Convolution-Transformer for Image Feature Extraction

This study addresses the limitations of Transformer models in image feature extraction, particularly their lack of inductive bias for visual structures. Compared to Convolutional Neural Networks (CNNs), the Transformers are more sensitive to different hyperparameters of optimizers, which leads to a...

Full description

Saved in:
Bibliographic Details
Published inComputer modeling in engineering & sciences Vol. 141; no. 1; pp. 87 - 106
Main Authors Yin, Lirong, Wang, Lei, Lu, Siyu, Wang, Ruiyang, Yang, Youshuai, Yang, Bo, Liu, Shan, AlSanad, Ahmed, AlQahtani, Salman A., Yin, Zhengtong, Li, Xiaolu, Chen, Xiaobing, Zheng, Wenfeng
Format Journal Article
LanguageEnglish
Published Henderson Tech Science Press 2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study addresses the limitations of Transformer models in image feature extraction, particularly their lack of inductive bias for visual structures. Compared to Convolutional Neural Networks (CNNs), the Transformers are more sensitive to different hyperparameters of optimizers, which leads to a lack of stability and slow convergence. To tackle these challenges, we propose the Convolution-based Efficient Transformer Image Feature Extraction Network (CEFormer) as an enhancement of the Transformer architecture. Our model incorporates E-Attention, depthwise separable convolution, and dilated convolution to introduce crucial inductive biases, such as translation invariance, locality, and scale invariance, into the Transformer framework. Additionally, we implement a lightweight convolution module to process the input images, resulting in faster convergence and improved stability. This results in an efficient convolution combined Transformer image feature extraction network. Experimental results on the ImageNet1k Top-1 dataset demonstrate that the proposed network achieves better accuracy while maintaining high computational speed. It achieves up to 85.0% accuracy across various model sizes on image classification, outperforming various baseline models. When integrated into the Mask Region-Convolutional Neural Network (R-CNN) framework as a backbone network, CEFormer outperforms other models and achieves the highest mean Average Precision (mAP) scores. This research presents a significant advancement in Transformer-based image feature extraction, balancing performance and computational efficiency.
AbstractList This study addresses the limitations of Transformer models in image feature extraction, particularly their lack of inductive bias for visual structures. Compared to Convolutional Neural Networks (CNNs), the Transformers are more sensitive to different hyperparameters of optimizers, which leads to a lack of stability and slow convergence. To tackle these challenges, we propose the Convolution-based Efficient Transformer Image Feature Extraction Network (CEFormer) as an enhancement of the Transformer architecture. Our model incorporates E-Attention, depthwise separable convolution, and dilated convolution to introduce crucial inductive biases, such as translation invariance, locality, and scale invariance, into the Transformer framework. Additionally, we implement a lightweight convolution module to process the input images, resulting in faster convergence and improved stability. This results in an efficient convolution combined Transformer image feature extraction network. Experimental results on the ImageNet1k Top-1 dataset demonstrate that the proposed network achieves better accuracy while maintaining high computational speed. It achieves up to 85.0% accuracy across various model sizes on image classification, outperforming various baseline models. When integrated into the Mask Region-Convolutional Neural Network (R-CNN) framework as a backbone network, CEFormer outperforms other models and achieves the highest mean Average Precision (mAP) scores. This research presents a significant advancement in Transformer-based image feature extraction, balancing performance and computational efficiency.
Author AlQahtani, Salman A.
AlSanad, Ahmed
Li, Xiaolu
Wang, Ruiyang
Liu, Shan
Zheng, Wenfeng
Yang, Youshuai
Yin, Zhengtong
Yin, Lirong
Chen, Xiaobing
Yang, Bo
Wang, Lei
Lu, Siyu
Author_xml – sequence: 1
  givenname: Lirong
  surname: Yin
  fullname: Yin, Lirong
– sequence: 2
  givenname: Lei
  surname: Wang
  fullname: Wang, Lei
– sequence: 3
  givenname: Siyu
  surname: Lu
  fullname: Lu, Siyu
– sequence: 4
  givenname: Ruiyang
  surname: Wang
  fullname: Wang, Ruiyang
– sequence: 5
  givenname: Youshuai
  surname: Yang
  fullname: Yang, Youshuai
– sequence: 6
  givenname: Bo
  surname: Yang
  fullname: Yang, Bo
– sequence: 7
  givenname: Shan
  surname: Liu
  fullname: Liu, Shan
– sequence: 8
  givenname: Ahmed
  surname: AlSanad
  fullname: AlSanad, Ahmed
– sequence: 9
  givenname: Salman A.
  surname: AlQahtani
  fullname: AlQahtani, Salman A.
