Electronic correlations in twisted bilayer graphene near the magic angle

Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly correlated electrons. Here, we use scanning tunnelling microscopy to probe the local properties of highly tunable twisted bilayer graphene devi...

Full description

Saved in:
Bibliographic Details
Published inNature physics Vol. 15; no. 11; pp. 1174 - 1180
Main Authors Choi, Youngjoon, Kemmer, Jeannette, Peng, Yang, Thomson, Alex, Arora, Harpreet, Polski, Robert, Zhang, Yiran, Ren, Hechen, Alicea, Jason, Refael, Gil, von Oppen, Felix, Watanabe, Kenji, Taniguchi, Takashi, Nadj-Perge, Stevan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2019
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly correlated electrons. Here, we use scanning tunnelling microscopy to probe the local properties of highly tunable twisted bilayer graphene devices and show that the flat bands deform when aligned with the Fermi level. When the bands are half-filled, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring an enhanced splitting of the flat bands. We describe this within a microscopic model that predicts a strong tendency towards nematic ordering. Our results provide insights into symmetry-breaking correlation effects and highlight the importance of electronic interactions for all filling fractions in twisted bilayer graphene. Scanning tunnelling microscopy shows that electrons in twisted bilayer graphene are strongly correlated for a wide range of density. In particular, a correlated regime appears near charge neutrality and theory suggests nematic ordering.
AbstractList Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly correlated electrons. Here, we use scanning tunnelling microscopy to probe the local properties of highly tunable twisted bilayer graphene devices and show that the flat bands deform when aligned with the Fermi level. When the bands are half-filled, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring an enhanced splitting of the flat bands. We describe this within a microscopic model that predicts a strong tendency towards nematic ordering. Our results provide insights into symmetry-breaking correlation effects and highlight the importance of electronic interactions for all filling fractions in twisted bilayer graphene. Scanning tunnelling microscopy shows that electrons in twisted bilayer graphene are strongly correlated for a wide range of density. In particular, a correlated regime appears near charge neutrality and theory suggests nematic ordering.
Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly correlated electrons. Here, we use scanning tunnelling microscopy to probe the local properties of highly tunable twisted bilayer graphene devices and show that the flat bands deform when aligned with the Fermi level. When the bands are half-filled, we observe the development of gaps originating from correlated insulating states. Near charge neutrality, we find a previously unidentified correlated regime featuring an enhanced splitting of the flat bands. We describe this within a microscopic model that predicts a strong tendency towards nematic ordering. Our results provide insights into symmetry-breaking correlation effects and highlight the importance of electronic interactions for all filling fractions in twisted bilayer graphene.
Author Choi, Youngjoon
Ren, Hechen
Taniguchi, Takashi
Nadj-Perge, Stevan
Kemmer, Jeannette
Arora, Harpreet
Alicea, Jason
Refael, Gil
Thomson, Alex
Polski, Robert
Zhang, Yiran
Watanabe, Kenji
Peng, Yang
von Oppen, Felix
Author_xml – sequence: 1
  givenname: Youngjoon
  surname: Choi
  fullname: Choi, Youngjoon
  organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology
– sequence: 2
  givenname: Jeannette
  surname: Kemmer
  fullname: Kemmer, Jeannette
  organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology
– sequence: 3
  givenname: Yang
  surname: Peng
  fullname: Peng, Yang
  organization: Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology, Walter Burke Institute for Theoretical Physics, California Institute of Technology
– sequence: 4
  givenname: Alex
  surname: Thomson
  fullname: Thomson, Alex
  organization: Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology, Walter Burke Institute for Theoretical Physics, California Institute of Technology
– sequence: 5
  givenname: Harpreet
  surname: Arora
  fullname: Arora, Harpreet
  organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology
– sequence: 6
  givenname: Robert
  surname: Polski
  fullname: Polski, Robert
  organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology
– sequence: 7
  givenname: Yiran
  orcidid: 0000-0002-8477-0074
  surname: Zhang
  fullname: Zhang, Yiran
  organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology
– sequence: 8
  givenname: Hechen
  surname: Ren
  fullname: Ren, Hechen
  organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology
– sequence: 9
  givenname: Jason
  surname: Alicea
  fullname: Alicea, Jason
  organization: Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology, Walter Burke Institute for Theoretical Physics, California Institute of Technology
– sequence: 10
  givenname: Gil
  surname: Refael
  fullname: Refael, Gil
  organization: Institute for Quantum Information and Matter, California Institute of Technology, Department of Physics, California Institute of Technology, Walter Burke Institute for Theoretical Physics, California Institute of Technology
– sequence: 11
  givenname: Felix
  surname: von Oppen
  fullname: von Oppen, Felix
  organization: Institute for Quantum Information and Matter, California Institute of Technology, Dahlem Center for Complex Quantum Systems and Fachbereich Physik, Freie Universität Berlin
– sequence: 12
  givenname: Kenji
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, Kenji
  organization: National Institute for Materials Science
– sequence: 13
  givenname: Takashi
  surname: Taniguchi
  fullname: Taniguchi, Takashi
  organization: National Institute for Materials Science
– sequence: 14
  givenname: Stevan
  orcidid: 0000-0002-2394-9070
  surname: Nadj-Perge
  fullname: Nadj-Perge, Stevan
  email: s.nadj-perge@caltech.edu
  organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology, Institute for Quantum Information and Matter, California Institute of Technology
