Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres

Cobalt ferrite (CoFe 2 O 4 ), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In this study, CoFe 2 O 4 @mesoporous carbon hollow spheres (MCHS) with a core-shell structure were prepared by introducing CoFe 2 O 4 magnetic...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of minerals, metallurgy and materials Vol. 30; no. 3; pp. 504 - 514
Main Authors Ren, Lianggui, Wang, Yiqun, Zhang, Xin, He, Qinchuan, Wu, Guanglei
Format Journal Article
LanguageEnglish
Published Beijing University of Science and Technology Beijing 01.03.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cobalt ferrite (CoFe 2 O 4 ), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In this study, CoFe 2 O 4 @mesoporous carbon hollow spheres (MCHS) with a core-shell structure were prepared by introducing CoFe 2 O 4 magnetic particles into hollow mesoporous carbon through a simple in situ method. Then, the microwave absorption performance of the CoFe 2 O 4 @MCHS composites was investigated. Magnetic and dielectric losses can be effectively coordinated by constructing the porous structure and adjusting the ratio of MCHS and CoFe 2 O 4 . Results show that the impedance matching and absorption properties of the CoFe 2 O 4 @MCHS composites can be altered by tweaking the mass ratio of MCHS and CoFe 2 O 4 . The minimum reflection loss of the CoFe 2 O 4 @MCHS composites reaches -29.7 dB at 5.8 GHz. In addition, the effective absorption bandwidth is 3.7 GHz, with the thickness being 2.5 mm. The boosted microwave absorption can be ascribed to the porous core-shell structure and introduction of magnetic particles. The coordination between the microporous morphology and the core-shell structure is conducive to improving the attenuation coefficient and achieving good impedance matching. The porous core-shell structure provides large solid-void and CoFe 2 O 4 −C interfaces to induce interfacial polarization and extend the electromagnetic waves’ multiple scattering and reflection. Furthermore, natural resonance, exchange resonance, and eddy current loss work together for the magnetic loss. This method provides a practical solution to prepare core-shell structure microwave absorbents.
AbstractList Cobalt ferrite (CoFe 2 O 4 ), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In this study, CoFe 2 O 4 @mesoporous carbon hollow spheres (MCHS) with a core-shell structure were prepared by introducing CoFe 2 O 4 magnetic particles into hollow mesoporous carbon through a simple in situ method. Then, the microwave absorption performance of the CoFe 2 O 4 @MCHS composites was investigated. Magnetic and dielectric losses can be effectively coordinated by constructing the porous structure and adjusting the ratio of MCHS and CoFe 2 O 4 . Results show that the impedance matching and absorption properties of the CoFe 2 O 4 @MCHS composites can be altered by tweaking the mass ratio of MCHS and CoFe 2 O 4 . The minimum reflection loss of the CoFe 2 O 4 @MCHS composites reaches -29.7 dB at 5.8 GHz. In addition, the effective absorption bandwidth is 3.7 GHz, with the thickness being 2.5 mm. The boosted microwave absorption can be ascribed to the porous core-shell structure and introduction of magnetic particles. The coordination between the microporous morphology and the core-shell structure is conducive to improving the attenuation coefficient and achieving good impedance matching. The porous core-shell structure provides large solid-void and CoFe 2 O 4 −C interfaces to induce interfacial polarization and extend the electromagnetic waves’ multiple scattering and reflection. Furthermore, natural resonance, exchange resonance, and eddy current loss work together for the magnetic loss. This method provides a practical solution to prepare core-shell structure microwave absorbents.
Cobalt ferrite (CoFe2O4), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In this study, CoFe2O4@mesoporous carbon hollow spheres (MCHS) with a core-shell structure were prepared by introducing CoFe2O4 magnetic particles into hollow mesoporous carbon through a simple in situ method. Then, the microwave absorption performance of the CoFe2O4@MCHS composites was investigated. Magnetic and dielectric losses can be effectively coordinated by constructing the porous structure and adjusting the ratio of MCHS and CoFe2O4. Results show that the impedance matching and absorption properties of the CoFe2O4@MCHS composites can be altered by tweaking the mass ratio of MCHS and CoFe2O4. The minimum reflection loss of the CoFe2O4@MCHS composites reaches -29.7 dB at 5.8 GHz. In addition, the effective absorption bandwidth is 3.7 GHz, with the thickness being 2.5 mm. The boosted microwave absorption can be ascribed to the porous core-shell structure and introduction of magnetic particles. The coordination between the microporous morphology and the core-shell structure is conducive to improving the attenuation coefficient and achieving good impedance matching. The porous core-shell structure provides large solid-void and CoFe2O4−C interfaces to induce interfacial polarization and extend the electromagnetic waves’ multiple scattering and reflection. Furthermore, natural resonance, exchange resonance, and eddy current loss work together for the magnetic loss. This method provides a practical solution to prepare core-shell structure microwave absorbents.
Author Zhang, Xin
Ren, Lianggui
Wang, Yiqun
Wu, Guanglei
He, Qinchuan
Author_xml – sequence: 1
  givenname: Lianggui
  surname: Ren
  fullname: Ren, Lianggui
  organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University
– sequence: 2
  givenname: Yiqun
  surname: Wang
  fullname: Wang, Yiqun
  email: wangyiqun17@cdut.edu.cn
  organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology
– sequence: 3
  givenname: Xin
  surname: Zhang
  fullname: Zhang, Xin
  organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology
– sequence: 4
  givenname: Qinchuan
  surname: He
  fullname: He, Qinchuan
  organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology
– sequence: 5
  givenname: Guanglei
  surname: Wu
  fullname: Wu, Guanglei
  email: wuguanglei@qdu.edu.cn, wuguanglei@mail.xjtu.edu.cn
  organization: Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University
BookMark eNp9kFFLwzAQx4NM0E0_gG8Bn6tJ2iXNmzI2FYS9KPgWsvRqI11Tk9QhfnkzKwiCPoS7g_8vd_ymaNK5DhA6o-SCEiIuA2Wc5hlhLGNzIjN6gI5pyVND8qdJ6rkoskJIeYSmIbwQwoUg4hh9LOvaGgtdxFtrvNvpN8B6E5zvo3Ud1qax8AYVjo13w3ODbYeDjQM2rgvRD-Yr5eo0e8hCA22LF24FbF1cbSG43iUsYKP9JuUa17Zuh0PfgIdwgg5r3QY4_a4z9LhaPixus_v1zd3i-j4zOeUxgxoYUC1lJUnJSskKKCtegmDcVMaYTSXKQtKaGA2cVkYaJjdM5_O6BEOqeT5D5-O_vXevA4SoXtzgu7RSMclIelwWKUXHVLIQgoda9d5utX9XlKi9YzU6Vsmx2jtWNDHiF2Ns1Hsl0Wvb_kuykQxpS_cM_uemv6FPE12VzA
CitedBy_id crossref_primary_10_1016_j_mtphys_2024_101419
crossref_primary_10_1007_s12613_022_2546_9
crossref_primary_10_1007_s12613_024_2881_0
crossref_primary_10_1016_j_jcis_2023_08_019
crossref_primary_10_1002_smll_202308585
crossref_primary_10_1016_j_nxmate_2024_100242
crossref_primary_10_1007_s12613_024_2875_y
crossref_primary_10_1002_pc_27371
crossref_primary_10_1016_j_mtphys_2024_101373
crossref_primary_10_1016_j_jcis_2023_09_104
crossref_primary_10_1016_j_jmst_2023_04_045
crossref_primary_10_1007_s12613_023_2599_4
crossref_primary_10_1016_j_carbon_2025_120233
crossref_primary_10_1016_j_ceramint_2023_08_322
crossref_primary_10_1007_s42114_023_00792_4
crossref_primary_10_1021_acsanm_3c05469
crossref_primary_10_1007_s10854_023_11360_3
crossref_primary_10_1007_s12613_023_2795_2
crossref_primary_10_1016_j_jmmm_2024_172688
crossref_primary_10_1016_j_carbon_2023_03_021
crossref_primary_10_1016_j_materresbull_2024_112873
crossref_primary_10_1002_smll_202404449
crossref_primary_10_1016_j_jmst_2023_06_024
crossref_primary_10_1016_j_ceramint_2024_09_010
crossref_primary_10_1007_s12613_023_2810_7
crossref_primary_10_1002_pc_27313
crossref_primary_10_1016_j_matchemphys_2023_128230
crossref_primary_10_26599_NR_2025_94907209
crossref_primary_10_1016_j_colsurfa_2023_132417
crossref_primary_10_1016_j_jcis_2023_05_197
crossref_primary_10_1002_smll_202402438
crossref_primary_10_1039_D4TA08139K
crossref_primary_10_1016_j_colsurfa_2023_131564
crossref_primary_10_1016_j_coco_2024_102016
crossref_primary_10_1016_j_jmst_2022_12_001
crossref_primary_10_1007_s12613_024_2851_6
crossref_primary_10_1016_j_jallcom_2024_174429
crossref_primary_10_1002_pc_27385
crossref_primary_10_1007_s12274_023_6120_1
crossref_primary_10_1002_pc_27422
crossref_primary_10_1002_pc_27388
crossref_primary_10_1016_j_jmst_2023_07_061
crossref_primary_10_1016_j_apsusc_2023_157626
crossref_primary_10_1016_j_mseb_2024_117388
crossref_primary_10_1016_j_jallcom_2023_170129
crossref_primary_10_1016_j_mtphys_2023_101178
crossref_primary_10_1016_j_materresbull_2024_112732
crossref_primary_10_1016_j_jcis_2023_04_040
crossref_primary_10_1016_j_mtphys_2023_101215
crossref_primary_10_1007_s10854_023_10283_3
crossref_primary_10_1016_j_est_2023_107285
crossref_primary_10_1007_s12613_022_2578_1
crossref_primary_10_1016_j_ceramint_2023_05_254
crossref_primary_10_1016_j_compositesa_2023_107528
crossref_primary_10_1016_j_ceramint_2023_03_262
crossref_primary_10_1007_s40820_023_01179_2
crossref_primary_10_1016_j_matchar_2023_113131
crossref_primary_10_1016_j_apsusc_2024_159697
crossref_primary_10_1007_s40820_023_01212_4
crossref_primary_10_1016_j_ceramint_2023_04_227
crossref_primary_10_1016_j_carbon_2023_118351
crossref_primary_10_1007_s11664_023_10657_7
crossref_primary_10_1016_j_colsurfa_2024_135805
crossref_primary_10_1007_s12613_024_2940_6
crossref_primary_10_1007_s12613_024_2880_1
crossref_primary_10_1039_D4RE00060A
crossref_primary_10_1016_j_apsusc_2023_159203
crossref_primary_10_1016_j_jmst_2023_05_026
crossref_primary_10_1016_j_ceramint_2025_01_268
crossref_primary_10_1016_j_materresbull_2023_112630
crossref_primary_10_1016_j_coco_2024_101993
crossref_primary_10_1016_j_materresbull_2023_112631
crossref_primary_10_1007_s12274_023_5687_x
crossref_primary_10_1007_s12613_024_2865_0
crossref_primary_10_1007_s42114_024_00864_z
crossref_primary_10_1021_acs_langmuir_4c02829
crossref_primary_10_1016_j_compositesb_2024_111344
crossref_primary_10_1002_adem_202402971
crossref_primary_10_1002_pc_27356
crossref_primary_10_1007_s12613_024_2911_y
crossref_primary_10_1002_pc_27355
crossref_primary_10_1016_j_ceramint_2024_01_074
crossref_primary_10_1007_s42114_024_01020_3
crossref_primary_10_1016_j_apsusc_2023_157417
crossref_primary_10_1016_j_mtnano_2024_100568
crossref_primary_10_1016_j_seppur_2024_129538
crossref_primary_10_1007_s12613_024_2972_y
crossref_primary_10_1016_j_carbon_2024_119117
crossref_primary_10_1016_j_jmrt_2023_05_196
crossref_primary_10_1016_j_diamond_2024_110991
crossref_primary_10_1016_j_jmst_2024_06_012
crossref_primary_10_1016_j_mtphys_2023_101126
crossref_primary_10_1007_s12274_023_6160_6
crossref_primary_10_1007_s42114_023_00763_9
crossref_primary_10_1007_s42114_022_00615_y
crossref_primary_10_1016_j_ceramint_2023_02_134
crossref_primary_10_1016_j_materresbull_2024_112673
crossref_primary_10_1016_j_jmst_2023_01_053
crossref_primary_10_1016_j_carbon_2024_119244
crossref_primary_10_1016_j_ceramint_2023_05_167
Cites_doi 10.3390/nano12030446
10.1007/s42114-022-00458-7
10.1021/acssuschemeng.7b03846
10.1016/j.jallcom.2019.06.351
10.1016/j.jmst.2020.06.046
10.1007/s10854-020-05183-9
10.1016/j.surfin.2021.101689
10.1016/j.jallcom.2018.05.130
10.1016/j.jallcom.2019.152083
10.1016/j.coco.2021.101052
10.1016/j.coco.2021.100731
10.1002/smll.202101951
10.1016/j.cej.2019.123096
10.1016/j.cej.2021.133919
10.1016/j.compositesb.2021.109306
10.1155/2020/3672517
10.1016/j.cej.2021.132253
10.1007/s12613-022-2488-2
10.1016/j.cej.2021.129960
10.1016/j.ssi.2019.03.024
10.1038/s41467-021-21103-9
10.1007/s12274-022-4287-5
10.1016/j.cej.2020.127313
10.1016/j.coco.2021.100993
10.1007/s40820-021-00704-5
10.1016/j.cej.2017.09.174
10.1016/j.apsusc.2018.08.121
10.1016/j.compositesb.2019.03.055
10.1007/s12613-022-2476-6
10.1016/j.carbon.2018.10.027
10.1016/j.carbon.2021.10.025
10.1007/s40820-020-00568-1
10.1016/j.jclepro.2021.128201
10.1016/j.jmst.2022.04.005
10.1007/s40820-022-00798-5
10.1016/j.carbon.2020.05.070
10.1016/j.jallcom.2020.154531
10.1016/j.carbon.2017.01.077
10.1063/1.5099315
10.1021/acsami.9b09779
10.1016/j.ijbiomac.2022.02.155
10.1002/smsc.202100077
10.1016/j.compositesb.2021.109240
10.1039/C9QI01259A
10.1007/s42114-021-00304-2
10.3390/ma13143065
10.1016/j.cej.2021.130019
10.1016/j.carbon.2018.10.014
10.1016/j.cej.2019.02.193
10.1016/j.cej.2019.123207
10.1007/s42114-021-00415-w
10.1021/nn304630h
10.1016/j.carbpol.2019.115175
10.1002/anie.202200705
10.1016/j.compscitech.2021.109178
10.1016/j.snb.2018.05.167
10.1016/j.jcis.2020.07.102
10.1007/s12274-022-4159-z
10.1016/j.carbon.2019.06.080
10.1016/j.jallcom.2019.151881
10.1016/j.ceramint.2018.10.212
10.1039/C3TA14050D
10.1016/j.carbon.2020.11.089
10.1016/j.mtphys.2021.100475
10.1016/j.cej.2021.129429
10.1016/j.coco.2020.100404
10.1016/j.carbon.2016.10.059
10.1016/j.carbon.2020.09.036
10.1016/j.jmst.2021.07.049
10.1016/j.cej.2021.132547
ContentType Journal Article
Copyright University of Science and Technology Beijing 2023
University of Science and Technology Beijing 2023.
Copyright_xml – notice: University of Science and Technology Beijing 2023
– notice: University of Science and Technology Beijing 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
HCIFZ
KB.
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12613-022-2509-1
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection
Materials Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList
ProQuest Materials Science Collection
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-103X
EndPage 514
ExternalDocumentID 10_1007_s12613_022_2509_1
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
1N0
1~5
2B.
2C0
2KG
2LR
2VQ
30V
4.4
406
408
40D
4G.
67Z
7-5
71M
8RM
92H
92I
96X
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CAJEB
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OZT
P2P
P9N
PCBAR
PDBOC
PT4
Q--
R9I
RIG
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-efe2e1a99d90828924e8d68e726cdcccbd78491f0cae61dc9c29b2a35f8ec0d53
IEDL.DBID BENPR
ISSN 1674-4799
IngestDate Fri Jul 25 11:02:28 EDT 2025
Tue Jul 01 01:18:47 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Fri Feb 21 02:45:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords porous core-shell structure
ferrite
structure-controllable
microwave absorption
interface polarization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-efe2e1a99d90828924e8d68e726cdcccbd78491f0cae61dc9c29b2a35f8ec0d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2920292694
PQPubID 2043631
PageCount 11
ParticipantIDs proquest_journals_2920292694
crossref_primary_10_1007_s12613_022_2509_1
crossref_citationtrail_10_1007_s12613_022_2509_1
springer_journals_10_1007_s12613_022_2509_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230300
2023-03-00
20230301
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 3
  year: 2023
  text: 20230300
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle International journal of minerals, metallurgy and materials
PublicationTitleAbbrev Int J Miner Metall Mater
PublicationYear 2023
Publisher University of Science and Technology Beijing
Springer Nature B.V
Publisher_xml – name: University of Science and Technology Beijing
– name: Springer Nature B.V
References WangLHGuanHHuJQJute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorberJ. Alloys Compd.201980311191:CAS:528:DC%2BC1MXhtlahsbvO10.1016/j.jallcom.2019.06.351
G.S. Ma, L. Xia, H. Yang, et al., Multifunctional lithium aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption, Chem. Eng. J., 418(2021), art. No. 129429.
SongCQYinXWHanMKThree-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption propertiesCarbon2017116501:CAS:528:DC%2BC2sXitFGmtrw%3D10.1016/j.carbon.2017.01.077
ZhangSHDongHBHeRDHydro electroactive Cu/Zn coated cotton fiber nonwovens for antibacterial and antiviral applicationsInt. J. Biol. Macromol.20222071001:CAS:528:DC%2BB38Xmt1Wktrw%3D10.1016/j.ijbiomac.2022.02.155
DingDWangYLiXDRational design of core-shell Co@C microspheres for high-performance microwave absorptionCarbon20171117221:CAS:528:DC%2BC28XhslOhtrfJ10.1016/j.carbon.2016.10.059
P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, and J.W. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures, Nano-Micro Lett., 14(2022), No. 1, art. No. 51.
H. Lv, Z. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), art. No. 834.
J.X. Chai, J.Y. Cheng, D.Q. Zhang, et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets, J. Alloys Compd., 829(2020), art. No. 154531.
ShiYNGaoXHQiuJSynthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foamCeram. Int.201945331261:CAS:528:DC%2BC1cXitFertrfI10.1016/j.ceramint.2018.10.212
S.P. Liu, Z.Q. Zheng, S. Wang, et al., Polydopamine-coated chitosan/calcium pyrophosphate hybrid microflowers as an effective hemostatic agent, Carbohydr. Polym., 224(2019), art. No. 115175.
D. Lan, Z.G. Gao, Z.H. Zhao, et al., Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption, Chem. Eng. J., 408(2021), art. No. 127313.
Y. Qiu, Y. Lin, H.B. Yang, et al., Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123207.
ZhangXDRenXWangCChenNKSongNNSynthesis of layered Fe3O4 nanodisk and nanostructure dependent microwave absorption propertyJ. Mater. Sci. Mater. Electron.202132444041:CAS:528:DC%2BB3MXhtVKgsbg%3D10.1007/s10854-020-05183-9
HouTQJiaZRFengALHierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacityJ. Mater. Sci. Technol.202168611:CAS:528:DC%2BB38XhtFehsbzO10.1016/j.jmst.2020.06.046
C.Y. Liu, B.C. Wang, C. Zhang, et al., Simple preparation and excellent microwave attenuation property of Fe3O4- and FeS2-decorated graphene nanosheets by liquid-phase exfoliation, J. Alloys Compd., 810(2019), art. No. 151881.
WangGZGaoZTangSWMicrowave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer depositionACS Nano2012612110091:CAS:528:DC%2BC38Xhslalur%2FN10.1021/nn304630h
WuGLChengYHYangZHDesign of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behaviorChem. Eng. J.20183335191:CAS:528:DC%2BC2sXhs1aktbvL10.1016/j.cej.2017.09.174
ZhangXQiaoJLiuCA MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorptionInorg. Chem. Front.2020723851:CAS:528:DC%2BC1MXitVylsb7L10.1039/C9QI01259A
H.X. Zhang, Z.R. Jia, B.B. Wang, et al., Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co−CoFe2O4@mesoporous hollow carbon spheres, Chem. Eng. J., 421(2021), art. No. 129960.
ZhangDQJiaYXChengJYHigh-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structuresJ. Alloys Compd.2018758621:CAS:528:DC%2BC1cXpvVKmtb0%3D10.1016/j.jallcom.2018.05.130
Y.Q. Wang, H.G. Wang, J.H. Ye, L.Y. Shi, and X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123096.
WangCXJiaZRHeSQMetal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuationJ. Mater. Sci. Technol.202210823610.1016/j.jmst.2021.07.049
CuiLRTianCHTangLLSpace-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorptionACS Appl. Mater. Interfaces20191134311821:CAS:528:DC%2BC1MXhsV2jsbvM10.1021/acsami.9b09779
W.Y. Dai, F. Chen, H. Luo, et al., Synthesis of yolk-shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance, J. Alloys Compd., 812(2020), art. No. 152083.
HuangXMLiuXHJiaZRSynthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performanceAdv. Compos. Hybrid Mater.20214413981:CAS:528:DC%2BB3MXitF2hsrrN10.1007/s42114-021-00304-2
JiaZRKongMYYuBWYTunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption propertiesJ. Mater. Sci. Technol.202212715310.1016/j.jmst.2022.04.005
DuZHChenXBZhangYWOne-pot hydrothermal preparation of Fe3O4 decorated graphene for microwave absorptionMaterials2020131430651:CAS:528:DC%2BB3cXhs1Glsr7J10.3390/ma13143065
LiuYJiaZRZhanQQMagnetic manganese-based composites with multiple loss mechanisms towards broadband absorptionNano Res.20221555901:CAS:528:DC%2BB38XotlGqtLY%3D10.1007/s12274-022-4287-5
XiangZSongYMXiongJEnhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworksCarbon2019142201:CAS:528:DC%2BC1cXhvFKltLbP10.1016/j.carbon.2018.10.014
ZhaoYPZhangHYangXIn situ construction of hierarchical core-shell Fe3O4@C nanoparticles-helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorptionCarbon20211713951:CAS:528:DC%2BB3cXitFSnurnJ10.1016/j.carbon.2020.09.036
FengXYinPFZhangLMInnovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic-wave absorptionInt. J. Miner. Metall. Mater.2023303559
J.W. Wang, Z.R. Jia, X.H. Liu, et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption, Nano-Micro Lett., 13(2021), No. 1, art. No. 175.
ZhangFZhangWDZhuWFChengBQiuHQiSHCore-shell nanostructured CS/MoS2: A promising material for microwave absorptionAppl. Surf. Sci.20194631821:CAS:528:DC%2BC1cXhs1entbvK10.1016/j.apsusc.2018.08.121
ZhaoHQChengYLvHLJiGBDuYWA novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorptionCarbon20191422451:CAS:528:DC%2BC1cXitVWjtr3E10.1016/j.carbon.2018.10.027
ZhangYQLiuYYZhouLSThe role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen speciesSens. Actuators B20182739911:CAS:528:DC%2BC1cXht12qt7zN10.1016/j.snb.2018.05.167
X.R. Gao, Z.R. Jia, B.B. Wang, et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber, Chem. Eng. J., 419(2021), art. No. 130019.
T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919.
Y.L. Zhang, K.P. Ruan, and J.W. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities, Small, 17(2021), No. 42, art. No. 2101951.
L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2−0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993.
M. Chang, Z.R. Jia, S.Q. He, et al., Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability, Composites Part B, 225(2021), art. No. 109306.
KongLLuoSHZhangSYUltralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorptionInt. J. Miner. Metall. Mater.2023303570
ChaiLWangYQZhouNFIn-situ growth of core-shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorberJ. Colloid. Interface. Sci.202058147510.1016/j.jcis.2020.07.102
LiuPBZhangYQYanJSynthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorptionChem. Eng. J.20193682851:CAS:528:DC%2BC1MXktVKltL0%3D10.1016/j.cej.2019.02.193
ZhangSJJiaZRChengBRecent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-reviewAdv. Compos. Hybrid Mater.20225244010.1007/s42114-022-00458-7
Q.L. Sun, W. Ye, J.H. Cheng, and X.Y. Long, Effects of boron nitride coatings at high temperatures and electromagnetic wave absorption properties of carbon fiber-based magnetic materials, J. Nanomater., 2020(2020), art. No. 3672517.
F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475.
Z.D. Wang, T. Zhang, J.K. Wang, et al., The investigation of the effect of filler sizes in 3D-BN skeletons on thermal conductivity of epoxy-based composites, Nanomaterials, 12(2022), No. 3, art. No. 446.
ZhouXFJiaZRFengALSynthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performanceCarbon20191528271:CAS:528:DC%2BC1MXhtlSmsrnE10.1016/j.carbon.2019.06.080
LiXWenCYYangLTMXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropyCarbon20211755091:CAS:528:DC%2BB3MXitlSnt74%3D10.1016/j.carbon.2020.11.089
L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 vi
LH Wang (2509_CR32) 2019; 803
2509_CR69
YP Zhao (2509_CR26) 2021; 171
2509_CR68
X Cao (2509_CR31) 2022; 5
YQ Zhang (2509_CR38) 2018; 273
2509_CR65
2509_CR20
ZJ Li (2509_CR17) 2020; 167
2509_CR23
HQ Zhao (2509_CR54) 2019; 142
2509_CR67
2509_CR29
D Ding (2509_CR22) 2017; 111
GL Wu (2509_CR39) 2018; 333
HX Zhang (2509_CR16) 2019; 167
TT Zheng (2509_CR66) 2022; 186
2509_CR70
L Kong (2509_CR59) 2023; 30
2509_CR36
2509_CR37
2509_CR33
2509_CR7
LR Cui (2509_CR21) 2019; 11
XD Zhang (2509_CR30) 2021; 32
2509_CR9
M Fu (2509_CR28) 2014; 2
2509_CR2
2509_CR5
2509_CR4
GZ Wang (2509_CR35) 2012; 6
2509_CR1
DQ Zhang (2509_CR11) 2018; 758
SJ Zhang (2509_CR42) 2022; 5
CX Wang (2509_CR60) 2022; 108
2509_CR40
Z Xiang (2509_CR15) 2019; 142
2509_CR46
2509_CR48
2509_CR45
YN Shi (2509_CR24) 2019; 45
2509_CR44
ZH Du (2509_CR27) 2020; 13
F Zhang (2509_CR34) 2019; 463
TQ Hou (2509_CR64) 2021; 68
XF Zhou (2509_CR55) 2019; 152
Y Cheng (2509_CR49) 2018; 6
2509_CR52
2509_CR51
X Feng (2509_CR61) 2023; 30
2509_CR14
2509_CR58
2509_CR57
CQ Song (2509_CR12) 2017; 116
L Chai (2509_CR6) 2020; 581
2509_CR10
2509_CR56
2509_CR18
SH Zhang (2509_CR25) 2022; 207
2509_CR19
X Zhang (2509_CR47) 2020; 7
XM Huang (2509_CR13) 2021; 4
YX Han (2509_CR3) 2022; 15
HY Yan (2509_CR41) 2019; 336
X Li (2509_CR43) 2021; 175
ZR Jia (2509_CR8) 2022; 127
2509_CR63
Y Liu (2509_CR50) 2022; 15
2509_CR62
PB Liu (2509_CR53) 2019; 368
References_xml – reference: JiaZRKongMYYuBWYTunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption propertiesJ. Mater. Sci. Technol.202212715310.1016/j.jmst.2022.04.005
– reference: FengXYinPFZhangLMInnovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic-wave absorptionInt. J. Miner. Metall. Mater.2023303559
– reference: HuangXMLiuXHJiaZRSynthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performanceAdv. Compos. Hybrid Mater.20214413981:CAS:528:DC%2BB3MXitF2hsrrN10.1007/s42114-021-00304-2
– reference: F. Pan, Z.C. Liu, B.W. Deng, et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance, Nano-Micro Lett., 13(2021), No. 1, art. No. 43.
– reference: Y. Qiu, Y. Lin, H.B. Yang, et al., Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123207.
– reference: Y.L. Zhang, K.P. Ruan, and J.W. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities, Small, 17(2021), No. 42, art. No. 2101951.
– reference: ZhengTTJiaZRZhanQQSelf-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorptionCarbon20221862621:CAS:528:DC%2BB3MXit1KgsL3P10.1016/j.carbon.2021.10.025
– reference: ZhangYQLiuYYZhouLSThe role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen speciesSens. Actuators B20182739911:CAS:528:DC%2BC1cXht12qt7zN10.1016/j.snb.2018.05.167
– reference: G.S. Ma, L. Xia, H. Yang, et al., Multifunctional lithium aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption, Chem. Eng. J., 418(2021), art. No. 129429.
– reference: Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, and J.W. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing, Angew. Chem. Int. Ed, 61(2022), No. 15, art. No. e202200705.
– reference: J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253.
– reference: HanYXRuanKPGuJWJanus (BNNS/ANF)−(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performancesNano Res.20221547471:CAS:528:DC%2BB38XjtFSlsb0%3D10.1007/s12274-022-4159-z
– reference: XiangZSongYMXiongJEnhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworksCarbon2019142201:CAS:528:DC%2BC1cXhvFKltLbP10.1016/j.carbon.2018.10.014
– reference: H. Lv, Z. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), art. No. 834.
– reference: ShiYNGaoXHQiuJSynthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foamCeram. Int.201945331261:CAS:528:DC%2BC1cXitFertrfI10.1016/j.ceramint.2018.10.212
– reference: WangCXJiaZRHeSQMetal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuationJ. Mater. Sci. Technol.202210823610.1016/j.jmst.2021.07.049
– reference: FuMJiaoQZZhaoYLiHSVapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materialsJ. Mater. Chem. A2014237351:CAS:528:DC%2BC3sXhvV2rs7rJ10.1039/C3TA14050D
– reference: WangLHGuanHHuJQJute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorberJ. Alloys Compd.201980311191:CAS:528:DC%2BC1MXhtlahsbvO10.1016/j.jallcom.2019.06.351
– reference: CaoXJiaZRHuDWuGLSynergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorptionAdv. Compos. Hybrid Mater.2022510301:CAS:528:DC%2BB38XhsVWluro%3D10.1007/s42114-021-00415-w
– reference: W.Y. Dai, F. Chen, H. Luo, et al., Synthesis of yolk-shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance, J. Alloys Compd., 812(2020), art. No. 152083.
– reference: LiuPBZhangYQYanJSynthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorptionChem. Eng. J.20193682851:CAS:528:DC%2BC1MXktVKltL0%3D10.1016/j.cej.2019.02.193
– reference: X.J. Zhu, Y.Y. Dong, F. Pan, et al., Covalent organic framework-derived hollow core-shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption, Compos. Commun., 25(2021), art. No. 100731.
– reference: CuiLRTianCHTangLLSpace-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorptionACS Appl. Mater. Interfaces20191134311821:CAS:528:DC%2BC1MXhsV2jsbvM10.1021/acsami.9b09779
– reference: ZhaoYPZhangHYangXIn situ construction of hierarchical core-shell Fe3O4@C nanoparticles-helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorptionCarbon20211713951:CAS:528:DC%2BB3cXitFSnurnJ10.1016/j.carbon.2020.09.036
– reference: C. Mu, X. Du, A. Nie, et al., Microwave absorption properties of heterostructure composites of two dimensional layered magnetic materials and graphene nanosheets, Appl. Phys. Lett., 115(2019), No. 4, art. No. 043103.
– reference: K.R. Yang, W.J. Chen, Y.S. Zhao, et al., Enhancing dielectric strength of thermally conductive epoxy composites by preventing interfacial charge accumulation using micron-sized diamond, Compos. Sci. Technol., 221(2022), art. No. 109178.
– reference: ZhangXDRenXWangCChenNKSongNNSynthesis of layered Fe3O4 nanodisk and nanostructure dependent microwave absorption propertyJ. Mater. Sci. Mater. Electron.202132444041:CAS:528:DC%2BB3MXhtVKgsbg%3D10.1007/s10854-020-05183-9
– reference: ZhaoHQChengYLvHLJiGBDuYWA novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorptionCarbon20191422451:CAS:528:DC%2BC1cXitVWjtr3E10.1016/j.carbon.2018.10.027
– reference: LiZJLinHDingSQSynthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbonCarbon20201671481:CAS:528:DC%2BB3cXhtFylurbE10.1016/j.carbon.2020.05.070
– reference: ZhouXFJiaZRFengALSynthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performanceCarbon20191528271:CAS:528:DC%2BC1MXhtlSmsrnE10.1016/j.carbon.2019.06.080
– reference: ChengYCaoJLiYThe outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorptionACS Sustainable Chem. Eng.20186114271:CAS:528:DC%2BC2sXhvFSlu7vL10.1021/acssuschemeng.7b03846
– reference: SongCQYinXWHanMKThree-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption propertiesCarbon2017116501:CAS:528:DC%2BC2sXitFGmtrw%3D10.1016/j.carbon.2017.01.077
– reference: C.Y. Liu, B.C. Wang, C. Zhang, et al., Simple preparation and excellent microwave attenuation property of Fe3O4- and FeS2-decorated graphene nanosheets by liquid-phase exfoliation, J. Alloys Compd., 810(2019), art. No. 151881.
– reference: L.G. Ren, Y.Q. Wang, Z.R. Jia, Q.C. He, and G.L. Wu, Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption, Compos. Commun., 29(2022), art. No. 101052.
– reference: L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2−0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993.
– reference: S.P. Liu, Z.Q. Zheng, S. Wang, et al., Polydopamine-coated chitosan/calcium pyrophosphate hybrid microflowers as an effective hemostatic agent, Carbohydr. Polym., 224(2019), art. No. 115175.
– reference: Y. Zhao, L.L. Hao, X.D. Zhang, et al., A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect, Small. Sci., 2(2022), No. 2, art. No. 2100077.
– reference: J.X. Chai, J.Y. Cheng, D.Q. Zhang, et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets, J. Alloys Compd., 829(2020), art. No. 154531.
– reference: LiXWenCYYangLTMXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropyCarbon20211755091:CAS:528:DC%2BB3MXitlSnt74%3D10.1016/j.carbon.2020.11.089
– reference: X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass, Compos. Commun., 21(2020), art. No. 100404.
– reference: ZhangDQJiaYXChengJYHigh-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structuresJ. Alloys Compd.2018758621:CAS:528:DC%2BC1cXpvVKmtb0%3D10.1016/j.jallcom.2018.05.130
– reference: H.B. Dong, S.H. Zhang, L.G. Yang, et al., Cu/Zn galvanic couples composite antibacterial dressings prepared by templateassisted magnetron sputtering, Composites Part B, 224(2021), art. No. 109240.
– reference: F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475.
– reference: ZhangSHDongHBHeRDHydro electroactive Cu/Zn coated cotton fiber nonwovens for antibacterial and antiviral applicationsInt. J. Biol. Macromol.20222071001:CAS:528:DC%2BB38Xmt1Wktrw%3D10.1016/j.ijbiomac.2022.02.155
– reference: KongLLuoSHZhangSYUltralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorptionInt. J. Miner. Metall. Mater.2023303570
– reference: S.H. Zhu, C.W. Lou, S.H. Zhang, et al., Clean surface additive manufacturing of aramid paper-based electrically heated devices for medical therapy application, Surf. Interfaces, 29(2022), art. No. 101689.
– reference: Q.L. Sun, W. Ye, J.H. Cheng, and X.Y. Long, Effects of boron nitride coatings at high temperatures and electromagnetic wave absorption properties of carbon fiber-based magnetic materials, J. Nanomater., 2020(2020), art. No. 3672517.
– reference: Y.Q. Wang, H.G. Wang, J.H. Ye, L.Y. Shi, and X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123096.
– reference: DuZHChenXBZhangYWOne-pot hydrothermal preparation of Fe3O4 decorated graphene for microwave absorptionMaterials2020131430651:CAS:528:DC%2BB3cXhs1Glsr7J10.3390/ma13143065
– reference: ZhangXQiaoJLiuCA MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorptionInorg. Chem. Front.2020723851:CAS:528:DC%2BC1MXitVylsb7L10.1039/C9QI01259A
– reference: HouTQJiaZRFengALHierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacityJ. Mater. Sci. Technol.202168611:CAS:528:DC%2BB38XhtFehsbzO10.1016/j.jmst.2020.06.046
– reference: T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919.
– reference: DingDWangYLiXDRational design of core-shell Co@C microspheres for high-performance microwave absorptionCarbon20171117221:CAS:528:DC%2BC28XhslOhtrfJ10.1016/j.carbon.2016.10.059
– reference: J.W. Wang, Z.R. Jia, X.H. Liu, et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption, Nano-Micro Lett., 13(2021), No. 1, art. No. 175.
– reference: ChaiLWangYQZhouNFIn-situ growth of core-shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorberJ. Colloid. Interface. Sci.202058147510.1016/j.jcis.2020.07.102
– reference: P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, and J.W. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures, Nano-Micro Lett., 14(2022), No. 1, art. No. 51.
– reference: WuGLChengYHYangZHDesign of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behaviorChem. Eng. J.20183335191:CAS:528:DC%2BC2sXhs1aktbvL10.1016/j.cej.2017.09.174
– reference: LiuYJiaZRZhanQQMagnetic manganese-based composites with multiple loss mechanisms towards broadband absorptionNano Res.20221555901:CAS:528:DC%2BB38XotlGqtLY%3D10.1007/s12274-022-4287-5
– reference: WangGZGaoZTangSWMicrowave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer depositionACS Nano2012612110091:CAS:528:DC%2BC38Xhslalur%2FN10.1021/nn304630h
– reference: X.R. Gao, Z.R. Jia, B.B. Wang, et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber, Chem. Eng. J., 419(2021), art. No. 130019.
– reference: M. Chang, Z.R. Jia, S.Q. He, et al., Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability, Composites Part B, 225(2021), art. No. 109306.
– reference: D. Lan, Z.G. Gao, Z.H. Zhao, et al., Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption, Chem. Eng. J., 408(2021), art. No. 127313.
– reference: S.P. Liu, S.H. Zhang, L.G. Yang, et al., Nanofibrous scaffold by cleaner magnetron-sputtering additive manufacturing: A novel biocompatible platform for antibacterial application, J. Clean. Prod., 315(2021), art. No. 128201.
– reference: H.X. Zhang, Z.R. Jia, B.B. Wang, et al., Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co−CoFe2O4@mesoporous hollow carbon spheres, Chem. Eng. J., 421(2021), art. No. 129960.
– reference: ZhangFZhangWDZhuWFChengBQiuHQiSHCore-shell nanostructured CS/MoS2: A promising material for microwave absorptionAppl. Surf. Sci.20194631821:CAS:528:DC%2BC1cXhs1entbvK10.1016/j.apsusc.2018.08.121
– reference: YanHYFuYQWuXMCore-shell structured NaTi2(PO4)3@polyaniline as an efficient electrode material for electrochemical energy storageSolid State Ionics2019336951:CAS:528:DC%2BC1MXmsVSkt7s%3D10.1016/j.ssi.2019.03.024
– reference: ZhangSJJiaZRChengBRecent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-reviewAdv. Compos. Hybrid Mater.20225244010.1007/s42114-022-00458-7
– reference: L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 429(2022), art. No. 132547.
– reference: Z.D. Wang, T. Zhang, J.K. Wang, et al., The investigation of the effect of filler sizes in 3D-BN skeletons on thermal conductivity of epoxy-based composites, Nanomaterials, 12(2022), No. 3, art. No. 446.
– reference: ZhangHXWangBBFengALMesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbersComposites Part B20191676901:CAS:528:DC%2BC1MXmslWhtbo%3D10.1016/j.compositesb.2019.03.055
– ident: 2509_CR67
  doi: 10.3390/nano12030446
– volume: 5
  start-page: 2440
  year: 2022
  ident: 2509_CR42
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-022-00458-7
– volume: 6
  start-page: 1427
  issue: 1
  year: 2018
  ident: 2509_CR49
  publication-title: ACS Sustainable Chem. Eng.
  doi: 10.1021/acssuschemeng.7b03846
– volume: 803
  start-page: 1119
  year: 2019
  ident: 2509_CR32
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.06.351
– volume: 68
  start-page: 61
  year: 2021
  ident: 2509_CR64
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2020.06.046
– volume: 32
  start-page: 4404
  issue: 4
  year: 2021
  ident: 2509_CR30
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-020-05183-9
– ident: 2509_CR7
  doi: 10.1016/j.surfin.2021.101689
– volume: 758
  start-page: 62
  year: 2018
  ident: 2509_CR11
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.05.130
– ident: 2509_CR33
  doi: 10.1016/j.jallcom.2019.152083
– ident: 2509_CR51
  doi: 10.1016/j.coco.2021.101052
– ident: 2509_CR57
  doi: 10.1016/j.coco.2021.100731
– ident: 2509_CR63
  doi: 10.1002/smll.202101951
– ident: 2509_CR37
  doi: 10.1016/j.cej.2019.123096
– ident: 2509_CR14
  doi: 10.1016/j.cej.2021.133919
– ident: 2509_CR69
  doi: 10.1016/j.compositesb.2021.109306
– ident: 2509_CR9
  doi: 10.1155/2020/3672517
– ident: 2509_CR2
  doi: 10.1016/j.cej.2021.132253
– volume: 30
  start-page: 559
  issue: 3
  year: 2023
  ident: 2509_CR61
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-022-2488-2
– ident: 2509_CR58
  doi: 10.1016/j.cej.2021.129960
– volume: 336
  start-page: 95
  year: 2019
  ident: 2509_CR41
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2019.03.024
– ident: 2509_CR5
  doi: 10.1038/s41467-021-21103-9
– volume: 15
  start-page: 5590
  year: 2022
  ident: 2509_CR50
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4287-5
– ident: 2509_CR36
  doi: 10.1016/j.cej.2020.127313
– ident: 2509_CR23
  doi: 10.1016/j.coco.2021.100993
– ident: 2509_CR29
  doi: 10.1007/s40820-021-00704-5
– volume: 333
  start-page: 519
  year: 2018
  ident: 2509_CR39
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.174
– volume: 463
  start-page: 182
  year: 2019
  ident: 2509_CR34
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.121
– volume: 167
  start-page: 690
  year: 2019
  ident: 2509_CR16
  publication-title: Composites Part B
  doi: 10.1016/j.compositesb.2019.03.055
– volume: 30
  start-page: 570
  issue: 3
  year: 2023
  ident: 2509_CR59
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-022-2476-6
– volume: 142
  start-page: 245
  year: 2019
  ident: 2509_CR54
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.10.027
– volume: 186
  start-page: 262
  year: 2022
  ident: 2509_CR66
  publication-title: Carbon
  doi: 10.1016/j.carbon.2021.10.025
– ident: 2509_CR70
  doi: 10.1007/s40820-020-00568-1
– ident: 2509_CR40
  doi: 10.1016/j.jclepro.2021.128201
– volume: 127
  start-page: 153
  year: 2022
  ident: 2509_CR8
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2022.04.005
– ident: 2509_CR52
  doi: 10.1007/s40820-022-00798-5
– volume: 167
  start-page: 148
  year: 2020
  ident: 2509_CR17
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.05.070
– ident: 2509_CR19
  doi: 10.1016/j.jallcom.2020.154531
– volume: 116
  start-page: 50
  year: 2017
  ident: 2509_CR12
  publication-title: Carbon
  doi: 10.1016/j.carbon.2017.01.077
– ident: 2509_CR10
  doi: 10.1063/1.5099315
– volume: 11
  start-page: 31182
  issue: 34
  year: 2019
  ident: 2509_CR21
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b09779
– volume: 207
  start-page: 100
  year: 2022
  ident: 2509_CR25
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.02.155
– ident: 2509_CR65
  doi: 10.1002/smsc.202100077
– ident: 2509_CR44
  doi: 10.1016/j.compositesb.2021.109240
– volume: 7
  start-page: 385
  issue: 2
  year: 2020
  ident: 2509_CR47
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C9QI01259A
– volume: 4
  start-page: 1398
  issue: 4
  year: 2021
  ident: 2509_CR13
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-021-00304-2
– volume: 13
  start-page: 3065
  issue: 14
  year: 2020
  ident: 2509_CR27
  publication-title: Materials
  doi: 10.3390/ma13143065
– ident: 2509_CR62
  doi: 10.1016/j.cej.2021.130019
– volume: 142
  start-page: 20
  year: 2019
  ident: 2509_CR15
  publication-title: Carbon
  doi: 10.1016/j.carbon.2018.10.014
– volume: 368
  start-page: 285
  year: 2019
  ident: 2509_CR53
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.02.193
– ident: 2509_CR18
  doi: 10.1016/j.cej.2019.123207
– volume: 5
  start-page: 1030
  year: 2022
  ident: 2509_CR31
  publication-title: Adv. Compos. Hybrid Mater.
  doi: 10.1007/s42114-021-00415-w
– volume: 6
  start-page: 11009
  issue: 12
  year: 2012
  ident: 2509_CR35
  publication-title: ACS Nano
  doi: 10.1021/nn304630h
– ident: 2509_CR46
  doi: 10.1016/j.carbpol.2019.115175
– ident: 2509_CR1
  doi: 10.1002/anie.202200705
– ident: 2509_CR4
  doi: 10.1016/j.compscitech.2021.109178
– volume: 273
  start-page: 991
  year: 2018
  ident: 2509_CR38
  publication-title: Sens. Actuators B
  doi: 10.1016/j.snb.2018.05.167
– volume: 581
  start-page: 475
  year: 2020
  ident: 2509_CR6
  publication-title: J. Colloid. Interface. Sci.
  doi: 10.1016/j.jcis.2020.07.102
– volume: 15
  start-page: 4747
  year: 2022
  ident: 2509_CR3
  publication-title: Nano Res.
  doi: 10.1007/s12274-022-4159-z
– volume: 152
  start-page: 827
  year: 2019
  ident: 2509_CR55
  publication-title: Carbon
  doi: 10.1016/j.carbon.2019.06.080
– ident: 2509_CR20
  doi: 10.1016/j.jallcom.2019.151881
– volume: 45
  start-page: 3126
  issue: 3
  year: 2019
  ident: 2509_CR24
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.10.212
– volume: 2
  start-page: 735
  issue: 3
  year: 2014
  ident: 2509_CR28
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C3TA14050D
– volume: 175
  start-page: 509
  year: 2021
  ident: 2509_CR43
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.11.089
– ident: 2509_CR48
  doi: 10.1016/j.mtphys.2021.100475
– ident: 2509_CR68
  doi: 10.1016/j.cej.2021.129429
– ident: 2509_CR45
  doi: 10.1016/j.coco.2020.100404
– volume: 111
  start-page: 722
  year: 2017
  ident: 2509_CR22
  publication-title: Carbon
  doi: 10.1016/j.carbon.2016.10.059
– volume: 171
  start-page: 395
  year: 2021
  ident: 2509_CR26
  publication-title: Carbon
  doi: 10.1016/j.carbon.2020.09.036
– volume: 108
  start-page: 236
  year: 2022
  ident: 2509_CR60
  publication-title: J. Mater. Sci. Technol.
  doi: 10.1016/j.jmst.2021.07.049
– ident: 2509_CR56
  doi: 10.1016/j.cej.2021.132547
SSID ssj0067707
Score 2.5744712
Snippet Cobalt ferrite (CoFe 2 O 4 ), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In...