– sequence: 10
  givenname: Zhengtong
  surname: Yin
  fullname: Yin, Zhengtong
– sequence: 11
  givenname: Xiaolu
  surname: Li
  fullname: Li, Xiaolu
– sequence: 12
  givenname: Xiaobing
  surname: Chen
  fullname: Chen, Xiaobing
– sequence: 13
  givenname: Wenfeng
  surname: Zheng
  fullname: Zheng, Wenfeng
BookMark eNp9kL1Ow0AQhE8oSCSBB6CzRO2w9xunRFECkSLRhPq0Oe8hR7Ev3NkI3h6bUCAKqtliZnb0TdioCQ0xdsthJoUBde9qSjMBQs1AcyjkBRtzLUzONZjRr_uKTVI6AEgji8WYqWVo3sOxa6vQ5LuITfIh1hSzXrJNja-UrQnbLlK2-mgjusF4zS49HhPd_OiUvaxXu-VTvn1-3CwftrmT3LQ5IdFCFQbnWhm-VwqhJCFkgeQcLuZlaTR3UAivwYFAKLD0zivnjdg77eWU3Z17TzG8dZRaewhdbPqXVgoALriUvHfNzy4XQ0qRvHVVi8POfm91tBzsNyI7ILIDIntG1Cf5n-QpVjXGz38yX5babGI
CitedBy_id crossref_primary_10_1063_5_0188259
crossref_primary_10_3390_electronics13152998
crossref_primary_10_1063_5_0208691
crossref_primary_10_1109_ACCESS_2024_3476082
crossref_primary_10_1007_s44196_024_00690_7
crossref_primary_10_1016_j_compag_2024_109431
crossref_primary_10_1007_s12601_024_00182_x
crossref_primary_10_1155_jom_4423113
crossref_primary_10_1016_j_engappai_2024_109288
crossref_primary_10_7717_peerj_cs_2464
crossref_primary_10_1038_s41598_024_73674_4
crossref_primary_10_1109_JSTARS_2024_3492533
crossref_primary_10_1109_ACCESS_2024_3519308
crossref_primary_10_1109_ACCESS_2024_3452184
crossref_primary_10_1109_ACCESS_2025_3530242
crossref_primary_10_1038_s41598_024_68567_5
crossref_primary_10_7717_peerj_cs_2409
crossref_primary_10_1007_s10462_024_10912_1
crossref_primary_10_3389_fnbot_2024_1448538
crossref_primary_10_7717_peerj_cs_2476
crossref_primary_10_1007_s10462_024_10958_1
crossref_primary_10_3390_bioengineering11080740
crossref_primary_10_7717_peerj_cs_2495
crossref_primary_10_1109_ACCESS_2024_3457613
crossref_primary_10_1007_s44196_024_00664_9
Cites_doi 10.1016/j.patcog.2022.108548
10.1016/j.engappai.2024.108146
10.1088/2058-9565/acb1d0
10.3390/rs14163914
10.1016/j.patcog.2022.108605
10.1364/OL.451777
10.1109/TPAMI.2023.3341806
10.1016/j.ins.2022.11.139
10.1016/j.neucom.2023.01.072
10.1016/j.neucom.2022.01.056
10.1016/j.neunet.2022.01.012
10.1109/CVPR52688.2022.01181
10.1016/j.aei.2023.102075
10.3390/rs14030645
10.1016/j.ins.2022.01.022
10.1038/s41598-022-19674-8
ContentType Journal Article
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7TB
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FR3
JQ2
KR7
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmes.2024.051083
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
Computer and Information Systems Abstracts Professional
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
Engineering Research Database
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1526-1506
EndPage 106
ExternalDocumentID 10_32604_cmes_2024_051083
GroupedDBID -~X
AAFWJ
AAYXX
ACIWK
ADMLS
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
F5P
IPNFZ
J9A
OK1
PHGZM
PHGZT
PIMPY
RTS
7SC
7TB
8FD
ABUWG
AZQEC
DWQXO
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-eaee9486a75461b44a0de2238aecca97dd651c082f50c02a08adfcf4cf62bc5f3
IEDL.DBID BENPR
ISSN 1526-1506
1526-1492
IngestDate Mon Jun 30 11:02:15 EDT 2025
Thu Apr 24 23:05:08 EDT 2025
Tue Jul 01 05:24:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-eaee9486a75461b44a0de2238aecca97dd651c082f50c02a08adfcf4cf62bc5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3200121331?pq-origsite=%requestingapplication%
PQID 3200121331
PQPubID 2048798
PageCount 20
ParticipantIDs proquest_journals_3200121331
crossref_citationtrail_10_32604_cmes_2024_051083
crossref_primary_10_32604_cmes_2024_051083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computer modeling in engineering & sciences
PublicationYear 2024
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Kim (ref1) 2022
Chalavadi (ref21) 2022; 126
Ikotun (ref12) 2023; 622
Han (ref39) 2021; 34
Mansuroglu (ref22) 2023; 8
Tan (ref8) 2022; 14
ref50
Zhang (ref5) 2022; 13682
Bian (ref11) 2022; 47
Wang (ref37) 2021
Zhou (ref6) 2022
