Behavior for Large Time of a Two-Component Chain of Harmonic Oscillators
We consider a model consisting of two semi-infinite chains of harmonic oscillators with a special particle subject to a harmonic external potential.We study the Cauchy problem for this model. The main goal is to derive the dispersive bounds for the solutions in the energy weighted norms.
Saved in:
Published in | Russian journal of mathematical physics Vol. 25; no. 4; pp. 470 - 491 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.10.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We consider a model consisting of two semi-infinite chains of harmonic oscillators with a special particle subject to a harmonic external potential.We study the Cauchy problem for this model. The main goal is to derive the dispersive bounds for the solutions in the energy weighted norms. |
---|---|
AbstractList | We consider a model consisting of two semi-infinite chains of harmonic oscillators with a special particle subject to a harmonic external potential.We study the Cauchy problem for this model. The main goal is to derive the dispersive bounds for the solutions in the energy weighted norms. |
Author | Dudnikova, T.V. |
Author_xml | – sequence: 1 givenname: T.V. surname: Dudnikova fullname: Dudnikova, T.V. email: tdudnikov@mail.ru organization: M.V. Keldysh Institute of Applied Mathematics RAS |
BookMark | eNp9kNFLwzAQxoNMcJv-Ab4VfK7mmqRNH7WoFQZ7cD6XNEu2jDaZSaf435syQVD04biD7_vdd9wMTayzCqFLwNcAhN48A86hzDAHjinGLDtBU2CMpXlO-CTOUU5H_QzNQthhnONonKL6Tm3Fm3E-0bEWwm9UsjK9SpxORLJ6d2nl-n3MskNSbYWxo1AL3ztrZLIM0nSdGJwP5-hUiy6oi68-Ry8P96uqThfLx6fqdpFKAvmQasCEli3lJWOgMeGE0TWTWOoWCqpJxrTgBc_bdQEyI2VbEqoLzklONOZCkjm6Ou7de_d6UGFodu7gbYxsMmCUjPtpdMHRJb0LwSvd7L3phf9oADfjw5pfD4tM8YORZhCDcXbwwnT_ktmRDDHFbpT_vulv6BPdJ3zJ |
CitedBy_id | crossref_primary_10_20948_prepr_2018_254 crossref_primary_10_4213_tm4054 crossref_primary_10_1134_S1995080221060068 crossref_primary_10_1134_S0081543820010137 |
Cites_doi | 10.1215/S0012-7094-79-04631-3 10.1080/00036810601074321 10.1080/00036810108841007 10.1134/S1061920808040031 10.1063/1.3005597 10.1016/j.jmaa.2009.01.028 10.1063/1.4979629 10.1080/03605300500361529 10.1007/s10958-016-3084-7 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Ltd. 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Pleiades Publishing, Ltd. 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1134/S1061920818040052 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1555-6638 |
EndPage | 491 |
ExternalDocumentID | 10_1134_S1061920818040052 |
GroupedDBID | -5F -5G -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 408 40D 40E 5VS 6NX 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J P2P P9T PF0 PT4 QOS R89 R9I RIG RNS ROL RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TUC UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XU3 YLTOR ZMTXR ~A9 AAPKM AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-f10349b489551f038354d5c0cfb174f325fa8786bd71c239b934f788363f08ac3 |
IEDL.DBID | AGYKE |
ISSN | 1061-9208 |
IngestDate | Sun Jul 13 05:29:11 EDT 2025 Tue Jul 01 01:57:34 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 Fri Feb 21 02:36:22 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-f10349b489551f038354d5c0cfb174f325fa8786bd71c239b934f788363f08ac3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2154310344 |
PQPubID | 2043707 |
PageCount | 22 |
ParticipantIDs | proquest_journals_2154310344 crossref_primary_10_1134_S1061920818040052 crossref_citationtrail_10_1134_S1061920818040052 springer_journals_10_1134_S1061920818040052 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: New York |
PublicationTitle | Russian journal of mathematical physics |
PublicationTitleAbbrev | Russ. J. Math. Phys |