BookMark eNp9kFFLwzAQx4NMcJt-AN8CPldzTdu0jzKmEwa-6HNI00uX0aUzyZB9ezsrCoI-3R38f3fHb0YmrndIyDWwW2C8vAsZ5IVIGFQJK1iR5GdkCiLLkzQrYfLdC35BZiFsGcvSAviUrJYd6uh7ZzXVvffYqWh7F6h1NL7bELGhte3UET1tvdpv0CF1qDyNG6Q71Q6ccm2Hl-TcqC7g1Vedk9eH5ctilayfH58W9-tEcyhiYlhlVMNNbVTNU1HlWilTay6QpbWpFQeRCq5KVvMcAQQXZZM3psyqzGA5zHNyM-7d-_7tgCHKbX_wbjgpUw5QZSyrYEjBmNK-D8GjkXtvd8ofJTB5EiZHYXIQJk_CZD4w4hejbfy0Eb2y3b9kOpJhuOJa9D8__Q19AARtgd8
CitedBy_id crossref_primary_10_1103_PhysRevB_101_060505
crossref_primary_10_1021_acs_nanolett_9b03335
crossref_primary_10_1103_PhysRevLett_132_186401
crossref_primary_10_1088_2053_1583_acdd82
crossref_primary_10_1038_s41467_019_13670_9
crossref_primary_10_1007_s40042_022_00692_8
crossref_primary_10_1103_PhysRevLett_129_117602
crossref_primary_10_1063_5_0207883
crossref_primary_10_1103_PhysRevB_105_205119
crossref_primary_10_1016_j_physleta_2023_129048
crossref_primary_10_1103_PhysRevB_110_165158
crossref_primary_10_1039_D3TA02283H
crossref_primary_10_1103_PhysRevResearch_5_023029
crossref_primary_10_1103_PhysRevLett_131_166501
crossref_primary_10_1103_PhysRevResearch_2_043151
crossref_primary_10_1038_s41535_021_00410_w
crossref_primary_10_1103_PhysRevResearch_3_L032070
crossref_primary_10_7498_aps_71_20220347
crossref_primary_10_1103_PhysRevB_101_205116
crossref_primary_10_1103_PhysRevB_103_165112
crossref_primary_10_1103_PhysRevX_11_041063
crossref_primary_10_1103_PhysRevB_111_L121403
crossref_primary_10_1103_PhysRevB_109_205102
crossref_primary_10_1103_PhysRevResearch_2_023325
crossref_primary_10_1007_s11433_022_2000_y
crossref_primary_10_1103_PhysRevLett_125_197401
crossref_primary_10_1038_s41563_021_00923_6
crossref_primary_10_1103_PhysRevB_105_035427
crossref_primary_10_1103_PhysRevB_105_125127
crossref_primary_10_1103_PhysRevB_106_235157
crossref_primary_10_1103_PhysRevB_110_085160
crossref_primary_10_1103_PhysRevB_109_094505
crossref_primary_10_1103_PhysRevB_102_155142
crossref_primary_10_1103_PhysRevB_107_075108
crossref_primary_10_1103_PhysRevB_102_155149
crossref_primary_10_1088_2053_1583_ac044f
crossref_primary_10_1103_PhysRevB_107_245102
crossref_primary_10_1126_sciadv_aba8834
crossref_primary_10_1103_PhysRevB_108_085431
crossref_primary_10_1103_PhysRevResearch_4_013164
crossref_primary_10_1103_PhysRevB_104_035139
crossref_primary_10_1038_s41586_021_04121_x
crossref_primary_10_1103_PhysRevB_102_235146
crossref_primary_10_1103_PhysRevLett_128_106401
crossref_primary_10_1021_acsphotonics_0c01442
crossref_primary_10_1103_PhysRevResearch_2_033458
crossref_primary_10_1007_JHEP05_2021_123
crossref_primary_10_1103_PhysRevLett_128_026403
crossref_primary_10_1103_PhysRevLett_124_166601
crossref_primary_10_1002_adma_202007503
crossref_primary_10_1021_acsnano_0c10435
crossref_primary_10_1103_PhysRevResearch_6_043132
crossref_primary_10_1103_PhysRevB_103_224436
crossref_primary_10_1063_5_0105405
crossref_primary_10_1103_PhysRevB_105_L241410
crossref_primary_10_1021_acs_nanolett_3c04866
crossref_primary_10_1103_PhysRevLett_123_157601
crossref_primary_10_1103_PhysRevB_102_125403
crossref_primary_10_1103_PhysRevB_105_104423
crossref_primary_10_1088_1674_1056_abc7b6
crossref_primary_10_1103_PhysRevB_108_235403
crossref_primary_10_1103_PhysRevB_102_201107
crossref_primary_10_1103_PhysRevB_108_195148
crossref_primary_10_1103_PhysRevB_107_075123
crossref_primary_10_1103_PhysRevB_109_115111
crossref_primary_10_1126_sciadv_abd1919
crossref_primary_10_1103_PhysRevResearch_2_043004
crossref_primary_10_1038_s41586_020_2473_8
crossref_primary_10_1103_PhysRevResearch_2_043127
crossref_primary_10_1002_advs_202103170
crossref_primary_10_1038_s41535_021_00379_6
crossref_primary_10_1103_PhysRevResearch_6_L042066
crossref_primary_10_1103_PhysRevLett_126_066401
crossref_primary_10_1021_acsnano_4c18460
crossref_primary_10_1088_2516_1075_ac49f5
crossref_primary_10_1021_acsnano_4c12905
crossref_primary_10_1002_ntls_20230015
crossref_primary_10_1103_PhysRevB_102_235123
crossref_primary_10_1088_2053_1583_ac9b70
crossref_primary_10_1103_PhysRevB_103_235401
crossref_primary_10_1038_s41567_025_02786_z
crossref_primary_10_1088_2515_7639_ac4ae0
crossref_primary_10_1021_acs_jpcc_0c07416
crossref_primary_10_1088_1402_4896_acf0f5
crossref_primary_10_1103_PhysRevLett_127_187001
crossref_primary_10_1038_s41467_021_22711_1
crossref_primary_10_1103_PhysRevB_104_L201113
crossref_primary_10_1038_s41565_021_00956_7
crossref_primary_10_1038_s41567_020_0974_x
crossref_primary_10_1134_S0021364022602317
crossref_primary_10_1038_s41567_020_1030_6
crossref_primary_10_1103_PhysRevB_108_035129
crossref_primary_10_1103_PhysRevB_104_115110
crossref_primary_10_1103_PhysRevMaterials_5_084008
crossref_primary_10_1021_acs_nanolett_9b04637
crossref_primary_10_1126_science_abn8585
crossref_primary_10_1038_s41563_024_01858_4
crossref_primary_10_1103_PhysRevB_103_155142
crossref_primary_10_1126_sciadv_abo6879
crossref_primary_10_1088_2053_1583_ac97f2
crossref_primary_10_1038_s41586_022_04513_7
crossref_primary_10_1126_science_abg3036
crossref_primary_10_1021_acs_chemmater_2c03753
crossref_primary_10_1103_PhysRevMaterials_9_014004
crossref_primary_10_1103_PhysRevLett_125_096402
crossref_primary_10_1103_PhysRevLett_133_196501
crossref_primary_10_1103_PhysRevB_105_035130
crossref_primary_10_1016_j_watres_2022_119076
crossref_primary_10_1063_10_0019421
crossref_primary_10_1088_1361_6633_ad67ed
crossref_primary_10_1103_PhysRevB_103_245424
crossref_primary_10_1364_OL_522215
crossref_primary_10_1088_2399_6528_ac8855
crossref_primary_10_1038_s44310_024_00043_4
crossref_primary_10_1103_PhysRevB_111_035110
crossref_primary_10_1103_PhysRevB_102_235101
crossref_primary_10_1103_PhysRevB_108_L081408
crossref_primary_10_1364_OPTICA_510789
crossref_primary_10_1016_j_matt_2020_03_010
crossref_primary_10_1016_j_cossms_2021_100952
crossref_primary_10_1021_acs_jpclett_1c03861
crossref_primary_10_1016_j_physe_2025_116235
crossref_primary_10_1088_1361_648X_acb984
crossref_primary_10_1103_PhysRevB_109_125141
crossref_primary_10_1038_s41467_023_43496_5
crossref_primary_10_1103_PhysRevB_100_205114
crossref_primary_10_1038_s41467_021_21792_2
crossref_primary_10_1103_PhysRevB_107_075156
crossref_primary_10_1103_PhysRevResearch_3_L032012
crossref_primary_10_1038_s41467_021_25922_8
crossref_primary_10_1088_1367_2630_ac688c
crossref_primary_10_1103_PhysRevB_100_205113
crossref_primary_10_1103_PhysRevMaterials_5_034001
crossref_primary_10_1103_PhysRevLett_128_065901
crossref_primary_10_1038_s41578_024_00682_1
crossref_primary_10_1016_j_progsurf_2020_100572
crossref_primary_10_1021_acsnano_3c03883
crossref_primary_10_1038_s41467_019_12981_1
crossref_primary_10_1103_PhysRevResearch_1_033126
crossref_primary_10_1126_sciadv_adf7220
crossref_primary_10_1103_PhysRevB_105_104501
crossref_primary_10_1103_PhysRevResearch_4_L012013
crossref_primary_10_1002_ppsc_202300125
crossref_primary_10_1103_PhysRevB_102_245122
crossref_primary_10_1126_sciadv_abc5555
crossref_primary_10_1088_2053_1583_ac1cf0
crossref_primary_10_1103_PhysRevB_104_165130
crossref_primary_10_7498_aps_69_20200506
crossref_primary_10_1103_PhysRevLett_134_096204
crossref_primary_10_1103_PhysRevB_107_165417
crossref_primary_10_1016_j_commatsci_2023_112266
crossref_primary_10_1038_s41467_021_23031_0
crossref_primary_10_1103_PhysRevB_102_035411
crossref_primary_10_1103_PhysRevB_108_195119
crossref_primary_10_1088_1674_1056_acf9e4
crossref_primary_10_1103_PhysRevLett_131_026502
crossref_primary_10_1103_PhysRevLett_131_026501
crossref_primary_10_1021_acs_nanolett_2c03126
crossref_primary_10_1103_PhysRevB_109_075166
crossref_primary_10_3390_nano13212881
crossref_primary_10_1103_PhysRevLett_130_216401
crossref_primary_10_1103_PhysRevB_109_125404
crossref_primary_10_1063_5_0015643
crossref_primary_10_1021_acs_nanolett_3c01173
crossref_primary_10_1103_PhysRevB_108_125106
crossref_primary_10_1103_PhysRevB_105_L100503
crossref_primary_10_1039_D4NR02933J
crossref_primary_10_1039_D2NR02476D
crossref_primary_10_1021_acs_nanolett_4c00078
crossref_primary_10_1103_PhysRevResearch_4_L012032
crossref_primary_10_3390_app10144690
crossref_primary_10_1088_1402_4896_acfa47
crossref_primary_10_1103_PhysRevB_109_045419
crossref_primary_10_1038_s41567_023_02176_3
crossref_primary_10_1002_adma_202205996
crossref_primary_10_1038_s42005_024_01729_z
crossref_primary_10_1103_PhysRevResearch_4_013209
crossref_primary_10_1038_s41563_020_00840_0
crossref_primary_10_1134_S0021364021030085
crossref_primary_10_1093_nsr_nwad175
crossref_primary_10_1103_PhysRevX_14_031045
crossref_primary_10_1021_acsnano_3c08344
crossref_primary_10_1140_epjp_s13360_023_04815_3
crossref_primary_10_1103_PhysRevB_102_235423
crossref_primary_10_1103_PhysRevLett_125_257602
crossref_primary_10_1103_PhysRevB_105_155135
crossref_primary_10_1103_PhysRevLett_128_156401
crossref_primary_10_1021_acs_nanolett_4c04201
crossref_primary_10_1103_PhysRevX_10_031034
crossref_primary_10_1038_s41467_023_38250_w
crossref_primary_10_1038_s41467_019_14207_w
crossref_primary_10_1126_sciadv_adg3262
crossref_primary_10_1103_PhysRevX_13_011026
crossref_primary_10_1103_PhysRevB_102_125120
crossref_primary_10_1103_PhysRevB_107_035126
crossref_primary_10_1103_PhysRevB_110_085421
crossref_primary_10_1103_PhysRevB_110_085422
crossref_primary_10_1103_PhysRevLett_126_103201
crossref_primary_10_1103_PhysRevB_104_075407
crossref_primary_10_1103_PhysRevB_109_184502
crossref_primary_10_1038_s41586_020_2339_0
crossref_primary_10_1103_PhysRevB_110_205407
crossref_primary_10_1038_s41567_021_01438_2
crossref_primary_10_1103_PhysRevB_104_075126
crossref_primary_10_1038_s41586_020_3028_8
crossref_primary_10_1103_PhysRevB_109_125431
crossref_primary_10_1103_PhysRevB_106_155402
crossref_primary_10_1021_acs_nanolett_4c04690
crossref_primary_10_35848_1347_4065_ad1d6e
crossref_primary_10_1002_adma_202006124
crossref_primary_10_1103_PhysRevB_102_081403
crossref_primary_10_1002_apxr_202300048
crossref_primary_10_1038_s41586_022_04715_z
crossref_primary_10_1103_PhysRevB_107_035112
crossref_primary_10_1103_PhysRevB_110_075417
crossref_primary_10_1103_PhysRevB_108_125141
crossref_primary_10_1103_PhysRevB_101_165431
crossref_primary_10_1103_PhysRevB_103_195405
crossref_primary_10_1063_5_0084996
crossref_primary_10_1103_PhysRevB_103_024506
crossref_primary_10_1103_PhysRevB_103_195411
crossref_primary_10_1103_PhysRevResearch_4_033168
crossref_primary_10_1103_PhysRevResearch_3_013033
crossref_primary_10_1038_s41567_020_01154_3
crossref_primary_10_1103_PhysRevResearch_3_013153
crossref_primary_10_1002_advs_202301326
crossref_primary_10_1103_PhysRevB_107_195136
crossref_primary_10_1103_PhysRevB_104_L081403
crossref_primary_10_1038_s41586_020_2373_y
crossref_primary_10_1063_1_5127078
crossref_primary_10_1038_s41535_020_00258_6
crossref_primary_10_1103_PhysRevB_107_174301
crossref_primary_10_1103_PhysRevResearch_3_013051
crossref_primary_10_1103_PhysRevB_100_155426
crossref_primary_10_3390_app11114730
crossref_primary_10_1103_PhysRevLett_124_016401
crossref_primary_10_1038_s41565_024_01822_y
crossref_primary_10_1063_5_0213542
crossref_primary_10_1103_PhysRevB_100_155421
crossref_primary_10_1038_s42005_021_00598_0
crossref_primary_10_1103_PhysRevLett_127_217001
crossref_primary_10_1038_s41567_020_0906_9
crossref_primary_10_1088_1361_648X_ad4431
crossref_primary_10_1103_PhysRevB_106_L121111
crossref_primary_10_1103_PhysRevB_109_104504
crossref_primary_10_1103_PhysRevLett_129_076803
crossref_primary_10_1103_PhysRevB_109_125302
crossref_primary_10_1103_PhysRevLett_127_097001
crossref_primary_10_1103_PhysRevLett_129_076802
crossref_primary_10_1021_acs_nanolett_4c04242
crossref_primary_10_1038_s42254_022_00466_y
crossref_primary_10_1103_PhysRevB_103_115431
crossref_primary_10_1103_PhysRevB_103_115436
crossref_primary_10_1088_2053_1583_acf775
crossref_primary_10_1103_PhysRevB_108_125129
crossref_primary_10_1103_PhysRevLett_127_126405
crossref_primary_10_1103_PhysRevB_107_125112
crossref_primary_10_1002_admi_202300014
crossref_primary_10_1103_PhysRevResearch_4_043045
crossref_primary_10_1103_PhysRevResearch_5_L012034
crossref_primary_10_1038_s41567_021_01347_4
crossref_primary_10_1103_PhysRevB_108_075168
crossref_primary_10_1103_PhysRevB_106_115149
crossref_primary_10_1103_PhysRevResearch_7_013109
crossref_primary_10_1088_1674_1056_aba605
crossref_primary_10_1021_acsaenm_2c00259
crossref_primary_10_1088_1361_648X_abcd7f
crossref_primary_10_1088_1367_2630_ab950c
crossref_primary_10_1103_PhysRevB_108_235166
crossref_primary_10_1103_PhysRevLett_129_056804
crossref_primary_10_1063_1_5118422
crossref_primary_10_1088_1361_648X_ac99ca
crossref_primary_10_1103_PhysRevB_107_094512
crossref_primary_10_1103_PhysRevResearch_4_043151
crossref_primary_10_1088_2515_7639_ac6c4a
crossref_primary_10_1103_PhysRevB_102_035136
crossref_primary_10_1007_s11433_022_2094_3
crossref_primary_10_1103_PhysRevB_104_045403
crossref_primary_10_1021_acsnano_3c09717
crossref_primary_10_1038_s41467_023_40684_1
crossref_primary_10_1103_PhysRevB_101_134517
crossref_primary_10_1103_PhysRevB_103_125127
crossref_primary_10_7498_aps_72_20222145
crossref_primary_10_1016_j_cap_2024_08_011
crossref_primary_10_1103_PhysRevB_109_155430
crossref_primary_10_1038_s41567_021_01456_0
crossref_primary_10_1103_PhysRevB_105_075424
crossref_primary_10_1103_PhysRevLett_127_266402
crossref_primary_10_1103_PhysRevLett_125_077401
crossref_primary_10_1103_PhysRevLett_132_056601
crossref_primary_10_1016_j_physleta_2023_128899
crossref_primary_10_1088_0256_307X_38_4_047301
crossref_primary_10_1038_s41563_024_01809_z
crossref_primary_10_1038_s41586_021_03319_3
crossref_primary_10_1088_2053_1583_ac5b16
crossref_primary_10_1103_PhysRevB_104_075144
crossref_primary_10_1002_adma_202001656
crossref_primary_10_1103_PhysRevB_103_125138
crossref_primary_10_1088_0256_307X_38_5_056301
crossref_primary_10_1088_1674_1056_ac9de4
crossref_primary_10_1103_PhysRevB_110_L041108
crossref_primary_10_1038_s41467_021_27646_1
crossref_primary_10_1126_sciadv_aaw9770
crossref_primary_10_1088_1674_1056_acc805
crossref_primary_10_1103_PhysRevB_107_125142
crossref_primary_10_1021_acsnano_4c02733
crossref_primary_10_1021_acs_nanolett_4c02548
crossref_primary_10_1088_1674_1056_abbbe2
crossref_primary_10_1038_s41567_021_01359_0
crossref_primary_10_1103_PhysRevB_103_195432
crossref_primary_10_1038_s41467_021_24480_3
crossref_primary_10_1021_acs_chemrev_0c00934
crossref_primary_10_1103_PhysRevB_103_125146
crossref_primary_10_1002_inf2_12121
crossref_primary_10_1103_PhysRevB_110_035122
crossref_primary_10_1103_PhysRevB_107_195434
crossref_primary_10_1088_1361_648X_ad1f8c
crossref_primary_10_3390_cryst9100519
crossref_primary_10_7498_aps_72_20230079
crossref_primary_10_1103_PhysRevB_103_L041103
crossref_primary_10_1038_s41467_024_49531_3
crossref_primary_10_7498_aps_70_20202132
crossref_primary_10_1103_PhysRevLett_125_226401
crossref_primary_10_1007_s11467_023_1302_6
crossref_primary_10_1103_PhysRevB_107_195301
crossref_primary_10_1103_PhysRevLett_128_066401
crossref_primary_10_1021_acsnano_3c06021
crossref_primary_10_1002_adma_202300572
crossref_primary_10_1038_s41567_020_01041_x
crossref_primary_10_1038_s41467_020_14947_0
crossref_primary_10_1038_s41467_020_15473_9
crossref_primary_10_1103_PhysRevB_107_024509
crossref_primary_10_21468_SciPostPhys_7_4_048
crossref_primary_10_1063_5_0084358
crossref_primary_10_1021_acsnano_0c04631
crossref_primary_10_1038_s41467_025_56141_0
crossref_primary_10_1038_s41467_021_27514_y
crossref_primary_10_1103_PhysRevB_105_L201405
crossref_primary_10_1103_PhysRevLett_128_126401
crossref_primary_10_1103_PhysRevX_12_011061
crossref_primary_10_1038_s41524_022_00789_5
crossref_primary_10_1038_s41567_021_01327_8
crossref_primary_10_1103_PhysRevA_100_053604
crossref_primary_10_1038_s41467_025_57194_x
crossref_primary_10_1103_PhysRevResearch_4_043145
crossref_primary_10_1038_s42254_020_00262_6
crossref_primary_10_1039_D1RA02139G
crossref_primary_10_1103_PhysRevB_101_235140
crossref_primary_10_1103_PhysRevB_101_165141
crossref_primary_10_1515_nanoph_2022_0798
crossref_primary_10_1038_s41586_020_2459_6
crossref_primary_10_1088_2053_1583_ac7e59
crossref_primary_10_1088_2516_1075_ab9f94
crossref_primary_10_1103_PhysRevB_102_035161
crossref_primary_10_1103_PhysRevLett_127_196401
crossref_primary_10_1103_PhysRevB_105_235428
crossref_primary_10_1103_PhysRevLett_130_066001
crossref_primary_10_1103_PhysRevB_106_L041111
crossref_primary_10_1103_PhysRevB_103_195127
crossref_primary_10_1021_acsnano_3c09993
crossref_primary_10_1103_PhysRevLett_125_236102
crossref_primary_10_1088_0256_307X_39_4_047403
crossref_primary_10_1103_PhysRevB_102_081118
crossref_primary_10_1103_PhysRevB_110_115434
crossref_primary_10_1088_2053_1583_abfcd6
crossref_primary_10_1103_PhysRevB_102_035158
crossref_primary_10_1038_s42005_023_01480_x
crossref_primary_10_1103_PhysRevB_102_035154
crossref_primary_10_1103_PhysRevLett_128_227601
crossref_primary_10_1103_PhysRevB_104_195410
crossref_primary_10_1103_PhysRevLett_130_126001
crossref_primary_10_1103_PhysRevResearch_2_012066
crossref_primary_10_1038_s42005_022_00860_z
crossref_primary_10_1103_PhysRevLett_128_206805
crossref_primary_10_1021_acs_nanolett_2c03220
crossref_primary_10_1021_acs_nanolett_1c01972
crossref_primary_10_1103_PhysRevB_102_121406
crossref_primary_10_1016_j_cpc_2021_108184
crossref_primary_10_1103_PhysRevB_105_245408
crossref_primary_10_1038_s41524_022_00697_8
crossref_primary_10_1103_PhysRevLett_126_056803
crossref_primary_10_1073_pnas_2014691117
crossref_primary_10_1103_PhysRevB_109_L241404
crossref_primary_10_1103_PhysRevB_109_245408
crossref_primary_10_1126_science_abk1895
crossref_primary_10_1073_pnas_2307151120
crossref_primary_10_1038_s41567_019_0645_y
crossref_primary_10_1021_acs_nanolett_4c01704
crossref_primary_10_1103_PhysRevX_12_031020
crossref_primary_10_1103_PhysRevB_109_035159
crossref_primary_10_1103_PhysRevB_110_245418
crossref_primary_10_7498_aps_71_20220064
crossref_primary_10_1103_PhysRevLett_127_047001
crossref_primary_10_1103_PhysRevResearch_5_L032033
crossref_primary_10_1088_1674_1056_acbd2c
crossref_primary_10_1038_s41567_022_01589_w
crossref_primary_10_1103_PhysRevLett_127_127001
crossref_primary_10_1093_pnasnexus_pgad255
crossref_primary_10_1016_j_flatc_2024_100702
crossref_primary_10_1021_acs_nanolett_1c03611
crossref_primary_10_1038_s41467_020_20428_1
crossref_primary_10_1103_PhysRevB_111_125140
crossref_primary_10_1103_PhysRevB_111_125143
crossref_primary_10_1088_2053_1583_ad3b11
crossref_primary_10_1038_s41567_024_02653_3
crossref_primary_10_1073_pnas_2017366118
crossref_primary_10_1103_PhysRevB_105_184505
crossref_primary_10_1103_PhysRevB_110_165406
crossref_primary_10_1103_PhysRevB_107_125410
crossref_primary_10_1103_PhysRevB_100_161102
crossref_primary_10_1103_PhysRevB_102_085109
crossref_primary_10_1016_j_xinn_2021_100085
crossref_primary_10_1002_adma_202406290
crossref_primary_10_1103_PhysRevLett_128_247402
crossref_primary_10_1103_PhysRevB_109_245429
crossref_primary_10_1038_s41586_020_2255_3
crossref_primary_10_1103_PhysRevResearch_2_033181
crossref_primary_10_1103_PhysRevB_106_024518
crossref_primary_10_1103_PhysRevB_103_205411
crossref_primary_10_1103_PhysRevB_103_205412
crossref_primary_10_1021_acs_nanolett_1c00791
crossref_primary_10_1103_PhysRevB_103_205413
crossref_primary_10_1016_j_newton_2024_100007
crossref_primary_10_1088_2053_1583_ad9dfd
crossref_primary_10_1103_PhysRevB_101_155149
crossref_primary_10_1103_PhysRevB_103_205414
crossref_primary_10_1103_PhysRevB_103_205415
crossref_primary_10_1103_PhysRevB_111_035431
crossref_primary_10_1103_PhysRevB_103_205416
crossref_primary_10_1103_PhysRevB_103_235146
crossref_primary_10_1002_smsc_202100033
crossref_primary_10_1021_acsanm_2c04566
crossref_primary_10_1063_PT_3_4384
crossref_primary_10_1103_PhysRevB_106_024507
crossref_primary_10_1038_s41586_021_03366_w
crossref_primary_10_1103_PhysRevB_102_205111
crossref_primary_10_1103_PhysRevResearch_2_033062
crossref_primary_10_1103_PhysRevB_103_205403
crossref_primary_10_1103_PhysRevB_108_L121101
crossref_primary_10_21468_SciPostPhys_11_4_083
crossref_primary_10_1103_PhysRevLett_124_046403
crossref_primary_10_1103_PhysRevB_110_L241401
crossref_primary_10_1103_PhysRevB_107_125308
crossref_primary_10_1038_s41567_020_0958_x
crossref_primary_10_1103_PhysRevB_108_L121409
crossref_primary_10_1103_PhysRevLett_127_027601
crossref_primary_10_1103_PhysRevB_108_235128
crossref_primary_10_1103_PhysRevB_107_075408
crossref_primary_10_1088_1361_648X_ad43a3
crossref_primary_10_1103_PhysRevB_107_L081403
crossref_primary_10_1103_PhysRevResearch_2_023237
crossref_primary_10_1038_s41567_022_01574_3
crossref_primary_10_1103_PhysRevB_108_155406
crossref_primary_10_1038_s41586_020_2970_9
crossref_primary_10_1088_1361_6463_abf44d
crossref_primary_10_1103_PhysRevResearch_2_033271
crossref_primary_10_1103_PhysRevLett_126_146402
crossref_primary_10_1038_s41563_023_01713_y
crossref_primary_10_1038_s41565_024_01698_y
crossref_primary_10_1021_acsnano_3c08603
crossref_primary_10_1103_PhysRevB_104_035119
crossref_primary_10_1021_acs_nanolett_2c00469
crossref_primary_10_1038_s41563_020_00911_2
crossref_primary_10_1038_s41467_023_40754_4
crossref_primary_10_1007_s44214_022_00010_0
crossref_primary_10_1002_admt_202000744
crossref_primary_10_1038_s41586_023_06663_8
crossref_primary_10_1103_PhysRevB_106_184517
crossref_primary_10_1007_s12274_022_5025_8
crossref_primary_10_1103_PhysRevLett_129_047601
crossref_primary_10_7498_aps_72_20230120
crossref_primary_10_1038_s41467_021_25864_1
crossref_primary_10_1088_1674_1056_ad9e96
crossref_primary_10_1103_PhysRevB_104_L241404
crossref_primary_10_1103_PhysRevB_107_205423
crossref_primary_10_1103_PhysRevB_110_115136
crossref_primary_10_1038_s41524_020_0299_4
crossref_primary_10_1038_s41586_020_03159_7
crossref_primary_10_1038_s42005_022_01013_y
crossref_primary_10_1103_PhysRevResearch_2_032074
crossref_primary_10_1103_PhysRevLett_124_126402
crossref_primary_10_1088_2053_1583_ac1b6d
crossref_primary_10_1038_s41586_021_04173_z
crossref_primary_10_1088_1361_651X_ad2786
crossref_primary_10_1103_PhysRevB_106_104506
crossref_primary_10_1103_PhysRevB_102_085103
crossref_primary_10_1103_PhysRevB_106_L161101
crossref_primary_10_1021_acs_chemmater_1c00671
crossref_primary_10_1103_PhysRevB_103_144505
crossref_primary_10_1103_PhysRevLett_129_147001
crossref_primary_10_1021_acs_nanolett_4c02853
crossref_primary_10_1038_s42005_024_01722_6
crossref_primary_10_1103_PhysRevB_104_115167
crossref_primary_10_1088_1361_648X_acab49
crossref_primary_10_1103_PhysRevResearch_2_022005
crossref_primary_10_1063_5_0044511
crossref_primary_10_1103_PhysRevMaterials_6_024003
crossref_primary_10_1103_PhysRevB_101_125411
crossref_primary_10_1103_PhysRevResearch_4_L032006
crossref_primary_10_1039_D0NR02786C
crossref_primary_10_1103_PhysRevLett_124_186801
crossref_primary_10_1038_s42254_021_00297_3
crossref_primary_10_1073_pnas_2118482119
crossref_primary_10_1038_s41467_024_50456_0
crossref_primary_10_1103_PhysRevB_111_125113
crossref_primary_10_1088_0256_307X_39_7_077301
crossref_primary_10_1038_s41586_022_04520_8
crossref_primary_10_1103_PhysRevB_108_094115
crossref_primary_10_1038_s41578_023_00644_z
crossref_primary_10_1038_s41586_023_06226_x
crossref_primary_10_1103_PhysRevB_104_045146
crossref_primary_10_1103_PhysRevB_106_115418
crossref_primary_10_1103_PhysRevResearch_2_023225
crossref_primary_10_1103_PhysRevB_106_115410
crossref_primary_10_1038_s41598_022_14845_z
crossref_primary_10_1103_PhysRevB_104_195134
crossref_primary_10_1103_PhysRevX_13_041007
crossref_primary_10_1103_PhysRevLett_130_076204
crossref_primary_10_1038_s41699_020_00169_x
crossref_primary_10_1038_s41467_021_25438_1
crossref_primary_10_1088_2053_1583_ac3259
Cites_doi 10.1038/nature26160
10.1038/nature26154
10.1103/PhysRevLett.109.126801
10.1103/PhysRevB.98.075109
10.1103/PhysRevLett.121.037702
10.1073/pnas.1108174108
10.1103/PhysRevB.82.121407
10.1103/PhysRevB.92.081406
10.1103/PhysRevB.86.155449
10.1038/s41563-019-0346-z
10.1103/PhysRevB.98.085435
10.1103/PhysRevB.96.075311
10.1103/RevModPhys.81.109
10.1103/PhysRevLett.69.3804
10.1038/nature05982
10.1103/PhysRevB.93.235153
10.1103/PhysRevLett.122.246401
10.1103/PhysRevLett.109.186807
10.1021/acs.nanolett.5b05263
10.1038/nature09330
10.1038/nature23893
10.1103/PhysRevLett.99.256802
10.1103/PhysRevB.86.125413
10.1073/pnas.1810947115
10.1103/PhysRevLett.120.156405
10.1073/pnas.1620140114
10.1103/PhysRevLett.117.116804
10.1103/PhysRevB.92.155409
10.1038/srep25670
10.1038/nphys1866
10.1021/nl902948m
10.1038/nphys1463
10.1103/PhysRevLett.106.126802
10.1126/science.aav1910
10.1103/PhysRevB.99.195455
10.1103/PhysRevB.99.035111
10.1103/PhysRevLett.83.824
10.1021/nl500823k
10.1126/science.aag1715
10.1103/PhysRevLett.64.681
10.1088/0022-3719/9/11/012
10.1103/PhysRevLett.109.196802
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Limited 2019
Copyright Nature Publishing Group Nov 2019
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Limited 2019
– notice: Copyright Nature Publishing Group Nov 2019
DBID AAYXX
CITATION
3V.
7U5
7XB
88I
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
GNUQQ
HCIFZ
L7M
M2P
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1038/s41567-019-0606-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Solid State and Superconductivity Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Central Student
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1745-2481
EndPage 1180
ExternalDocumentID 10_1038_s41567_019_0606_5
GroupedDBID 0R~
123
29M
39C
3V.
4.4
5BI
5M7
6OB
70F
88I
8FE
8FG
8FH
8R4
8R5
AAEEF
AARCD
AAYZH
AAZLF
ABAWZ
ABDBF
ABJNI
ABLJU
ABUWG
ABZEH
ACBWK
ACGFO
ACGFS
ACGOD
ACMJI
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFKRA
AFSHS
AFWHJ
AGAYW
AGHTU
AHBCP
AHOSX
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARAPS
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
BENPR
BGLVJ
BHPHI
BKKNO
BKSAR
BPHCQ
CCPQU
DB5
DU5
DWQXO
EBS
EE.
EJD
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
GNUQQ
HCIFZ
HVGLF
HZ~
I-F
LGEZI
LK5
LOTEE
M2P
M7R
N9A
NADUK
NNMJJ
NXXTH
O9-
ODYON
P2P
P62
PCBAR
PQQKQ
PROAC
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
TSG
TUS
~8M
AAYXX
ABFSG
ACMFV
ACSTC
AEZWR
AFANA
AFHIU
AHWEU
AIXLP
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
7U5
7XB
8FD
8FK
L7M
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-f09fad3fbfab32795caafbc37e02bfba317273a80b35e117378d5df8494fe8173
IEDL.DBID BENPR
ISSN 1745-2473
IngestDate Sat Aug 23 13:05:52 EDT 2025
Tue Jul 01 00:25:39 EDT 2025
Thu Apr 24 23:00:34 EDT 2025
Fri Feb 21 02:37:59 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-f09fad3fbfab32795caafbc37e02bfba317273a80b35e117378d5df8494fe8173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2394-9070
0000-0003-3701-8119
0000-0002-8477-0074
PQID 2311940491
PQPubID 27545
PageCount 7
ParticipantIDs proquest_journals_2311940491
crossref_primary_10_1038_s41567_019_0606_5
crossref_citationtrail_10_1038_s41567_019_0606_5
springer_journals_10_1038_s41567_019_0606_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature physics
PublicationTitleAbbrev Nat. Phys
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Nam, Koshino (CR28) 2017; 96
Trambly de Laissardière, Mayou, Magaud (CR4) 2010; 10
Feldman (CR37) 2016; 354
Eisenstein, Pfeiffer, West (CR42) 1992; 69
Yan (CR21) 2012; 109
Lopes dos Santos, Peres, Castro Neto (CR6) 2012; 86
Li (CR10) 2010; 6
Moon (CR45) 2018; 9
Huang (CR16) 2018; 121
Jung (CR46) 2011; 7
Yin, Qiao, Zuo, Li, He (CR22) 2015; 92
Zibrov (CR23) 2017; 549
Neto, Guinea, Peres, Novoselov, Geim (CR8) 2009; 81
Ashoori, Lebens, Bigelow, Silsbee (CR41) 1990; 64
Lilly, Cooper, Eisenstein, Pfeiffer, West (CR36) 1999; 83
CR48
Thomson, Chatterjee, Sachdev, Scheurer (CR47) 2018; 98
Po, Zou, Senthil, Vishwanath (CR26) 2019; 99
Song (CR30) 2010; 467
Guinea, Walet (CR34) 2018; 115
Suárez Morell, Correa, Vargas, Pacheco, Barticevic (CR19) 2010; 82
Cao (CR17) 2016; 117
Kang, Vafek (CR27) 2018; 8
Dial, Ashoori, Pfeiffer, West (CR43) 2007; 448
Lopes dos Santos, Peres, Castro Neto (CR18) 2007; 99
Havener, Liang, Brown, Yang, Park (CR13) 2014; 14
Kim (CR49) 2016; 16
Luican (CR9) 2011; 106
Huder (CR38) 2018; 120
Artaud (CR39) 2016; 6
Yankowitz (CR3) 2019; 363
Wong (CR14) 2015; 92
Bistritzer, MacDonald (CR5) 2011; 108
Brihuega (CR11) 2012; 109
Kang, Vafek (CR32) 2019; 122
Trambly de Laissardière, Mayou, Magaud (CR20) 2012; 86
Ohta (CR12) 2012; 109
CR29
Kim (CR15) 2017; 114
Cao (CR1) 2018; 556
Fang, Kaxiras (CR7) 2016; 93
Koshino (CR33) 2018; 8
Po, Zou, Vishwanath, Senthil (CR31) 2018; 8
Song (CR44) 2018; 9
Zou, Po, Vishwanath, Senthil (CR25) 2018; 98
Efros (CR40) 1976; 9
Hejazi, Liu, Shapourian, Chen, Balents (CR35) 2019; 99
Yoo (CR24) 2019; 18
Cao (CR2) 2018; 556
M Koshino (606_CR33) 2018; 8
J Kang (606_CR27) 2018; 8
S Fang (606_CR7) 2016; 93
BH Moon (606_CR45) 2018; 9
H Yoo (606_CR24) 2019; 18
J Kang (606_CR32) 2019; 122
HC Po (606_CR26) 2019; 99
Y-H Song (606_CR44) 2018; 9
S Jung (606_CR46) 2011; 7
G Trambly de Laissardière (606_CR4) 2010; 10
E Suárez Morell (606_CR19) 2010; 82
S Huang (606_CR16) 2018; 121
T Ohta (606_CR12) 2012; 109
G Trambly de Laissardière (606_CR20) 2012; 86
K Hejazi (606_CR35) 2019; 99
MP Lilly (606_CR36) 1999; 83
JP Eisenstein (606_CR42) 1992; 69
OE Dial (606_CR43) 2007; 448
Y Cao (606_CR2) 2018; 556
A Thomson (606_CR47) 2018; 98
K Kim (606_CR49) 2016; 16
K Kim (606_CR15) 2017; 114
L Zou (606_CR25) 2018; 98
606_CR29
F Guinea (606_CR34) 2018; 115
L Huder (606_CR38) 2018; 120
AC Neto (606_CR8) 2009; 81
L-J Yin (606_CR22) 2015; 92
RW Havener (606_CR13) 2014; 14
W Yan (606_CR21) 2012; 109
JMB Lopes dos Santos (606_CR6) 2012; 86
JMB Lopes dos Santos (606_CR18) 2007; 99
AA Zibrov (606_CR23) 2017; 549
G Li (606_CR10) 2010; 6
A Luican (606_CR9) 2011; 106
RC Ashoori (606_CR41) 1990; 64
Y Cao (606_CR1) 2018; 556
YJ Song (606_CR30) 2010; 467
NNT Nam (606_CR28) 2017; 96
BE Feldman (606_CR37) 2016; 354
R Bistritzer (606_CR5) 2011; 108
AL Efros (606_CR40) 1976; 9
Y Cao (606_CR17) 2016; 117
D Wong (606_CR14) 2015; 92
A Artaud (606_CR39) 2016; 6
HC Po (606_CR31) 2018; 8
I Brihuega (606_CR11) 2012; 109
606_CR48
M Yankowitz (606_CR3) 2019; 363
References_xml – volume: 8
  start-page: 031087
  year: 2018
  ident: CR33
  article-title: Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene
  publication-title: Phys. Rev. X
– volume: 64
  start-page: 681
  year: 1990
  end-page: 684
  ident: CR41
  article-title: Equilibrium tunneling from the two-dimensional electron gas in GaAs: evidence for a magnetic-field-induced energy gap
  publication-title: Phys. Rev. Lett.
– volume: 9
  year: 2018
  ident: CR45
  article-title: Soft Coulomb gap and asymmetric scaling towards metal–insulator quantum criticality in multilayer MoS
  publication-title: Nat. Commun.
– volume: 86
  start-page: 155449
  year: 2012
  ident: CR6
  article-title: Continuum model of the twisted graphene bilayer
  publication-title: Phys. Rev. B
– volume: 14
  start-page: 3353
  year: 2014
  end-page: 3357
  ident: CR13
  article-title: Van Hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene
  publication-title: Nano Lett.
– volume: 92
  start-page: 155409
  year: 2015
  ident: CR14
  article-title: Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 804
  year: 2010
  end-page: 808
  ident: CR4
  article-title: Localization of Dirac electrons in rotated graphene bilayers
  publication-title: Nano Lett.
– ident: CR29
– volume: 9
  start-page: 2021
  year: 1976
  end-page: 2030
  ident: CR40
  article-title: Coulomb gap in disordered systems
  publication-title: J. Phys. C
– volume: 9
  year: 2018
  ident: CR44
  article-title: Observation of Coulomb gap in the quantum spin Hall candidate single-layer 1T’-WTe
  publication-title: Nat. Commun.
– volume: 120
  start-page: 156405
  year: 2018
  ident: CR38
  article-title: Electronic spectrum of twisted graphene layers under heterostrain
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 109
  year: 2010
  end-page: 113
  ident: CR10
  article-title: Observation of Van Hove singularities in twisted graphene layers
  publication-title: Nat. Phys.
– volume: 109
  start-page: 126801
  year: 2012
  ident: CR21
  article-title: Angle-dependent van Hove singularities in a slightly twisted graphene bilayer
  publication-title: Phys. Rev. Lett.
– volume: 7
  start-page: 245
  year: 2011
  end-page: 251
  ident: CR46
  article-title: Evolution of microscopic localization in graphene in a magnetic field from scattering resonances to quantum dots
  publication-title: Nat. Phys.
– volume: 106
  start-page: 126802
  year: 2011
  ident: CR9
  article-title: Single-layer behavior and its breakdown in twisted graphene layers
  publication-title: Phys. Rev. Lett.