Heo (ref44) 2021
ref47
ref42
Wang (ref15) 2024; 133
ref41
Huang (ref33) 2022
Liu (ref38) 2021
Chen (ref49) 2021
Guo (ref48) 2022
Boutros (ref2) 2022
Zhang (ref18) 2022
Touvron (ref40) 2021
Dosovitskiy (ref35) 2021
Jiang (ref46) 2021; 34
Qiu (ref23) 2022; 14
Guo (ref24) 2022; 12
Xiao (ref10) 2022; 591
Yuan (ref17) 2021
ref34
ref36
Chen (ref31) 2021
ref30
Li (ref26) 2022
Chen (ref16) 2021; 34
Vaswani (ref13) 2017
He (ref20) 2023; 530
Ci (ref25) 2022
Bae (ref3) 2023
Zhang (ref32) 2022; 36
Ma (ref4) 2022
Alinezhad Noghre (ref27) 2022
Chen (ref19) 2021
Ascoli (ref43) 2021
Liang (ref14) 2023; 57
Sun (ref28) 2022; 148
Song (ref7) 2022; 482
Wu (ref45) 2021
Wang (ref9) 2022; 128
Radosavovic (ref29) 2020
References_xml – start-page: 589
  year: 2021
  ident: ref19
  article-title: Visformer: the vision-friendly transformer
– volume: 126
  start-page: 108548
  year: 2022
  ident: ref21
  article-title: mSODANet: a network for multi-scale object detection in aerial images using hierarchical dilated convolutions
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.108548
– start-page: 10012
  year: 2021
  ident: ref38
  article-title: Swin transformer: hierarchical vision transformer using shifted windows
– start-page: 12165
  year: 2022
  ident: ref48
  article-title: CMT: convolutional neural networks meet vision transformers
– start-page: 12270
  year: 2021
  ident: ref31
  article-title: Autoformer: searching transformers for visual recognition
– volume: 133
  start-page: 108146
  year: 2024
  ident: ref15
  article-title: Single and simultaneous fault diagnosis of gearbox via deep learning-based feature learning
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.108146
– volume: 13682
  year: 2022
  ident: ref5
  publication-title: Lecture notes in computer science
– volume: 8
  start-page: 25006
  year: 2023
  ident: ref22
  article-title: Variational Hamiltonian simulation for translational invariant systems via classical pre-processing
  publication-title: Quantum Sci Technol
  doi: 10.1088/2058-9565/acb1d0
– start-page: 32
  year: 2021
  ident: ref40
  article-title: Going deeper with image transformers
– volume: 14
  start-page: 3914
  year: 2022
  ident: ref23
  article-title: MSL-Net: an efficient network for building extraction from aerial imagery
  publication-title: Remote Sens
  doi: 10.3390/rs14163914
– start-page: 2286
  year: 2021
  ident: ref43
  article-title: ConViT: improving vision transformers with soft convolutional inductive biases
– volume: 128
  start-page: 108605
  year: 2022
  ident: ref9
  article-title: High quality proposal feature generation for crowded pedestrian detection
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.108605
– year: 2021
  ident: ref35
  article-title: An image is worth 16 × 16 words: transformers for image recognition at scale
– volume: 47
  start-page: 1343
  year: 2022
  ident: ref11
  article-title: Image-free multi-character recognition
  publication-title: Opt Lett
  doi: 10.1364/OL.451777
– start-page: 6000
  year: 2017
  ident: ref13
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17)
– start-page: 8781
  year: 2022
  ident: ref4
  article-title: Unified transformer tracker for object tracking
– ident: ref30
– ident: ref36
– volume: 34
  year: 2021
  ident: ref46
  publication-title: Advances in neural information processing systems
– ident: ref34
  doi: 10.1109/TPAMI.2023.3341806
– volume: 36
  start-page: 3417
  year: 2022
  ident: ref32
  article-title: Nested hierarchical transformer: towards accurate, data-efficient and interpretable visual understanding
  publication-title: Proc AAAI Conf Artif Intell
– start-page: 3526
  year: 2023
  ident: ref3
  article-title: DigiFace-1M: 1 million digital face images for face recognition
– start-page: 21330
  year: 2022
  ident: ref26
  article-title: BigDatasetGAN: synthesizing ImageNet with pixel-wise annotations
– ident: ref50
– volume: 622
