Optimisation of the Lowest Robin Eigenvalue in the Exterior of a Compact Set, II: Non-Convex Domains and Higher Dimensions

We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to attractive Robin boundary conditions. As an improvement upon our previous work (Krejčiřík and Lotoreichik J. Convex Anal. 25 , 319–337, 2018 ), we...

Full description

Saved in:
Bibliographic Details
Published inPotential analysis Vol. 52; no. 4; pp. 601 - 614
Main Authors Krejčiřík, David, Lotoreichik, Vladimir
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.04.2020
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0926-2601
1572-929X
DOI10.1007/s11118-018-9752-0

Cover

Loading…
Abstract We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to attractive Robin boundary conditions. As an improvement upon our previous work (Krejčiřík and Lotoreichik J. Convex Anal. 25 , 319–337, 2018 ), we show that under either a constraint of fixed perimeter or area, the maximiser within the class of exteriors of simply connected planar sets is always the exterior of a disk, without the need of convexity assumption. Moreover, we generalise the result to disconnected compact planar sets. Namely, we prove that under a constraint of fixed average value of the perimeter over all the connected components, the maximiser within the class of disconnected compact planar sets, consisting of finitely many simply connected components, is again a disk. In higher dimensions, we prove a completely new result that the lowest point in the spectrum is maximised by the exterior of a ball among all sets exterior to bounded convex sets satisfying a constraint on the integral of a dimensional power of the mean curvature of their boundaries. Furthermore, it follows that the critical coupling at which the lowest point in the spectrum becomes a discrete eigenvalue emerging from the essential spectrum is minimised under the same constraint by the critical coupling for the exterior of a ball.
AbstractList We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to attractive Robin boundary conditions. As an improvement upon our previous work (Krejčiřík and Lotoreichik J. Convex Anal. 25 , 319–337, 2018 ), we show that under either a constraint of fixed perimeter or area, the maximiser within the class of exteriors of simply connected planar sets is always the exterior of a disk, without the need of convexity assumption. Moreover, we generalise the result to disconnected compact planar sets. Namely, we prove that under a constraint of fixed average value of the perimeter over all the connected components, the maximiser within the class of disconnected compact planar sets, consisting of finitely many simply connected components, is again a disk. In higher dimensions, we prove a completely new result that the lowest point in the spectrum is maximised by the exterior of a ball among all sets exterior to bounded convex sets satisfying a constraint on the integral of a dimensional power of the mean curvature of their boundaries. Furthermore, it follows that the critical coupling at which the lowest point in the spectrum becomes a discrete eigenvalue emerging from the essential spectrum is minimised under the same constraint by the critical coupling for the exterior of a ball.
We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to attractive Robin boundary conditions. As an improvement upon our previous work (Krejčiřík and Lotoreichik J. Convex Anal. 25, 319–337, 2018), we show that under either a constraint of fixed perimeter or area, the maximiser within the class of exteriors of simply connected planar sets is always the exterior of a disk, without the need of convexity assumption. Moreover, we generalise the result to disconnected compact planar sets. Namely, we prove that under a constraint of fixed average value of the perimeter over all the connected components, the maximiser within the class of disconnected compact planar sets, consisting of finitely many simply connected components, is again a disk. In higher dimensions, we prove a completely new result that the lowest point in the spectrum is maximised by the exterior of a ball among all sets exterior to bounded convex sets satisfying a constraint on the integral of a dimensional power of the mean curvature of their boundaries. Furthermore, it follows that the critical coupling at which the lowest point in the spectrum becomes a discrete eigenvalue emerging from the essential spectrum is minimised under the same constraint by the critical coupling for the exterior of a ball.
