistaLZorziMInternet of things for smart citiesIEEE Internet Things J.20141223210.1109/JIOT.2014.2306328
– reference: JabbarSMinhasAAImranMKhalidSSaleemKEnergy efficient strategy for throughput improvement in wireless sensor networksSensors2015152473249510.3390/s150202473
– reference: Ha, M., Kwon, K., Kim, D., Kong, P-Y.: Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN. In: Internet of Things (iThings), 2014 IEEE International Conference on, and Green Computing and Communications (GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom), IEEE, pp. 87–94 (2014)
– reference: Bormann, C., Ersue, M., Keranen, A.: Terminology for constrained-node networks. pp. 1721–2070 (2014)
– reference: Pradeska, N., Najib, W., Kusumawardani, S.S.: Performance analysis of objective function MRHOF and OF0 in routing protocol RPL IPV6 over low power wireless personal area networks (6LoWPAN). In: 8th International Conference on Information Technology and Electrical Engineering (ICITEE). pp. 1–6 (2016)
– reference: LodhiMARehmanAKhanMMHussainFBTransient Multipath routing protocol for low power and lossy networksKSII Trans. Internet Inf. Syst. (TIIS)20171120022019
– reference: de Oliveira, B.T., Alves, R.C.A., Margi, C.B.: Software-defined wireless sensor networks and internet of things standardization synergism. In: 2015 IEEE Conference on Standards for Communications and Networking (CSCN), pp. 60–65 (2015)
– reference: PalattellaMRAccetturaNVilajosanaXWatteyneTGriecoLABoggiaGStandardized protocol stack for the internet of (important) thingsIEEE Commun. Surv. Tutor.2013151389140610.1109/SURV.2012.111412.00158
– reference: ChenYChanetJ-PHouK-MShiHDe SousaGA scalable context-aware objective function (SCAOF) of routing protocol for agricultural low-power and lossy networks (RPAL)Sensors201515195071954010.3390/s150819507
– reference: ChenYChanetJ-PHouKMShiHLExtending the RPL routing protocol to agricultural low power and lossy networks (A-LLNs)In. J. Agric. Environ. Inf. Syst. (IJAEIS)20134254710.4018/ijaeis.2013100102
– reference: Bressan, N., Bazzaco, L., Bui, N., Casari, P., Vangelista, L., Zorzi, M.: The deployment of a smart monitoring system using wireless sensor and actuator networks. In: First IEEE International Conference on Smart Grid Communications (SmartGridComm). pp. 49–54 (2010)
– reference: GriloAMHeidrichMRouting metrics for cache-based reliable transport in wireless sensor networksEURASIP J. Wirel. Commun. Netw.2013201313910.1186/1687-1499-2013-139
– reference: Palattella, M., Grieco, L., Watteyne, T.: Using IEEE 802.15. 4e time-slotted channel hopping (TSCH) in the internet of things (IoT): problem statement (2015)
– reference: FortzBThorupMOptimizing OSPF/IS-IS weights in a changing worldIEEE J. Sel. Areas Commun.20022075676710.1109/JSAC.2002.1003042
– reference: OliveiraLMDe SousaAFRodriguesJJRouting and mobility approaches in IPv6 over LoWPAN mesh networksInt. J. Commun Syst2011241445146610.1002/dac.1228
– reference: Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals. pp. 1721–2070 (2007)
– reference: GungorVCSahinDKocakTErgutSBuccellaCCecatiCSmart grid and smart homes: key players and pilot projectsIEEE Ind. Electron. Mag.20126183410.1109/MIE.2012.2207489
– reference: ZhaoZHuangfuWSunLShiZGanWAn open conformance test system towards the standardization of wireless sensor networksInt. J. Distrib. Sens. Netw.20128115
– reference: JabbarSMinhasAARashidTRhoSHeuristic approach for stagnation free energy aware routing in wireless sensor networksAdhoc Sens. Wirel. Netw.2016312145
– reference: Deru, L., Dawans, S., Ocaña, M., Quoitin, B., Bonaventure, O.: Redundant border routers for mission- critical 6lowpan networks. In: Real-World Wireless Sensor Networks, pp. 195–203. Springer, Berlin (2014)
– reference: Al-FuqahaAGuizaniMMohammadiMAledhariMAyyashMInternet of things: a survey on enabling technologies, protocols, and applicationsIEEE Commun. Surv. Tutor.2015172347237610.1109/COMST.2015.2444095
– reference: KoJTerzisADawson-HaggertySCullerDEHuiJWLevisPConnecting low-power and lossy networks to the internetIEEE Commun. Mag20114996101
– reference: VermesanOFriessPGuilleminPGusmeroliSSundmaekerHBassiAInternet of things strategic research roadmapInternet Things-Glob. Technol. Soc. Trends20111952
– ident: 620_CR4
– ident: 620_CR47
  doi: 10.1007/978-3-319-03071-5_20
– ident: 620_CR1
  doi: 10.1109/SOCA.2014.58
– volume: 51
  start-page: 36
  year: 2013
  ident: 620_CR21
  publication-title: IEEE Commun. Mag.
