Electronic correlations in twisted bilayer graphene near the magic angle
Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly correlated electrons. Here, we use scanning tunnelling microscopy to probe the local properties of highly tunable twisted bilayer graphene devi...
Saved in:
Published in | Nature physics Vol. 15; no. 11; pp. 1174 - 1180 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.11.2019
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly correlated electrons. Here, we use scanning tunnelling microscopy to probe the local properties of highly tunable twisted bilayer graphene devices and show that the flat bands deform when aligned with the Fermi level. When the bands are half-filled, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring an enhanced splitting of the flat bands. We describe this within a microscopic model that predicts a strong tendency towards nematic ordering. Our results provide insights into symmetry-breaking correlation effects and highlight the importance of electronic interactions for all filling fractions in twisted bilayer graphene.
Scanning tunnelling microscopy shows that electrons in twisted bilayer graphene are strongly correlated for a wide range of density. In particular, a correlated regime appears near charge neutrality and theory suggests nematic ordering. |
---|---|
AbstractList | Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly correlated electrons. Here, we use scanning tunnelling microscopy to probe the local properties of highly tunable twisted bilayer graphene devices and show that the flat bands deform when aligned with the Fermi level. When the bands are half-filled, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring an enhanced splitting of the flat bands. We describe this within a microscopic model that predicts a strong tendency towards nematic ordering. Our results provide insights into symmetry-breaking correlation effects and highlight the importance of electronic interactions for all filling fractions in twisted bilayer graphene.
Scanning tunnelling microscopy shows that electrons in twisted bilayer graphene are strongly correlated for a wide range of density. In particular, a correlated regime appears near charge neutrality and theory suggests nematic ordering. Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly correlated electrons. Here, we use scanning tunnelling microscopy to probe the local properties of highly tunable twisted bilayer graphene devices and show that the flat bands deform when aligned with the Fermi level. When the bands are half-filled, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring an enhanced splitting of the flat bands. We describe this within a microscopic model that predicts a strong tendency towards nematic ordering. Our results provide insights into symmetry-breaking correlation effects and highlight the importance of electronic interactions for all filling fractions in twisted bilayer graphene. |
Author | Choi, Youngjoon Ren, Hechen Taniguchi, Takashi Nadj-Perge, Stevan Kemmer, Jeannette Arora, Harpreet Alicea, Jason Refael, Gil Thomson, Alex Polski, Robert Zhang, Yiran Watanabe, Kenji Peng, Yang von Oppen, Felix |
Author_xml | – sequence: 1 givenname: Youngjoon surname: Choi fullname: Choi, Youngjoon organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology – sequence: 2 givenname: Jeannette surname: Kemmer fullname: Kemmer, Jeannette organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology – sequence: 3 givenname: Yang surname: Peng fullname: Peng, Yang organization: Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology, Walter Burke Institute for Theoretical Physics, California Institute of Technology – sequence: 4 givenname: Alex surname: Thomson fullname: Thomson, Alex organization: Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology, Walter Burke Institute for Theoretical Physics, California Institute of Technology – sequence: 5 givenname: Harpreet surname: Arora fullname: Arora, Harpreet organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology – sequence: 6 givenname: Robert surname: Polski fullname: Polski, Robert organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology – sequence: 7 givenname: Yiran orcidid: 0000-0002-8477-0074 surname: Zhang fullname: Zhang, Yiran organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology – sequence: 8 givenname: Hechen surname: Ren fullname: Ren, Hechen organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology – sequence: 9 givenname: Jason surname: Alicea fullname: Alicea, Jason organization: Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology, Walter Burke Institute for Theoretical Physics, California Institute of Technology – sequence: 10 givenname: Gil surname: Refael fullname: Refael, Gil organization: Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology, Walter Burke Institute for Theoretical Physics, California Institute of Technology – sequence: 11 givenname: Felix surname: von Oppen fullname: von Oppen, Felix organization: Institute for Quantum Information and Matter, California Institute of Technology, Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin – sequence: 12 givenname: Kenji orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, Kenji organization: National Institute for Materials Science – sequence: 13 givenname: Takashi surname: Taniguchi fullname: Taniguchi, Takashi organization: National Institute for Materials Science – sequence: 14 givenname: Stevan orcidid: 0000-0002-2394-9070 surname: Nadj-Perge fullname: Nadj-Perge, Stevan email: s.nadj-perge@caltech.edu organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology |
BookMark | eNp9kFFLwzAQx4NMcJt-AN8CPldzTdu0jzKmEwa-6HNI00uX0aUzyZB9ezsrCoI-3R38f3fHb0YmrndIyDWwW2C8vAsZ5IVIGFQJK1iR5GdkCiLLkzQrYfLdC35BZiFsGcvSAviUrJYd6uh7ZzXVvffYqWh7F6h1NL7bELGhte3UET1tvdpv0CF1qDyNG6Q71Q6ccm2Hl-TcqC7g1Vedk9eH5ctilayfH58W9-tEcyhiYlhlVMNNbVTNU1HlWilTay6QpbWpFQeRCq5KVvMcAQQXZZM3psyqzGA5zHNyM-7d-_7tgCHKbX_wbjgpUw5QZSyrYEjBmNK-D8GjkXtvd8ofJTB5EiZHYXIQJk_CZD4w4hejbfy0Eb2y3b9kOpJhuOJa9D8__Q19AARtgd8 |