Author Lotoreichik, Vladimir
Krejčiřík, David
Author_xml – sequence: 1
  givenname: David
  surname: Krejčiřík
  fullname: Krejčiřík, David
  organization: Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague
– sequence: 2
  givenname: Vladimir
  surname: Lotoreichik
  fullname: Lotoreichik, Vladimir
  email: lotoreichik@ujf.cas.cz
  organization: Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences
BookMark eNp9kF9LQyEYhyUWtFYfoDuh2069ev44u4tttcFoULvoTjxnns2xo0vdWn36XAuCoAQR9fe8rz6nqGWsUQhdELgmAOzGkzi6CcTJWU4TOEJtkjOacMpfWqgNnBYJLYCcoFPvlwBAGeu20cdkHXSjvQzaGmxrHBYKj-2b8gE_2VIbPNBzZbZytVE47vbXg11QTlu3j0vcs81aVgE_q3CFR6Nb_GhN0rNmq3a4bxupjcfSzPBQzxfK4b5ulPGxmT9Dx7VceXX-vXbQ9H4w7Q2T8eRh1LsbJ1VKipColJWMV9msLnhaFqxmZc2goFIxDkU-o2U3rfIMujnnwCsJLMtIPJeyTGepTDvo8lB27ezrJv5LLO3GmdhR0JRneU54TmKKHVKVs947VYtKhy8pwUm9EgTE3rM4eBbRs9h7FhBJ8otcO91I9_4vQw-Mj1kzV-7nTX9Dn_WNkTg
CitedBy_id crossref_primary_10_1007_s11587_020_00533_5
crossref_primary_10_1007_s10231_024_01520_5
crossref_primary_10_1016_j_jde_2022_11_016
crossref_primary_10_1002_mana_202000013
crossref_primary_10_1360_SSM_2024_0174
crossref_primary_10_1016_j_jmaa_2023_127211
crossref_primary_10_1063_5_0014360
crossref_primary_10_1016_j_jmaa_2023_127419
crossref_primary_10_1016_j_jmaa_2024_129082
crossref_primary_10_1007_s13324_024_01001_1
crossref_primary_10_1007_s00245_023_10033_1
crossref_primary_10_1007_s00526_024_02824_3
crossref_primary_10_1007_s11005_021_01369_2
crossref_primary_10_1007_s12220_022_00917_z
crossref_primary_10_1063_1_5116253
Cites_doi 10.1007/978-3-662-07441-1
10.1016/0022-247X(61)90031-2
10.1007/s12220-014-9525-y
10.1007/BF02413056
10.1016/j.aim.2015.04.023
10.1017/CBO9780511526282
10.1016/j.matpur.2016.03.005
10.1515/9783110550887
10.1007/3-7643-7706-2
10.1007/978-1-4612-9923-3
10.1007/s00208-006-0753-8
10.1023/A:1010774905973
10.1137/0508020
10.1515/acv-2015-0045
10.1007/978-3-642-53393-8
10.1016/j.jmaa.2010.09.030
10.1093/oso/9780198532538.001.0001
10.1017/S0308210516000421
ContentType Journal Article
Copyright Springer Nature B.V. 2019
Springer Nature B.V. 2019.
Copyright_xml – notice: Springer Nature B.V. 2019
– notice: Springer Nature B.V. 2019.
DBID AAYXX
CITATION
DOI 10.1007/s11118-018-9752-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1572-929X
EndPage 614
ExternalDocumentID 10_1007_s11118_018_9752_0
GrantInformation_xml – fundername: Grantová Agentura České Republiky
  grantid: 17-01706S
  funderid: https://doi.org/10.13039/501100001824
– fundername: Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
  grantid: PTDC/MAT-CAL/4334/2014
  funderid: https://doi.org/10.13039/501100005856
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-e37b79c4df693b67f7bf7062ae79065d2b83c540859909ca0744165daab3d3a3
IEDL.DBID U2A
ISSN 0926-2601
IngestDate Fri Jul 25 11:07:45 EDT 2025
Tue Jul 01 01:52:25 EDT 2025
Thu Apr 24 22:54:30 EDT 2025
Fri Feb 21 02:32:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Spectral isoperimetric inequality
Spectral isochoric inequality
35P15 (primary)
Negative boundary parameter
Robin Laplacian
Exterior of a compact set
Willmore energy
58J50 (secondary)
Lowest eigenvalue
Critical coupling
Parallel coordinates
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-e37b79c4df693b67f7bf7062ae79065d2b83c540859909ca0744165daab3d3a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2394551951
PQPubID 2043741
PageCount 14
ParticipantIDs proquest_journals_2394551951
crossref_citationtrail_10_1007_s11118_018_9752_0
crossref_primary_10_1007_s11118_018_9752_0
springer_journals_10_1007_s11118_018_9752_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-04-01
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 2020-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal Devoted to the Interactions between Potential Theory, Probability Theory, Geometry and Functional Analysis
PublicationTitle Potential analysis
PublicationTitleAbbrev Potential Anal
PublicationYear 2020
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References SchneiderRConvex bodies: The Brunn-Minkowski Theory1993CambridgeCambridge University Press10.1017/CBO9780511526282
SavoALower bounds for the nodal length of eigenfunctions of the LaplacianAnn. Glob. Anal. Geom.200116133151182639810.1023/A:1010774905973
PayneLEWeinbergerHFSome isoperimetric inequalities for membrane frequencies and torsional rigidityJ. Math. Anal. Appl.1961221021614973510.1016/0022-247X(61)90031-2
AbramowitzMSStegunIAHandbook of Mathematical Functions1964New YorkDover0171.38503
KrejčiříkDRaymondNTušekMThe magnetic Laplacian in shrinking tubular neighbourhoods of hypersurfacesJ. Geom. Anal.20152525462564342713710.1007/s12220-014-9525-y
FreitasPKrejčiříkDThe first Robin eigenvalue with negative boundary parameterAdv. Math.2015280322339335022210.1016/j.aim.2015.04.023
LuGOuBA Poincaré inequality on $\mathbb {R}^{n}$ℝn and its application to potential fluid flows in spaceCommun. Appl. Nonlinear Anal.2005121241060.26017
Henrot, A.: Shape Optimization and Spectral Theory. De Gruyter, Warsaw (2017)
HenrotAExtremum Problems for Eigenvalues of Elliptic Operators2006BaselBirkhäuser10.1007/3-7643-7706-2
KatoTPerturbation Theory for Linear Operators1966BerlinSpringer10.1007/978-3-642-53393-8
DanersDA Faber-Krahn inequality for Robin problems in any space dimensionMath. Ann.2006335767785223201610.1007/s00208-006-0753-8
AlexandrovADA characteristic property of spheresAnn. Mat. Pura Appl.196258430331514316210.1007/BF02413056
PankrashkinKPopoffNAn effective Hamiltonian for the eigenvalue asymptotics of a Robin Laplacian with a large parameterJ. Math. Pures Appl.2016106615650353946810.1016/j.matpur.2016.03.005
BuragoYDZalgallerVAGeometric Inequalities1988BerlinSpringer10.1007/978-3-662-07441-1
McLeanWStrongly Elliptic Systems and Boundary Integral Equations2000CambridgeCambridge University Press0948.35001
DanersDPrincipal eigenvalues for generalised indefinite Robin problemsPotential Anal.2013381047106930426941264.35152
AntunesPRSFreitasPKrejčiříkDBounds and extremal domains for Robin eigenvalues with negative boundary parameterAdv. Calc Var.201710357380370708310.1515/acv-2015-0045
Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. 2nd. 1st. paperback ed. Cambridge University Press, Cambridge (1988)
Sz.-NagyBÜber Parallelmengen nichtkonvexer ebener BereicheActa Sci. Math.19592036471072130101.14701
KlingenbergWA Course in Differential Geometry1978New YorkSpringer10.1007/978-1-4612-9923-3
BehrndtJLangerMLotoreichikVRohlederJQuasi boundary triples and semi-bounded self-adjoint extensionsProc. Roy. Soc. Edinburgh Sect. A2017147895916370531210.1017/S0308210516000421
SeguraJBounds for ratios of modified Bessel functions and associated Turán-type inequalitiesJ. Math. Anal. Appl.2011374516528272923810.1016/j.jmaa.2010.09.030
BareketMOn an isoperimetric inequality for the first eigenvalue of a boundary value problemSIAM J. Math. Anal.1977828028743055210.1137/0508020
KrejčiříkDLotoreichikVOptimisation of the lowest Robin eigenvalue in the exterior of a compact setJ. Convex Anal.20182531933737569391401.35223
ReedMSimonBMethods of Modern Mathematical Physics, IV. Analysis of Operators1978New YorkAcademic Press0401.47001
BosselM-HMembranes élastiquement liées: Extension du théoréme de Rayleigh-Faber-Krahn et de l’inégalité de CheegerC. R. Acad. Sci. Paris Sér. I Math.198630247508271060606.73018
WillmoreTJRiemannian Geometry1993OxfordClarendon Press0797.53002
R Schneider (9752_CR24) 1993
M-H Bossel (9752_CR6) 1986; 302
D Krejčiřík (9752_CR17) 2015; 25
M Reed (9752_CR22) 1978
A Savo (9752_CR23) 2001; 16
PRS Antunes (9752_CR3) 2017; 10
T Kato (9752_CR14) 1966
G Lu (9752_CR18) 2005; 12
TJ Willmore (9752_CR27) 1993
LE Payne (9752_CR21) 1961; 2
P Freitas (9752_CR10) 2015; 280
9752_CR13
9752_CR11
W Klingenberg (9752_CR15) 1978
W McLean (9752_CR19) 2000
J Behrndt (9752_CR5) 2017; 147
(9752_CR1) 1964
A Henrot (9752_CR12) 2006
J Segura (9752_CR25) 2011; 374
M Bareket (9752_CR4) 1977; 8
K Pankrashkin (9752_CR20) 2016; 106
D Daners (9752_CR9) 2013; 38
D Krejčiřík (9752_CR16) 2018; 25
B Sz.-Nagy (9752_CR26) 1959; 20
D Daners (9752_CR8) 2006; 335
YD Burago (9752_CR7) 1988
AD Alexandrov (9752_CR2) 1962; 58
References_xml – reference: LuGOuBA Poincaré inequality on $\mathbb {R}^{n}$ℝn and its application to potential fluid flows in spaceCommun. Appl. Nonlinear Anal.2005121241060.26017
– reference: AntunesPRSFreitasPKrejčiříkDBounds and extremal domains for Robin eigenvalues with negative boundary parameterAdv. Calc Var.201710357380370708310.1515/acv-2015-0045
– reference: BareketMOn an isoperimetric inequality for the first eigenvalue of a boundary value problemSIAM J. Math. Anal.1977828028743055210.1137/0508020
– reference: DanersDA Faber-Krahn inequality for Robin problems in any space dimensionMath. Ann.2006335767785223201610.1007/s00208-006-0753-8
– reference: Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. 2nd. 1st. paperback ed. Cambridge University Press, Cambridge (1988)
– reference: SchneiderRConvex bodies: The Brunn-Minkowski Theory1993CambridgeCambridge University Press10.1017/CBO9780511526282
– reference: BosselM-HMembranes élastiquement liées: Extension du théoréme de Rayleigh-Faber-Krahn et de l’inégalité de CheegerC. R. Acad. Sci. Paris Sér. I Math.198630247508271060606.73018
– reference: ReedMSimonBMethods of Modern Mathematical Physics, IV. Analysis of Operators1978New YorkAcademic Press0401.47001
– reference: SavoALower bounds for the nodal length of eigenfunctions of the LaplacianAnn. Glob. Anal. Geom.200116133151182639810.1023/A:1010774905973
– reference: BehrndtJLangerMLotoreichikVRohlederJQuasi boundary triples and semi-bounded self-adjoint extensionsProc. Roy. Soc. Edinburgh Sect. A2017147895916370531210.1017/S0308210516000421
– reference: PayneLEWeinbergerHFSome isoperimetric inequalities for membrane frequencies and torsional rigidityJ. Math. Anal. Appl.1961221021614973510.1016/0022-247X(61)90031-2
– reference: HenrotAExtremum Problems for Eigenvalues of Elliptic Operators2006BaselBirkhäuser10.1007/3-7643-7706-2
– reference: AlexandrovADA characteristic property of spheresAnn. Mat. Pura Appl.196258430331514316210.1007/BF02413056
– reference: Henrot, A.: Shape Optimization and Spectral Theory. De Gruyter, Warsaw (2017)
– reference: Sz.-NagyBÜber Parallelmengen nichtkonvexer ebener BereicheActa Sci. Math.19592036471072130101.14701
– reference: McLeanWStrongly Elliptic Systems and Boundary Integral Equations2000CambridgeCambridge University Press0948.35001
– reference: SeguraJBounds for ratios of modified Bessel functions and associated Turán-type inequalitiesJ. Math. Anal. Appl.2011374516528272923810.1016/j.jmaa.2010.09.030
– reference: KrejčiříkDRaymondNTušekMThe magnetic Laplacian in shrinking tubular neighbourhoods of hypersurfacesJ. Geom. Anal.20152525462564342713710.1007/s12220-014-9525-y
– reference: PankrashkinKPopoffNAn effective Hamiltonian for the eigenvalue asymptotics of a Robin Laplacian with a large parameterJ. Math. Pures Appl.2016106615650353946810.1016/j.matpur.2016.03.005
– reference: FreitasPKrejčiříkDThe first Robin eigenvalue with negative boundary parameterAdv. Math.2015280322339335022210.1016/j.aim.2015.04.023
– reference: KrejčiříkDLotoreichikVOptimisation of the lowest Robin eigenvalue in the exterior of a compact setJ. Convex Anal.20182531933737569391401.35223
– reference: BuragoYDZalgallerVAGeometric Inequalities1988BerlinSpringer10.1007/978-3-662-07441-1
– reference: DanersDPrincipal eigenvalues for generalised indefinite Robin problemsPotential Anal.2013381047106930426941264.35152
– reference: KlingenbergWA Course in Differential Geometry1978New YorkSpringer10.1007/978-1-4612-9923-3
– reference: KatoTPerturbation Theory for Linear Operators1966BerlinSpringer10.1007/978-3-642-53393-8
– reference: WillmoreTJRiemannian Geometry1993OxfordClarendon Press0797.53002
– reference: AbramowitzMSStegunIAHandbook of Mathematical Functions1964New YorkDover0171.38503
– volume: 20
  start-page: 36
  year: 1959
  ident: 9752_CR26
  publication-title: Acta Sci. Math.
– volume-title: Geometric Inequalities
  year: 1988
  ident: 9752_CR7
  doi: 10.1007/978-3-662-07441-1
– volume: 2
  start-page: 210
  year: 1961
  ident: 9752_CR21
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(61)90031-2
– volume: 25
  start-page: 2546
  year: 2015
  ident: 9752_CR17
  publication-title: J. Geom. Anal.
  doi: 10.1007/s12220-014-9525-y
– volume-title: Handbook of Mathematical Functions
  year: 1964
  ident: 9752_CR1
– volume: 58
  start-page: 303
  issue: 4
  year: 1962
  ident: 9752_CR2
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/BF02413056
– volume: 280
  start-page: 322
  year: 2015
  ident: 9752_CR10
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2015.04.023
– volume-title: Strongly Elliptic Systems and Boundary Integral Equations
  year: 2000
  ident: 9752_CR19
– ident: 9752_CR11
– volume-title: Convex bodies: The Brunn-Minkowski Theory
  year: 1993
  ident: 9752_CR24
  doi: 10.1017/CBO9780511526282
– volume: 106
  start-page: 615
  year: 2016
  ident: 9752_CR20
  publication-title: J. Math. Pures Appl.
  doi: 10.1016/j.matpur.2016.03.005
– volume: 302
  start-page: 47
  year: 1986
  ident: 9752_CR6
  publication-title: C. R. Acad. Sci. Paris Sér. I Math.
– ident: 9752_CR13
  doi: 10.1515/9783110550887
– volume-title: Extremum Problems for Eigenvalues of Elliptic Operators
  year: 2006
  ident: 9752_CR12
  doi: 10.1007/3-7643-7706-2
– volume: 25
  start-page: 319
  year: 2018
  ident: 9752_CR16
  publication-title: J. Convex Anal.
– volume-title: Methods of Modern Mathematical Physics, IV. Analysis of Operators
  year: 1978
  ident: 9752_CR22
– volume: 38
  start-page: 1047
  year: 2013
  ident: 9752_CR9
  publication-title: Potential Anal.
– volume-title: A Course in Differential Geometry
  year: 1978
  ident: 9752_CR15
  doi: 10.1007/978-1-4612-9923-3
– volume: 335
  start-page: 767
  year: 2006
  ident: 9752_CR8
  publication-title: Math. Ann.
  doi: 10.1007/s00208-006-0753-8
– volume: 16
  start-page: 133
  year: 2001
  ident: 9752_CR23
  publication-title: Ann. Glob. Anal. Geom.
  doi: 10.1023/A:1010774905973
– volume: 8
  start-page: 280
  year: 1977
  ident: 9752_CR4
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0508020
– volume: 10
  start-page: 357
  year: 2017
  ident: 9752_CR3
  publication-title: Adv. Calc Var.
  doi: 10.1515/acv-2015-0045
– volume: 12
  start-page: 1
  year: 2005
  ident: 9752_CR18
  publication-title: Commun. Appl. Nonlinear Anal.
– volume-title: Perturbation Theory for Linear Operators
  year: 1966
  ident: 9752_CR14
  doi: 10.1007/978-3-642-53393-8
– volume: 374
  start-page: 516
  year: 2011
  ident: 9752_CR25
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2010.09.030
– volume-title: Riemannian Geometry
  year: 1993
  ident: 9752_CR27
  doi: 10.1093/oso/9780198532538.001.0001
– volume: 147
  start-page: 895
  year: 2017
  ident: 9752_CR5
  publication-title: Proc. Roy. Soc. Edinburgh Sect. A
  doi: 10.1017/S0308210516000421
SSID ssj0002778
Score 2.3453655
Snippet We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 601
SubjectTerms Boundary conditions
Convexity
Coupling
Eigenvalues
Exteriors
Functional Analysis
Geometry
Mathematics
Mathematics and Statistics
Optimization
Potential Theory
Probability Theory and Stochastic Processes
Title Optimisation of the Lowest Robin Eigenvalue in the Exterior of a Compact Set, II: Non-Convex Domains and Higher Dimensions
URI https://link.springer.com/article/10.1007/s11118-018-9752-0
https://www.proquest.com/docview/2394551951
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQXWBAPEV5VB6YgEjBju2arYWWZ8sAlcoU2YkjIUGCSJAQv567NGkBARJZIsuOB599_i539x0he0lirBS2DUaORANFtD3jO9-DzWNZxDh3AWYjD4byfBRcjsW4yuPO62j32iVZaupZshs8GHgFB1QJ5oGd3hBousMmHrHOVP0yNVG_mkkP-bJqV-ZPU3y9jGYI85tTtLxr-stkqQKJtDOR6gqZc-kqWfxEHQitwZRvNV8j7zdw8p-qyByaJRT66HWGNAi0zPCiPWTdRGZvR6GF3T3Uyg_ZCw43tNQLUUFvXXFILy6O6TBLvRMMSX-jp9mTeUhzatKYTuJC6CkWBcAfbfk6uev37k7OvaqqghfxI1l4jiurdBTEidTcSpUomyhfMuOUBjwSM9vmkSiJz7SvIwMYA0CbiI2xPOaGb5D5NEvdJqFGO1hKJ7UAjAALqp0JlI1ZAKAvUn67Sfx6dcOoYhzHwheP4YwrGQUSwiwhCiT0m2R_-snzhG7jr8E7tcjC6uTlIZZ6F0iZc9QkB7UYZ92_Trb1r9HbZIGh4V2G8OyQ-eLl1e0COilsizQ6_W53iO-z-6teq9ydH2He2-U
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iB_Ug_sT5MwdPaqEmbdJ4G3Oy6TYPbrBbSdoUBq4VW0H8632vazcVFewtJM0hL3n9XvO97xFyliTaCN8EEOQIDFD8wNGudR3YPIZFjHPrYTZyfyA6I-9u7I-rPO68ZrvXV5Klp14ku8GDxCs4oNJnDsTpK4AFAuRxjVhz7n6ZnLlfxYSDeln1VeZPU3z9GC0Q5rdL0fJbc7tJNiqQSJszq26RJZtuk_VP0oHQ6s_1VvMd8v4AJ39aMXNollDoo70MZRBomeFF26i6icrelkILu9volSfZCw7XtPQLUUEfbXFJu91rOshSp4WU9Dd6k031JM2pTmM644XQGywKgD_a8l0yvG0PWx2nqqrgRPxKFI7l0kgVeXEiFDdCJtIk0hVMW6kAj8TMBDzyS-Ez5apIA8YA0ObHWhsec833yHKapXafUK0sLKUVygeMAAuqrPakiZkHoC-SbtAgbr26YVQpjmPhi6dwoZWMBglhlhANEroNcj5_5Xkmt_HX4KPaZGF18vIQS737KJlz1SAXtRkX3b9OdvCv0adktTPs98Jed3B_SNYYBuElneeILBcvr_YYkEphTsqd-QEeHNvI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iIPogfuL8zINParFL2mTxTdyG020KKvhWkjaFgWuHrSD-9d71Y1NRwb6FfDzkksvvene_I-QojrURvmmBkSPQQPFbjnat68DhMSxknFsPs5EHQ3H16F0_-U9VndOsjnavXZJlTgOyNCX52SSKz2aJb_BhEBZcVukzB2z2BdDGTTzWj-xiqoqZLFWxYsJB7qzarfnTEl8fphna_OYgLd6d7ipZqQAjvSglvEbmbLJOlj_RCEJrMOVezTbI-y1ogXEVpUPTmEIf7adIiUCLbC_aQQZOZPm2FFrY3UENPUpfcLimhY4Ic3pv81Pa653TYZo4lxie_kbb6ViPkozqJKJljAhtY4EA_OmWbZKHbufh8sqpKiw4IW-K3LFcGqlCL4qF4kbIWJpYuoJpKxVgk4iZFg_9ggRNuSrUgDcAwPmR1oZHXPMtMp-kid0mVCsLW2mF8gEvwIYqqz1pIuYBAAyl22oQt97dIKzYx7EIxnMw401GgQSwSoACCdwGOZ5OmZTUG38N3qtFFlS3MAuw7LuP9DnNBjmpxTjr_nWxnX-NPiSLd-1u0O8Nb3bJEkN7vIjs2SPz-cur3QfQkpuD4mB-AAq84AQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimisation+of+the+Lowest+Robin+Eigenvalue+in+the+Exterior+of+a+Compact+Set%2C+II%3A+Non-Convex+Domains+and+Higher+Dimensions&rft.jtitle=Potential+analysis&rft.au=Krej%C4%8Di%C5%99%C3%ADk%2C+David&rft.au=Lotoreichik%2C+Vladimir&rft.date=2020-04-01&rft.pub=Springer+Netherlands&rft.issn=0926-2601&rft.eissn=1572-929X&rft.volume=52&rft.issue=4&rft.spage=601&rft.epage=614&rft_id=info:doi/10.1007%2Fs11118-018-9752-0&rft.externalDocID=10_1007_s11118_018_9752_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-2601&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-2601&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-2601&client=summon