  doi: 10.1109/MCOM.2013.6553676
– ident: 620_CR16
  doi: 10.1109/IMIS.2012.93
– volume: 8
  start-page: 1
  year: 2012
  ident: 620_CR33
  publication-title: Int. J. Distrib. Sens. Netw.
– ident: 620_CR28
  doi: 10.1109/JSAC.2002.1003042
– ident: 620_CR8
  doi: 10.1109/CEEC.2016.7835913
– ident: 620_CR34
  doi: 10.1109/SMARTGRID.2010.5622015
– volume: 2016
  start-page: 11
  year: 2016
  ident: 620_CR45
  publication-title: J. Sens.
– ident: 620_CR10
  doi: 10.17487/rfc7228
– ident: 620_CR7
– volume: 29
  start-page: 45
  year: 2015
  ident: 620_CR42
  publication-title: Ad Hoc Netw.
  doi: 10.1016/j.adhoc.2015.01.020
– ident: 620_CR38
  doi: 10.1109/ICITEED.2016.7863270
– ident: 620_CR39
  doi: 10.1109/IPSN.2016.7460720
– volume: 4
  start-page: 25
  year: 2013
  ident: 620_CR23
  publication-title: In. J. Agric. Environ. Inf. Syst. (IJAEIS)
  doi: 10.4018/ijaeis.2013100102
– volume: 1
  start-page: 22
  year: 2014
  ident: 620_CR15
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2014.2306328
– volume: 11
  start-page: 2002
  year: 2017
  ident: 620_CR46
  publication-title: KSII Trans. Internet Inf. Syst. (TIIS)
– ident: 620_CR40
– volume: 2014
  start-page: 91
  year: 2014
  ident: 620_CR6
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/1687-1499-2014-91
– volume: 15
  start-page: 2473
  year: 2015
  ident: 620_CR32
  publication-title: Sensors
  doi: 10.3390/s150202473
– volume: 17
  start-page: 2347
  year: 2015
  ident: 620_CR9
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2015.2444095
– volume: 103
  start-page: 14
  year: 2015
  ident: 620_CR20
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2371999
– volume: 6
  start-page: 18
  year: 2012
  ident: 620_CR5
  publication-title: IEEE Ind. Electron. Mag.
  doi: 10.1109/MIE.2012.2207489
– volume: 20
  start-page: 91
  year: 2013
  ident: 620_CR13
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2013.6704479
– ident: 620_CR36
– ident: 620_CR12
  doi: 10.17487/RFC7547
– volume: 31
  start-page: 21
  year: 2016
  ident: 620_CR48
  publication-title: Adhoc Sens. Wirel. Netw.
– volume: 2
  start-page: 100
  year: 2017
  ident: 620_CR31
  publication-title: IEEE Trans. Sustain. Comput.
  doi: 10.1109/TSUSC.2017.2714344
– ident: 620_CR11
  doi: 10.17487/RFC7554
– ident: 620_CR41
– volume: 19
  start-page: 2502
  year: 2017
  ident: 620_CR44
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/COMST.2017.2751617
– volume: 2010
  start-page: 205407
  year: 2010
  ident: 620_CR22
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1155/2010/205407
– volume: 1
  start-page: 9
  year: 2011
  ident: 620_CR3
  publication-title: Internet Things-Glob. Technol. Soc. Trends
– volume: 72
  start-page: 58
  year: 2016
  ident: 620_CR30
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-015-1488-7
– ident: 620_CR14
  doi: 10.17487/rfc4919
– volume: 29
  start-page: 1645
  year: 2013
  ident: 620_CR2
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2013.01.010
– volume: 49
  start-page: 96
  year: 2011
  ident: 620_CR25
  publication-title: IEEE Commun. Mag
– volume: 15
  start-page: 19507
  year: 2015
  ident: 620_CR24
  publication-title: Sensors
  doi: 10.3390/s150819507
– ident: 620_CR17
  doi: 10.1145/1278972.1278992
– volume: 2011
  start-page: 153
  year: 2011
  ident: 620_CR35
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/1687-1499-2011-153
– volume: 2010
  start-page: 476598
  year: 2009
  ident: 620_CR37
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1155/2010/476598
– volume: 15
  start-page: 1389
  year: 2013
  ident: 620_CR26
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2012.111412.00158
– volume: 20
  start-page: 756
  year: 2002
  ident: 620_CR27
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2002.1003042
– volume: 2013
  start-page: 139
  year: 2013
  ident: 620_CR29
  publication-title: EURASIP J. Wirel. Commun. Netw.