CitedBy_id | crossref_primary_10_1103_PhysRevB_101_060505 crossref_primary_10_1021_acs_nanolett_9b03335 crossref_primary_10_1103_PhysRevLett_132_186401 crossref_primary_10_1088_2053_1583_acdd82 crossref_primary_10_1038_s41467_019_13670_9 crossref_primary_10_1007_s40042_022_00692_8 crossref_primary_10_1103_PhysRevLett_129_117602 crossref_primary_10_1063_5_0207883 crossref_primary_10_1103_PhysRevB_105_205119 crossref_primary_10_1016_j_physleta_2023_129048 crossref_primary_10_1103_PhysRevB_110_165158 crossref_primary_10_1039_D3TA02283H crossref_primary_10_1103_PhysRevResearch_5_023029 crossref_primary_10_1103_PhysRevLett_131_166501 crossref_primary_10_1103_PhysRevResearch_2_043151 crossref_primary_10_1038_s41535_021_00410_w crossref_primary_10_1103_PhysRevResearch_3_L032070 crossref_primary_10_7498_aps_71_20220347 crossref_primary_10_1103_PhysRevB_101_205116 crossref_primary_10_1103_PhysRevB_103_165112 crossref_primary_10_1103_PhysRevX_11_041063 crossref_primary_10_1103_PhysRevB_111_L121403 crossref_primary_10_1103_PhysRevB_109_205102 crossref_primary_10_1103_PhysRevResearch_2_023325 crossref_primary_10_1007_s11433_022_2000_y crossref_primary_10_1103_PhysRevLett_125_197401 crossref_primary_10_1038_s41563_021_00923_6 crossref_primary_10_1103_PhysRevB_105_035427 crossref_primary_10_1103_PhysRevB_105_125127 crossref_primary_10_1103_PhysRevB_106_235157 crossref_primary_10_1103_PhysRevB_110_085160 crossref_primary_10_1103_PhysRevB_109_094505 crossref_primary_10_1103_PhysRevB_102_155142 crossref_primary_10_1103_PhysRevB_107_075108 crossref_primary_10_1103_PhysRevB_102_155149 crossref_primary_10_1088_2053_1583_ac044f crossref_primary_10_1103_PhysRevB_107_245102 crossref_primary_10_1126_sciadv_aba8834 crossref_primary_10_1103_PhysRevB_108_085431 crossref_primary_10_1103_PhysRevResearch_4_013164 crossref_primary_10_1103_PhysRevB_104_035139 crossref_primary_10_1038_s41586_021_04121_x crossref_primary_10_1103_PhysRevB_102_235146 crossref_primary_10_1103_PhysRevLett_128_106401 crossref_primary_10_1021_acsphotonics_0c01442 crossref_primary_10_1103_PhysRevResearch_2_033458 crossref_primary_10_1007_JHEP05_2021_123 crossref_primary_10_1103_PhysRevLett_128_026403 crossref_primary_10_1103_PhysRevLett_124_166601 crossref_primary_10_1002_adma_202007503 crossref_primary_10_1021_acsnano_0c10435 crossref_primary_10_1103_PhysRevResearch_6_043132 crossref_primary_10_1103_PhysRevB_103_224436 crossref_primary_10_1063_5_0105405 crossref_primary_10_1103_PhysRevB_105_L241410 crossref_primary_10_1021_acs_nanolett_3c04866 crossref_primary_10_1103_PhysRevLett_123_157601 crossref_primary_10_1103_PhysRevB_102_125403 crossref_primary_10_1103_PhysRevB_105_104423 crossref_primary_10_1088_1674_1056_abc7b6 crossref_primary_10_1103_PhysRevB_108_235403 crossref_primary_10_1103_PhysRevB_102_201107 crossref_primary_10_1103_PhysRevB_108_195148 crossref_primary_10_1103_PhysRevB_107_075123 crossref_primary_10_1103_PhysRevB_109_115111 crossref_primary_10_1126_sciadv_abd1919 crossref_primary_10_1103_PhysRevResearch_2_043004 crossref_primary_10_1038_s41586_020_2473_8 crossref_primary_10_1103_PhysRevResearch_2_043127 crossref_primary_10_1002_advs_202103170 crossref_primary_10_1038_s41535_021_00379_6 crossref_primary_10_1103_PhysRevResearch_6_L042066 crossref_primary_10_1103_PhysRevLett_126_066401 crossref_primary_10_1021_acsnano_4c18460 crossref_primary_10_1088_2516_1075_ac49f5 crossref_primary_10_1021_acsnano_4c12905 crossref_primary_10_1002_ntls_20230015 crossref_primary_10_1103_PhysRevB_102_235123 crossref_primary_10_1088_2053_1583_ac9b70 crossref_primary_10_1103_PhysRevB_103_235401 crossref_primary_10_1038_s41567_025_02786_z crossref_primary_10_1088_2515_7639_ac4ae0 crossref_primary_10_1021_acs_jpcc_0c07416 crossref_primary_10_1088_1402_4896_acf0f5 crossref_primary_10_1103_PhysRevLett_127_187001 crossref_primary_10_1038_s41467_021_22711_1 crossref_primary_10_1103_PhysRevB_104_L201113 crossref_primary_10_1038_s41565_021_00956_7 crossref_primary_10_1038_s41567_020_0974_x crossref_primary_10_1134_S0021364022602317 crossref_primary_10_1038_s41567_020_1030_6 crossref_primary_10_1103_PhysRevB_108_035129 crossref_primary_10_1103_PhysRevB_104_115110 crossref_primary_10_1103_PhysRevMaterials_5_084008 crossref_primary_10_1021_acs_nanolett_9b04637 crossref_primary_10_1126_science_abn8585 crossref_primary_10_1038_s41563_024_01858_4 crossref_primary_10_1103_PhysRevB_103_155142 crossref_primary_10_1126_sciadv_abo6879 crossref_primary_10_1088_2053_1583_ac97f2 crossref_primary_10_1038_s41586_022_04513_7 crossref_primary_10_1126_science_abg3036 crossref_primary_10_1021_acs_chemmater_2c03753 crossref_primary_10_1103_PhysRevMaterials_9_014004 crossref_primary_10_1103_PhysRevLett_125_096402 crossref_primary_10_1103_PhysRevLett_133_196501 crossref_primary_10_1103_PhysRevB_105_035130 crossref_primary_10_1016_j_watres_2022_119076 crossref_primary_10_1063_10_0019421 crossref_primary_10_1088_1361_6633_ad67ed crossref_primary_10_1103_PhysRevB_103_245424 crossref_primary_10_1364_OL_522215 crossref_primary_10_1088_2399_6528_ac8855 crossref_primary_10_1038_s44310_024_00043_4 crossref_primary_10_1103_PhysRevB_111_035110 crossref_primary_10_1103_PhysRevB_102_235101 crossref_primary_10_1103_PhysRevB_108_L081408 crossref_primary_10_1364_OPTICA_510789 crossref_primary_10_1016_j_matt_2020_03_010 crossref_primary_10_1016_j_cossms_2021_100952 crossref_primary_10_1021_acs_jpclett_1c03861 crossref_primary_10_1016_j_physe_2025_116235 crossref_primary_10_1088_1361_648X_acb984 crossref_primary_10_1103_PhysRevB_109_125141 crossref_primary_10_1038_s41467_023_43496_5 crossref_primary_10_1103_PhysRevB_100_205114 crossref_primary_10_1038_s41467_021_21792_2 crossref_primary_10_1103_PhysRevB_107_075156 crossref_primary_10_1103_PhysRevResearch_3_L032012 crossref_primary_10_1038_s41467_021_25922_8 crossref_primary_10_1088_1367_2630_ac688c crossref_primary_10_1103_PhysRevB_100_205113 crossref_primary_10_1103_PhysRevMaterials_5_034001 crossref_primary_10_1103_PhysRevLett_128_065901 crossref_primary_10_1038_s41578_024_00682_1 crossref_primary_10_1016_j_progsurf_2020_100572 crossref_primary_10_1021_acsnano_3c03883 crossref_primary_10_1038_s41467_019_12981_1 crossref_primary_10_1103_PhysRevResearch_1_033126 crossref_primary_10_1126_sciadv_adf7220 crossref_primary_10_1103_PhysRevB_105_104501 crossref_primary_10_1103_PhysRevResearch_4_L012013 crossref_primary_10_1002_ppsc_202300125 crossref_primary_10_1103_PhysRevB_102_245122 crossref_primary_10_1126_sciadv_abc5555 crossref_primary_10_1088_2053_1583_ac1cf0 crossref_primary_10_1103_PhysRevB_104_165130 crossref_primary_10_7498_aps_69_20200506 crossref_primary_10_1103_PhysRevLett_134_096204 crossref_primary_10_1103_PhysRevB_107_165417 crossref_primary_10_1016_j_commatsci_2023_112266 crossref_primary_10_1038_s41467_021_23031_0 crossref_primary_10_1103_PhysRevB_102_035411 crossref_primary_10_1103_PhysRevB_108_195119 crossref_primary_10_1088_1674_1056_acf9e4 crossref_primary_10_1103_PhysRevLett_131_026502 crossref_primary_10_1103_PhysRevLett_131_026501 crossref_primary_10_1021_acs_nanolett_2c03126 crossref_primary_10_1103_PhysRevB_109_075166 crossref_primary_10_3390_nano13212881 crossref_primary_10_1103_PhysRevLett_130_216401 crossref_primary_10_1103_PhysRevB_109_125404 crossref_primary_10_1063_5_0015643 crossref_primary_10_1021_acs_nanolett_3c01173 crossref_primary_10_1103_PhysRevB_108_125106 crossref_primary_10_1103_PhysRevB_105_L100503 crossref_primary_10_1039_D4NR02933J crossref_primary_10_1039_D2NR02476D crossref_primary_10_1021_acs_nanolett_4c00078 crossref_primary_10_1103_PhysRevResearch_4_L012032 crossref_primary_10_3390_app10144690 crossref_primary_10_1088_1402_4896_acfa47 crossref_primary_10_1103_PhysRevB_109_045419 crossref_primary_10_1038_s41567_023_02176_3 crossref_primary_10_1002_adma_202205996 crossref_primary_10_1038_s42005_024_01729_z crossref_primary_10_1103_PhysRevResearch_4_013209 crossref_primary_10_1038_s41563_020_00840_0 crossref_primary_10_1134_S0021364021030085 crossref_primary_10_1093_nsr_nwad175 crossref_primary_10_1103_PhysRevX_14_031045 crossref_primary_10_1021_acsnano_3c08344 crossref_primary_10_1140_epjp_s13360_023_04815_3 crossref_primary_10_1103_PhysRevB_102_235423 crossref_primary_10_1103_PhysRevLett_125_257602 crossref_primary_10_1103_PhysRevB_105_155135 crossref_primary_10_1103_PhysRevLett_128_156401 crossref_primary_10_1021_acs_nanolett_4c04201 crossref_primary_10_1103_PhysRevX_10_031034 crossref_primary_10_1038_s41467_023_38250_w crossref_primary_10_1038_s41467_019_14207_w crossref_primary_10_1126_sciadv_adg3262 crossref_primary_10_1103_PhysRevX_13_011026 crossref_primary_10_1103_PhysRevB_102_125120 crossref_primary_10_1103_PhysRevB_107_035126 crossref_primary_10_1103_PhysRevB_110_085421 crossref_primary_10_1103_PhysRevB_110_085422 crossref_primary_10_1103_PhysRevLett_126_103201 crossref_primary_10_1103_PhysRevB_104_075407 crossref_primary_10_1103_PhysRevB_109_184502 crossref_primary_10_1038_s41586_020_2339_0 crossref_primary_10_1103_PhysRevB_110_205407 crossref_primary_10_1038_s41567_021_01438_2 crossref_primary_10_1103_PhysRevB_104_075126 crossref_primary_10_1038_s41586_020_3028_8 crossref_primary_10_1103_PhysRevB_109_125431 crossref_primary_10_1103_PhysRevB_106_155402 crossref_primary_10_1021_acs_nanolett_4c04690 crossref_primary_10_35848_1347_4065_ad1d6e crossref_primary_10_1002_adma_202006124 crossref_primary_10_1103_PhysRevB_102_081403 crossref_primary_10_1002_apxr_202300048 crossref_primary_10_1038_s41586_022_04715_z crossref_primary_10_1103_PhysRevB_107_035112 crossref_primary_10_1103_PhysRevB_110_075417 crossref_primary_10_1103_PhysRevB_108_125141 crossref_primary_10_1103_PhysRevB_101_165431 crossref_primary_10_1103_PhysRevB_103_195405 crossref_primary_10_1063_5_0084996 crossref_primary_10_1103_PhysRevB_103_024506 crossref_primary_10_1103_PhysRevB_103_195411 crossref_primary_10_1103_PhysRevResearch_4_033168 crossref_primary_10_1103_PhysRevResearch_3_013033 crossref_primary_10_1038_s41567_020_01154_3 crossref_primary_10_1103_PhysRevResearch_3_013153 crossref_primary_10_1002_advs_202301326 crossref_primary_10_1103_PhysRevB_107_195136 crossref_primary_10_1103_PhysRevB_104_L081403 crossref_primary_10_1038_s41586_020_2373_y crossref_primary_10_1063_1_5127078 crossref_primary_10_1038_s41535_020_00258_6 crossref_primary_10_1103_PhysRevB_107_174301 crossref_primary_10_1103_PhysRevResearch_3_013051 crossref_primary_10_1103_PhysRevB_100_155426 crossref_primary_10_3390_app11114730 crossref_primary_10_1103_PhysRevLett_124_016401 crossref_primary_10_1038_s41565_024_01822_y crossref_primary_10_1063_5_0213542 crossref_primary_10_1103_PhysRevB_100_155421 crossref_primary_10_1038_s42005_021_00598_0 crossref_primary_10_1103_PhysRevLett_127_217001 crossref_primary_10_1038_s41567_020_0906_9 crossref_primary_10_1088_1361_648X_ad4431 crossref_primary_10_1103_PhysRevB_106_L121111 crossref_primary_10_1103_PhysRevB_109_104504 crossref_primary_10_1103_PhysRevLett_129_076803 crossref_primary_10_1103_PhysRevB_109_125302 crossref_primary_10_1103_PhysRevLett_127_097001 crossref_primary_10_1103_PhysRevLett_129_076802 crossref_primary_10_1021_acs_nanolett_4c04242 crossref_primary_10_1038_s42254_022_00466_y crossref_primary_10_1103_PhysRevB_103_115431 crossref_primary_10_1103_PhysRevB_103_115436 crossref_primary_10_1088_2053_1583_acf775 crossref_primary_10_1103_PhysRevB_108_125129 crossref_primary_10_1103_PhysRevLett_127_126405 crossref_primary_10_1103_PhysRevB_107_125112 crossref_primary_10_1002_admi_202300014 crossref_primary_10_1103_PhysRevResearch_4_043045 crossref_primary_10_1103_PhysRevResearch_5_L012034 crossref_primary_10_1038_s41567_021_01347_4 crossref_primary_10_1103_PhysRevB_108_075168 crossref_primary_10_1103_PhysRevB_106_115149 crossref_primary_10_1103_PhysRevResearch_7_013109 crossref_primary_10_1088_1674_1056_aba605 crossref_primary_10_1021_acsaenm_2c00259 crossref_primary_10_1088_1361_648X_abcd7f crossref_primary_10_1088_1367_2630_ab950c crossref_primary_10_1103_PhysRevB_108_235166 crossref_primary_10_1103_PhysRevLett_129_056804 crossref_primary_10_1063_1_5118422 crossref_primary_10_1088_1361_648X_ac99ca crossref_primary_10_1103_PhysRevB_107_094512 crossref_primary_10_1103_PhysRevResearch_4_043151 crossref_primary_10_1088_2515_7639_ac6c4a crossref_primary_10_1103_PhysRevB_102_035136 crossref_primary_10_1007_s11433_022_2094_3 crossref_primary_10_1103_PhysRevB_104_045403 crossref_primary_10_1021_acsnano_3c09717 crossref_primary_10_1038_s41467_023_40684_1 crossref_primary_10_1103_PhysRevB_101_134517 crossref_primary_10_1103_PhysRevB_103_125127 crossref_primary_10_7498_aps_72_20222145 crossref_primary_10_1016_j_cap_2024_08_011 crossref_primary_10_1103_PhysRevB_109_155430 crossref_primary_10_1038_s41567_021_01456_0 crossref_primary_10_1103_PhysRevB_105_075424 crossref_primary_10_1103_PhysRevLett_127_266402 crossref_primary_10_1103_PhysRevLett_125_077401 crossref_primary_10_1103_PhysRevLett_132_056601 crossref_primary_10_1016_j_physleta_2023_128899 crossref_primary_10_1088_0256_307X_38_4_047301 crossref_primary_10_1038_s41563_024_01809_z crossref_primary_10_1038_s41586_021_03319_3 crossref_primary_10_1088_2053_1583_ac5b16 crossref_primary_10_1103_PhysRevB_104_075144 crossref_primary_10_1002_adma_202001656 crossref_primary_10_1103_PhysRevB_103_125138 crossref_primary_10_1088_0256_307X_38_5_056301 crossref_primary_10_1088_1674_1056_ac9de4 crossref_primary_10_1103_PhysRevB_110_L041108 crossref_primary_10_1038_s41467_021_27646_1 crossref_primary_10_1126_sciadv_aaw9770 crossref_primary_10_1088_1674_1056_acc805 crossref_primary_10_1103_PhysRevB_107_125142 