  start-page: 178
  year: 2023
  ident: ref12
  article-title: K-means clustering algorithms: a comprehensive review, variants analysis, and advances in the era of big data
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.11.139
– start-page: 10428
  year: 2020
  ident: ref29
  article-title: Designing network design spaces
– ident: ref47
– volume: 34
  year: 2021
  ident: ref39
  publication-title: Advances in neural information processing systems
– volume: 530
  start-page: 48
  year: 2023
  ident: ref20
  article-title: A multiscale intrusion detection system based on pyramid depthwise separable convolution neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.01.072
– volume: 482
  start-page: 98
  year: 2022
  ident: ref7
  article-title: PRNet++: learning towards generalized occluded pedestrian detection via progressive refinement network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2022.01.056
– start-page: 290
  year: 2022
  ident: ref25
  publication-title: Computer vision–ECCV 2022
– start-page: 558
  year: 2021
  ident: ref17
  article-title: Tokens-to-token ViT: training vision transformers from scratch on imagenet
– ident: ref41
– start-page: 12
  year: 2021
  ident: ref49
  article-title: GLiT: neural architecture search for global and local image transformer
– volume: 148
  start-page: 155
  year: 2022
  ident: ref28
  article-title: Low-degree term first in ResNet, its variants and the whole neural network family
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2022.01.012
– start-page: 18750
  year: 2022
  ident: ref1
  article-title: AdaFace: quality adaptive margin for face recognition
– start-page: 8944
  year: 2022
  ident: ref18
  article-title: Bootstrapping ViTs: towards liberating vision transformers from pre-training
– ident: ref42
  doi: 10.1109/CVPR52688.2022.01181
– start-page: 568
  year: 2021
  ident: ref37
  article-title: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions
– start-page: 295
  year: 2022
  ident: ref33
  publication-title: Pattern recognition and artificial intelligence
– start-page: 22
  year: 2021
  ident: ref45
  article-title: CVT: introducing convolutions to vision transformers
– volume: 57
  start-page: 102075
  year: 2023
  ident: ref14
  article-title: Fault transfer diagnosis of rolling bearings across multiple working conditions via subdomain adaptation and improved vision transformer network
  publication-title: Adv Eng Inform
  doi: 10.1016/j.aei.2023.102075
– start-page: 258
  year: 2022
  ident: ref27
  publication-title: Pattern recognition and artificial intelligence
– start-page: 1578
  year: 2022
  ident: ref2
  article-title: ElasticFace: elastic margin loss for deep face recognition
– volume: 34
  year: 2021
  ident: ref16
  publication-title: Advances in neural information processing systems
– volume: 14
  start-page: 645
  year: 2022
  ident: ref8
  article-title: 3D sensor based pedestrian detection by integrating improved HHA encoding and two-branch feature fusion
  publication-title: Remote Sens
  doi: 10.3390/rs14030645
– volume: 591
  start-page: 128
  year: 2022
  ident: ref10
  article-title: Dynamic graph computing: a method of finding companion vehicles from traffic streaming data
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2022.01.022
– start-page: 8531
  year: 2022
  ident: ref6
  article-title: PTTR: relational 3D point cloud object tracking with transformer
– volume: 12
  start-page: 15523
  year: 2022
  ident: ref24
  article-title: Road damage detection algorithm for improved YOLOv5
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-19674-8
– start-page: 11936
  year: 2021
  ident: ref44
  article-title: Rethinking spatial dimensions of vision transformers
SSID ssj0036389
Score 2.536641
Snippet This study addresses the limitations of Transformer models in image feature extraction, particularly their lack of inductive bias for visual structures....
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 87
SubjectTerms Accuracy
Artificial neural networks
Bias
Convergence
Feature extraction
Image classification
Invariance
Neural networks
Scale invariance
Stability
Title Convolution-Transformer for Image Feature Extraction
URI https://www.proquest.com/docview/3200121331
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwELWgXVj4RhQKysCEZBrbl68JQdWqIFEh1ErdIsexJ5qWNkX8fHyJA-rSKUOcKLqz37s7O-8IudNG2jRZcSwvJRQCCVSCTVa40JaPImmYxjrk2zgcTeF1FsxcwW3tjlU2mFgBdb5QWCPvCV7Ljwn2uPyi2DUKd1ddC4190rYQHMct0n4ejN8_GiwWyMeVYioPqf0YXu9r2pDFh56aa9Tr5vCAEzMW28y0DcwV2wyPyaELE72n2q8nZE8Xp-SoacHguRV5RqC_KL7d7KGTJgi1I-zFe5lbsPAwyNustDf4KVf1XwznZDocTPoj6hohUCVYWFIttU4gDmUUQMgyAOnn2vJ6LNEBSZTnYcCUJXMT-Mrn0o9lbpQBZUKeqcCIC9IqFoW-xJNMPpM6YjJXAAKluSOT5GCzkIwzmQQd4jdGSJVTCcdmFZ-pzRYqu6VotxTtltZ265D7v0eWtUTGrsHdxrKpWy3r9N-3V7tvX5MDfFddAumSVrna6BsbFJTZrfP8L_TQtOM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED6VdoCFN6JQIAMsSKGJ7bwGhKC0aulDCLVSt-A4zkQftCmPP8VvxJcHqEu3Th7sWPKX8313Z_sO4FJGXLnJgmB4ydOZxZnOmXJWCJWKjxwemRLjkN2e3Rywp6E1LMBP_hYGr1XmOjFR1OFEYIy8Skmafoyad9N3HatG4elqXkIjFYu2_P5ULtv8tvWo_u8VIY16v9bUs6oCuqCmHeuSS-kx1-aOxWwzYIwboVQk6XJcjeeEoW2ZQjFjZBnCINxweRiJiInIJoGwIqrm3YASo7ZBilB6qPeeX3LdT5H_kwytxNbV4kl6jqpMJINVxUhifnDCbnAjuHSZCZeJIGG3xi5sZ2apdp_K0R4U5HgfdvKSD1qmAQ6A1Sbjj0xa9X5u9KoRqtFaI6WcNDQqFzOp1b_iWfpq4hAGa4HoCIrjyVge480pw-TSMXkoGKOYCtyJvJAprycgJvesMhg5CL7IspJjcYw3X3knCW4-4uYjbn6KWxmu_z6Zpik5Vg2u5Mj62e6c-_-ydLK6-wI2m_1ux--0eu1T2MJ50_BLBYrxbCHPlEESB-eZFGjwum7B-wUNmfOk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolution-Transformer+for+Image+Feature+Extraction&rft.jtitle=Computer+modeling+in+engineering+%26+sciences&rft.au=Yin%2C+Lirong&rft.au=Wang%2C+Lei&rft.au=Lu%2C+Siyu&rft.au=Wang%2C+Ruiyang&rft.date=2024&rft.issn=1526-1506&rft.eissn=1526-1506&rft.volume=141&rft.issue=1&rft.spage=87&rft.epage=106&rft_id=info:doi/10.32604%2Fcmes.2024.051083&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmes_2024_051083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1526-1506&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1526-1506&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1526-1506&client=summon