  doi: 10.1186/1687-1499-2013-139
– volume: 11
  start-page: 1
  year: 2016
  ident: 620_CR49
  publication-title: Peer-to-Peer Netw. Appl.
– ident: 620_CR43
  doi: 10.1109/iThings.2014.22
– volume: 24
  start-page: 1445
  year: 2011
  ident: 620_CR18
  publication-title: Int. J. Commun Syst
  doi: 10.1002/dac.1228
– ident: 620_CR19
  doi: 10.1109/CISS.2010.5464820
SSID ssj0009788
Score 2.269839
Snippet Software Defined Network (SDN) brought revolution in the network field with the partnership of Academia and Industry. SDN bridges the gap to overcome issues of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 367
SubjectTerms Computer Science
Computer simulation
Edge computing
Energy management
Energy storage
Finite element method
Internet of Things
Network topologies
Nodes
Performance enhancement
Performance evaluation
Power management
Processor Architectures
Remote sensors
Routers
Software Engineering/Programming and Operating Systems
Software-defined networking
Special Issue on Emerging Technology for Software Defined Network Enabled Internet of Things
Theory of Computation
Wireless sensor networks
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6Xbz4LU6n5OBJCbZLk7QncboxRMdQB7uVNklRkG7aifjf-16bWhT01ELad3gveZ9570fIiVUizUwvZYHQHgu08ViSKc2iSAmlEHs7w27ku7EcTYObmZi5hFvhrlXWOrFU1GauMUd-DqYJYhEwOPxi8coQNQqrqw5CY5W0QQWHYYu0-4Px5L4Zu6tK5Ek4SoKpQIR1XbNqnlMSo-mQeRJiqPCnZWrczV8V0tLwDDfJuvMY6WUl4i2yYvNtslGjMVB3OHdIPq5udNNJ0wtAB_kTPjEFSOcZLdttWQHxJ6xg05Sht_MPOkGoNHgrik_qqBT0OacP12PaBzNnaJU4tCWRCupzl0yHg8erEXNoCkxzXy5Zhk05WviJ71vrWetzyY3FaS1B6hkBcZkWWc_wKIGIWXMbyQRH70guAx2BNPkeaeXz3O4TCk5hKnAWfWI5yFhEmQJNYcEZMyGXvt8hXs3JWLtR44h48RI3Q5KR-TEwP0bmx2GHnH7_sqjmbPz3cbcWT-yOXBE3G6RDzmqRNct_Ejv4n9ghWethiF1e1umS1vLt3R6BH7JMj91m-wKSZtdG
  priority: 102
  providerName: ProQuest
Title Network Performance Enhancement of Multi-sink Enabled Low Power Lossy Networks in SDN Based Internet of Things
URI https://link.springer.com/article/10.1007/s10766-018-0620-8
https://www.proquest.com/docview/2158402243