crossref_primary_10_1021_acsnano_4c02733 crossref_primary_10_1021_acs_nanolett_4c02548 crossref_primary_10_1088_1674_1056_abbbe2 crossref_primary_10_1038_s41567_021_01359_0 crossref_primary_10_1103_PhysRevB_103_195432 crossref_primary_10_1038_s41467_021_24480_3 crossref_primary_10_1021_acs_chemrev_0c00934 crossref_primary_10_1103_PhysRevB_103_125146 crossref_primary_10_1002_inf2_12121 crossref_primary_10_1103_PhysRevB_110_035122 crossref_primary_10_1103_PhysRevB_107_195434 crossref_primary_10_1088_1361_648X_ad1f8c crossref_primary_10_3390_cryst9100519 crossref_primary_10_7498_aps_72_20230079 crossref_primary_10_1103_PhysRevB_103_L041103 crossref_primary_10_1038_s41467_024_49531_3 crossref_primary_10_7498_aps_70_20202132 crossref_primary_10_1103_PhysRevLett_125_226401 crossref_primary_10_1007_s11467_023_1302_6 crossref_primary_10_1103_PhysRevB_107_195301 crossref_primary_10_1103_PhysRevLett_128_066401 crossref_primary_10_1021_acsnano_3c06021 crossref_primary_10_1002_adma_202300572 crossref_primary_10_1038_s41567_020_01041_x crossref_primary_10_1038_s41467_020_14947_0 crossref_primary_10_1038_s41467_020_15473_9 crossref_primary_10_1103_PhysRevB_107_024509 crossref_primary_10_21468_SciPostPhys_7_4_048 crossref_primary_10_1063_5_0084358 crossref_primary_10_1021_acsnano_0c04631 crossref_primary_10_1038_s41467_025_56141_0 crossref_primary_10_1038_s41467_021_27514_y crossref_primary_10_1103_PhysRevB_105_L201405 crossref_primary_10_1103_PhysRevLett_128_126401 crossref_primary_10_1103_PhysRevX_12_011061 crossref_primary_10_1038_s41524_022_00789_5 crossref_primary_10_1038_s41567_021_01327_8 crossref_primary_10_1103_PhysRevA_100_053604 crossref_primary_10_1038_s41467_025_57194_x crossref_primary_10_1103_PhysRevResearch_4_043145 crossref_primary_10_1038_s42254_020_00262_6 crossref_primary_10_1039_D1RA02139G crossref_primary_10_1103_PhysRevB_101_235140 crossref_primary_10_1103_PhysRevB_101_165141 crossref_primary_10_1515_nanoph_2022_0798 crossref_primary_10_1038_s41586_020_2459_6 crossref_primary_10_1088_2053_1583_ac7e59 crossref_primary_10_1088_2516_1075_ab9f94 crossref_primary_10_1103_PhysRevB_102_035161 crossref_primary_10_1103_PhysRevLett_127_196401 crossref_primary_10_1103_PhysRevB_105_235428 crossref_primary_10_1103_PhysRevLett_130_066001 crossref_primary_10_1103_PhysRevB_106_L041111 crossref_primary_10_1103_PhysRevB_103_195127 crossref_primary_10_1021_acsnano_3c09993 crossref_primary_10_1103_PhysRevLett_125_236102 crossref_primary_10_1088_0256_307X_39_4_047403 crossref_primary_10_1103_PhysRevB_102_081118 crossref_primary_10_1103_PhysRevB_110_115434 crossref_primary_10_1088_2053_1583_abfcd6 crossref_primary_10_1103_PhysRevB_102_035158 crossref_primary_10_1038_s42005_023_01480_x crossref_primary_10_1103_PhysRevB_102_035154 crossref_primary_10_1103_PhysRevLett_128_227601 crossref_primary_10_1103_PhysRevB_104_195410 crossref_primary_10_1103_PhysRevLett_130_126001 crossref_primary_10_1103_PhysRevResearch_2_012066 crossref_primary_10_1038_s42005_022_00860_z crossref_primary_10_1103_PhysRevLett_128_206805 crossref_primary_10_1021_acs_nanolett_2c03220 crossref_primary_10_1021_acs_nanolett_1c01972 crossref_primary_10_1103_PhysRevB_102_121406 crossref_primary_10_1016_j_cpc_2021_108184 crossref_primary_10_1103_PhysRevB_105_245408 crossref_primary_10_1038_s41524_022_00697_8 crossref_primary_10_1103_PhysRevLett_126_056803 crossref_primary_10_1073_pnas_2014691117 crossref_primary_10_1103_PhysRevB_109_L241404 crossref_primary_10_1103_PhysRevB_109_245408 crossref_primary_10_1126_science_abk1895 crossref_primary_10_1073_pnas_2307151120 crossref_primary_10_1038_s41567_019_0645_y crossref_primary_10_1021_acs_nanolett_4c01704 crossref_primary_10_1103_PhysRevX_12_031020 crossref_primary_10_1103_PhysRevB_109_035159 crossref_primary_10_1103_PhysRevB_110_245418 crossref_primary_10_7498_aps_71_20220064 crossref_primary_10_1103_PhysRevLett_127_047001 crossref_primary_10_1103_PhysRevResearch_5_L032033 crossref_primary_10_1088_1674_1056_acbd2c crossref_primary_10_1038_s41567_022_01589_w crossref_primary_10_1103_PhysRevLett_127_127001 crossref_primary_10_1093_pnasnexus_pgad255 crossref_primary_10_1016_j_flatc_2024_100702 crossref_primary_10_1021_acs_nanolett_1c03611 crossref_primary_10_1038_s41467_020_20428_1 crossref_primary_10_1103_PhysRevB_111_125140 crossref_primary_10_1103_PhysRevB_111_125143 crossref_primary_10_1088_2053_1583_ad3b11 crossref_primary_10_1038_s41567_024_02653_3 crossref_primary_10_1073_pnas_2017366118 crossref_primary_10_1103_PhysRevB_105_184505 crossref_primary_10_1103_PhysRevB_110_165406 crossref_primary_10_1103_PhysRevB_107_125410 crossref_primary_10_1103_PhysRevB_100_161102 crossref_primary_10_1103_PhysRevB_102_085109 crossref_primary_10_1016_j_xinn_2021_100085 crossref_primary_10_1002_adma_202406290 crossref_primary_10_1103_PhysRevLett_128_247402 crossref_primary_10_1103_PhysRevB_109_245429 crossref_primary_10_1038_s41586_020_2255_3 crossref_primary_10_1103_PhysRevResearch_2_033181 crossref_primary_10_1103_PhysRevB_106_024518 crossref_primary_10_1103_PhysRevB_103_205411 crossref_primary_10_1103_PhysRevB_103_205412 crossref_primary_10_1021_acs_nanolett_1c00791 crossref_primary_10_1103_PhysRevB_103_205413 crossref_primary_10_1016_j_newton_2024_100007 crossref_primary_10_1088_2053_1583_ad9dfd crossref_primary_10_1103_PhysRevB_101_155149 crossref_primary_10_1103_PhysRevB_103_205414 crossref_primary_10_1103_PhysRevB_103_205415 crossref_primary_10_1103_PhysRevB_111_035431 crossref_primary_10_1103_PhysRevB_103_205416 crossref_primary_10_1103_PhysRevB_103_235146 crossref_primary_10_1002_smsc_202100033 crossref_primary_10_1021_acsanm_2c04566 crossref_primary_10_1063_PT_3_4384 crossref_primary_10_1103_PhysRevB_106_024507 crossref_primary_10_1038_s41586_021_03366_w crossref_primary_10_1103_PhysRevB_102_205111 crossref_primary_10_1103_PhysRevResearch_2_033062 crossref_primary_10_1103_PhysRevB_103_205403 crossref_primary_10_1103_PhysRevB_108_L121101 crossref_primary_10_21468_SciPostPhys_11_4_083 crossref_primary_10_1103_PhysRevLett_124_046403 crossref_primary_10_1103_PhysRevB_110_L241401 crossref_primary_10_1103_PhysRevB_107_125308 crossref_primary_10_1038_s41567_020_0958_x crossref_primary_10_1103_PhysRevB_108_L121409 crossref_primary_10_1103_PhysRevLett_127_027601 crossref_primary_10_1103_PhysRevB_108_235128 crossref_primary_10_1103_PhysRevB_107_075408 crossref_primary_10_1088_1361_648X_ad43a3 crossref_primary_10_1103_PhysRevB_107_L081403 crossref_primary_10_1103_PhysRevResearch_2_023237 crossref_primary_10_1038_s41567_022_01574_3 crossref_primary_10_1103_PhysRevB_108_155406 crossref_primary_10_1038_s41586_020_2970_9 crossref_primary_10_1088_1361_6463_abf44d crossref_primary_10_1103_PhysRevResearch_2_033271 crossref_primary_10_1103_PhysRevLett_126_146402 crossref_primary_10_1038_s41563_023_01713_y crossref_primary_10_1038_s41565_024_01698_y crossref_primary_10_1021_acsnano_3c08603 crossref_primary_10_1103_PhysRevB_104_035119 crossref_primary_10_1021_acs_nanolett_2c00469 crossref_primary_10_1038_s41563_020_00911_2 crossref_primary_10_1038_s41467_023_40754_4 crossref_primary_10_1007_s44214_022_00010_0 crossref_primary_10_1002_admt_202000744 crossref_primary_10_1038_s41586_023_06663_8 crossref_primary_10_1103_PhysRevB_106_184517 crossref_primary_10_1007_s12274_022_5025_8 crossref_primary_10_1103_PhysRevLett_129_047601 crossref_primary_10_7498_aps_72_20230120 crossref_primary_10_1038_s41467_021_25864_1 crossref_primary_10_1088_1674_1056_ad9e96 crossref_primary_10_1103_PhysRevB_104_L241404 crossref_primary_10_1103_PhysRevB_107_205423 crossref_primary_10_1103_PhysRevB_110_115136 crossref_primary_10_1038_s41524_020_0299_4 crossref_primary_10_1038_s41586_020_03159_7 crossref_primary_10_1038_s42005_022_01013_y crossref_primary_10_1103_PhysRevResearch_2_032074 crossref_primary_10_1103_PhysRevLett_124_126402 crossref_primary_10_1088_2053_1583_ac1b6d crossref_primary_10_1038_s41586_021_04173_z crossref_primary_10_1088_1361_651X_ad2786 crossref_primary_10_1103_PhysRevB_106_104506 crossref_primary_10_1103_PhysRevB_102_085103 crossref_primary_10_1103_PhysRevB_106_L161101 crossref_primary_10_1021_acs_chemmater_1c00671 crossref_primary_10_1103_PhysRevB_103_144505 crossref_primary_10_1103_PhysRevLett_129_147001 crossref_primary_10_1021_acs_nanolett_4c02853 crossref_primary_10_1038_s42005_024_01722_6 crossref_primary_10_1103_PhysRevB_104_115167 crossref_primary_10_1088_1361_648X_acab49 crossref_primary_10_1103_PhysRevResearch_2_022005 crossref_primary_10_1063_5_0044511 crossref_primary_10_1103_PhysRevMaterials_6_024003 crossref_primary_10_1103_PhysRevB_101_125411 crossref_primary_10_1103_PhysRevResearch_4_L032006 crossref_primary_10_1039_D0NR02786C crossref_primary_10_1103_PhysRevLett_124_186801 crossref_primary_10_1038_s42254_021_00297_3 crossref_primary_10_1073_pnas_2118482119 crossref_primary_10_1038_s41467_024_50456_0 crossref_primary_10_1103_PhysRevB_111_125113 crossref_primary_10_1088_0256_307X_39_7_077301 crossref_primary_10_1038_s41586_022_04520_8 crossref_primary_10_1103_PhysRevB_108_094115 crossref_primary_10_1038_s41578_023_00644_z crossref_primary_10_1038_s41586_023_06226_x crossref_primary_10_1103_PhysRevB_104_045146 crossref_primary_10_1103_PhysRevB_106_115418 crossref_primary_10_1103_PhysRevResearch_2_023225 crossref_primary_10_1103_PhysRevB_106_115410 crossref_primary_10_1038_s41598_022_14845_z crossref_primary_10_1103_PhysRevB_104_195134 crossref_primary_10_1103_PhysRevX_13_041007 crossref_primary_10_1103_PhysRevLett_130_076204 crossref_primary_10_1038_s41699_020_00169_x crossref_primary_10_1038_s41467_021_25438_1 crossref_primary_10_1088_2053_1583_ac3259 |
Cites_doi | 10.1038/nature26160 10.1038/nature26154 10.1103/PhysRevLett.109.126801 10.1103/PhysRevB.98.075109 10.1103/PhysRevLett.121.037702 10.1073/pnas.1108174108 10.1103/PhysRevB.82.121407 10.1103/PhysRevB.92.081406 10.1103/PhysRevB.86.155449 10.1038/s41563-019-0346-z 10.1103/PhysRevB.98.085435 10.1103/PhysRevB.96.075311 10.1103/RevModPhys.81.109 10.1103/PhysRevLett.69.3804 10.1038/nature05982 10.1103/PhysRevB.93.235153 10.1103/PhysRevLett.122.246401 10.1103/PhysRevLett.109.186807 10.1021/acs.nanolett.5b05263 10.1038/nature09330 10.1038/nature23893 10.1103/PhysRevLett.99.256802 10.1103/PhysRevB.86.125413 10.1073/pnas.1810947115 10.1103/PhysRevLett.120.156405 10.1073/pnas.1620140114 10.1103/PhysRevLett.117.116804 10.1103/PhysRevB.92.155409 10.1038/srep25670 10.1038/nphys1866 10.1021/nl902948m 10.1038/nphys1463 10.1103/PhysRevLett.106.126802 10.1126/science.aav1910 10.1103/PhysRevB.99.195455 10.1103/PhysRevB.99.035111 10.1103/PhysRevLett.83.824 10.1021/nl500823k 10.1126/science.aag1715 10.1103/PhysRevLett.64.681 10.1088/0022-3719/9/11/012 10.1103/PhysRevLett.109.196802 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2019 Copyright Nature Publishing Group Nov 2019 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019 – notice: Copyright Nature Publishing Group Nov 2019 |
DBID | AAYXX CITATION 3V. 7U5 7XB 88I 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO GNUQQ HCIFZ L7M M2P P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1038/s41567-019-0606-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Solid State and Superconductivity Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Advanced Technologies Database with Aerospace Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Central Student |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1745-2481 |
EndPage | 1180 |
ExternalDocumentID | 10_1038_s41567_019_0606_5 |
GroupedDBID | 0R~ 123 29M 39C 3V. 4.4 5BI 5M7 6OB 70F 88I 8FE 8FG 8FH 8R4 8R5 AAEEF AARCD AAYZH AAZLF ABAWZ ABDBF ABJNI ABLJU ABUWG ABZEH ACBWK ACGFO ACGFS ACGOD ACMJI ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFKRA AFSHS AFWHJ AGAYW AGHTU AHBCP AHOSX AHSBF AIBTJ ALFFA ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC BENPR BGLVJ BHPHI BKKNO BKSAR BPHCQ CCPQU DB5 DU5 DWQXO EBS EE. EJD ESX EXGXG F5P FEDTE FQGFK FSGXE GNUQQ HCIFZ HVGLF HZ~ I-F LGEZI LK5 LOTEE M2P M7R N9A NADUK NNMJJ NXXTH O9- ODYON P2P P62 PCBAR PQQKQ PROAC Q2X RNS RNT RNTTT SHXYY SIXXV SJN SNYQT SOJ TAOOD TBHMF TDRGL TSG TUS ~8M AAYXX ABFSG ACMFV ACSTC AEZWR AFANA AFHIU AHWEU AIXLP ALPWD ATHPR CITATION PHGZM PHGZT 7U5 7XB 8FD 8FK L7M PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c316t-f09fad3fbfab32795caafbc37e02bfba317273a80b35e117378d5df8494fe8173 |
IEDL.DBID | BENPR |
ISSN | 1745-2473 |
IngestDate | Sat Aug 23 13:05:52 EDT 2025 Tue Jul 01 00:25:39 EDT 2025 Thu Apr 24 23:00:34 EDT 2025 Fri Feb 21 02:37:59 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-f09fad3fbfab32795caafbc37e02bfba317273a80b35e117378d5df8494fe8173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2394-9070 0000-0003-3701-8119 0000-0002-8477-0074 |
PQID | 2311940491 |
PQPubID | 27545 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2311940491 crossref_primary_10_1038_s41567_019_0606_5 crossref_citationtrail_10_1038_s41567_019_0606_5 springer_journals_10_1038_s41567_019_0606_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-11-01 |
PublicationDateYYYYMMDD | 2019-11-01 |
PublicationDate_xml | – month: 11 year: 2019 text: 2019-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Nature physics |
PublicationTitleAbbrev | Nat. Phys |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Nam, Koshino (CR28) 2017; 96 Trambly de Laissardière, Mayou, Magaud (CR4) 2010; 10 Feldman (CR37) 2016; 354 Eisenstein, Pfeiffer, West (CR42) 1992; 69 Yan (CR21) 2012; 109 Lopes dos Santos, Peres, Castro Neto (CR6) 2012; 86 Li (CR10) 2010; 6 Moon (CR45) 2018; 9 Huang (CR16) 2018; 121 Jung (CR46) 2011; 7 Yin, Qiao, Zuo, Li, He (CR22) 2015; 92 Zibrov (CR23) 2017; 549 Neto, Guinea, Peres, Novoselov, Geim (CR8) 2009; 81 Ashoori, Lebens, Bigelow, Silsbee (CR41) 1990; 64 Lilly, Cooper, Eisenstein, Pfeiffer, West (CR36) 1999; 83 CR48 Thomson, Chatterjee, Sachdev, Scheurer (CR47) 2018; 98 Po, Zou, Senthil, Vishwanath (CR26) 2019; 99 Song (CR30) 2010; 467 Guinea, Walet (CR34) 2018; 115 Suárez Morell, Correa, Vargas, Pacheco, Barticevic (CR19) 2010; 82 Cao (CR17) 2016; 117 Kang, Vafek (CR27) 2018; 8 Dial, Ashoori, Pfeiffer, West (CR43) 2007; 448 Lopes dos Santos, Peres, Castro Neto (CR18) 2007; 99 Havener, Liang, Brown, Yang, Park (CR13) 2014; 14 Kim (CR49) 2016; 16 Luican (CR9) 2011; 106 Huder (CR38) 2018; 120 Artaud (CR39) 2016; 6 Yankowitz (CR3) 2019; 363 Wong (CR14) 2015; 92 Bistritzer, MacDonald (CR5) 2011; 108 Brihuega (CR11) 2012; 109 Kang, Vafek (CR32) 2019; 122 Trambly de Laissardière, Mayou, Magaud (CR20) 2012; 86 Ohta (CR12) 2012; 109 CR29 Kim (CR15) 2017; 114 Cao (CR1) 2018; 556 Fang, Kaxiras (CR7) 2016; 93 Koshino (CR33) 2018; 8 Po, Zou, Vishwanath, Senthil (CR31) 2018; 8 Song (CR44) 2018; 9 Zou, Po, Vishwanath, Senthil (CR25) 2018; 98 Efros (CR40) 1976; 9 Hejazi, Liu, Shapourian, Chen, Balents (CR35) 2019; 99 Yoo (CR24) 2019; 18 Cao (CR2) 2018; 556 M Koshino (606_CR33) 2018; 8 J Kang (606_CR27) 2018; 8 S Fang (606_CR7) 2016; 93 BH Moon (606_CR45) 2018; 9 H Yoo (606_CR24) 2019; 18 J Kang (606_CR32) 2019; 122 HC Po (606_CR26) 2019; 99 Y-H Song (606_CR44) 2018; 9 S Jung (606_CR46) 2011; 7 G Trambly de Laissardière (606_CR4) 2010; 10 E Suárez Morell (606_CR19) 2010; 82 S Huang (606_CR16) 2018; 121 T Ohta (606_CR12) 2012; 109 G Trambly de Laissardière (606_CR20) 2012; 86 K Hejazi (606_CR35) 2019; 99 MP Lilly (606_CR36) 1999; 83 JP Eisenstein (606_CR42) 1992; 69 OE Dial (606_CR43) 2007; 448 Y Cao (606_CR2) 2018; 556 A Thomson (606_CR47) 2018; 98 K Kim (606_CR49) 2016; 16 K Kim (606_CR15) 2017; 114 L Zou (606_CR25) 2018; 98 606_CR29 F Guinea (606_CR34) 2018; 115 L Huder (606_CR38) 2018; 120 AC Neto (606_CR8) 2009; 81 L-J Yin (606_CR22) 2015; 92 RW Havener (606_CR13) 2014; 14 W Yan (606_CR21) 2012; 109 JMB Lopes dos Santos (606_CR6) 2012; 86 JMB Lopes dos Santos (606_CR18) 2007; 99 AA Zibrov (606_CR23) 2017; 549 G Li (606_CR10) 2010; 6 A Luican (606_CR9) 2011; 106 RC Ashoori (606_CR41) 1990; 64 Y Cao (606_CR1) 2018; 556 YJ Song (606_CR30) 2010; 467 NNT Nam (606_CR28) 2017; 96 BE Feldman (606_CR37) 2016; 354 R Bistritzer (606_CR5) 2011; 108 AL Efros (606_CR40) 1976; 9 Y Cao (606_CR17) 2016; 117 D Wong (606_CR14) 2015; 92 A Artaud (606_CR39) 2016; 6 HC Po (606_CR31) 2018; 8 I Brihuega (606_CR11) 2012; 109 606_CR48 M Yankowitz (606_CR3) 2019; 363 |
References_xml | – volume: 8 start-page: 031087 year: 2018 ident: CR33 article-title: Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene publication-title: Phys. Rev. X – volume: 64 start-page: 681 year: 1990 end-page: 684 ident: CR41 article-title: Equilibrium tunneling from the two-dimensional electron gas in GaAs: evidence for a magnetic-field-induced energy gap publication-title: Phys. Rev. Lett. – volume: 9 year: 2018 ident: CR45 article-title: Soft Coulomb gap and asymmetric scaling towards metal–insulator quantum criticality in multilayer MoS publication-title: Nat. Commun. – volume: 86 start-page: 155449 year: 2012 ident: CR6 article-title: Continuum model of the twisted graphene bilayer publication-title: Phys. Rev. B – volume: 14 start-page: 3353 year: 2014 end-page: 3357 ident: CR13 article-title: Van Hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene publication-title: Nano Lett. – volume: 92 start-page: 155409 year: 2015 ident: CR14 article-title: Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene publication-title: Phys. Rev. B – volume: 10 start-page: 804 year: 2010 end-page: 808 ident: CR4 article-title: Localization of Dirac electrons in rotated graphene bilayers publication-title: Nano Lett. – ident: CR29 – volume: 9 start-page: 2021 year: 1976 end-page: 2030 ident: CR40 article-title: Coulomb gap in disordered systems publication-title: J. Phys. C – volume: 9 year: 2018 ident: CR44 article-title: Observation of Coulomb gap in the quantum spin Hall candidate single-layer 1T’-WTe publication-title: Nat. Commun. – volume: 120 start-page: 156405 year: 2018 ident: CR38 article-title: Electronic spectrum of twisted graphene layers under heterostrain publication-title: Phys. Rev. Lett. – volume: 6 start-page: 109 year: 2010 end-page: 113 ident: CR10 article-title: Observation of Van Hove singularities in twisted graphene layers publication-title: Nat. Phys. – volume: 109 start-page: 126801 year: 2012 ident: CR21 article-title: Angle-dependent van Hove singularities in a slightly twisted graphene bilayer publication-title: Phys. Rev. Lett. – volume: 7 start-page: 245 year: 2011 end-page: 251 ident: CR46 article-title: Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots publication-title: Nat. Phys. – volume: 106 start-page: 126802 year: 2011 ident: CR9 article-title: Single-layer behavior and its breakdown in twisted graphene layers publication-title: Phys. Rev. Lett. – volume: 86 start-page: 125413 year: 2012 ident: CR20 article-title: Numerical studies of confined states in rotated bilayers of graphene publication-title: Phys. Rev. B – volume: 115 start-page: 13174 year: 2018 end-page: 13179 ident: CR34 article-title: Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers publication-title: Proc. Natl Acad. Sci. USA – volume: 96 start-page: 075311 year: 2017 ident: CR28 article-title: Lattice relaxation and energy band modulation in twisted bilayer graphene publication-title: Phys. Rev. B – volume: 109 start-page: 186807 year: 2012 ident: CR12 article-title: Evidence for interlayer coupling and moiré periodic potentials in twisted bilayer graphene publication-title: Phys. Rev. Lett. – volume: 108 start-page: 12233 year: 2011 end-page: 12237 ident: CR5 article-title: Moiré bands in twisted double-layer graphene publication-title: Proc. Natl Acad. Sci. USA – volume: 92 start-page: 081406 year: 