Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function

This paper proposes a new delayed stochastic epidemic model with double epidemic hypothesis and a general nonlinear response function. The main purpose is to explore the effects of environmental noise and the general nonlinear response function on stochastic dynamics. By constructing appropriate Lya...

Full description

Saved in:
Bibliographic Details
Published inComputational & applied mathematics Vol. 38; no. 2; pp. 1 - 30
Main Authors Li, Fei, Zhang, Shengqiang, Meng, Xinzhu
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.06.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper proposes a new delayed stochastic epidemic model with double epidemic hypothesis and a general nonlinear response function. The main purpose is to explore the effects of environmental noise and the general nonlinear response function on stochastic dynamics. By constructing appropriate Lyapunov functions and using some novel differential inequality techniques, we first investigate the long-time asymptotic properties of the stochastic delayed system. Moreover, the threshold conditions for the persistence in mean are established. At last, we carry out a series of numerical simulations to illustrate the performance of the theoretical results. The developed theoretical methods and stochastic inequalities techniques can be applied to explore stochastic differential systems with the general response function.
AbstractList This paper proposes a new delayed stochastic epidemic model with double epidemic hypothesis and a general nonlinear response function. The main purpose is to explore the effects of environmental noise and the general nonlinear response function on stochastic dynamics. By constructing appropriate Lyapunov functions and using some novel differential inequality techniques, we first investigate the long-time asymptotic properties of the stochastic delayed system. Moreover, the threshold conditions for the persistence in mean are established. At last, we carry out a series of numerical simulations to illustrate the performance of the theoretical results. The developed theoretical methods and stochastic inequalities techniques can be applied to explore stochastic differential systems with the general response function.
ArticleNumber 95
Author Meng, Xinzhu
Zhang, Shengqiang
Li, Fei
Author_xml – sequence: 1
  givenname: Fei
  surname: Li
  fullname: Li, Fei
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology
– sequence: 2
  givenname: Shengqiang
  surname: Zhang
  fullname: Zhang, Shengqiang
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology
– sequence: 3
  givenname: Xinzhu
  surname: Meng
  fullname: Meng, Xinzhu
  email: mxz721106@sdust.edu.cn
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology, State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology
BookMark eNp9kF1L5DAUhoO4sOO4P2DvAl7XTZq2aS9l_FoQvNHrkKYnsxnaZMxJwf57MzuCIOjVCeR93uQ8Z-TUBw-E_ObskjMm_2DFBK8KxruCtbUsXk_IirdMFkyw8pSsylK0hWiY-EnOEHeMCcmrakWW68XryRmk2utxQXc4DNTPE0Rn9EjRTfOokwseabBU0wFGvcBAMQXzT2NyhsLeDZBL6BTyLcW534FJNIUc34KHmHsi4D53ALWzN4e6c_LD6hHh1_tck-fbm6fNffHwePd3c_VQGMGbVEBdDnKwgxbSNL2pjGxaOwhb99CJqquhbjvRddD3eWpm2rwas4ZB23dVZXuxJhfH3n0MLzNgUrswx7wsqrLksq6zmSan-DFlYkCMYNU-uknHRXGmDobV0bDKhtXBsHrNjPzEGJf-q0pRu_FbsjySmF_xW4gff_oaegNhtZVx
CitedBy_id crossref_primary_10_1007_s11071_022_07401_x
crossref_primary_10_1155_2020_4627571
crossref_primary_10_3390_sym12050745
crossref_primary_10_1155_2020_2313102
crossref_primary_10_3390_vaccines10101682
crossref_primary_10_1155_2020_7609582
crossref_primary_10_1155_2020_8596371
crossref_primary_10_1007_s10255_023_1055_6
crossref_primary_10_1080_07362994_2021_1981382
crossref_primary_10_3390_math11234794
crossref_primary_10_1080_10255842_2023_2199900