PublicationYear | 2018 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | Dudnikova (CR2) 2008; 15 Vainberg (CR11) 1974; 30 Dudnikova (CR5) 2018; 301 Dudnikova (CR4) 2017; 58 Shaban, Vainberg (CR10) 2001; 80 Islami, Vainberg (CR6) 2006; 31 Dudnikova (CR3) 2016; 219 Cuccagna (CR1) 2009; 354 Pelinosky, Stefanov (CR9) 2008; 49 Jensen, Kato (CR7) 1979; 46 Komech, Kopylova, Kunze (CR8) 2006; 85 T.V. Dudnikova (4471_CR4) 2017; 58 T.V. Dudnikova (4471_CR2) 2008; 15 W. Shaban (4471_CR10) 2001; 80 T.V. Dudnikova (4471_CR3) 2016; 219 A.I. Komech (4471_CR8) 2006; 85 H. Islami (4471_CR6) 2006; 31 T.V. Dudnikova (4471_CR5) 2018; 301 A. Jensen (4471_CR7) 1979; 46 S. Cuccagna (4471_CR1) 2009; 354 D.E. Pelinosky (4471_CR9) 2008; 49 B.R. Vainberg (4471_CR11) 1974; 30 |
References_xml | – volume: 301 start-page: 82 year: 2018 end-page: 97 ident: CR5 article-title: Large-Time Behavior of the Infinite System of Harmonic Oscillators on the Half-Line publication-title: Complex Analysis, Mathematical Physics, and Applications, Collected papers, Proc. Steklov Inst. Math. – volume: 46 start-page: 583 year: 1979 end-page: 611 ident: CR7 article-title: Spectral Properties of Schrodinger Operators and Time-Decay of the Wave Functions publication-title: Duke Math. J. doi: 10.1215/S0012-7094-79-04631-3 – volume: 85 start-page: 1487 issue: 12 year: 2006 end-page: 1508 ident: CR8 article-title: Dispersive Estimates for 1D Discrete Schrodinger and Klein–Gordon Equations publication-title: Appl. Anal. doi: 10.1080/00036810601074321 – volume: 80 start-page: 525 year: 2001 end-page: 556 ident: CR10 article-title: Radiation Conditions for the Difference Schrödinger Operators publication-title: Appl. Anal. doi: 10.1080/00036810108841007 – volume: 15 start-page: 460 issue: 4 year: 2008 end-page: 472 ident: CR2 article-title: On the Asymptotical Normality of Statistical Solutions for Harmonic Crystals in Half-Space publication-title: Russ. J. Math. Phys. doi: 10.1134/S1061920808040031 – volume: 30 start-page: 139 year: 1974 end-page: 158 ident: CR11 article-title: Behavior for Large Time of Solutions of the Klein–Gordon Equation publication-title: Trans. Moscow Math. Soc. – volume: 49 start-page: 113501 issue: 11 year: 2008 ident: CR9 article-title: On the Spectral Theory and Dispersive Estimates for a Discrete Schrödinger Equation in One Dimension publication-title: J. Math. Phys. doi: 10.1063/1.3005597 – volume: 354 start-page: 594 year: 2009 end-page: 605 ident: CR1 article-title: Continuity of Wave Operators in ℤ publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2009.01.028 – volume: 58 start-page: 043301 issue: 4 year: 2017 ident: CR4 article-title: On Convergence to Equilibrium for One-Dimensional Chain of Harmonic Oscillators on the Half-Line publication-title: J. Math. Phys. doi: 10.1063/1.4979629 – volume: 31 start-page: 397 issue: 3 year: 2006 end-page: 416 ident: CR6 article-title: Large Time Behavoir of the Solutions to Difference Wave Operators publication-title: Comm. Partial Differential Equations doi: 10.1080/03605300500361529 – volume: 219 start-page: 69 issue: 1 year: 2016 end-page: 85 ident: CR3 article-title: Long-Time Asymptotics of Solutions to a Hamiltonian System on a Lattice publication-title: Journal of Mathematical Sciences doi: 10.1007/s10958-016-3084-7 – volume: 354 start-page: 594 year: 2009 ident: 4471_CR1 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2009.01.028 – volume: 46 start-page: 583 year: 1979 ident: 4471_CR7 publication-title: Duke Math. J. doi: 10.1215/S0012-7094-79-04631-3 – volume: 85 start-page: 1487 issue: 12 year: 2006 ident: 4471_CR8 publication-title: Appl. Anal. doi: 10.1080/00036810601074321 – volume: 30 start-page: 139 year: 1974 ident: 4471_CR11 publication-title: Trans. Moscow Math. Soc. – volume: 15 start-page: 460 issue: 4 year: 2008 ident: 4471_CR2 publication-title: Russ. J. Math. Phys. doi: 10.1134/S1061920808040031 – volume: 219 start-page: 69 issue: 1 year: 2016 ident: 4471_CR3 publication-title: Journal of