– volume: 86
  start-page: 125413
  year: 2012
  ident: CR20
  article-title: Numerical studies of confined states in rotated bilayers of graphene
  publication-title: Phys. Rev. B
– volume: 115
  start-page: 13174
  year: 2018
  end-page: 13179
  ident: CR34
  article-title: Electrostatic effects, band distortions, and superconductivity in twisted graphene bilayers
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 96
  start-page: 075311
  year: 2017
  ident: CR28
  article-title: Lattice relaxation and energy band modulation in twisted bilayer graphene
  publication-title: Phys. Rev. B
– volume: 109
  start-page: 186807
  year: 2012
  ident: CR12
  article-title: Evidence for interlayer coupling and moiré periodic potentials in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 108
  start-page: 12233
  year: 2011
  end-page: 12237
  ident: CR5
  article-title: Moiré bands in twisted double-layer graphene
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 92
  start-page: 081406
  year: 2015
  ident: CR22
  article-title: Experimental evidence for non-Abelian gauge potentials in twisted graphene bilayers
  publication-title: Phys. Rev. B
– volume: 448
  start-page: 176
  year: 2007
  end-page: 179
  ident: CR43
  article-title: High-resolution spectroscopy of two-dimensional electron systems
  publication-title: Nature
– volume: 467
  start-page: 185
  year: 2010
  end-page: 189
  ident: CR30
  article-title: High-resolution tunnelling spectroscopy of a graphene quartet
  publication-title: Nature
– volume: 69
  start-page: 3804
  year: 1992
  end-page: 3807
  ident: CR42
  article-title: Coulomb barrier to tunneling between parallel two-dimensional electron systems
  publication-title: Phys. Rev. Lett.
– volume: 121
  start-page: 037702
  year: 2018
  ident: CR16
  article-title: Topologically protected helical states in minimally twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 549
  start-page: 360
  year: 2017
  end-page: 364
  ident: CR23
  article-title: Robust fractional quantum Hall states and continuous quantum phase transitions in a half-filled bilayer graphene Landau level
  publication-title: Nature
– volume: 6
  year: 2016
  ident: CR39
  article-title: Universal classification of twisted, strained and sheared graphene moiré superlattices
  publication-title: Sci. Rep.
– volume: 81
  start-page: 109
  year: 2009
  end-page: 162
  ident: CR8
  article-title: The electronic properties of graphene
  publication-title: Rev. Mod. Phys.
– volume: 16
  start-page: 1989
  year: 2016
  end-page: 1995
  ident: CR49
  article-title: Van der Waals heterostructures with high accuracy rotational alignment
  publication-title: Nano Lett.
– volume: 83
  start-page: 824
  year: 1999
  end-page: 827
  ident: CR36
  article-title: Anisotropic states of two-dimensional electron systems in high Landau levels: effect of an in-plane magnetic field
  publication-title: Phys. Rev. Lett.
– volume: 98
  start-page: 075109
  year: 2018
  ident: CR47
  article-title: Triangular antiferromagnetism on the honeycomb lattice of twisted bilayer graphene
  publication-title: Phys. Rev. B
– volume: 363
  start-page: 1059
  year: 2019
  end-page: 1064
  ident: CR3
  article-title: Tuning superconductivity in twisted bilayer graphene
  publication-title: Science
– volume: 82
  start-page: 121407
  year: 2010
  ident: CR19
  article-title: Flat bands in slightly twisted bilayer graphene: tight-binding calculations
  publication-title: Phys. Rev. B
– ident: CR48
– volume: 117
  start-page: 116804
  year: 2016
  ident: CR17
  article-title: Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 448
  year: 2019
  end-page: 453
  ident: CR24
  article-title: Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene
  publication-title: Nat. Mater.
– volume: 99
  start-page: 256802
  year: 2007
  ident: CR18
  article-title: Graphene bilayer with a twist: electronic structure
  publication-title: Phys. Rev. Lett.
– volume: 93
  start-page: 235153
  year: 2016
  ident: CR7
  article-title: Electronic structure theory of weakly interacting bilayers
  publication-title: Phys. Rev. B
– volume: 99
  start-page: 195455
  year: 2019
  ident: CR26
  article-title: Faithful tight-binding models and fragile topology of magic-angle bilayer graphene
  publication-title: Phys. Rev. B
– volume: 99
  start-page: 035111
  year: 2019
  ident: CR35
  article-title: Multiple topological transitions in twisted bilayer graphene near the first magic angle
  publication-title: Phys. Rev. B
– volume: 109
  start-page: 196802
  year: 2012
  ident: CR11
  article-title: Unraveling the intrinsic and robust nature of van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis
  publication-title: Phys. Rev. Lett.
– volume: 354
  start-page: 316
  year: 2016
  end-page: 321
  ident: CR37
  article-title: Observation of a nematic quantum Hall liquid on the surface of bismuth
  publication-title: Science
– volume: 556
  start-page: 43
  year: 2018
  end-page: 50
  ident: CR2
  article-title: Unconventional superconductivity in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 122
  start-page: 246401
  year: 2019
  ident: CR32
  article-title: Strong coupling phases of partially filled twisted bilayer graphene narrow bands
  publication-title: Phys. Rev. Lett.
– volume: 98
  start-page: 085435
  year: 2018
  ident: CR25
  article-title: Band structure of twisted bilayer graphene: emergent symmetries, commensurate approximants, and Wannier obstructions
  publication-title: Phys. Rev. B
– volume: 556
  start-page: 80
  year: 2018
  end-page: 84
  ident: CR1
  article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
  publication-title: Nature
  doi: 10.1038/nature26154
– volume: 8
  start-page: 031088
  year: 2018
  ident: CR27
  article-title: Symmetry, maximally localized Wannier states, and a low-energy model for twisted bilayer graphene narrow bands
  publication-title: Phys. Rev. X
– volume: 8
  start-page: 031089
  year: 2018
  ident: CR31
  article-title: Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene
  publication-title: Phys. Rev. X
– volume: 114
  start-page: 3364
  year: 2017
  end-page: 3369
  ident: CR15
  article-title: Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene
  publication-title: Proc. Natl Acad. Sci. USA
– volume: 109
  start-page: 126801
  year: 2012
  ident: 606_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.126801
– volume: 98
  start-page: 075109
  year: 2018
  ident: 606_CR47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.075109
– volume: 121
  start-page: 037702
  year: 2018
  ident: 606_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.037702
– volume: 108
  start-page: 12233
  year: 2011
  ident: 606_CR5
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1108174108
– volume: 82
  start-page: 121407
  year: 2010
  ident: 606_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.121407
– volume: 92
  start-page: 081406
  year: 2015
  ident: 606_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.081406
– volume: 86
  start-page: 155449
  year: 2012
  ident: 606_CR6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.155449
– volume: 18
  start-page: 448
  year: 2019
  ident: 606_CR24
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0346-z
– volume: 98
  start-page: 085435
  year: 2018
  ident: 606_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.085435
– volume: 96
  start-page: 075311
  year: 2017
  ident: 606_CR28
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.075311
– volume: 81
  start-page: 109
  year: 2009
  ident: 606_CR8
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.81.109
– ident: 606_CR29
– volume: 556
  start-page: 80
  year: 2018
  ident: 606_CR1
  publication-title: Nature
  doi: 10.1038/nature26154
– volume: 8
  start-page: 031089
  year: 2018
  ident: 606_CR31
  publication-title: Phys. Rev. X
– volume: 69
  start-page: 3804
  year: 1992
  ident: 606_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.69.3804
– volume: 448
  start-page: 176
  year: 2007
  ident: 606_CR43
  publication-title: Nature
  doi: 10.1038/nature05982
– volume: 93
  start-page: 235153
  year: 2016
  ident: 606_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.235153
– volume: 8
  start-page: 031088
  year: 2018
  ident: 606_CR27
  publication-title: Phys. Rev. X
– volume: 122
  start-page: 246401
  year: 2019
  ident: 606_CR32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.246401
– volume: 109
  start-page: 186807
  year: 2012
  ident: 606_CR12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.186807
– volume: 9
  year: 2018
  ident: 606_CR45
  publication-title: Nat. Commun.
– volume: 16
  start-page: 1989
  year: 2016
  ident: 606_CR49
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05263
– volume: 9
  year: 2018
  ident: 606_CR44
  publication-title: Nat. Commun.
– volume: 467
  start-page: 185
  year: 2010
  ident: 606_CR30
  publication-title: Nature
  doi: 10.1038/nature09330
– volume: 549
  start-page: 360
  year: 2017
  ident: 606_CR23
  publication-title: Nature
  doi: 10.1038/nature23893
– volume: 99
  start-page: 256802
  year: 2007
  ident: 606_CR18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.256802
– volume: 86
  start-page: 125413
  year: 2012
  ident: 606_CR20
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.86.125413
– volume: 115
  start-page: 13174
  year: 2018
  ident: 606_CR34
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1810947115
– volume: 120
  start-page: 156405
  year: 2018
  ident: 606_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.156405
– volume: 114
  start-page: 3364
  year: 2017
  ident: 606_CR15
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1620140114
– volume: 117
  start-page: 116804
  year: 2016
  ident: 606_CR17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.116804
– volume: 8
  start-page: 031087
  year: 2018
  ident: 606_CR33
  publication-title: Phys. Rev. X
– volume: 92
  start-page: 155409
  year: 2015
  ident: 606_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.155409
– volume: 6
  year: 2016
  ident: 606_CR39
  publication-title: Sci. Rep.
  doi: 10.1038/srep25670
– volume: 7
  start-page: 245
  year: 2011
  ident: 606_CR46
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1866
– volume: 10
  start-page: 804
  year: 2010
  ident: 606_CR4
  publication-title: Nano Lett.
  doi: 10.1021/nl902948m
– volume: 6
  start-page: 109
  year: 2010
  ident: 606_CR10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1463
– volume: 106
  start-page: 126802
  year: 2011
  ident: 606_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.126802
– ident: 606_CR48
– volume: 363
  start-page: 1059
  year: 2019
  ident: 606_CR3
  publication-title: Science
  doi: 10.1126/science.aav1910
– volume: 99
  start-page: 195455
  year: 2019
  ident: 606_CR26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.195455
– volume: 556
  start-page: 43
  year: 2018
  ident: 606_CR2
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 99
  start-page: 035111
  year: 2019
  ident: 606_CR35
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.035111
– volume: 83
  start-page: 824
  year: 1999
  ident: 606_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.83.824
– volume: 14
  start-page: 3353
  year: 2014
  ident: 606_CR13
  publication-title: Nano Lett.
  doi: 10.1021/nl500823k
– volume: 354
  start-page: 316
  year: 2016
  ident: 606_CR37
  publication-title: Science
  doi: 10.1126/science.aag1715
– volume: 64
  start-page: 681
  year: 1990
  ident: 606_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.64.681
– volume: 9
  start-page: 2021
  year: 1976
  ident: 606_CR40
  publication-title: J. Phys. C
  doi: 10.1088/0022-3719/9/11/012
– volume: 109
  start-page: 196802
  year: 2012
  ident: 606_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.196802
SSID ssj0042613
Score 2.7153568
Snippet Twisted bilayer graphene with a twist angle of around 1.1° features a pair of isolated flat electronic bands and forms a platform for investigating strongly...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1174
SubjectTerms 639/301/119/995
639/925/918/1052
Atomic
Bilayers
Broken symmetry
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Correlation
Graphene
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Physics and Astronomy
Theoretical
Title Electronic correlations in twisted bilayer graphene near the magic angle
URI https://link.springer.com/article/10.1038/s41567-019-0606-5
https://www.proquest.com/docview/2311940491
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3fS8MwED7chuCL-BOnc-TBJ6WsbdI1fZJNNofgEHGwt5K0iQizm7biv--lTTcU3GNpm4e7y913uct9AFdoBJyloedIDB-YoFDfiVLBHFeiMScmJJf8KY_T_mTGHubB3B645batsvaJpaNOl4k5I-8hDsF8G_Gsd7v6cAxrlKmuWgqNBrTQBXNMvlrD0fTpufbFJj-g1ZXIwPFZSOu6JuW93KQupu3S3MLHtDr4HZk2cPNPhbQMPOMD2LeIkQwqFR_CjsqOYLfs3EzyY5iM1kQ2JDFUG7a5jbxlpPg2SkyJfFsIhNaknE6Nzo1kaN8EoR95F-j5iMheF-oEZuPRy93EsfQITkK9fuFoN9IipVpqIakfRkEihJYJDZXrSy0FLbGJ4K6kgfK8kIY8DVLNWcS04vh8Cs1smakzIApxU6T7IeIBxYSnBRNMIpTrh5qZefttcGvRxImdHW4oLBZxWcOmPK6kGaM0YyPNOGjD9fqXVTU4Y9vHnVresd1DebzReBtuah1sXv-72Pn2xS5gzzdKL-8TdqBZfH6pSwQWhexCg4_vu9AajIfDadfa0g_Di8oP
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2VIgQXxCrK6gNcQBFJ7DTJASEELWXrqZV6M3Zio0olLC2q-Cm-kbGTtAKJ3jhGiX0YP8-8yWwAhwiCiKWh50g0H-igUN-JU8EcVyKYE2OS7fyUh3a91WW3vaBXga-yFsakVZY60Srq9CUx_8hPkYegv4181jt_fXPM1CgTXS1HaOSwuFOfY3TZhmc3V3i-R77fbHQuW04xVcBJqFcfOdqNtUipllpI6odxkAihZUJD5fpSS0GtSReRK2mgPC-kYZQGqY5YzLSK8Bn3nYN5RmlsblTUvC41v_FGaF6AGTg-C2kZRaXR6dA4SibJ09T8oxMf_LSDU3L7Kx5rzVxzBZYLfkouckCtQkVla7Bg80ST4Tq0GpOxOSQxgz2KVDrSz8hobCCTEtkfCCTyxPbCRlVKMhQbQaJJngXqWSKyp4HagO6_iG0TqtlLpraAKGRpsa6HyD4UE54WTDCJxLEeama6-9fALUXDk6JTuRmYMeA2Yk4jnkuTozS5kSYPanA8WfKat-mY9fFuKW9e3Nghn-KrBiflGUxf_7nZ9uzNDmCx1Xm45_c37bsdWPINAGwl4y5UR-8fag8pzUjuWxwRePxv4H4DcjYEfg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8NAEB60RfEiPrE-96AXJTTJbrrJQURtS30VEQVv626yK4WaVlsR_5q_ztk8LAp68xiS7GH2y8z3ZWZnAHYRBCFLuOcoDB8oUKjvRIlkjqsQzLENydn8lKtuo3PHzu-D-yn4KM_C2LLK0idmjjoZxPYfeR15COpt5LNe3RRlEdfN9tHw2bETpGymtRynkUPkQr-_oXwbHZ41ca_3fL_duj3tOMWEASemXmPsGDcyMqFGGamoz6MgltKomHLt-sooSbPwLkNX0UB7Hqc8TILEhCxiRod4jetOQ5WjKnIrUD1pda9vyjhgtQnNj2MGjs84LXOqNKyPrGyyJZ-2AwBK-uB7VJxQ3R_Z2SzotRdgvmCr5DiH1yJM6XQJZrKq0Xi0DJ3W1xAdEtsxH0VhHemlZPxmAZQQ1etLpPUk64yNjpWkaDiCtJM8SfS6RKaPfb0Cd_9iuFWopINUrwHRyNki0-DIRTSTnpFMMoU0ssENs73-a-CWphFx0bfcjs_oiyx_TkORW1OgNYW1pghqsP_1yjBv2vHXw5ulvUXx_Y7EBG01OCj3YHL718XW_15sB2YRtOLyrHuxAXO-3f_sWOMmVMYvr3oL-c1YbRdAIvDw39j9BPhLChA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electronic+correlations+in+twisted+bilayer+graphene+near+the+magic+angle&rft.jtitle=Nature+physics&rft.au=Choi%2C+Youngjoon&rft.au=Kemmer%2C+Jeannette&rft.au=Yang%2C+Peng&rft.au=Thomson%2C+Alex&rft.date=2019-11-01&rft.pub=Nature+Publishing+Group&rft.issn=1745-2473&rft.eissn=1745-2481&rft.volume=15&rft.issue=11&rft.spage=1174&rft.epage=1180&rft_id=info:doi/10.1038%2Fs41567-019-0606-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1745-2473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1745-2473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1745-2473&client=summon