Cobalt ferrite (CoFe2O4), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 504
SubjectTerms Absorption
Attenuation coefficients
Carbon
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Cobalt
Cobalt ferrites
Composite materials
Composites
Core-shell structure
Corrosion and Coatings
Current loss
Dielectric loss
Eddy current testing
Eddy currents
Electromagnetic radiation
Glass
Impedance
Impedance matching
Materials Science
Metallic Materials
Microwave absorption
Natural Materials
Resonance
Resonance scattering
Surfaces and Interfaces
Thin Films
Tribology
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yL3oQP3E6JQdPSmHN2jS5OcbGENSLg91KPl5hsK2y7OPgP-9L11oVFTz01DSH_pL3kffy-xFyE2uFSYPUAVPcn1apdqB1HOJaBslDq0yn0E95fOLDUfQwjsflPW5XdbtXJcnCUteX3TDY9zVHFqDblgGmPLsxpu6-j2vEupX55UlS3JH23fX-2EhWpcyfpvjqjOoI81tRtPA1g0NyUAaJtLtF9YjswPyY7H-iDjwhb_2C-wFdBp35nrqNWgNV2uWLwgZQ3yMJa7C0FOKhkzl1k-WKmrzmjKV5Rj2NZeB8Oyjt5QNgz9H9DFyOYXm-ctSohcZxaCKn-YY6z0EA7pSMBv2X3jAohRQC0wn5MoAMGIRKSusFzgWmXCAsF5AwbqwxRttERDLM2kYBAmSkYVIz1YkzAaZt484ZaczzOZwTKmI0CJbHGRMWc6tEaIMRB4Z5mYhYZk2TtKs_mpqSZdyLXUzTmh_Zg5AiCKkHIQ2b5Pbjk9ctxcZfg1sVTGm521zqFbfw4TJqkrsKuvr1r5Nd_Gv0JdnzWvPbBrQWaSBWcIURyVJfFyvwHZZV2Qc
  priority: 102
  providerName: Springer Nature
Title Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres
URI https://link.springer.com/article/10.1007/s12613-022-2509-1
https://www.proquest.com/docview/2920292694
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxc4INqCWFpWPvQEsth4E8c-laXabUVFqRArlVPkVySkdl2aPg78eWayTgNI9JBL4kRKPmc8L38fwH5hDQYN2nJhJGWrzIRbW2Q4l4OWmTdu2uqnfD6Vx8v803lxnhJuTWqr7Gxia6h9dJQjf0-qSnhInR9c_eSkGkXV1SShsQlDNMFKDWD4cX569rWzxbIs2w3T1GpPOSTd1TXbzXMYPFANU3B0AzTP_l6Zenfznwppu_AsnsOz5DGy2RriLdgIq214-geP4A78mrdEELh-sEtqsLs3d4EZ28Tr1iAwapgMd8GzpMrDfqwYvtctc7EnkGWxZsRpyRvqDWWHcRHEl_zDZWgi-ujxtmHOXFsch_byIt6zhggJQvMClov5t8NjnlQVuJtm8oaHOoiQGa09qZ0rjL-C8lKFUkjnnXPWlyrXWT1xJiBaTjuhrTDTolbBTXwxfQmDVVyFV8BUgdbBy6IWymOgVSrr0P1An69Wuai9G8Gk-6KVS5TjpHxxUfVkyQRChSBUBEKVjeDtwy1Xa76NxwbvdTBV6ddrqn6ijOBdB11_-b8Pe_34w3bhCSnNr9vP9mCA4IQ36I_c2DFsqsXRGIazo-8n83Gagnh2KWa_AXXl4WM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcUHmJpQV8gAvIYuNNHPuAAJUuW_rg0kq9BT8mElK7Lk3bFeI_8RuZySYEkOith5ySWJFnMg_PzPcBPC-8o6TBeqmc5tMqN5beFxnpMlqdRRcmLX_K3r6eHeafjoqjFfjZz8JwW2VvE1tDHVPgM_LXzKpEl7b529NvklmjuLraU2gs1WIHvy8oZWvebH8g-b5Qarp1sDmTHauADJNMn0usUWHmrI3M9m0o_0ATtcFS6RBDCD6WJrdZPQ4O6WuDDcp65SZFbTCMI7NEkMm_kU_Ik_Nk-vRjb_l1Wbbj2dzYzydWtq-itqN6lKpwxVRJCjqszP72g0Nw-089tnVz0zW408Wn4v1Soe7CCs7vwe0_UAvvw4-tFnaCvJU44Xa-hbtE4XyTzlrzI7g9Ey8xio4DSHydC9rFCxHSAFcrUi0YQVM23IkqNtMU1ef83Qk2iTKCdNGI4M48PUfW-TgtRMPwB9g8gMNr2e2HsDpPc3wEwhRki6IuamUipXWl8YGCHYowa5OrOoYRjPsdrUIHcM48G8fVAM3MQqhICBULocpG8PL3K6dLdI-rHt7oxVR1P3pTDWo5gle96Ibb_13s8dWLPYObs4O93Wp3e39nHW4xx_2y8W0DVklQ-IQioXP_tFU_AV-uW99_ARyBG2U
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJwQJSHWCjFB7iAom68iWMfkKjarloKhQMr9Rb8mEiV2qSqt10hfhR_kZls0hQESBx6yClOZHnG4xnPzPcBvMydpaDBuERaxbdVdpw4l6eky2hUGqyftPwpHw_V3ix7f5QfrcCPvhemrXbvU5LLngZGaarnm2eh2hwa38jx5_yjTOgIN0naVVUe4LcFxWzx7f4OCfiVlNPdL9t7SUcrkPhJquYJVigxtcYEpvvWFICgDkpjIZUP3nsXCp2ZtBp7izRdb7w0TtpJXmn048A0EWTzb2XcfEwbaCa3etOviqLtz-bKfr6yMn0a9U9T_vUgHLzb3xKy7Tk3vQ_3OgdVbC01ag1WsH4Ad6_BFj6E77st7gQtlzjler6FvURhXWzOW_sjuD4TLzGIjgRIHNciHs8vhG8GvFrRVIIhNJPIpahiu5mi_JS9O8XYUEjQXETh7bmjcWSeT5qFiIx_gPERzG5ktR_Dat3U-ASEzskYBZVXUgeK6wrtPHk75GJWOpNV8CMY9yta-g7hnIk2TsoBm5mFUJIQShZCmY7g9dUnZ0t4j38NXu_FVHY7PZbM9kWPMtkI3vSiG17_9WdP_2v0C7j9eWdaftg_PHgGd5jyflkHtw6rJDZ8To7R3G20yijg601r_08QbBwk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+microwave+absorption+achieved+through+in+situ+construction+of+core-shell+CoFe2O4%40mesoporous+carbon+hollow+spheres&rft.jtitle=International+journal+of+minerals%2C+metallurgy+and+materials&rft.au=Ren%2C+Lianggui&rft.au=Wang%2C+Yiqun&rft.au=Zhang%2C+Xin&rft.au=He%2C+Qinchuan&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-4799&rft.eissn=1869-103X&rft.volume=30&rft.issue=3&rft.spage=504&rft.epage=514&rft_id=info:doi/10.1007%2Fs12613-022-2509-1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-4799&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-4799&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-4799&client=summon