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_c9uKL3-J0jjz4pATapUnax027DT_GUAfzqbRpioJ0Yifif--lH1ZFBZ9SSHrQuyb5XXL3O4AjLXmUxL2IOlxZ1FGxRcNEKup5kktpam8nJhv5aiLGM-d8zudlHndWRbtXV5L5Sv0p2U0K4_261BLo87gNaHF03U0c16zXr5l2ZV5sEmcPp9LhbnWV-ZOIr5tRjTC_XYrme81wA9ZKkEj6hVU3YUWnW7BeFWAg5XzchnRSBHGTaR3-T_z03rTm1I8sEpJn2NIMPxh7TJ5UTC4Xr2RqqqPhU5a9kVJKRh5ScnM2IQPc2WJSnBXqXEhR3XMHZkP_9nRMywIKVDFbLGli8nAUt0Pb1trS2maCxdoQtDiRFXN0xRRPejHzQnSSFdOeCA3bjmDCUR4akO1CM12keg8I4sCIG_r5UDM0K_cSiYuDRvwVu0zYdhusSpOBKtnFTZGLx6DmRTbKD1D5gVF-4Lbh-OOVp4Ja46_Bnco8QTnLsgDhCvqnCEJYG04qk9Xdvwrb_9foA1jtGSc7D9fpQHP5_KIPEYksoy403OGoC63-6O7Cx3bgT6bX3fx_fAeX29aT
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7xOMAFaKHq8mh9aC9FFkkc28kBIV7LUpYVEiBxSxPbUZFQFsgixJ_iNzKTR6MiwY1TIiUZKePxzHy2Zz6AH07LLLdBxkNpPB4a6_E014bHsZZaE_d2TtXIpyM1uAx_X8mrKXhua2HoWGXrEytHbceG1si3MDQhFsGAI3Zu7zixRtHuakuhUZvFiXt6RMhWbh8f4Pj-DIL-4cX-gDesAtwIX014TsUpRvqp7zvnOecLJayjriVh5lmJ-MTIPLAiThE5GuFilVILGiVUaGL8K4Fyp2E2FBjJqTK9f9Q1-dUVzyVOXMl1KKN2F7Uu1dOKsHvEPYWILfo_DnbJ7av92CrM9ZdgoclP2W5tUJ9gyhWfYbHlfmCNK1iGYlSfH2dnXeUBOyz-0pUWHNk4Z1VxLy8R7eITKtGybDh-ZGdEzIZ3ZfnEGikluy7Y-cGI7WFQtaxepnSVkJpYdAUuP0TLX2CmGBfuKzBMQTNJne9TJ9CiZJxr9EsOUz8bCeX7PfBaTSamaWxO_Bo3SdeSmZSfoPITUn4S9eDXv09u664e77283g5P0kzwMunMsQeb7ZB1j98Utvq-sO8wN7g4HSbD49HJGswHBO6rY0LrMDO5f3AbmAFNsm-V2TH489F2_gKJtBE7
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRap6gT6oWF71ob20skji2E4OCEF3V1BotGpB4pYmtqNWQtmFLEL8NX4dM3k0olK5cUqkJCNlPPbMZ8_MB_DRaZkXNsh5KI3HQ2M9nhXa8DjWUmvi3i6oGvl7oo7Ow28X8mIJ7rtaGEqr7NbEeqG2M0N75LvomhCLoMMRu0WbFjEdTfbnV5wYpOiktaPTaEzkxN3dInyr9o5HONafgmAyPvt6xFuGAW6Erxa8oEIVI_3M953znPOFEtZRB5Mw96xErGJkEVgRZ4gijXCxyqgdjRIqNDH-oUC5L2BZEyoawPLhOJn-6Fv-6pr1Eqex5DqUUXem2hTuaUVIPuKeQvwWPfaKfaj7z-ls7fQmr2GljVbZQWNeb2DJlW9htWOCYO3C8A7KpMkmZ9O-DoGNy990pe1HNitYXerLK8S--IQKtiw7nd2yKdG04V1V3bFWSsX-lOznKGGH6GItazYtXS2koRldg_Nn0fN7GJSz0q0Dw4A0l9QHP3MC7UvGhcZVymEgaCOhfH8IXqfJ1LRtzolt4zLtGzST8lNUfkrKT6MhfP77ybzp8fHUy1vd8KTtdK_S3jiH8KUbsv7xf4VtPC3sA7xEG09Pj5OTTXgVENKvc4a2YLC4vnHbGA4t8p3W7hj8em5TfwAjYhbN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Network+Performance+Enhancement+of+Multi-sink+Enabled+Low+Power+Lossy+Networks+in+SDN+Based+Internet+of+Things&rft.jtitle=International+journal+of+parallel+programming&rft.au=Shabbir%2C+Ghulam&rft.au=Akram%2C+Adeel&rft.au=Iqbal%2C+Muhammad+Munwar&rft.au=Jabbar%2C+Sohail&rft.date=2020-04-01&rft.pub=Springer+US&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=48&rft.issue=2&rft.spage=367&rft.epage=398&rft_id=info:doi/10.1007%2Fs10766-018-0620-8&rft.externalDocID=10_1007_s10766_018_0620_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon