Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres
Cobalt ferrite (CoFe 2 O 4 ), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In this study, CoFe 2 O 4 @mesoporous carbon hollow spheres (MCHS) with a core-shell structure were prepared by introducing CoFe 2 O 4 magnetic...
Saved in:
Published in | International journal of minerals, metallurgy and materials Vol. 30; no. 3; pp. 504 - 514 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
University of Science and Technology Beijing
01.03.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cobalt ferrite (CoFe
2
O
4
), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In this study, CoFe
2
O
4
@mesoporous carbon hollow spheres (MCHS) with a core-shell structure were prepared by introducing CoFe
2
O
4
magnetic particles into hollow mesoporous carbon through a simple
in situ
method. Then, the microwave absorption performance of the CoFe
2
O
4
@MCHS composites was investigated. Magnetic and dielectric losses can be effectively coordinated by constructing the porous structure and adjusting the ratio of MCHS and CoFe
2
O
4
. Results show that the impedance matching and absorption properties of the CoFe
2
O
4
@MCHS composites can be altered by tweaking the mass ratio of MCHS and CoFe
2
O
4
. The minimum reflection loss of the CoFe
2
O
4
@MCHS composites reaches -29.7 dB at 5.8 GHz. In addition, the effective absorption bandwidth is 3.7 GHz, with the thickness being 2.5 mm. The boosted microwave absorption can be ascribed to the porous core-shell structure and introduction of magnetic particles. The coordination between the microporous morphology and the core-shell structure is conducive to improving the attenuation coefficient and achieving good impedance matching. The porous core-shell structure provides large solid-void and CoFe
2
O
4
−C interfaces to induce interfacial polarization and extend the electromagnetic waves’ multiple scattering and reflection. Furthermore, natural resonance, exchange resonance, and eddy current loss work together for the magnetic loss. This method provides a practical solution to prepare core-shell structure microwave absorbents. |
---|---|
AbstractList | Cobalt ferrite (CoFe
2
O
4
), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In this study, CoFe
2
O
4
@mesoporous carbon hollow spheres (MCHS) with a core-shell structure were prepared by introducing CoFe
2
O
4
magnetic particles into hollow mesoporous carbon through a simple
in situ
method. Then, the microwave absorption performance of the CoFe
2
O
4
@MCHS composites was investigated. Magnetic and dielectric losses can be effectively coordinated by constructing the porous structure and adjusting the ratio of MCHS and CoFe
2
O
4
. Results show that the impedance matching and absorption properties of the CoFe
2
O
4
@MCHS composites can be altered by tweaking the mass ratio of MCHS and CoFe
2
O
4
. The minimum reflection loss of the CoFe
2
O
4
@MCHS composites reaches -29.7 dB at 5.8 GHz. In addition, the effective absorption bandwidth is 3.7 GHz, with the thickness being 2.5 mm. The boosted microwave absorption can be ascribed to the porous core-shell structure and introduction of magnetic particles. The coordination between the microporous morphology and the core-shell structure is conducive to improving the attenuation coefficient and achieving good impedance matching. The porous core-shell structure provides large solid-void and CoFe
2
O
4
−C interfaces to induce interfacial polarization and extend the electromagnetic waves’ multiple scattering and reflection. Furthermore, natural resonance, exchange resonance, and eddy current loss work together for the magnetic loss. This method provides a practical solution to prepare core-shell structure microwave absorbents. Cobalt ferrite (CoFe2O4), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In this study, CoFe2O4@mesoporous carbon hollow spheres (MCHS) with a core-shell structure were prepared by introducing CoFe2O4 magnetic particles into hollow mesoporous carbon through a simple in situ method. Then, the microwave absorption performance of the CoFe2O4@MCHS composites was investigated. Magnetic and dielectric losses can be effectively coordinated by constructing the porous structure and adjusting the ratio of MCHS and CoFe2O4. Results show that the impedance matching and absorption properties of the CoFe2O4@MCHS composites can be altered by tweaking the mass ratio of MCHS and CoFe2O4. The minimum reflection loss of the CoFe2O4@MCHS composites reaches -29.7 dB at 5.8 GHz. In addition, the effective absorption bandwidth is 3.7 GHz, with the thickness being 2.5 mm. The boosted microwave absorption can be ascribed to the porous core-shell structure and introduction of magnetic particles. The coordination between the microporous morphology and the core-shell structure is conducive to improving the attenuation coefficient and achieving good impedance matching. The porous core-shell structure provides large solid-void and CoFe2O4−C interfaces to induce interfacial polarization and extend the electromagnetic waves’ multiple scattering and reflection. Furthermore, natural resonance, exchange resonance, and eddy current loss work together for the magnetic loss. This method provides a practical solution to prepare core-shell structure microwave absorbents. |
Author | Zhang, Xin Ren, Lianggui Wang, Yiqun Wu, Guanglei He, Qinchuan |
Author_xml | – sequence: 1 givenname: Lianggui surname: Ren fullname: Ren, Lianggui organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University – sequence: 2 givenname: Yiqun surname: Wang fullname: Wang, Yiqun email: wangyiqun17@cdut.edu.cn organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology – sequence: 3 givenname: Xin surname: Zhang fullname: Zhang, Xin organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology – sequence: 4 givenname: Qinchuan surname: He fullname: He, Qinchuan organization: College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology – sequence: 5 givenname: Guanglei surname: Wu fullname: Wu, Guanglei email: wuguanglei@qdu.edu.cn, wuguanglei@mail.xjtu.edu.cn organization: Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University |
BookMark | eNp9kFFLwzAQx4NM0E0_gG8Bn6tJ2iXNmzI2FYS9KPgWsvRqI11Tk9QhfnkzKwiCPoS7g_8vd_ymaNK5DhA6o-SCEiIuA2Wc5hlhLGNzIjN6gI5pyVND8qdJ6rkoskJIeYSmIbwQwoUg4hh9LOvaGgtdxFtrvNvpN8B6E5zvo3Ud1qax8AYVjo13w3ODbYeDjQM2rgvRD-Yr5eo0e8hCA22LF24FbF1cbSG43iUsYKP9JuUa17Zuh0PfgIdwgg5r3QY4_a4z9LhaPixus_v1zd3i-j4zOeUxgxoYUC1lJUnJSskKKCtegmDcVMaYTSXKQtKaGA2cVkYaJjdM5_O6BEOqeT5D5-O_vXevA4SoXtzgu7RSMclIelwWKUXHVLIQgoda9d5utX9XlKi9YzU6Vsmx2jtWNDHiF2Ns1Hsl0Wvb_kuykQxpS_cM_uemv6FPE12VzA |
CitedBy_id | crossref_primary_10_1016_j_mtphys_2024_101419 crossref_primary_10_1007_s12613_022_2546_9 crossref_primary_10_1007_s12613_024_2881_0 crossref_primary_10_1016_j_jcis_2023_08_019 crossref_primary_10_1002_smll_202308585 crossref_primary_10_1016_j_nxmate_2024_100242 crossref_primary_10_1007_s12613_024_2875_y crossref_primary_10_1002_pc_27371 crossref_primary_10_1016_j_mtphys_2024_101373 crossref_primary_10_1016_j_jcis_2023_09_104 crossref_primary_10_1016_j_jmst_2023_04_045 crossref_primary_10_1007_s12613_023_2599_4 crossref_primary_10_1016_j_carbon_2025_120233 crossref_primary_10_1016_j_ceramint_2023_08_322 crossref_primary_10_1007_s42114_023_00792_4 crossref_primary_10_1021_acsanm_3c05469 crossref_primary_10_1007_s10854_023_11360_3 crossref_primary_10_1007_s12613_023_2795_2 crossref_primary_10_1016_j_jmmm_2024_172688 crossref_primary_10_1016_j_carbon_2023_03_021 crossref_primary_10_1016_j_materresbull_2024_112873 crossref_primary_10_1002_smll_202404449 crossref_primary_10_1016_j_jmst_2023_06_024 crossref_primary_10_1016_j_ceramint_2024_09_010 crossref_primary_10_1007_s12613_023_2810_7 crossref_primary_10_1002_pc_27313 crossref_primary_10_1016_j_matchemphys_2023_128230 crossref_primary_10_26599_NR_2025_94907209 crossref_primary_10_1016_j_colsurfa_2023_132417 crossref_primary_10_1016_j_jcis_2023_05_197 crossref_primary_10_1002_smll_202402438 crossref_primary_10_1039_D4TA08139K crossref_primary_10_1016_j_colsurfa_2023_131564 crossref_primary_10_1016_j_coco_2024_102016 crossref_primary_10_1016_j_jmst_2022_12_001 crossref_primary_10_1007_s12613_024_2851_6 crossref_primary_10_1016_j_jallcom_2024_174429 crossref_primary_10_1002_pc_27385 crossref_primary_10_1007_s12274_023_6120_1 crossref_primary_10_1002_pc_27422 crossref_primary_10_1002_pc_27388 crossref_primary_10_1016_j_jmst_2023_07_061 crossref_primary_10_1016_j_apsusc_2023_157626 crossref_primary_10_1016_j_mseb_2024_117388 crossref_primary_10_1016_j_jallcom_2023_170129 crossref_primary_10_1016_j_mtphys_2023_101178 crossref_primary_10_1016_j_materresbull_2024_112732 crossref_primary_10_1016_j_jcis_2023_04_040 crossref_primary_10_1016_j_mtphys_2023_101215 crossref_primary_10_1007_s10854_023_10283_3 crossref_primary_10_1016_j_est_2023_107285 crossref_primary_10_1007_s12613_022_2578_1 crossref_primary_10_1016_j_ceramint_2023_05_254 crossref_primary_10_1016_j_compositesa_2023_107528 crossref_primary_10_1016_j_ceramint_2023_03_262 crossref_primary_10_1007_s40820_023_01179_2 crossref_primary_10_1016_j_matchar_2023_113131 crossref_primary_10_1016_j_apsusc_2024_159697 crossref_primary_10_1007_s40820_023_01212_4 crossref_primary_10_1016_j_ceramint_2023_04_227 crossref_primary_10_1016_j_carbon_2023_118351 crossref_primary_10_1007_s11664_023_10657_7 crossref_primary_10_1016_j_colsurfa_2024_135805 crossref_primary_10_1007_s12613_024_2940_6 crossref_primary_10_1007_s12613_024_2880_1 crossref_primary_10_1039_D4RE00060A crossref_primary_10_1016_j_apsusc_2023_159203 crossref_primary_10_1016_j_jmst_2023_05_026 crossref_primary_10_1016_j_ceramint_2025_01_268 crossref_primary_10_1016_j_materresbull_2023_112630 crossref_primary_10_1016_j_coco_2024_101993 crossref_primary_10_1016_j_materresbull_2023_112631 crossref_primary_10_1007_s12274_023_5687_x crossref_primary_10_1007_s12613_024_2865_0 crossref_primary_10_1007_s42114_024_00864_z crossref_primary_10_1021_acs_langmuir_4c02829 crossref_primary_10_1016_j_compositesb_2024_111344 crossref_primary_10_1002_adem_202402971 crossref_primary_10_1002_pc_27356 crossref_primary_10_1007_s12613_024_2911_y crossref_primary_10_1002_pc_27355 crossref_primary_10_1016_j_ceramint_2024_01_074 crossref_primary_10_1007_s42114_024_01020_3 crossref_primary_10_1016_j_apsusc_2023_157417 crossref_primary_10_1016_j_mtnano_2024_100568 crossref_primary_10_1016_j_seppur_2024_129538 crossref_primary_10_1007_s12613_024_2972_y crossref_primary_10_1016_j_carbon_2024_119117 crossref_primary_10_1016_j_jmrt_2023_05_196 crossref_primary_10_1016_j_diamond_2024_110991 crossref_primary_10_1016_j_jmst_2024_06_012 crossref_primary_10_1016_j_mtphys_2023_101126 crossref_primary_10_1007_s12274_023_6160_6 crossref_primary_10_1007_s42114_023_00763_9 crossref_primary_10_1007_s42114_022_00615_y crossref_primary_10_1016_j_ceramint_2023_02_134 crossref_primary_10_1016_j_materresbull_2024_112673 crossref_primary_10_1016_j_jmst_2023_01_053 crossref_primary_10_1016_j_carbon_2024_119244 crossref_primary_10_1016_j_ceramint_2023_05_167 |
Cites_doi | 10.3390/nano12030446 10.1007/s42114-022-00458-7 10.1021/acssuschemeng.7b03846 10.1016/j.jallcom.2019.06.351 10.1016/j.jmst.2020.06.046 10.1007/s10854-020-05183-9 10.1016/j.surfin.2021.101689 10.1016/j.jallcom.2018.05.130 10.1016/j.jallcom.2019.152083 10.1016/j.coco.2021.101052 10.1016/j.coco.2021.100731 10.1002/smll.202101951 10.1016/j.cej.2019.123096 10.1016/j.cej.2021.133919 10.1016/j.compositesb.2021.109306 10.1155/2020/3672517 10.1016/j.cej.2021.132253 10.1007/s12613-022-2488-2 10.1016/j.cej.2021.129960 10.1016/j.ssi.2019.03.024 10.1038/s41467-021-21103-9 10.1007/s12274-022-4287-5 10.1016/j.cej.2020.127313 10.1016/j.coco.2021.100993 10.1007/s40820-021-00704-5 10.1016/j.cej.2017.09.174 10.1016/j.apsusc.2018.08.121 10.1016/j.compositesb.2019.03.055 10.1007/s12613-022-2476-6 10.1016/j.carbon.2018.10.027 10.1016/j.carbon.2021.10.025 10.1007/s40820-020-00568-1 10.1016/j.jclepro.2021.128201 10.1016/j.jmst.2022.04.005 10.1007/s40820-022-00798-5 10.1016/j.carbon.2020.05.070 10.1016/j.jallcom.2020.154531 10.1016/j.carbon.2017.01.077 10.1063/1.5099315 10.1021/acsami.9b09779 10.1016/j.ijbiomac.2022.02.155 10.1002/smsc.202100077 10.1016/j.compositesb.2021.109240 10.1039/C9QI01259A 10.1007/s42114-021-00304-2 10.3390/ma13143065 10.1016/j.cej.2021.130019 10.1016/j.carbon.2018.10.014 10.1016/j.cej.2019.02.193 10.1016/j.cej.2019.123207 10.1007/s42114-021-00415-w 10.1021/nn304630h 10.1016/j.carbpol.2019.115175 10.1002/anie.202200705 10.1016/j.compscitech.2021.109178 10.1016/j.snb.2018.05.167 10.1016/j.jcis.2020.07.102 10.1007/s12274-022-4159-z 10.1016/j.carbon.2019.06.080 10.1016/j.jallcom.2019.151881 10.1016/j.ceramint.2018.10.212 10.1039/C3TA14050D 10.1016/j.carbon.2020.11.089 10.1016/j.mtphys.2021.100475 10.1016/j.cej.2021.129429 10.1016/j.coco.2020.100404 10.1016/j.carbon.2016.10.059 10.1016/j.carbon.2020.09.036 10.1016/j.jmst.2021.07.049 10.1016/j.cej.2021.132547 |
ContentType | Journal Article |
Copyright | University of Science and Technology Beijing 2023 University of Science and Technology Beijing 2023. |
Copyright_xml | – notice: University of Science and Technology Beijing 2023 – notice: University of Science and Technology Beijing 2023. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO HCIFZ KB. PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s12613-022-2509-1 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection Materials Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-103X |
EndPage | 514 |
ExternalDocumentID | 10_1007_s12613_022_2509_1 |
GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 1N0 1~5 2B. 2C0 2KG 2LR 2VQ 30V 4.4 406 408 40D 4G. 67Z 7-5 71M 8RM 92H 92I 96X AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BENPR BGLVJ BGNMA BHPHI BKSAR CAG CAJEB CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y NPVJJ NQJWS NU0 O9- O9J OZT P2P P9N PCBAR PDBOC PT4 Q-- R9I RIG ROL RSV S1Z S27 S3B SCL SCM SDG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 Z5O Z7R Z7V Z7X Z7Y Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c316t-efe2e1a99d90828924e8d68e726cdcccbd78491f0cae61dc9c29b2a35f8ec0d53 |
IEDL.DBID | BENPR |
ISSN | 1674-4799 |
IngestDate | Fri Jul 25 11:02:28 EDT 2025 Tue Jul 01 01:18:47 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Fri Feb 21 02:45:55 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | porous core-shell structure ferrite structure-controllable microwave absorption interface polarization |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-efe2e1a99d90828924e8d68e726cdcccbd78491f0cae61dc9c29b2a35f8ec0d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2920292694 |
PQPubID | 2043631 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2920292694 crossref_primary_10_1007_s12613_022_2509_1 crossref_citationtrail_10_1007_s12613_022_2509_1 springer_journals_10_1007_s12613_022_2509_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230300 2023-03-00 20230301 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 3 year: 2023 text: 20230300 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | International journal of minerals, metallurgy and materials |
PublicationTitleAbbrev | Int J Miner Metall Mater |
PublicationYear | 2023 |
Publisher | University of Science and Technology Beijing Springer Nature B.V |
Publisher_xml | – name: University of Science and Technology Beijing – name: Springer Nature B.V |
References | WangLHGuanHHuJQJute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorberJ. Alloys Compd.201980311191:CAS:528:DC%2BC1MXhtlahsbvO10.1016/j.jallcom.2019.06.351 G.S. Ma, L. Xia, H. Yang, et al., Multifunctional lithium aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption, Chem. Eng. J., 418(2021), art. No. 129429. SongCQYinXWHanMKThree-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption propertiesCarbon2017116501:CAS:528:DC%2BC2sXitFGmtrw%3D10.1016/j.carbon.2017.01.077 ZhangSHDongHBHeRDHydro electroactive Cu/Zn coated cotton fiber nonwovens for antibacterial and antiviral applicationsInt. J. Biol. Macromol.20222071001:CAS:528:DC%2BB38Xmt1Wktrw%3D10.1016/j.ijbiomac.2022.02.155 DingDWangYLiXDRational design of core-shell Co@C microspheres for high-performance microwave absorptionCarbon20171117221:CAS:528:DC%2BC28XhslOhtrfJ10.1016/j.carbon.2016.10.059 P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, and J.W. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures, Nano-Micro Lett., 14(2022), No. 1, art. No. 51. H. Lv, Z. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), art. No. 834. J.X. Chai, J.Y. Cheng, D.Q. Zhang, et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets, J. Alloys Compd., 829(2020), art. No. 154531. ShiYNGaoXHQiuJSynthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foamCeram. Int.201945331261:CAS:528:DC%2BC1cXitFertrfI10.1016/j.ceramint.2018.10.212 S.P. Liu, Z.Q. Zheng, S. Wang, et al., Polydopamine-coated chitosan/calcium pyrophosphate hybrid microflowers as an effective hemostatic agent, Carbohydr. Polym., 224(2019), art. No. 115175. D. Lan, Z.G. Gao, Z.H. Zhao, et al., Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption, Chem. Eng. J., 408(2021), art. No. 127313. Y. Qiu, Y. Lin, H.B. Yang, et al., Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123207. ZhangXDRenXWangCChenNKSongNNSynthesis of layered Fe3O4 nanodisk and nanostructure dependent microwave absorption propertyJ. Mater. Sci. Mater. Electron.202132444041:CAS:528:DC%2BB3MXhtVKgsbg%3D10.1007/s10854-020-05183-9 HouTQJiaZRFengALHierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacityJ. Mater. Sci. Technol.202168611:CAS:528:DC%2BB38XhtFehsbzO10.1016/j.jmst.2020.06.046 C.Y. Liu, B.C. Wang, C. Zhang, et al., Simple preparation and excellent microwave attenuation property of Fe3O4- and FeS2-decorated graphene nanosheets by liquid-phase exfoliation, J. Alloys Compd., 810(2019), art. No. 151881. WangGZGaoZTangSWMicrowave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer depositionACS Nano2012612110091:CAS:528:DC%2BC38Xhslalur%2FN10.1021/nn304630h WuGLChengYHYangZHDesign of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behaviorChem. Eng. J.20183335191:CAS:528:DC%2BC2sXhs1aktbvL10.1016/j.cej.2017.09.174 ZhangXQiaoJLiuCA MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorptionInorg. Chem. Front.2020723851:CAS:528:DC%2BC1MXitVylsb7L10.1039/C9QI01259A H.X. Zhang, Z.R. Jia, B.B. Wang, et al., Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co−CoFe2O4@mesoporous hollow carbon spheres, Chem. Eng. J., 421(2021), art. No. 129960. ZhangDQJiaYXChengJYHigh-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structuresJ. Alloys Compd.2018758621:CAS:528:DC%2BC1cXpvVKmtb0%3D10.1016/j.jallcom.2018.05.130 Y.Q. Wang, H.G. Wang, J.H. Ye, L.Y. Shi, and X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123096. WangCXJiaZRHeSQMetal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuationJ. Mater. Sci. Technol.202210823610.1016/j.jmst.2021.07.049 CuiLRTianCHTangLLSpace-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorptionACS Appl. Mater. Interfaces20191134311821:CAS:528:DC%2BC1MXhsV2jsbvM10.1021/acsami.9b09779 W.Y. Dai, F. Chen, H. Luo, et al., Synthesis of yolk-shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance, J. Alloys Compd., 812(2020), art. No. 152083. HuangXMLiuXHJiaZRSynthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performanceAdv. Compos. Hybrid Mater.20214413981:CAS:528:DC%2BB3MXitF2hsrrN10.1007/s42114-021-00304-2 JiaZRKongMYYuBWYTunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption propertiesJ. Mater. Sci. Technol.202212715310.1016/j.jmst.2022.04.005 DuZHChenXBZhangYWOne-pot hydrothermal preparation of Fe3O4 decorated graphene for microwave absorptionMaterials2020131430651:CAS:528:DC%2BB3cXhs1Glsr7J10.3390/ma13143065 LiuYJiaZRZhanQQMagnetic manganese-based composites with multiple loss mechanisms towards broadband absorptionNano Res.20221555901:CAS:528:DC%2BB38XotlGqtLY%3D10.1007/s12274-022-4287-5 XiangZSongYMXiongJEnhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworksCarbon2019142201:CAS:528:DC%2BC1cXhvFKltLbP10.1016/j.carbon.2018.10.014 ZhaoYPZhangHYangXIn situ construction of hierarchical core-shell Fe3O4@C nanoparticles-helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorptionCarbon20211713951:CAS:528:DC%2BB3cXitFSnurnJ10.1016/j.carbon.2020.09.036 FengXYinPFZhangLMInnovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic-wave absorptionInt. J. Miner. Metall. Mater.2023303559 J.W. Wang, Z.R. Jia, X.H. Liu, et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption, Nano-Micro Lett., 13(2021), No. 1, art. No. 175. ZhangFZhangWDZhuWFChengBQiuHQiSHCore-shell nanostructured CS/MoS2: A promising material for microwave absorptionAppl. Surf. Sci.20194631821:CAS:528:DC%2BC1cXhs1entbvK10.1016/j.apsusc.2018.08.121 ZhaoHQChengYLvHLJiGBDuYWA novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorptionCarbon20191422451:CAS:528:DC%2BC1cXitVWjtr3E10.1016/j.carbon.2018.10.027 ZhangYQLiuYYZhouLSThe role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen speciesSens. Actuators B20182739911:CAS:528:DC%2BC1cXht12qt7zN10.1016/j.snb.2018.05.167 X.R. Gao, Z.R. Jia, B.B. Wang, et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber, Chem. Eng. J., 419(2021), art. No. 130019. T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919. Y.L. Zhang, K.P. Ruan, and J.W. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities, Small, 17(2021), No. 42, art. No. 2101951. L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2−0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993. M. Chang, Z.R. Jia, S.Q. He, et al., Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability, Composites Part B, 225(2021), art. No. 109306. KongLLuoSHZhangSYUltralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorptionInt. J. Miner. Metall. Mater.2023303570 ChaiLWangYQZhouNFIn-situ growth of core-shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorberJ. Colloid. Interface. Sci.202058147510.1016/j.jcis.2020.07.102 LiuPBZhangYQYanJSynthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorptionChem. Eng. J.20193682851:CAS:528:DC%2BC1MXktVKltL0%3D10.1016/j.cej.2019.02.193 ZhangSJJiaZRChengBRecent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-reviewAdv. Compos. Hybrid Mater.20225244010.1007/s42114-022-00458-7 Q.L. Sun, W. Ye, J.H. Cheng, and X.Y. Long, Effects of boron nitride coatings at high temperatures and electromagnetic wave absorption properties of carbon fiber-based magnetic materials, J. Nanomater., 2020(2020), art. No. 3672517. F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475. Z.D. Wang, T. Zhang, J.K. Wang, et al., The investigation of the effect of filler sizes in 3D-BN skeletons on thermal conductivity of epoxy-based composites, Nanomaterials, 12(2022), No. 3, art. No. 446. ZhouXFJiaZRFengALSynthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performanceCarbon20191528271:CAS:528:DC%2BC1MXhtlSmsrnE10.1016/j.carbon.2019.06.080 LiXWenCYYangLTMXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropyCarbon20211755091:CAS:528:DC%2BB3MXitlSnt74%3D10.1016/j.carbon.2020.11.089 L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 vi LH Wang (2509_CR32) 2019; 803 2509_CR69 YP Zhao (2509_CR26) 2021; 171 2509_CR68 X Cao (2509_CR31) 2022; 5 YQ Zhang (2509_CR38) 2018; 273 2509_CR65 2509_CR20 ZJ Li (2509_CR17) 2020; 167 2509_CR23 HQ Zhao (2509_CR54) 2019; 142 2509_CR67 2509_CR29 D Ding (2509_CR22) 2017; 111 GL Wu (2509_CR39) 2018; 333 HX Zhang (2509_CR16) 2019; 167 TT Zheng (2509_CR66) 2022; 186 2509_CR70 L Kong (2509_CR59) 2023; 30 2509_CR36 2509_CR37 2509_CR33 2509_CR7 LR Cui (2509_CR21) 2019; 11 XD Zhang (2509_CR30) 2021; 32 2509_CR9 M Fu (2509_CR28) 2014; 2 2509_CR2 2509_CR5 2509_CR4 GZ Wang (2509_CR35) 2012; 6 2509_CR1 DQ Zhang (2509_CR11) 2018; 758 SJ Zhang (2509_CR42) 2022; 5 CX Wang (2509_CR60) 2022; 108 2509_CR40 Z Xiang (2509_CR15) 2019; 142 2509_CR46 2509_CR48 2509_CR45 YN Shi (2509_CR24) 2019; 45 2509_CR44 ZH Du (2509_CR27) 2020; 13 F Zhang (2509_CR34) 2019; 463 TQ Hou (2509_CR64) 2021; 68 XF Zhou (2509_CR55) 2019; 152 Y Cheng (2509_CR49) 2018; 6 2509_CR52 2509_CR51 X Feng (2509_CR61) 2023; 30 2509_CR14 2509_CR58 2509_CR57 CQ Song (2509_CR12) 2017; 116 L Chai (2509_CR6) 2020; 581 2509_CR10 2509_CR56 2509_CR18 SH Zhang (2509_CR25) 2022; 207 2509_CR19 X Zhang (2509_CR47) 2020; 7 XM Huang (2509_CR13) 2021; 4 YX Han (2509_CR3) 2022; 15 HY Yan (2509_CR41) 2019; 336 X Li (2509_CR43) 2021; 175 ZR Jia (2509_CR8) 2022; 127 2509_CR63 Y Liu (2509_CR50) 2022; 15 2509_CR62 PB Liu (2509_CR53) 2019; 368 |
References_xml | – reference: JiaZRKongMYYuBWYTunable Co/ZnO/C@MWCNTs based on carbon nanotube-coated MOF with excellent microwave absorption propertiesJ. Mater. Sci. Technol.202212715310.1016/j.jmst.2022.04.005 – reference: FengXYinPFZhangLMInnovative preparation of Co@CuFe2O4 composite via ball-milling assisted chemical precipitation and annealing for glorious electromagnetic-wave absorptionInt. J. Miner. Metall. Mater.2023303559 – reference: HuangXMLiuXHJiaZRSynthesis of 3D cerium oxide/porous carbon for enhanced electromagnetic wave absorption performanceAdv. Compos. Hybrid Mater.20214413981:CAS:528:DC%2BB3MXitF2hsrrN10.1007/s42114-021-00304-2 – reference: F. Pan, Z.C. Liu, B.W. Deng, et al., Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance, Nano-Micro Lett., 13(2021), No. 1, art. No. 43. – reference: Y. Qiu, Y. Lin, H.B. Yang, et al., Hollow Ni/C microspheres derived from Ni-metal organic framework for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123207. – reference: Y.L. Zhang, K.P. Ruan, and J.W. Gu, Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities, Small, 17(2021), No. 42, art. No. 2101951. – reference: ZhengTTJiaZRZhanQQSelf-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorptionCarbon20221862621:CAS:528:DC%2BB3MXit1KgsL3P10.1016/j.carbon.2021.10.025 – reference: ZhangYQLiuYYZhouLSThe role of Ce doping in enhancing sensing performance of ZnO-based gas sensor by adjusting the proportion of oxygen speciesSens. Actuators B20182739911:CAS:528:DC%2BC1cXht12qt7zN10.1016/j.snb.2018.05.167 – reference: G.S. Ma, L. Xia, H. Yang, et al., Multifunctional lithium aluminosilicate/CNT composite for gas filtration and electromagnetic wave absorption, Chem. Eng. J., 418(2021), art. No. 129429. – reference: Z.L. Ma, X.L. Xiang, L. Shao, Y.L. Zhang, and J.W. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing, Angew. Chem. Int. Ed, 61(2022), No. 15, art. No. e202200705. – reference: J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253. – reference: HanYXRuanKPGuJWJanus (BNNS/ANF)−(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performancesNano Res.20221547471:CAS:528:DC%2BB38XjtFSlsb0%3D10.1007/s12274-022-4159-z – reference: XiangZSongYMXiongJEnhanced electromagnetic wave absorption of nanoporous Fe3O4@carbon composites derived from metal-organic frameworksCarbon2019142201:CAS:528:DC%2BC1cXhvFKltLbP10.1016/j.carbon.2018.10.014 – reference: H. Lv, Z. Yang, B. Liu, et al., A flexible electromagnetic wave-electricity harvester, Nat. Commun., 12(2021), art. No. 834. – reference: ShiYNGaoXHQiuJSynthesis and strengthened microwave absorption properties of three-dimensional porous Fe3O4/graphene composite foamCeram. Int.201945331261:CAS:528:DC%2BC1cXitFertrfI10.1016/j.ceramint.2018.10.212 – reference: WangCXJiaZRHeSQMetal-organic framework-derived CoSn/NC nanocubes as absorbers for electromagnetic wave attenuationJ. Mater. Sci. Technol.202210823610.1016/j.jmst.2021.07.049 – reference: FuMJiaoQZZhaoYLiHSVapor diffusion synthesis of CoFe2O4 hollow sphere/graphene composites as absorbing materialsJ. Mater. Chem. A2014237351:CAS:528:DC%2BC3sXhvV2rs7rJ10.1039/C3TA14050D – reference: WangLHGuanHHuJQJute-based porous biomass carbon composited by Fe3O4 nanoparticles as an excellent microwave absorberJ. Alloys Compd.201980311191:CAS:528:DC%2BC1MXhtlahsbvO10.1016/j.jallcom.2019.06.351 – reference: CaoXJiaZRHuDWuGLSynergistic construction of three-dimensional conductive network and double heterointerface polarization via magnetic FeNi for broadband microwave absorptionAdv. Compos. Hybrid Mater.2022510301:CAS:528:DC%2BB38XhsVWluro%3D10.1007/s42114-021-00415-w – reference: W.Y. Dai, F. Chen, H. Luo, et al., Synthesis of yolk-shell structured carbonyl iron@void@nitrogen doped carbon for enhanced microwave absorption performance, J. Alloys Compd., 812(2020), art. No. 152083. – reference: LiuPBZhangYQYanJSynthesis of lightweight N-doped graphene foams with open reticular structure for high-efficiency electromagnetic wave absorptionChem. Eng. J.20193682851:CAS:528:DC%2BC1MXktVKltL0%3D10.1016/j.cej.2019.02.193 – reference: X.J. Zhu, Y.Y. Dong, F. Pan, et al., Covalent organic framework-derived hollow core-shell Fe/Fe3O4@porous carbon composites with corrosion resistance for lightweight and efficient microwave absorption, Compos. Commun., 25(2021), art. No. 100731. – reference: CuiLRTianCHTangLLSpace-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorptionACS Appl. Mater. Interfaces20191134311821:CAS:528:DC%2BC1MXhsV2jsbvM10.1021/acsami.9b09779 – reference: ZhaoYPZhangHYangXIn situ construction of hierarchical core-shell Fe3O4@C nanoparticles-helical carbon nanocoil hybrid composites for highly efficient electromagnetic wave absorptionCarbon20211713951:CAS:528:DC%2BB3cXitFSnurnJ10.1016/j.carbon.2020.09.036 – reference: C. Mu, X. Du, A. Nie, et al., Microwave absorption properties of heterostructure composites of two dimensional layered magnetic materials and graphene nanosheets, Appl. Phys. Lett., 115(2019), No. 4, art. No. 043103. – reference: K.R. Yang, W.J. Chen, Y.S. Zhao, et al., Enhancing dielectric strength of thermally conductive epoxy composites by preventing interfacial charge accumulation using micron-sized diamond, Compos. Sci. Technol., 221(2022), art. No. 109178. – reference: ZhangXDRenXWangCChenNKSongNNSynthesis of layered Fe3O4 nanodisk and nanostructure dependent microwave absorption propertyJ. Mater. Sci. Mater. Electron.202132444041:CAS:528:DC%2BB3MXhtVKgsbg%3D10.1007/s10854-020-05183-9 – reference: ZhaoHQChengYLvHLJiGBDuYWA novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorptionCarbon20191422451:CAS:528:DC%2BC1cXitVWjtr3E10.1016/j.carbon.2018.10.027 – reference: LiZJLinHDingSQSynthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbonCarbon20201671481:CAS:528:DC%2BB3cXhtFylurbE10.1016/j.carbon.2020.05.070 – reference: ZhouXFJiaZRFengALSynthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performanceCarbon20191528271:CAS:528:DC%2BC1MXhtlSmsrnE10.1016/j.carbon.2019.06.080 – reference: ChengYCaoJLiYThe outside-in approach to construct Fe3O4 nanocrystals/mesoporous carbon hollow spheres core-shell hybrids toward microwave absorptionACS Sustainable Chem. Eng.20186114271:CAS:528:DC%2BC2sXhvFSlu7vL10.1021/acssuschemeng.7b03846 – reference: SongCQYinXWHanMKThree-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption propertiesCarbon2017116501:CAS:528:DC%2BC2sXitFGmtrw%3D10.1016/j.carbon.2017.01.077 – reference: C.Y. Liu, B.C. Wang, C. Zhang, et al., Simple preparation and excellent microwave attenuation property of Fe3O4- and FeS2-decorated graphene nanosheets by liquid-phase exfoliation, J. Alloys Compd., 810(2019), art. No. 151881. – reference: L.G. Ren, Y.Q. Wang, Z.R. Jia, Q.C. He, and G.L. Wu, Controlling the heterogeneous interfaces of Fe3O4/N-doped porous carbon via facile swelling for enhancing the electromagnetic wave absorption, Compos. Commun., 29(2022), art. No. 101052. – reference: L.F. Sun, Z.R. Jia, S. Xu, et al., Synthesis of NiCo2−0.5xCr2O3@C nanoparticles based on hydroxide with the heterogeneous interface for excellent electromagnetic wave absorption properties, Compos. Commun., 29(2022), art. No. 100993. – reference: S.P. Liu, Z.Q. Zheng, S. Wang, et al., Polydopamine-coated chitosan/calcium pyrophosphate hybrid microflowers as an effective hemostatic agent, Carbohydr. Polym., 224(2019), art. No. 115175. – reference: Y. Zhao, L.L. Hao, X.D. Zhang, et al., A novel strategy in electromagnetic wave absorbing and shielding materials design: Multi-responsive field effect, Small. Sci., 2(2022), No. 2, art. No. 2100077. – reference: J.X. Chai, J.Y. Cheng, D.Q. Zhang, et al., Enhancing electromagnetic wave absorption performance of Co3O4 nanoparticles functionalized MoS2 nanosheets, J. Alloys Compd., 829(2020), art. No. 154531. – reference: LiXWenCYYangLTMXene/FeCo films with distinct and tunable electromagnetic wave absorption by morphology control and magnetic anisotropyCarbon20211755091:CAS:528:DC%2BB3MXitlSnt74%3D10.1016/j.carbon.2020.11.089 – reference: X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Dependency of tunable electromagnetic wave absorption performance on morphology-controlled 3D porous carbon fabricated by biomass, Compos. Commun., 21(2020), art. No. 100404. – reference: ZhangDQJiaYXChengJYHigh-performance microwave absorption materials based on MoS2-graphene isomorphic hetero-structuresJ. Alloys Compd.2018758621:CAS:528:DC%2BC1cXpvVKmtb0%3D10.1016/j.jallcom.2018.05.130 – reference: H.B. Dong, S.H. Zhang, L.G. Yang, et al., Cu/Zn galvanic couples composite antibacterial dressings prepared by templateassisted magnetron sputtering, Composites Part B, 224(2021), art. No. 109240. – reference: F. Zhang, Z.R. Jia, Z. Wang, et al., Tailoring nanoparticles composites derived from metal-organic framework as electromagnetic wave absorber, Mater. Today Phys., 20(2021), art. No. 100475. – reference: ZhangSHDongHBHeRDHydro electroactive Cu/Zn coated cotton fiber nonwovens for antibacterial and antiviral applicationsInt. J. Biol. Macromol.20222071001:CAS:528:DC%2BB38Xmt1Wktrw%3D10.1016/j.ijbiomac.2022.02.155 – reference: KongLLuoSHZhangSYUltralight pyrolytic carbon foam reinforced with amorphous carbon nanotubes for broadband electromagnetic absorptionInt. J. Miner. Metall. Mater.2023303570 – reference: S.H. Zhu, C.W. Lou, S.H. Zhang, et al., Clean surface additive manufacturing of aramid paper-based electrically heated devices for medical therapy application, Surf. Interfaces, 29(2022), art. No. 101689. – reference: Q.L. Sun, W. Ye, J.H. Cheng, and X.Y. Long, Effects of boron nitride coatings at high temperatures and electromagnetic wave absorption properties of carbon fiber-based magnetic materials, J. Nanomater., 2020(2020), art. No. 3672517. – reference: Y.Q. Wang, H.G. Wang, J.H. Ye, L.Y. Shi, and X. Feng, Magnetic CoFe alloy@C nanocomposites derived from ZnCo-MOF for electromagnetic wave absorption, Chem. Eng. J., 383(2020), art. No. 123096. – reference: DuZHChenXBZhangYWOne-pot hydrothermal preparation of Fe3O4 decorated graphene for microwave absorptionMaterials2020131430651:CAS:528:DC%2BB3cXhs1Glsr7J10.3390/ma13143065 – reference: ZhangXQiaoJLiuCA MOF-derived ZrO2/C nanocomposite for efficient electromagnetic wave absorptionInorg. Chem. Front.2020723851:CAS:528:DC%2BC1MXitVylsb7L10.1039/C9QI01259A – reference: HouTQJiaZRFengALHierarchical composite of biomass derived magnetic carbon framework and phytic acid doped polyanilne with prominent electromagnetic wave absorption capacityJ. Mater. Sci. Technol.202168611:CAS:528:DC%2BB38XhtFehsbzO10.1016/j.jmst.2020.06.046 – reference: T.Q. Hou, Z.R. Jia, Y.H. Dong, X.H. Liu, and G.L. Wu, Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption, Chem. Eng. J., 431(2022), art. No. 133919. – reference: DingDWangYLiXDRational design of core-shell Co@C microspheres for high-performance microwave absorptionCarbon20171117221:CAS:528:DC%2BC28XhslOhtrfJ10.1016/j.carbon.2016.10.059 – reference: J.W. Wang, Z.R. Jia, X.H. Liu, et al., Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption, Nano-Micro Lett., 13(2021), No. 1, art. No. 175. – reference: ChaiLWangYQZhouNFIn-situ growth of core-shell ZnFe2O4@porous hollow carbon microspheres as an efficient microwave absorberJ. Colloid. Interface. Sci.202058147510.1016/j.jcis.2020.07.102 – reference: P. Song, Z.L. Ma, H. Qiu, Y.F. Ru, and J.W. Gu, High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures, Nano-Micro Lett., 14(2022), No. 1, art. No. 51. – reference: WuGLChengYHYangZHDesign of carbon sphere/magnetic quantum dots with tunable phase compositions and boost dielectric loss behaviorChem. Eng. J.20183335191:CAS:528:DC%2BC2sXhs1aktbvL10.1016/j.cej.2017.09.174 – reference: LiuYJiaZRZhanQQMagnetic manganese-based composites with multiple loss mechanisms towards broadband absorptionNano Res.20221555901:CAS:528:DC%2BB38XotlGqtLY%3D10.1007/s12274-022-4287-5 – reference: WangGZGaoZTangSWMicrowave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer depositionACS Nano2012612110091:CAS:528:DC%2BC38Xhslalur%2FN10.1021/nn304630h – reference: X.R. Gao, Z.R. Jia, B.B. Wang, et al., Synthesis of NiCo-LDH/MXene hybrids with abundant heterojunction surfaces as a lightweight electromagnetic wave absorber, Chem. Eng. J., 419(2021), art. No. 130019. – reference: M. Chang, Z.R. Jia, S.Q. He, et al., Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability, Composites Part B, 225(2021), art. No. 109306. – reference: D. Lan, Z.G. Gao, Z.H. Zhao, et al., Double-shell hollow glass microspheres@Co2SiO4 for lightweight and efficient electromagnetic wave absorption, Chem. Eng. J., 408(2021), art. No. 127313. – reference: S.P. Liu, S.H. Zhang, L.G. Yang, et al., Nanofibrous scaffold by cleaner magnetron-sputtering additive manufacturing: A novel biocompatible platform for antibacterial application, J. Clean. Prod., 315(2021), art. No. 128201. – reference: H.X. Zhang, Z.R. Jia, B.B. Wang, et al., Construction of remarkable electromagnetic wave absorber from heterogeneous structure of Co−CoFe2O4@mesoporous hollow carbon spheres, Chem. Eng. J., 421(2021), art. No. 129960. – reference: ZhangFZhangWDZhuWFChengBQiuHQiSHCore-shell nanostructured CS/MoS2: A promising material for microwave absorptionAppl. Surf. Sci.20194631821:CAS:528:DC%2BC1cXhs1entbvK10.1016/j.apsusc.2018.08.121 – reference: YanHYFuYQWuXMCore-shell structured NaTi2(PO4)3@polyaniline as an efficient electrode material for electrochemical energy storageSolid State Ionics2019336951:CAS:528:DC%2BC1MXmsVSkt7s%3D10.1016/j.ssi.2019.03.024 – reference: ZhangSJJiaZRChengBRecent progress of perovskite oxides and their hybrids for electromagnetic wave absorption: A mini-reviewAdv. Compos. Hybrid Mater.20225244010.1007/s42114-022-00458-7 – reference: L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 429(2022), art. No. 132547. – reference: Z.D. Wang, T. Zhang, J.K. Wang, et al., The investigation of the effect of filler sizes in 3D-BN skeletons on thermal conductivity of epoxy-based composites, Nanomaterials, 12(2022), No. 3, art. No. 446. – reference: ZhangHXWangBBFengALMesoporous carbon hollow microspheres with tunable pore size and shell thickness as efficient electromagnetic wave absorbersComposites Part B20191676901:CAS:528:DC%2BC1MXmslWhtbo%3D10.1016/j.compositesb.2019.03.055 – ident: 2509_CR67 doi: 10.3390/nano12030446 – volume: 5 start-page: 2440 year: 2022 ident: 2509_CR42 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-022-00458-7 – volume: 6 start-page: 1427 issue: 1 year: 2018 ident: 2509_CR49 publication-title: ACS Sustainable Chem. Eng. doi: 10.1021/acssuschemeng.7b03846 – volume: 803 start-page: 1119 year: 2019 ident: 2509_CR32 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.06.351 – volume: 68 start-page: 61 year: 2021 ident: 2509_CR64 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2020.06.046 – volume: 32 start-page: 4404 issue: 4 year: 2021 ident: 2509_CR30 publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-020-05183-9 – ident: 2509_CR7 doi: 10.1016/j.surfin.2021.101689 – volume: 758 start-page: 62 year: 2018 ident: 2509_CR11 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2018.05.130 – ident: 2509_CR33 doi: 10.1016/j.jallcom.2019.152083 – ident: 2509_CR51 doi: 10.1016/j.coco.2021.101052 – ident: 2509_CR57 doi: 10.1016/j.coco.2021.100731 – ident: 2509_CR63 doi: 10.1002/smll.202101951 – ident: 2509_CR37 doi: 10.1016/j.cej.2019.123096 – ident: 2509_CR14 doi: 10.1016/j.cej.2021.133919 – ident: 2509_CR69 doi: 10.1016/j.compositesb.2021.109306 – ident: 2509_CR9 doi: 10.1155/2020/3672517 – ident: 2509_CR2 doi: 10.1016/j.cej.2021.132253 – volume: 30 start-page: 559 issue: 3 year: 2023 ident: 2509_CR61 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-022-2488-2 – ident: 2509_CR58 doi: 10.1016/j.cej.2021.129960 – volume: 336 start-page: 95 year: 2019 ident: 2509_CR41 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2019.03.024 – ident: 2509_CR5 doi: 10.1038/s41467-021-21103-9 – volume: 15 start-page: 5590 year: 2022 ident: 2509_CR50 publication-title: Nano Res. doi: 10.1007/s12274-022-4287-5 – ident: 2509_CR36 doi: 10.1016/j.cej.2020.127313 – ident: 2509_CR23 doi: 10.1016/j.coco.2021.100993 – ident: 2509_CR29 doi: 10.1007/s40820-021-00704-5 – volume: 333 start-page: 519 year: 2018 ident: 2509_CR39 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.174 – volume: 463 start-page: 182 year: 2019 ident: 2509_CR34 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.121 – volume: 167 start-page: 690 year: 2019 ident: 2509_CR16 publication-title: Composites Part B doi: 10.1016/j.compositesb.2019.03.055 – volume: 30 start-page: 570 issue: 3 year: 2023 ident: 2509_CR59 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-022-2476-6 – volume: 142 start-page: 245 year: 2019 ident: 2509_CR54 publication-title: Carbon doi: 10.1016/j.carbon.2018.10.027 – volume: 186 start-page: 262 year: 2022 ident: 2509_CR66 publication-title: Carbon doi: 10.1016/j.carbon.2021.10.025 – ident: 2509_CR70 doi: 10.1007/s40820-020-00568-1 – ident: 2509_CR40 doi: 10.1016/j.jclepro.2021.128201 – volume: 127 start-page: 153 year: 2022 ident: 2509_CR8 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2022.04.005 – ident: 2509_CR52 doi: 10.1007/s40820-022-00798-5 – volume: 167 start-page: 148 year: 2020 ident: 2509_CR17 publication-title: Carbon doi: 10.1016/j.carbon.2020.05.070 – ident: 2509_CR19 doi: 10.1016/j.jallcom.2020.154531 – volume: 116 start-page: 50 year: 2017 ident: 2509_CR12 publication-title: Carbon doi: 10.1016/j.carbon.2017.01.077 – ident: 2509_CR10 doi: 10.1063/1.5099315 – volume: 11 start-page: 31182 issue: 34 year: 2019 ident: 2509_CR21 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b09779 – volume: 207 start-page: 100 year: 2022 ident: 2509_CR25 publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.02.155 – ident: 2509_CR65 doi: 10.1002/smsc.202100077 – ident: 2509_CR44 doi: 10.1016/j.compositesb.2021.109240 – volume: 7 start-page: 385 issue: 2 year: 2020 ident: 2509_CR47 publication-title: Inorg. Chem. Front. doi: 10.1039/C9QI01259A – volume: 4 start-page: 1398 issue: 4 year: 2021 ident: 2509_CR13 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-021-00304-2 – volume: 13 start-page: 3065 issue: 14 year: 2020 ident: 2509_CR27 publication-title: Materials doi: 10.3390/ma13143065 – ident: 2509_CR62 doi: 10.1016/j.cej.2021.130019 – volume: 142 start-page: 20 year: 2019 ident: 2509_CR15 publication-title: Carbon doi: 10.1016/j.carbon.2018.10.014 – volume: 368 start-page: 285 year: 2019 ident: 2509_CR53 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.02.193 – ident: 2509_CR18 doi: 10.1016/j.cej.2019.123207 – volume: 5 start-page: 1030 year: 2022 ident: 2509_CR31 publication-title: Adv. Compos. Hybrid Mater. doi: 10.1007/s42114-021-00415-w – volume: 6 start-page: 11009 issue: 12 year: 2012 ident: 2509_CR35 publication-title: ACS Nano doi: 10.1021/nn304630h – ident: 2509_CR46 doi: 10.1016/j.carbpol.2019.115175 – ident: 2509_CR1 doi: 10.1002/anie.202200705 – ident: 2509_CR4 doi: 10.1016/j.compscitech.2021.109178 – volume: 273 start-page: 991 year: 2018 ident: 2509_CR38 publication-title: Sens. Actuators B doi: 10.1016/j.snb.2018.05.167 – volume: 581 start-page: 475 year: 2020 ident: 2509_CR6 publication-title: J. Colloid. Interface. Sci. doi: 10.1016/j.jcis.2020.07.102 – volume: 15 start-page: 4747 year: 2022 ident: 2509_CR3 publication-title: Nano Res. doi: 10.1007/s12274-022-4159-z – volume: 152 start-page: 827 year: 2019 ident: 2509_CR55 publication-title: Carbon doi: 10.1016/j.carbon.2019.06.080 – ident: 2509_CR20 doi: 10.1016/j.jallcom.2019.151881 – volume: 45 start-page: 3126 issue: 3 year: 2019 ident: 2509_CR24 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.10.212 – volume: 2 start-page: 735 issue: 3 year: 2014 ident: 2509_CR28 publication-title: J. Mater. Chem. A doi: 10.1039/C3TA14050D – volume: 175 start-page: 509 year: 2021 ident: 2509_CR43 publication-title: Carbon doi: 10.1016/j.carbon.2020.11.089 – ident: 2509_CR48 doi: 10.1016/j.mtphys.2021.100475 – ident: 2509_CR68 doi: 10.1016/j.cej.2021.129429 – ident: 2509_CR45 doi: 10.1016/j.coco.2020.100404 – volume: 111 start-page: 722 year: 2017 ident: 2509_CR22 publication-title: Carbon doi: 10.1016/j.carbon.2016.10.059 – volume: 171 start-page: 395 year: 2021 ident: 2509_CR26 publication-title: Carbon doi: 10.1016/j.carbon.2020.09.036 – volume: 108 start-page: 236 year: 2022 ident: 2509_CR60 publication-title: J. Mater. Sci. Technol. doi: 10.1016/j.jmst.2021.07.049 – ident: 2509_CR56 doi: 10.1016/j.cej.2021.132547 |
SSID | ssj0067707 |
Score | 2.5744712 |
Snippet | Cobalt ferrite (CoFe
2
O
4
), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In... Cobalt ferrite (CoFe2O4), with good chemical stability and magnetic loss, can be used to prepare composites with a unique structure and high absorption. In... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 504 |
SubjectTerms | Absorption Attenuation coefficients Carbon Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Cobalt Cobalt ferrites Composite materials Composites Core-shell structure Corrosion and Coatings Current loss Dielectric loss Eddy current testing Eddy currents Electromagnetic radiation Glass Impedance Impedance matching Materials Science Metallic Materials Microwave absorption Natural Materials Resonance Resonance scattering Surfaces and Interfaces Thin Films Tribology |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA8yL3oQP3E6JQdPSmHN2jS5OcbGENSLg91KPl5hsK2y7OPgP-9L11oVFTz01DSH_pL3kffy-xFyE2uFSYPUAVPcn1apdqB1HOJaBslDq0yn0E95fOLDUfQwjsflPW5XdbtXJcnCUteX3TDY9zVHFqDblgGmPLsxpu6-j2vEupX55UlS3JH23fX-2EhWpcyfpvjqjOoI81tRtPA1g0NyUAaJtLtF9YjswPyY7H-iDjwhb_2C-wFdBp35nrqNWgNV2uWLwgZQ3yMJa7C0FOKhkzl1k-WKmrzmjKV5Rj2NZeB8Oyjt5QNgz9H9DFyOYXm-ctSohcZxaCKn-YY6z0EA7pSMBv2X3jAohRQC0wn5MoAMGIRKSusFzgWmXCAsF5AwbqwxRttERDLM2kYBAmSkYVIz1YkzAaZt484ZaczzOZwTKmI0CJbHGRMWc6tEaIMRB4Z5mYhYZk2TtKs_mpqSZdyLXUzTmh_Zg5AiCKkHIQ2b5Pbjk9ctxcZfg1sVTGm521zqFbfw4TJqkrsKuvr1r5Nd_Gv0JdnzWvPbBrQWaSBWcIURyVJfFyvwHZZV2Qc priority: 102 providerName: Springer Nature |
Title | Efficient microwave absorption achieved through in situ construction of core-shell CoFe2O4@mesoporous carbon hollow spheres |
URI | https://link.springer.com/article/10.1007/s12613-022-2509-1 https://www.proquest.com/docview/2920292694 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB61uxc4INqCWFpWPvQEsth4E8c-laXabUVFqRArlVPkVySkdl2aPg78eWayTgNI9JBL4kRKPmc8L38fwH5hDQYN2nJhJGWrzIRbW2Q4l4OWmTdu2uqnfD6Vx8v803lxnhJuTWqr7Gxia6h9dJQjf0-qSnhInR9c_eSkGkXV1SShsQlDNMFKDWD4cX569rWzxbIs2w3T1GpPOSTd1TXbzXMYPFANU3B0AzTP_l6Zenfznwppu_AsnsOz5DGy2RriLdgIq214-geP4A78mrdEELh-sEtqsLs3d4EZ28Tr1iAwapgMd8GzpMrDfqwYvtctc7EnkGWxZsRpyRvqDWWHcRHEl_zDZWgi-ujxtmHOXFsch_byIt6zhggJQvMClov5t8NjnlQVuJtm8oaHOoiQGa09qZ0rjL-C8lKFUkjnnXPWlyrXWT1xJiBaTjuhrTDTolbBTXwxfQmDVVyFV8BUgdbBy6IWymOgVSrr0P1An69Wuai9G8Gk-6KVS5TjpHxxUfVkyQRChSBUBEKVjeDtwy1Xa76NxwbvdTBV6ddrqn6ijOBdB11_-b8Pe_34w3bhCSnNr9vP9mCA4IQ36I_c2DFsqsXRGIazo-8n83Gagnh2KWa_AXXl4WM |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V5QAcUHmJpQV8gAvIYuNNHPuAAJUuW_rg0kq9BT8mElK7Lk3bFeI_8RuZySYEkOith5ySWJFnMg_PzPcBPC-8o6TBeqmc5tMqN5beFxnpMlqdRRcmLX_K3r6eHeafjoqjFfjZz8JwW2VvE1tDHVPgM_LXzKpEl7b529NvklmjuLraU2gs1WIHvy8oZWvebH8g-b5Qarp1sDmTHauADJNMn0usUWHmrI3M9m0o_0ATtcFS6RBDCD6WJrdZPQ4O6WuDDcp65SZFbTCMI7NEkMm_kU_Ik_Nk-vRjb_l1Wbbj2dzYzydWtq-itqN6lKpwxVRJCjqszP72g0Nw-089tnVz0zW408Wn4v1Soe7CCs7vwe0_UAvvw4-tFnaCvJU44Xa-hbtE4XyTzlrzI7g9Ey8xio4DSHydC9rFCxHSAFcrUi0YQVM23IkqNtMU1ef83Qk2iTKCdNGI4M48PUfW-TgtRMPwB9g8gMNr2e2HsDpPc3wEwhRki6IuamUipXWl8YGCHYowa5OrOoYRjPsdrUIHcM48G8fVAM3MQqhICBULocpG8PL3K6dLdI-rHt7oxVR1P3pTDWo5gle96Ibb_13s8dWLPYObs4O93Wp3e39nHW4xx_2y8W0DVklQ-IQioXP_tFU_AV-uW99_ARyBG2U |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRUJwQJSHWCjFB7iAom68iWMfkKjarloKhQMr9Rb8mEiV2qSqt10hfhR_kZls0hQESBx6yClOZHnG4xnPzPcBvMydpaDBuERaxbdVdpw4l6eky2hUGqyftPwpHw_V3ix7f5QfrcCPvhemrXbvU5LLngZGaarnm2eh2hwa38jx5_yjTOgIN0naVVUe4LcFxWzx7f4OCfiVlNPdL9t7SUcrkPhJquYJVigxtcYEpvvWFICgDkpjIZUP3nsXCp2ZtBp7izRdb7w0TtpJXmn048A0EWTzb2XcfEwbaCa3etOviqLtz-bKfr6yMn0a9U9T_vUgHLzb3xKy7Tk3vQ_3OgdVbC01ag1WsH4Ad6_BFj6E77st7gQtlzjler6FvURhXWzOW_sjuD4TLzGIjgRIHNciHs8vhG8GvFrRVIIhNJPIpahiu5mi_JS9O8XYUEjQXETh7bmjcWSeT5qFiIx_gPERzG5ktR_Dat3U-ASEzskYBZVXUgeK6wrtPHk75GJWOpNV8CMY9yta-g7hnIk2TsoBm5mFUJIQShZCmY7g9dUnZ0t4j38NXu_FVHY7PZbM9kWPMtkI3vSiG17_9WdP_2v0C7j9eWdaftg_PHgGd5jyflkHtw6rJDZ8To7R3G20yijg601r_08QbBwk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+microwave+absorption+achieved+through+in+situ+construction+of+core-shell+CoFe2O4%40mesoporous+carbon+hollow+spheres&rft.jtitle=International+journal+of+minerals%2C+metallurgy+and+materials&rft.au=Ren%2C+Lianggui&rft.au=Wang%2C+Yiqun&rft.au=Zhang%2C+Xin&rft.au=He%2C+Qinchuan&rft.date=2023-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-4799&rft.eissn=1869-103X&rft.volume=30&rft.issue=3&rft.spage=504&rft.epage=514&rft_id=info:doi/10.1007%2Fs12613-022-2509-1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-4799&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-4799&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-4799&client=summon |