2015 ident: CR22 article-title: Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers publication-title: Phys. Rev. B – volume: 448 start-page: 176 year: 2007 end-page: 179 ident: CR43 article-title: High-resolution spectroscopy of two-dimensional electron systems publication-title: Nature – volume: 467 start-page: 185 year: 2010 end-page: 189 ident: CR30 article-title: High-resolution tunnelling spectroscopy of a graphene quartet publication-title: Nature – volume: 69 start-page: 3804 year: 1992 end-page: 3807 ident: CR42 article-title: Coulomb barrier to tunneling between parallel two-dimensional electron systems publication-title: Phys. Rev. Lett. – volume: 121 start-page: 037702 year: 2018 ident: CR16 article-title: Topologically protected helical states in minimally twisted bilayer graphene publication-title: Phys. Rev. Lett. – volume: 549 start-page: 360 year: 2017 end-page: 364 ident: CR23 article-title: Robust fractional quantum Hall states and continuous quantum phase transitions in a half-filled bilayer graphene Landau level publication-title: Nature – volume: 6 year: 2016 ident: CR39 article-title: Universal classification of twisted, strained and sheared graphene moiré superlattices publication-title: Sci. Rep. – volume: 81 start-page: 109 year: 2009 end-page: 162 ident: CR8 article-title: The electronic properties of graphene publication-title: Rev. Mod. Phys. – volume: 16 start-page: 1989 year: 2016 end-page: 1995 ident: CR49 article-title: Van der Waals heterostructures with high accuracy rotational alignment publication-title: Nano Lett. – volume: 83 start-page: 824 year: 1999 end-page: 827 ident: CR36 article-title: Anisotropic states of two-dimensional electron systems in high Landau levels: effect of an in-plane magnetic field publication-title: Phys. Rev. Lett. – volume: 98 start-page: 075109 year: 2018 ident: CR47 article-title: Triangular antiferromagnetism on the honeycomb lattice of twisted bilayer graphene publication-title: Phys. Rev. B – volume: 363 start-page: 1059 year: 2019 end-page: 1064 ident: CR3 article-title: Tuning superconductivity in twisted bilayer graphene publication-title: Science – volume: 82 start-page: 121407 year: 2010 ident: CR19 article-title: Flat bands in slightly twisted bilayer graphene: tight-binding calculations publication-title: Phys. Rev. B – ident: CR48 – volume: 117 start-page: 116804 year: 2016 ident: CR17 article-title: Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene publication-title: Phys. Rev. Lett. – volume: 18 start-page: 448 year: 2019 end-page: 453 ident: CR24 article-title: Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene publication-title: Nat. Mater. – volume: 99 start-page: 256802 year: 2007 ident: CR18 article-title: Graphene bilayer with a twist: electronic structure publication-title: Phys. Rev. Lett. – volume: 93 start-page: 235153 year: 2016 ident: CR7 article-title: Electronic structure theory of weakly interacting bilayers publication-title: Phys. Rev. B – volume: 99 start-page: 195455 year: 2019 ident: CR26 article-title: Faithful tight-binding models and fragile topology of magic-angle bilayer graphene publication-title: Phys. Rev. B – volume: 99 start-page: 035111 year: 2019 ident: CR35 article-title: Multiple topological transitions in twisted bilayer graphene near the first magic angle publication-title: Phys. Rev. B – volume: 109 start-page: 196802 year: 2012 ident: CR11 article-title: Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis publication-title: Phys. Rev. Lett. – volume: 354 start-page: 316 year: 2016 end-page: 321 ident: CR37 article-title: Observation of a nematic quantum Hall liquid on the surface of bismuth publication-title: Science – volume: 556 start-page: 43 year: 2018 end-page: 50 ident: CR2 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26160 – volume: 122 start-page: 246401 year: 2019 ident: CR32 article-title: Strong coupling phases of partially filled twisted bilayer graphene narrow bands publication-title: Phys. Rev. Lett. – volume: 98 start-page: 085435 year: 2018 ident: CR25 article-title: Band structure of twisted bilayer graphene: emergent symmetries, commensurate approximants, and Wannier obstructions publication-title: Phys. Rev. B – volume: 556 start-page: 80 year: 2018 end-page: 84 ident: CR1 article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26154 – volume: 8 start-page: 031088 year: 2018 ident: CR27 article-title: Symmetry, maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands publication-title: Phys. Rev. X – volume: 8 start-page: 031089 year: 2018 ident: CR31 article-title: Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene publication-title: Phys. Rev. X – volume: 114 start-page: 3364 year: 2017 end-page: 3369 ident: CR15 article-title: Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene publication-title: Proc. Natl Acad. Sci. USA – volume: 109 start-page: 126801 year: 2012 ident: 606_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.126801 – volume: 98 start-page: 075109 year: 2018 ident: 606_CR47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.075109 – volume: 121 start-page: 037702 year: 2018 ident: 606_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.037702 – volume: 108 start-page: 12233 year: 2011 ident: 606_CR5 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1108174108 – volume: 82 start-page: 121407 year: 2010 ident: 606_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.121407 – volume: 92 start-page: 081406 year: 2015 ident: 606_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.081406 – volume: 86 start-page: 155449 year: 2012 ident: 606_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.155449 – volume: 18 start-page: 448 year: 2019 ident: 606_CR24 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0346-z – volume: 98 start-page: 085435 year: 2018 ident: 606_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.085435 – volume: 96 start-page: 075311 year: 2017 ident: 606_CR28 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.075311 – volume: 81 start-page: 109 year: 2009 ident: 606_CR8 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – ident: 606_CR29 – volume: 556 start-page: 80 year: 2018 ident: 606_CR1 publication-title: Nature doi: 10.1038/nature26154 – volume: 8 start-page: 031089 year: 2018 ident: 606_CR31 publication-title: Phys. Rev. X – volume: 69 start-page: 3804 year: 1992 ident: 606_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.3804 – volume: 448 start-page: 176 year: 2007 ident: 606_CR43 