Mathematical Sciences doi: 10.1007/s10958-016-3084-7 – volume: 31 start-page: 397 issue: 3 year: 2006 ident: 4471_CR6 publication-title: Comm. Partial Differential Equations doi: 10.1080/03605300500361529 – volume: 58 start-page: 043301 issue: 4 year: 2017 ident: 4471_CR4 publication-title: J. Math. Phys. doi: 10.1063/1.4979629 – volume: 49 start-page: 113501 issue: 11 year: 2008 ident: 4471_CR9 publication-title: J. Math. Phys. doi: 10.1063/1.3005597 – volume: 301 start-page: 82 year: 2018 ident: 4471_CR5 publication-title: Complex Analysis, Mathematical Physics, and Applications, Collected papers, Proc. Steklov Inst. Math. – volume: 80 start-page: 525 year: 2001 ident: 4471_CR10 publication-title: Appl. Anal. doi: 10.1080/00036810108841007 |
SSID | ssj0060804 |
Score | 2.1454127 |
Snippet | We consider a model consisting of two semi-infinite chains of harmonic oscillators with a special particle subject to a harmonic external potential.We study... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 470 |
SubjectTerms | Cauchy problems Chains Harmonic oscillators Mathematical and Computational Physics Norms Physics Physics and Astronomy Theoretical |
Title | Behavior for Large Time of a Two-Component Chain of Harmonic Oscillators |
URI | https://link.springer.com/article/10.1134/S1061920818040052 https://www.proquest.com/docview/2154310344 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kRfBifWJ9kYMnJXW3yW6zxyLW4vNgC_W0JGmCorbSB4K_3slu1mJ9QM_JZh8zmflmZ_INwFGSGGOVUVRaqSi3NqQyDBNqOPrahkWhZ-fWbm7jdpdf9qKeP8c9Lqrdi5RkZqnzviP89N4FL0ndUbA5xYvQ7pYRfgS8BOXmxcPVeWGAYwRBWTIZ51N3gU9m_rrId3c0w5hzadHM27Qq0CmeMy8yea5NJ6qmP-YoHBd8kTVY9eiTNHN1WYclM9iAikeixO_z8QYsZ4WherwJbU-gOCKIbsm1qxsn7tgIGVoiSed9SJ1FGQ7Qd5GzR_k0cANtOXp1lLvkDh0s6pnr6LMF3dZ556xNffcFqlkYT6gNHXWN4iJBUGUD5v4Q9SMdaKswirGsHlkpGiJW_Uao6yxRCeMWA2oWMxsIqdk2lAZ4-x0giYmktoYJE2gemVgicJBCGCWENojxqhAUQki1pyZ3HTJe0ixEYTz98c2qcPx1yVvOy_Hf5P1CsqnfouMUsQ53TdY4r8JJIajZ8J-L7S40ew9WEGLlDLrhPpQmo6k5QBgzUYdebT8B5Rnigw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLYQCMGFN2IwIAdOoEC7pF16nKZBYRscGBKcqiQkAgEb2kNI_HqcNgXxlDgnTR927M-18xlgL0mMscooKq1UlFsbUhmGCTUcfW3dotDzc2vd8zi94mfX0bU_xz0qq93LlGRuqYu-I_zo0gUvSc1RsDnFi9DuznAMwVGtZxonN-1WaYBjBEF5MhnnU3eBT2b-uMhnd_SBMb-kRXNvc7wIvfI5iyKTh8PJWB3q1y8Ujv98kSVY8OiTNAp1WYYp01-BRY9Eid_noxWYzQtD9WgVUk-gOCSIbknH1Y0Td2yEDCyRpPcyoM6iDProu0jzTt733UAqh0-OcpdcoINFPXMdfdbg6rjVa6bUd1-gmoXxmNrQUdcoLhIEVTZg7g_RbaQDbRVGMZbVIitFXcTqth7qGktUwrjFgJrFzAZCarYO0328_QaQxERSW8OECTSPTCwROEghjBJCG8R4FQhKIWTaU5O7DhmPWR6iMJ59-2YV2H-_5Lng5fhrcrWUbOa36ChDrMNdkzXOK3BQCupj-NfFNv81exfm0l63k3VOz9tbMI9wq2DTDaswPR5OzDZCmrHa8Sr8BrGU5XI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kRfHiW1yfOXhSou0m7aZHUdf1Laigp5pkExS1K7sVwV_vpE0VnyCe82o7k8w3nck3ACtJYoxVRlFppaLc2pDKMEyo4WhrmxaFXtxbOzqO2xd8_zK69HVO-1W2exWSLO80OJamLN947Fhfg4RvnDlHJmk4OjanhBGewYPcUdvVYHBz9-pgpzqMYwRERWAZ-1M3wAc2v53ko2l6x5ufQqSF5WmNwXX1zGXCyd36U67W9csnOsd_vNQ4jHpUSjZLNZqAAZNNwphHqMTv__4kDBUJo7o_BW1PrNgjiHrJocsnJ-46CelaIsn5c5e6k6ab4fJk60beZq6hLXsPjoqXnKDhRf1zlX6m4aK1c77Vpr4qA9UsjHNqQ0dpo7hIEGzZgLk_R51IB9oq9G4sa0RWiqaIVacZ6gZLVMK4RUebxcwGQmo2A7UMl58FkphIamuYMIHmkYklAgophFFCaIPYrw5BJZBUe8pyVznjPi1cF8bTL9-sDqtvQx5Lvo7fOi9UUk791u2niIG4K77GeR3WKqG9N_842dyfei_D8Ol2Kz3cOz6YhxFEYSXJbrgAtbz3ZBYR6eRqyWvzKyqc7lY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Behavior+for+Large+Time+of+a+Two-Component+Chain+of+Harmonic+Oscillators&rft.jtitle=Russian+journal+of+mathematical+physics&rft.au=Dudnikova%2C+T.V.&rft.date=2018-10-01&rft.pub=Pleiades+Publishing&rft.issn=1061-9208&rft.eissn=1555-6638&rft.volume=25&rft.issue=4&rft.spage=470&rft.epage=491&rft_id=info:doi/10.1134%2FS1061920818040052&rft.externalDocID=10_1134_S1061920818040052 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-9208&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-9208&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-9208&client=summon |