crossref_primary_10_1007_s40995_023_01490_y
crossref_primary_10_1007_s12591_021_00568_6
crossref_primary_10_1016_j_physa_2021_125992
crossref_primary_10_11948_20190212
crossref_primary_10_1016_j_apm_2020_03_027
crossref_primary_10_1155_2020_8716314
crossref_primary_10_3934_math_20231199
crossref_primary_10_3934_math_20231278
crossref_primary_10_1109_ACCESS_2020_2965556
crossref_primary_10_1155_2019_4873290
crossref_primary_10_1016_j_physa_2019_123866
crossref_primary_10_1088_1402_4896_acc558
crossref_primary_10_1155_2020_8175217
crossref_primary_10_1155_2019_1810385
crossref_primary_10_11948_20210085
crossref_primary_10_1063_5_0200093
crossref_primary_10_1155_2021_8204043
crossref_primary_10_1007_s11766_022_3631_6
crossref_primary_10_3934_math_2022368
crossref_primary_10_1016_j_chaos_2020_110519
crossref_primary_10_3390_sym12030331
crossref_primary_10_3934_math_2023321
crossref_primary_10_1007_s12190_021_01504_1
crossref_primary_10_1016_j_camwa_2019_07_022
crossref_primary_10_1142_S0218339021500224
Cites_doi 10.1002/mma.3083
10.1016/j.nonrwa.2008.10.041
10.1007/s002850050051
10.1016/j.physa.2016.10.034
10.1155/2017/4820183
10.1016/j.physa.2016.06.095
10.1186/s13662-017-1289-9
10.1016/S0893-9659(98)00123-2
10.1186/s13662-014-0342-1
10.1016/j.jmaa.2015.07.056
10.1007/s11424-015-2253-y
10.1186/s13660-017-1418-8
10.1016/S0304-4149(01)00126-0
10.1007/s11071-012-0641-6
10.1006/jdeq.2000.3882
10.1016/j.cnsns.2016.08.013
10.1016/j.cam.2016.10.017
10.1007/s11424-016-5060-1
10.1186/s13660-016-1265-z
10.1007/s11538-005-9037-9
10.1007/s00332-016-9337-2
10.1016/j.aml.2014.10.007
10.1016/j.aml.2003.11.005
10.1007/BF00276956
10.1016/j.jmaa.2015.10.047
10.1016/j.apm.2013.03.035
10.1137/10081856X
10.1186/s13662-017-1077-6
10.1016/0025-5564(78)90006-8
10.1016/j.vaccine.2006.05.018
10.1007/s11538-007-9196-y
10.1016/j.nonrwa.2007.03.010
10.1007/s10910-014-0321-5
10.1155/2018/7873902
10.1155/2015/758362
ContentType Journal Article
Copyright SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: SBMAC - Sociedade Brasileira de Matemática Aplicada e Computacional 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s40314-019-0857-x
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1807-0302
EndPage 30
ExternalDocumentID 10_1007_s40314_019_0857_x
GroupedDBID -EM
.4S
.DC
06D
0R~
203
29F
2WC
30V
4.4
406
5GY
69Q
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKPC
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABTEG
ABTHY
ABTKH
ABTMW
ABXHO
ABXPI
ACAOD
ACCUX
ACDTI
ACGFO
ACGFS
ACHSB
ACIPV
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACREN
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEGXH
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AIAGR
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
APOWU
ARCSS
ASPBG
AUKKA
AVWKF
AXYYD
AYJHY
AZFZN
BAPOH
BGNMA
C1A
CS3
CSCUP
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
HMJXF
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KOV
KQ8
KWQ
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9J
OK1
P2P
PT4
RLLFE
RNS
ROL
RSC
RSV
SCD
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TR2
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
XSB
Z7R
Z83
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
OVT
ABRTQ
ID FETCH-LOGICAL-c316t-e52d7dfda37c6bc4c768fd3f5be93495e589399ebb893a0c80030fc0e8b944fb3
IEDL.DBID AGYKE
ISSN 2238-3603
IngestDate Wed Aug 13 06:09:35 EDT 2025
Thu Apr 24 22:57:21 EDT 2025
Tue Jul 01 00:46:02 EDT 2025
Fri Feb 21 02:27:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Time delays
Numerical simulations
Global asymptotics
65C30
34E10
92B05
Nonlinear incidence rate
Stochastic delayed epidemic model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-e52d7dfda37c6bc4c768fd3f5be93495e589399ebb893a0c80030fc0e8b944fb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2217552386
PQPubID 2044245
PageCount 30
ParticipantIDs proquest_journals_2217552386
crossref_primary_10_1007_s40314_019_0857_x
crossref_citationtrail_10_1007_s40314_019_0857_x
springer_journals_10_1007_s40314_019_0857_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-06-01
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 2019-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Heidelberg
PublicationTitle Computational & applied mathematics
PublicationTitleAbbrev Comp. Appl. Math
PublicationYear 2019
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References Korobeinikov (CR10) 2007; 69
Korobeinikov (CR9) 2006; 68
Meng, Zhao, Feng, Zhang (CR31) 2016; 433
CR39
Capasso, Serio (CR1) 1978; 42
CR14
Ma, Song, Takeuchi (CR26) 2004; 17
Zhao, Jiang (CR44) 2014; 243
Liu, Li, Zhang (CR21) 2014; 228
Zhang, Meng, Zhang (CR43) 2016; 6
Cooke, Van Den Driessche (CR3) 1996; 35
Liu, Jiang, Shi, Hayat, Alsaedi (CR23) 2017; 467
Ma, Jia (CR25) 2016; 435
Zhang, Meng, Zhang, Song (CR41) 2012; 218
Li, Shuai, Wang (CR13) 2004; 2004
Gray, Greenhalgh, Hu, Mao, Pan (CR6) 2011; 71
Meng, Wang, Zhang (CR32) 2016; 6
Wu, Feng (CR38) 2000; 168
Zhou, Zhang, Yuan, Hu (CR47) 2014; 2014
Zhao, Yuan, Zhang (CR46) 2017; 44
Liu, Jiang, Shi (CR24) 2018; 316
Liu, Wang, Meng, Gao (CR15) 2017; 2017
Liu, Chen (CR17) 2002; 129
Liu, Levin, Iwasa (CR20) 1986; 23
Mao, Marion, Renshaw (CR28) 2002; 97
Meng (CR29) 2010; 217
Zhang, Teng (CR40) 2008; 9
Miao, Zhang, Zhang, Pradeep (CR33) 2017; 2017
Zhao, Zhang (CR45) 2016; 29
Wang, Jiang, Hayat, Ahmad (CR37) 2017; 315
Gao, Chen, Nieto, Torres (CR5) 2006; 24
He, Gao, Xie (CR7) 2013; 37
Tan, Zhang (CR36) 2015; 28
Zhang, Chen, Han (CR42) 2014; 52
Liu, Meng (CR19) 2017; 2017
Meng, Chen, Wu (CR30) 2010; 11
Jiang, Ma (CR8) 2015; 38
Liu (CR16) 2015; 48
Liu, Fan (CR18) 2017; 27
Feng, Meng, Liu, Gao (CR4) 2016; 2016
Mao (CR27) 1997
Chen, Teng, Wang, Jiang (CR2) 2013; 71
Leng, Feng, Meng (CR11) 2017; 2017
Roberts, Saha (CR35) 1999; 12
Liu, Jiang, Shi, Hayat, Alsaedi (CR22) 2016; 462
Li, Chen (CR12) 2015; 2015
Miao, Wang, Zhang, Wang, Pradeep (CR34) 2017; 2017
WM Liu (857_CR20) 1986; 23
Q Liu (857_CR23) 2017; 467
WB Ma (857_CR26) 2004; 17
Q Liu (857_CR24) 2018; 316
XR Mao (857_CR27) 1997
T Feng (857_CR4) 2016; 2016
SJ Gao (857_CR5) 2006; 24
XK Liu (857_CR21) 2014; 228
XZ Meng (857_CR32) 2016; 6
YY He (857_CR7) 2013; 37
XN Leng (857_CR11) 2017; 2017
Z Li (857_CR13) 2004; 2004
YN Zhao (857_CR44) 2014; 243
M Liu (857_CR16) 2015; 48
AQ Miao (857_CR34) 2017; 2017
A Korobeinikov (857_CR10) 2007; 69
TH Zhang (857_CR42) 2014; 52
KL Cooke (857_CR3) 1996; 35
ZC Jiang (857_CR8) 2015; 38
LI Wu (857_CR38) 2000; 168
TL Zhang (857_CR40) 2008; 9
G Li (857_CR12) 2015; 2015
MG Roberts (857_CR35) 1999; 12
A Gray (857_CR6) 2011; 71
XR Mao (857_CR28) 2002; 97
QL Chen (857_CR2) 2013; 71
M Liu (857_CR18) 2017; 27
HJ Ma (857_CR25) 2016; 435
XZ Meng (857_CR30) 2010; 11
Y Zhao (857_CR46) 2017; 44
XZ Meng (857_CR31) 2016; 433
Q Liu (857_CR22) 2016; 462
Anqi Miao (857_CR33) 2017; 2017
GD Liu (857_CR15) 2017; 2017
V Capasso (857_CR1) 1978; 42
SQ Liu (857_CR17) 2002; 129
LD Liu (857_CR19) 2017; 2017
Y Zhao (857_CR45) 2016; 29
C Tan (857_CR36) 2015; 28
857_CR14
Y Wang (857_CR37) 2017; 315
YL Zhou (857_CR47) 2014; 2014
TQ Zhang (857_CR41) 2012; 218
A Korobeinikov (857_CR9) 2006; 68
857_CR39
TQ Zhang (857_CR43) 2016; 6
XZ Meng (857_CR29) 2010; 217
References_xml – volume: 129
  start-page: 481
  year: 2002
  end-page: 499
  ident: CR17
  article-title: Permanence, extinction and balancing survival in nonautonomous Lotka–Volterra system with delays
  publication-title: Appl Math Comput
– volume: 38
  start-page: 505
  year: 2015
  end-page: 516
  ident: CR8
  article-title: Permanence of a delayed SIR epidemic model with general nonlinear incidence rate
  publication-title: Math Method Appl Sci
  doi: 10.1002/mma.3083
– volume: 11
  start-page: 88
  year: 2010
  end-page: 98
  ident: CR30
  article-title: A delay SIR epidemic model with pulse vaccination and incubation times
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2008.10.041
– volume: 6
  start-page: 865
  year: 2016
  end-page: 875
  ident: CR32
  article-title: Global dynamics analysis of a nonlinear impulsive stochastic chemostat system in a polluted environment
  publication-title: J Appl Anal Comput
– volume: 35
  start-page: 240
  year: 1996
  end-page: 260
  ident: CR3
  article-title: Analysis of an SEIRS epidemic model with two delays
  publication-title: J Math Biol
  doi: 10.1007/s002850050051
– volume: 467
  start-page: 527
  year: 2017
  end-page: 541
  ident: CR23
  article-title: Asymptotic behavior of stochastic multi-group epidemic models with distributed delays
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.10.034
– volume: 2004
  start-page: 1
  issue: 108
  year: 2004
  end-page: 5
  ident: CR13
  article-title: Persistence and extinction of single population in a polluted environment
  publication-title: Electron J Differ Equ
– volume: 2014
  start-page: 1
  issue: 42
  year: 2014
  end-page: 17
  ident: CR47
  article-title: Persistence and extinction in stochastic SIRS models with general nonlinear incidence rate
  publication-title: Electron J Differ Equ
– ident: CR14
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 10
  ident: CR33
  article-title: Threshold Dynamics of a Stochastic SIR Model with Vertical Transmission and Vaccination
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2017/4820183
– ident: CR39
– year: 1997
  ident: CR27
  publication-title: Stochastic differential equations and applications
– volume: 462
  start-page: 870
  year: 2016
  end-page: 882
  ident: CR22
  article-title: Asymptotic behavior of a stochastic delayed SEIR epidemic model with nonlinear incidence
  publication-title: Phys A
  doi: 10.1016/j.physa.2016.06.095
– volume: 2017
  start-page: 226
  year: 2017
  ident: CR34
  article-title: Dynamical analysis of a stochastic SIS epidemic model with nonlinear incidence rate and double epidemic hypothesis
  publication-title: Adv Differ Equ
  doi: 10.1186/s13662-017-1289-9
– volume: 12
  start-page: 37
  year: 1999
  end-page: 41
  ident: CR35
  article-title: The asymptotic behaviour of a logistic epidemic model with stochastic disease transmission
  publication-title: Appl Math Lett
  doi: 10.1016/S0893-9659(98)00123-2
– volume: 2015
  start-page: 14
  year: 2015
  ident: CR12
  article-title: Infinite horizon linear quadratic optimal control for stochastic difference time-delay systems
  publication-title: Adv Differ Equ
  doi: 10.1186/s13662-014-0342-1
– volume: 433
  start-page: 227
  year: 2016
  end-page: 242
  ident: CR31
  article-title: Dynamics of a novel nonlinear stochastic SIS epidemic model with double epidemic hypothesis
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2015.07.056
– volume: 28
  start-page: 830
  year: 2015
  end-page: 847
  ident: CR36
  article-title: On observability and detectability of continuous-time stochastic Markov jump systems
  publication-title: J Syst Sci Complex
  doi: 10.1007/s11424-015-2253-y
– volume: 2017
  start-page: 138
  year: 2017
  ident: CR11
  article-title: Stochastic inequalities and applications to dynamics analysis of a novel SIVS epidemic model with jumps
  publication-title: J Inequal Appl
  doi: 10.1186/s13660-017-1418-8
– volume: 2017
  start-page: 15
  year: 2017
  ident: CR15
  article-title: Extinction and persistence in mean of a novel delay impulsive stochastic infected predator-prey system with jumps
  publication-title: Complexity
– volume: 97
  start-page: 95
  year: 2002
  end-page: 110
  ident: CR28
  article-title: Environmental brownian noise suppresses explosions in population dynamics
  publication-title: Stoch Proc Appl
  doi: 10.1016/S0304-4149(01)00126-0
– volume: 71
  start-page: 55
  year: 2013
  end-page: 73
  ident: CR2
  article-title: The existence of codimension-two bifurcation in a discrete SIS epidemic model with standard incidence
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-012-0641-6
– volume: 168
  start-page: 150
  year: 2000
  end-page: 167
  ident: CR38
  article-title: Homoclinic bifurcation in an SIQR model for childhood diseases
  publication-title: J Differ Equ
  doi: 10.1006/jdeq.2000.3882
– volume: 44
  start-page: 266
  year: 2017
  end-page: 276
  ident: CR46
  article-title: Stochastic periodic solution of a non-autonomous toxic-producing phytoplankton allelopathy model with environmental fluctuation
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2016.08.013
– volume: 217
  start-page: 506
  year: 2010
  end-page: 515
  ident: CR29
  article-title: Stability of a novel stochastic epidemic model with double epidemic hypothesis
  publication-title: Appl Math Comput
– volume: 315
  start-page: 477
  year: 2017
  end-page: 493
  ident: CR37
  article-title: A stochastic HIV infection model with T-cell proliferation and CTL immune response
  publication-title: Appl Math Comput
  doi: 10.1016/j.cam.2016.10.017
– volume: 29
  start-page: 946
  year: 2016
  end-page: 958
  ident: CR45
  article-title: Observer-based controller design for singular stochastic Markov jump systems with state dependent noise
  publication-title: J Syst Sci Complex
  doi: 10.1007/s11424-016-5060-1
– volume: 2016
  start-page: 327
  year: 2016
  ident: CR4
  article-title: Application of inequalities technique to dynamics analysis of a stochastic eco-epidemiology model
  publication-title: J Inequal Appl
  doi: 10.1186/s13660-016-1265-z
– volume: 68
  start-page: 615
  year: 2006
  end-page: 626
  ident: CR9
  article-title: Lyapunov functions and global stability for SIR and SIRS epidemiological models with non-linear transmission
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-005-9037-9
– volume: 243
  start-page: 718
  year: 2014
  end-page: 727
  ident: CR44
  article-title: The threshold of a stochastic SIS epidemic model with vaccination
  publication-title: Appl Math Comput
– volume: 27
  start-page: 425
  year: 2017
  end-page: 452
  ident: CR18
  article-title: Permanence of stochastic Lotka–Volterra systems
  publication-title: J Nonlinear Sci
  doi: 10.1007/s00332-016-9337-2
– volume: 316
  start-page: 310
  year: 2018
  end-page: 325
  ident: CR24
  article-title: Threshold behavior in a stochastic SIQR epidemic model with standard incidence and regime switching
  publication-title: Appl Math Comput
– volume: 48
  start-page: 102
  year: 2015
  end-page: 108
  ident: CR16
  article-title: Optimal harvesting policy of a stochastic predator-prey model with time delay
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2014.10.007
– volume: 17
  start-page: 1141
  year: 2004
  end-page: 1145
  ident: CR26
  article-title: Global stability of an SIR epidemicmodel with time delay
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2003.11.005
– volume: 228
  start-page: 264
  year: 2014
  end-page: 270
  ident: CR21
  article-title: Stochastic linear quadratic optimal control with constraint for discrete-time systems
  publication-title: Appl Math Comput
– volume: 23
  start-page: 187
  year: 1986
  end-page: 204
  ident: CR20
  article-title: Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models
  publication-title: J Math Biol
  doi: 10.1007/BF00276956
– volume: 435
  start-page: 593
  year: 2016
  end-page: 605
  ident: CR25
  article-title: Stability analysis for stochastic differential equations with infinite Markovian switchings
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2015.10.047
– volume: 37
  start-page: 8131
  year: 2013
  end-page: 8140
  ident: CR7
  article-title: An SIR epidemic model with time-varying pulse control schemes and saturated infectious force
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.03.035
– volume: 71
  start-page: 876
  year: 2011
  end-page: 902
  ident: CR6
  article-title: A stochastic differential equation SIS epidemic model
  publication-title: SIAM J Appl Math
  doi: 10.1137/10081856X
– volume: 2017
  start-page: 18
  year: 2017
  ident: CR19
  article-title: Optimal harvesting control and dynamics of two species stochastic model with delays
  publication-title: Adv Differ Equ
  doi: 10.1186/s13662-017-1077-6
– volume: 218
  start-page: 11806
  year: 2012
  end-page: 11819
  ident: CR41
  article-title: Global dynamics for a new high-dimensional SIR model with distributed delay
  publication-title: Appl Math Comput
– volume: 42
  start-page: 43
  year: 1978
  end-page: 61
  ident: CR1
  article-title: A generalization of the Kermack–Mckendrick deterministic epidemic model
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(78)90006-8
– volume: 24
  start-page: 6037
  year: 2006
  end-page: 6045
  ident: CR5
  article-title: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2006.05.018
– volume: 69
  start-page: 1871
  year: 2007
  end-page: 1886
  ident: CR10
  article-title: Global properties of infectious disease models with nonlinear incidence
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-007-9196-y
– volume: 9
  start-page: 1409
  year: 2008
  end-page: 1424
  ident: CR40
  article-title: Global behavior and permanence of SIRS epidemic model with time delay
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2007.03.010
– volume: 6
  start-page: 479
  year: 2016
  end-page: 491
  ident: CR43
  article-title: Global analysis for a delayed SIV model with direct and environmental transmissions
  publication-title: J Appl Anal Comput
– volume: 52
  start-page: 1441
  year: 2014
  end-page: 1459
  ident: CR42
  article-title: Dynamical analysis of a stochastic model for cascaded continuous flow bioreactors
  publication-title: J Math Chem
  doi: 10.1007/s10910-014-0321-5
– volume: 2017
  start-page: 18
  year: 2017
  ident: 857_CR19
  publication-title: Adv Differ Equ
  doi: 10.1186/s13662-017-1077-6
– volume: 24
  start-page: 6037
  year: 2006
  ident: 857_CR5
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2006.05.018
– volume: 2017
  start-page: 138
  year: 2017
  ident: 857_CR11
  publication-title: J Inequal Appl
  doi: 10.1186/s13660-017-1418-8
– volume: 44
  start-page: 266
  year: 2017
  ident: 857_CR46
  publication-title: Commun Nonlinear Sci Numer Simul
  doi: 10.1016/j.cnsns.2016.08.013
– volume: 9
  start-page: 1409
  year: 2008
  ident: 857_CR40
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2007.03.010
– volume: 315
  start-page: 477
  year: 2017
  ident: 857_CR37
  publication-title: Appl Math Comput
  doi: 10.1016/j.cam.2016.10.017
– volume: 6
  start-page: 865
  year: 2016
  ident: 857_CR32
  publication-title: J Appl Anal Comput
– volume: 71
  start-page: 876
  year: 2011
  ident: 857_CR6
  publication-title: SIAM J Appl Math
  doi: 10.1137/10081856X
– volume: 23
  start-page: 187
  year: 1986
  ident: 857_CR20
  publication-title: J Math Biol
  doi: 10.1007/BF00276956
– volume: 97
  start-page: 95
  year: 2002
  ident: 857_CR28
  publication-title: Stoch Proc Appl
  doi: 10.1016/S0304-4149(01)00126-0
– volume: 218
  start-page: 11806
  year: 2012
  ident: 857_CR41
  publication-title: Appl Math Comput
– volume: 243
  start-page: 718
  year: 2014
  ident: 857_CR44
  publication-title: Appl Math Comput
– volume: 129
  start-page: 481
  year: 2002
  ident: 857_CR17
  publication-title: Appl Math Comput
– volume: 71
  start-page: 55
  year: 2013
  ident: 857_CR2
  publication-title: Nonlinear Dyn
  doi: 10.1007/s11071-012-0641-6
– volume: 435
  start-page: 593
  year: 2016
  ident: 857_CR25
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2015.10.047
– volume: 316
  start-page: 310
  year: 2018
  ident: 857_CR24
  publication-title: Appl Math Comput
– volume: 48
  start-page: 102
  year: 2015
  ident: 857_CR16
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2014.10.007
– volume: 2017
  start-page: 226
  year: 2017
  ident: 857_CR34
  publication-title: Adv Differ Equ
  doi: 10.1186/s13662-017-1289-9
– volume: 37
  start-page: 8131
  year: 2013
  ident: 857_CR7
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2013.03.035
– volume: 2004
  start-page: 1
  issue: 108
  year: 2004
  ident: 857_CR13
  publication-title: Electron J Differ Equ
– volume: 38
  start-page: 505
  year: 2015
  ident: 857_CR8
  publication-title: Math Method Appl Sci
  doi: 10.1002/mma.3083
– volume: 68
  start-page: 615
  year: 2006
  ident: 857_CR9
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-005-9037-9
– volume: 2017
  start-page: 1
  year: 2017
  ident: 857_CR33
  publication-title: Computational and Mathematical Methods in Medicine
  doi: 10.1155/2017/4820183
– volume: 6
  start-page: 479
  year: 2016
  ident: 857_CR43
  publication-title: J Appl Anal Comput
– volume: 69
  start-page: 1871
  year: 2007
  ident: 857_CR10
  publication-title: Bull Math Biol
  doi: 10.1007/s11538-007-9196-y
– volume: 27
  start-page: 425
  year: 2017
  ident: 857_CR18
  publication-title: J Nonlinear Sci
  doi: 10.1007/s00332-016-9337-2
– volume: 35
  start-page: 240
  year: 1996
  ident: 857_CR3
  publication-title: J Math Biol
  doi: 10.1007/s002850050051
– volume: 2015
  start-page: 14
  year: 2015
  ident: 857_CR12
  publication-title: Adv Differ Equ
  doi: 10.1186/s13662-014-0342-1
– volume: 467
  start-page: 527
  year: 2017
  ident: 857_CR23
  publication-title: Physica A
  doi: 10.1016/j.physa.2016.10.034
– volume-title: Stochastic differential equations and applications
  year: 1997
  ident: 857_CR27
– volume: 17
  start-page: 1141
  year: 2004
  ident: 857_CR26
  publication-title: Appl Math Lett
  doi: 10.1016/j.aml.2003.11.005
– volume: 28
  start-page: 830
  year: 2015
  ident: 857_CR36
  publication-title: J Syst Sci Complex
  doi: 10.1007/s11424-015-2253-y
– volume: 42
  start-page: 43
  year: 1978
  ident: 857_CR1
  publication-title: Math Biosci
  doi: 10.1016/0025-5564(78)90006-8
– volume: 2016
  start-page: 327
  year: 2016
  ident: 857_CR4
  publication-title: J Inequal Appl
  doi: 10.1186/s13660-016-1265-z
– volume: 52
  start-page: 1441
  year: 2014
  ident: 857_CR42
  publication-title: J Math Chem
  doi: 10.1007/s10910-014-0321-5
– volume: 228
  start-page: 264
  year: 2014
  ident: 857_CR21
  publication-title: Appl Math Comput
– volume: 29
  start-page: 946
  year: 2016
  ident: 857_CR45
  publication-title: J Syst Sci Complex
  doi: 10.1007/s11424-016-5060-1
– volume: 2014
  start-page: 1
  issue: 42
  year: 2014
  ident: 857_CR47
  publication-title: Electron J Differ Equ
– volume: 2017
  start-page: 15
  year: 2017
  ident: 857_CR15
  publication-title: Complexity
– volume: 433
  start-page: 227
  year: 2016
  ident: 857_CR31
  publication-title: J Math Anal Appl
  doi: 10.1016/j.jmaa.2015.07.056
– volume: 217
  start-page: 506
  year: 2010
  ident: 857_CR29
  publication-title: Appl Math Comput
– ident: 857_CR14
  doi: 10.1155/2018/7873902
– ident: 857_CR39
  doi: 10.1155/2015/758362
– volume: 12
  start-page: 37
  year: 1999
  ident: 857_CR35
  publication-title: Appl Math Lett
  doi: 10.1016/S0893-9659(98)00123-2
– volume: 462
  start-page: 870
  year: 2016
  ident: 857_CR22
  publication-title: Phys A
  doi: 10.1016/j.physa.2016.06.095
– volume: 11
  start-page: 88
  year: 2010
  ident: 857_CR30
  publication-title: Nonlinear Anal Real World Appl
  doi: 10.1016/j.nonrwa.2008.10.041
– volume: 168
  start-page: 150
  year: 2000
  ident: 857_CR38
  publication-title: J Differ Equ
  doi: 10.1006/jdeq.2000.3882
SSID ssj0037144
Score 2.2834165
Snippet This paper proposes a new delayed stochastic epidemic model with double epidemic hypothesis and a general nonlinear response function. The main purpose is to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Applications of Mathematics
Applied physics
Asymptotic properties
Background noise
Computational mathematics
Computational Mathematics and Numerical Analysis
Computer simulation
Economic models
Epidemics
Liapunov functions
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematical models
Mathematics
Mathematics and Statistics
Nonlinear response
Response functions
Simulation
Stochastic models
Title Dynamics analysis and numerical simulations of a delayed stochastic epidemic model subject to a general response function
URI https://link.springer.com/article/10.1007/s40314-019-0857-x
https://www.proquest.com/docview/2217552386
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h5QKHUrZU3UKRD5xaGWVjO48jrwWBdk8g0VMU22NaAbuIZKXCr-84cRYVFaQ9JVKcUWKPPd94xt8A7JU2VkZnhmdSk4NiM8d17ARHdCKycT5E9GeHx5Pk7EqeX6vrcI676rLdu5Bks1IvDrtJz7ROrm_OPSs7J-C4SvAjUj1YPTj9eXHSLcCeg84Hk8nwZVwkkeiCmf8T8q85esGYr8KijbUZbcBl951tksnt_rzW--b5FYXjkj_yET4E9MkOWnXZhBWc9mEjIFEW5nnVh_Xxgs21-gRPx23Z-oqVgcKEbiybzttozx2rft-HKmAVmzlWMk89-UQSCVmaX6WngmbYlqI1rKm9w6q59jtArJ5R85uW-5o9tgm7yLy19eK24Gp0cnl0xkPJBm7EMKk5qtim1tlSpCbRRhryZpwVTmnMBfliqAgf5TlqTdcyMplfZJyJMNO5lE6Lz9Cbzqb4BZhE6YbOxNKmpcxTkTnUSiKKPEpMqnAAUTdyhQl85r6sxl2xYGJuOrqgji58Rxd_BvB98cpDS-bxXuOdTh2KMK-rIiYPTpHvniUD-NGN7svjN4V9Xar1NqzFjXr4zZ4d6NWPc_xG2KfWu6Tro8PDyW7Q-b-XYQA0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4h9kB74NVWLFDwgVMro2zsvI6IAluW5bRI9BTF9rhFwC4iWYnl1zNOnF2B2kqcEinOKLHHnvk8428ADgoTRlqlmqdSEUAxqeUqtIIjWhGYMOshurPDw8u4fyXPr6Nrf467bLPd25BkvVLPD7tJx7RO0DfjjpWdk-PYkQTBCXF1js5-DU7aBdhx0LlgMhm-lIs4EG0w829CXpujhY_5JixaW5vTNRi139kkmdweTit1qJ_fUDi-80fWYdV7n-yoUZcNWMLxJqx5T5T5eV5uwsfhnM21_ASzH03Z-pIVnsKEbgwbT5tozx0rb-59FbCSTSwrmKOenJFE8iz1n8JRQTNsStFqVtfeYeVUuR0gVk2o-e-G-5o9Ngm7yJy1deI-w9Xpyei4z33JBq5FL644RqFJjDWFSHSstNSEZqwRNlKYCcJiGJF_lGWoFF2LQKdukbE6wFRlUlolvsDyeDLGLWASpe1ZHUqTFDJLRGpRRRJRZEGskwi7ELQjl2vPZ-7KatzlcybmuqNz6ujcdXT-1IVv81ceGjKP_zXebdUh9_O6zENCcBFh9zTuwvd2dBeP_yls-12t92GlPxpe5Bc_Lwc78CGsVcVt_OzCcvU4xa_kB1Vqz-v9C7xxAac
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6hRUL0UJ5Vl_LwoadWhmzsJM4RAcsbcSgSnNLYHhdUyCKSlQq_HnvtLAIBUsUpkeKMEr_mG4_9fQDfSx0nSgpFBZc2QNHCUBkbRhENi3Sc9xDd2eHjk3TvjB-cJ-dB57Rud7u3KUl_psGxNFXNxq02G-ODb9yxrtswOKeOoZ1aEDnJI5GJDkxu7l4c7rSTseOjc4ll6wQFZWnE2sTma0aeu6YnvPkiRTryPP0Z-N1-s99w8nd92Mh19fCCzvEDPzULnwMqJZu-G83BBFbzMBMQKgnjv56HT8djltd6Ae63vZx9TcpAbWJvNKmGPgt0Teqrm6AOVpOBISVxlJT31qJFnOqydBTRBL1ErSIjTR5SD6VbGSLNwBb_4zmxyZ3fyIvEeWFnbhHO-ju_tvZokHKgivXShmIS60wbXbJMpVJxZaMco5lJJObMxmiYWNyU5yilvZaREm7yMSpCIXPOjWRfoFMNKvwKhCM3PaNirrOS5xkTBmXCEVkepSpLsAtR24qFCjznTm7juhgzNI8qurAVXbiKLv514cf4lVtP8vFe4eW2axRhvNdFbCO7xMb0Iu3Cz7alnx6_aWzpv0qvwdTpdr842j85_AbT8ainuPWgZeg0d0NcsfCokathCDwCFK8Kiw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamics+analysis+and+numerical+simulations+of+a+delayed+stochastic+epidemic+model+subject+to+a+general+response+function&rft.jtitle=Computational+%26+applied+mathematics&rft.au=Li%2C+Fei&rft.au=Zhang%2C+Shengqiang&rft.au=Meng%2C+Xinzhu&rft.date=2019-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2238-3603&rft.eissn=1807-0302&rft.volume=38&rft.issue=2&rft.spage=1&rft.epage=30&rft_id=info:doi/10.1007%2Fs40314-019-0857-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2238-3603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2238-3603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2238-3603&client=summon