publication-title: Nature doi: 10.1038/nature05982 – volume: 93 start-page: 235153 year: 2016 ident: 606_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.235153 – volume: 8 start-page: 031088 year: 2018 ident: 606_CR27 publication-title: Phys. Rev. X – volume: 122 start-page: 246401 year: 2019 ident: 606_CR32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.246401 – volume: 109 start-page: 186807 year: 2012 ident: 606_CR12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.186807 – volume: 9 year: 2018 ident: 606_CR45 publication-title: Nat. Commun. – volume: 16 start-page: 1989 year: 2016 ident: 606_CR49 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05263 – volume: 9 year: 2018 ident: 606_CR44 publication-title: Nat. Commun. – volume: 467 start-page: 185 year: 2010 ident: 606_CR30 publication-title: Nature doi: 10.1038/nature09330 – volume: 549 start-page: 360 year: 2017 ident: 606_CR23 publication-title: Nature doi: 10.1038/nature23893 – volume: 99 start-page: 256802 year: 2007 ident: 606_CR18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.256802 – volume: 86 start-page: 125413 year: 2012 ident: 606_CR20 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.86.125413 – volume: 115 start-page: 13174 year: 2018 ident: 606_CR34 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1810947115 – volume: 120 start-page: 156405 year: 2018 ident: 606_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.156405 – volume: 114 start-page: 3364 year: 2017 ident: 606_CR15 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1620140114 – volume: 117 start-page: 116804 year: 2016 ident: 606_CR17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.116804 – volume: 8 start-page: 031087 year: 2018 ident: 606_CR33 publication-title: Phys. Rev. X – volume: 92 start-page: 155409 year: 2015 ident: 606_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.155409 – volume: 6 year: 2016 ident: 606_CR39 publication-title: Sci. Rep. doi: 10.1038/srep25670 – volume: 7 start-page: 245 year: 2011 ident: 606_CR46 publication-title: Nat. Phys. doi: 10.1038/nphys1866 – volume: 10 start-page: 804 year: 2010 ident: 606_CR4 publication-title: Nano Lett. doi: 10.1021/nl902948m – volume: 6 start-page: 109 year: 2010 ident: 606_CR10 publication-title: Nat. Phys. doi: 10.1038/nphys1463 – volume: 106 start-page: 126802 year: 2011 ident: 606_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.126802 – ident: 606_CR48 – volume: 363 start-page: 1059 year: 2019 ident: 606_CR3 publication-title: Science doi: 10.1126/science.aav1910 – volume: 99 start-page: 195455 year: 2019 ident: 606_CR26 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.195455 – volume: 556 start-page: 43 year: 2018 ident: 606_CR2 publication-title: Nature doi: 10.1038/nature26160 – volume: 99 start-page: 035111 year: 2019 ident: 606_CR35 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.035111 – volume: 83 start-page: 824 year: 1999 ident: 606_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.83.824 – volume: 14 start-page: 3353 year: 2014 ident: 606_CR13 publication-title: Nano Lett. doi: 10.1021/nl500823k – volume: 354 start-page: 316 year: 2016 ident: 606_CR37 publication-title: Science doi: 10.1126/science.aag1715 – volume: 64 start-page: 681 year: 1990 ident: 606_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.64.681 – volume: 9 start-page: 2021 year: 1976 ident: 606_CR40 publication-title: J. Phys. C doi: 10.1088/0022-3719/9/11/012 – volume: 109 start-page: 196802 year: 2012 ident: 606_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.196802 |
SSID | ssj0042613 |
Score | 2.7153568 |
Snippet | Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1174 |
SubjectTerms | 639/301/119/995 639/925/918/1052 Atomic Bilayers Broken symmetry Classical and Continuum Physics Complex Systems Condensed Matter Physics Correlation Graphene Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Physics and Astronomy Theoretical |
Title | Electronic correlations in twisted bilayer graphene near the magic angle |
URI | https://link.springer.com/article/10.1038/s41567-019-0606-5 https://www.proquest.com/docview/2311940491 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7chuCL-BOnc-TBJ6WsbdI1fZJNNofgEHGwt5K0iQizm7biv--lTTcU3GNpm4e7y913uct9AFdoBJyloedIDB-YoFDfiVLBHFeiMScmJJf8KY_T_mTGHubB3B645batsvaJpaNOl4k5I-8hDsF8G_Gsd7v6cAxrlKmuWgqNBrTQBXNMvlrD0fTpufbFJj-g1ZXIwPFZSOu6JuW93KQupu3S3MLHtDr4HZk2cPNPhbQMPOMD2LeIkQwqFR_CjsqOYLfs3EzyY5iM1kQ2JDFUG7a5jbxlpPg2SkyJfFsIhNaknE6Nzo1kaN8EoR95F-j5iMheF-oEZuPRy93EsfQITkK9fuFoN9IipVpqIakfRkEihJYJDZXrSy0FLbGJ4K6kgfK8kIY8DVLNWcS04vh8Cs1smakzIApxU6T7IeIBxYSnBRNMIpTrh5qZefttcGvRxImdHW4oLBZxWcOmPK6kGaM0YyPNOGjD9fqXVTU4Y9vHnVresd1DebzReBtuah1sXv-72Pn2xS5gzzdKL-8TdqBZfH6pSwQWhexCg4_vu9AajIfDadfa0g_Di8oP |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VIgQXxCrK6gNcQBFJ7DTJASEELWXrqZV6M3Zio0olLC2q-Cm-kbGTtAKJ3jhGiX0YP8-8yWwAhwiCiKWh50g0H-igUN-JU8EcVyKYE2OS7fyUh3a91WW3vaBXga-yFsakVZY60Srq9CUx_8hPkYegv4181jt_fXPM1CgTXS1HaOSwuFOfY3TZhmc3V3i-R77fbHQuW04xVcBJqFcfOdqNtUipllpI6odxkAihZUJD5fpSS0GtSReRK2mgPC-kYZQGqY5YzLSK8Bn3nYN5RmlsblTUvC41v_FGaF6AGTg-C2kZRaXR6dA4SibJ09T8oxMf_LSDU3L7Kx5rzVxzBZYLfkouckCtQkVla7Bg80ST4Tq0GpOxOSQxgz2KVDrSz8hobCCTEtkfCCTyxPbCRlVKMhQbQaJJngXqWSKyp4HagO6_iG0TqtlLpraAKGRpsa6HyD4UE54WTDCJxLEeama6-9fALUXDk6JTuRmYMeA2Yk4jnkuTozS5kSYPanA8WfKat-mY9fFuKW9e3Nghn-KrBiflGUxf_7nZ9uzNDmCx1Xm45_c37bsdWPINAGwl4y5UR-8fag8pzUjuWxwRePxv4H4DcjYEfg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60RfEiPrE-96AXJTTJbrrJQURtS30VEQVv626yK4WaVlsR_5q_ztk8LAp68xiS7GH2y8z3ZWZnAHYRBCFLuOcoDB8oUKjvRIlkjqsQzLENydn8lKtuo3PHzu-D-yn4KM_C2LLK0idmjjoZxPYfeR15COpt5LNe3RRlEdfN9tHw2bETpGymtRynkUPkQr-_oXwbHZ41ca_3fL_duj3tOMWEASemXmPsGDcyMqFGGamoz6MgltKomHLt-sooSbPwLkNX0UB7Hqc8TILEhCxiRod4jetOQ5WjKnIrUD1pda9vyjhgtQnNj2MGjs84LXOqNKyPrGyyJZ-2AwBK-uB7VJxQ3R_Z2SzotRdgvmCr5DiH1yJM6XQJZrKq0Xi0DJ3W1xAdEtsxH0VhHemlZPxmAZQQ1etLpPUk64yNjpWkaDiCtJM8SfS6RKaPfb0Cd_9iuFWopINUrwHRyNki0-DIRTSTnpFMMoU0ssENs73-a-CWphFx0bfcjs_oiyx_TkORW1OgNYW1pghqsP_1yjBv2vHXw5ulvUXx_Y7EBG01OCj3YHL718XW_15sB2YRtOLyrHuxAXO-3f_sWOMmVMYvr3oL-c1YbRdAIvDw39j9BPhLChA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+correlations+in+twisted+bilayer+graphene+near+the+magic+angle&rft.jtitle=Nature+physics&rft.au=Choi%2C+Youngjoon&rft.au=Kemmer%2C+Jeannette&rft.au=Yang%2C+Peng&rft.au=Thomson%2C+Alex&rft.date=2019-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=15&rft.issue=11&rft.spage=1174&rft.epage=1180&rft_id=info:doi/10.1038%2Fs41567-019-0606-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon |