Optimisation of the Lowest Robin Eigenvalue in the Exterior of a Compact Set, II: Non-Convex Domains and Higher Dimensions
We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to attractive Robin boundary conditions. As an improvement upon our previous work (Krejčiřík and Lotoreichik J. Convex Anal. 25 , 319–337, 2018 ), we...
Saved in:
Published in | Potential analysis Vol. 52; no. 4; pp. 601 - 614 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Dordrecht
Springer Netherlands
01.04.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0926-2601 1572-929X |
DOI | 10.1007/s11118-018-9752-0 |
Cover
Loading…
Abstract | We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to attractive Robin boundary conditions. As an improvement upon our previous work (Krejčiřík and Lotoreichik J. Convex Anal.
25
, 319–337,
2018
), we show that under either a constraint of fixed perimeter or area, the maximiser within the class of exteriors of simply connected planar sets is always the exterior of a disk, without the need of convexity assumption. Moreover, we generalise the result to disconnected compact planar sets. Namely, we prove that under a constraint of fixed average value of the perimeter over all the connected components, the maximiser within the class of disconnected compact planar sets, consisting of finitely many simply connected components, is again a disk. In higher dimensions, we prove a completely new result that the lowest point in the spectrum is maximised by the exterior of a ball among all sets exterior to bounded convex sets satisfying a constraint on the integral of a dimensional power of the mean curvature of their boundaries. Furthermore, it follows that the critical coupling at which the lowest point in the spectrum becomes a discrete eigenvalue emerging from the essential spectrum is minimised under the same constraint by the critical coupling for the exterior of a ball. |
---|---|
AbstractList | We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to attractive Robin boundary conditions. As an improvement upon our previous work (Krejčiřík and Lotoreichik J. Convex Anal.
25
, 319–337,
2018
), we show that under either a constraint of fixed perimeter or area, the maximiser within the class of exteriors of simply connected planar sets is always the exterior of a disk, without the need of convexity assumption. Moreover, we generalise the result to disconnected compact planar sets. Namely, we prove that under a constraint of fixed average value of the perimeter over all the connected components, the maximiser within the class of disconnected compact planar sets, consisting of finitely many simply connected components, is again a disk. In higher dimensions, we prove a completely new result that the lowest point in the spectrum is maximised by the exterior of a ball among all sets exterior to bounded convex sets satisfying a constraint on the integral of a dimensional power of the mean curvature of their boundaries. Furthermore, it follows that the critical coupling at which the lowest point in the spectrum becomes a discrete eigenvalue emerging from the essential spectrum is minimised under the same constraint by the critical coupling for the exterior of a ball. We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to attractive Robin boundary conditions. As an improvement upon our previous work (Krejčiřík and Lotoreichik J. Convex Anal. 25, 319–337, 2018), we show that under either a constraint of fixed perimeter or area, the maximiser within the class of exteriors of simply connected planar sets is always the exterior of a disk, without the need of convexity assumption. Moreover, we generalise the result to disconnected compact planar sets. Namely, we prove that under a constraint of fixed average value of the perimeter over all the connected components, the maximiser within the class of disconnected compact planar sets, consisting of finitely many simply connected components, is again a disk. In higher dimensions, we prove a completely new result that the lowest point in the spectrum is maximised by the exterior of a ball among all sets exterior to bounded convex sets satisfying a constraint on the integral of a dimensional power of the mean curvature of their boundaries. Furthermore, it follows that the critical coupling at which the lowest point in the spectrum becomes a discrete eigenvalue emerging from the essential spectrum is minimised under the same constraint by the critical coupling for the exterior of a ball. |
Author | Lotoreichik, Vladimir Krejčiřík, David |
Author_xml | – sequence: 1 givenname: David surname: Krejčiřík fullname: Krejčiřík, David organization: Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague – sequence: 2 givenname: Vladimir surname: Lotoreichik fullname: Lotoreichik, Vladimir email: lotoreichik@ujf.cas.cz organization: Department of Theoretical Physics, Nuclear Physics Institute, Czech Academy of Sciences |
BookMark | eNp9kF9LQyEYhyUWtFYfoDuh2069ev44u4tttcFoULvoTjxnns2xo0vdWn36XAuCoAQR9fe8rz6nqGWsUQhdELgmAOzGkzi6CcTJWU4TOEJtkjOacMpfWqgNnBYJLYCcoFPvlwBAGeu20cdkHXSjvQzaGmxrHBYKj-2b8gE_2VIbPNBzZbZytVE47vbXg11QTlu3j0vcs81aVgE_q3CFR6Nb_GhN0rNmq3a4bxupjcfSzPBQzxfK4b5ulPGxmT9Dx7VceXX-vXbQ9H4w7Q2T8eRh1LsbJ1VKipColJWMV9msLnhaFqxmZc2goFIxDkU-o2U3rfIMujnnwCsJLMtIPJeyTGepTDvo8lB27ezrJv5LLO3GmdhR0JRneU54TmKKHVKVs947VYtKhy8pwUm9EgTE3rM4eBbRs9h7FhBJ8otcO91I9_4vQw-Mj1kzV-7nTX9Dn_WNkTg |
CitedBy_id | crossref_primary_10_1007_s11587_020_00533_5 crossref_primary_10_1007_s10231_024_01520_5 crossref_primary_10_1016_j_jde_2022_11_016 crossref_primary_10_1002_mana_202000013 crossref_primary_10_1360_SSM_2024_0174 crossref_primary_10_1016_j_jmaa_2023_127211 crossref_primary_10_1063_5_0014360 crossref_primary_10_1016_j_jmaa_2023_127419 crossref_primary_10_1016_j_jmaa_2024_129082 crossref_primary_10_1007_s13324_024_01001_1 crossref_primary_10_1007_s00245_023_10033_1 crossref_primary_10_1007_s00526_024_02824_3 crossref_primary_10_1007_s11005_021_01369_2 crossref_primary_10_1007_s12220_022_00917_z crossref_primary_10_1063_1_5116253 |
Cites_doi | 10.1007/978-3-662-07441-1 10.1016/0022-247X(61)90031-2 10.1007/s12220-014-9525-y 10.1007/BF02413056 10.1016/j.aim.2015.04.023 10.1017/CBO9780511526282 10.1016/j.matpur.2016.03.005 10.1515/9783110550887 10.1007/3-7643-7706-2 10.1007/978-1-4612-9923-3 10.1007/s00208-006-0753-8 10.1023/A:1010774905973 10.1137/0508020 10.1515/acv-2015-0045 10.1007/978-3-642-53393-8 10.1016/j.jmaa.2010.09.030 10.1093/oso/9780198532538.001.0001 10.1017/S0308210516000421 |
ContentType | Journal Article |
Copyright | Springer Nature B.V. 2019 Springer Nature B.V. 2019. |
Copyright_xml | – notice: Springer Nature B.V. 2019 – notice: Springer Nature B.V. 2019. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11118-018-9752-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1572-929X |
EndPage | 614 |
ExternalDocumentID | 10_1007_s11118_018_9752_0 |
GrantInformation_xml | – fundername: Grantová Agentura České Republiky grantid: 17-01706S funderid: https://doi.org/10.13039/501100001824 – fundername: Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa grantid: PTDC/MAT-CAL/4334/2014 funderid: https://doi.org/10.13039/501100005856 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-e37b79c4df693b67f7bf7062ae79065d2b83c540859909ca0744165daab3d3a3 |
IEDL.DBID | U2A |
ISSN | 0926-2601 |
IngestDate | Fri Jul 25 11:07:45 EDT 2025 Tue Jul 01 01:52:25 EDT 2025 Thu Apr 24 22:54:30 EDT 2025 Fri Feb 21 02:32:26 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Spectral isoperimetric inequality Spectral isochoric inequality 35P15 (primary) Negative boundary parameter Robin Laplacian Exterior of a compact set Willmore energy 58J50 (secondary) Lowest eigenvalue Critical coupling Parallel coordinates |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-e37b79c4df693b67f7bf7062ae79065d2b83c540859909ca0744165daab3d3a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2394551951 |
PQPubID | 2043741 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2394551951 crossref_citationtrail_10_1007_s11118_018_9752_0 crossref_primary_10_1007_s11118_018_9752_0 springer_journals_10_1007_s11118_018_9752_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-04-01 |
PublicationDateYYYYMMDD | 2020-04-01 |
PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Dordrecht |
PublicationPlace_xml | – name: Dordrecht |
PublicationSubtitle | An International Journal Devoted to the Interactions between Potential Theory, Probability Theory, Geometry and Functional Analysis |
PublicationTitle | Potential analysis |
PublicationTitleAbbrev | Potential Anal |
PublicationYear | 2020 |
Publisher | Springer Netherlands Springer Nature B.V |
Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
References | SchneiderRConvex bodies: The Brunn-Minkowski Theory1993CambridgeCambridge University Press10.1017/CBO9780511526282 SavoALower bounds for the nodal length of eigenfunctions of the LaplacianAnn. Glob. Anal. Geom.200116133151182639810.1023/A:1010774905973 PayneLEWeinbergerHFSome isoperimetric inequalities for membrane frequencies and torsional rigidityJ. Math. Anal. Appl.1961221021614973510.1016/0022-247X(61)90031-2 AbramowitzMSStegunIAHandbook of Mathematical Functions1964New YorkDover0171.38503 KrejčiříkDRaymondNTušekMThe magnetic Laplacian in shrinking tubular neighbourhoods of hypersurfacesJ. Geom. Anal.20152525462564342713710.1007/s12220-014-9525-y FreitasPKrejčiříkDThe first Robin eigenvalue with negative boundary parameterAdv. Math.2015280322339335022210.1016/j.aim.2015.04.023 LuGOuBA Poincaré inequality on $\mathbb {R}^{n}$ℝn and its application to potential fluid flows in spaceCommun. Appl. Nonlinear Anal.2005121241060.26017 Henrot, A.: Shape Optimization and Spectral Theory. De Gruyter, Warsaw (2017) HenrotAExtremum Problems for Eigenvalues of Elliptic Operators2006BaselBirkhäuser10.1007/3-7643-7706-2 KatoTPerturbation Theory for Linear Operators1966BerlinSpringer10.1007/978-3-642-53393-8 DanersDA Faber-Krahn inequality for Robin problems in any space dimensionMath. Ann.2006335767785223201610.1007/s00208-006-0753-8 AlexandrovADA characteristic property of spheresAnn. Mat. Pura Appl.196258430331514316210.1007/BF02413056 PankrashkinKPopoffNAn effective Hamiltonian for the eigenvalue asymptotics of a Robin Laplacian with a large parameterJ. Math. Pures Appl.2016106615650353946810.1016/j.matpur.2016.03.005 BuragoYDZalgallerVAGeometric Inequalities1988BerlinSpringer10.1007/978-3-662-07441-1 McLeanWStrongly Elliptic Systems and Boundary Integral Equations2000CambridgeCambridge University Press0948.35001 DanersDPrincipal eigenvalues for generalised indefinite Robin problemsPotential Anal.2013381047106930426941264.35152 AntunesPRSFreitasPKrejčiříkDBounds and extremal domains for Robin eigenvalues with negative boundary parameterAdv. Calc Var.201710357380370708310.1515/acv-2015-0045 Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. 2nd. 1st. paperback ed. Cambridge University Press, Cambridge (1988) Sz.-NagyBÜber Parallelmengen nichtkonvexer ebener BereicheActa Sci. Math.19592036471072130101.14701 KlingenbergWA Course in Differential Geometry1978New YorkSpringer10.1007/978-1-4612-9923-3 BehrndtJLangerMLotoreichikVRohlederJQuasi boundary triples and semi-bounded self-adjoint extensionsProc. Roy. Soc. Edinburgh Sect. A2017147895916370531210.1017/S0308210516000421 SeguraJBounds for ratios of modified Bessel functions and associated Turán-type inequalitiesJ. Math. Anal. Appl.2011374516528272923810.1016/j.jmaa.2010.09.030 BareketMOn an isoperimetric inequality for the first eigenvalue of a boundary value problemSIAM J. Math. Anal.1977828028743055210.1137/0508020 KrejčiříkDLotoreichikVOptimisation of the lowest Robin eigenvalue in the exterior of a compact setJ. Convex Anal.20182531933737569391401.35223 ReedMSimonBMethods of Modern Mathematical Physics, IV. Analysis of Operators1978New YorkAcademic Press0401.47001 BosselM-HMembranes élastiquement liées: Extension du théoréme de Rayleigh-Faber-Krahn et de l’inégalité de CheegerC. R. Acad. Sci. Paris Sér. I Math.198630247508271060606.73018 WillmoreTJRiemannian Geometry1993OxfordClarendon Press0797.53002 R Schneider (9752_CR24) 1993 M-H Bossel (9752_CR6) 1986; 302 D Krejčiřík (9752_CR17) 2015; 25 M Reed (9752_CR22) 1978 A Savo (9752_CR23) 2001; 16 PRS Antunes (9752_CR3) 2017; 10 T Kato (9752_CR14) 1966 G Lu (9752_CR18) 2005; 12 TJ Willmore (9752_CR27) 1993 LE Payne (9752_CR21) 1961; 2 P Freitas (9752_CR10) 2015; 280 9752_CR13 9752_CR11 W Klingenberg (9752_CR15) 1978 W McLean (9752_CR19) 2000 J Behrndt (9752_CR5) 2017; 147 (9752_CR1) 1964 A Henrot (9752_CR12) 2006 J Segura (9752_CR25) 2011; 374 M Bareket (9752_CR4) 1977; 8 K Pankrashkin (9752_CR20) 2016; 106 D Daners (9752_CR9) 2013; 38 D Krejčiřík (9752_CR16) 2018; 25 B Sz.-Nagy (9752_CR26) 1959; 20 D Daners (9752_CR8) 2006; 335 YD Burago (9752_CR7) 1988 AD Alexandrov (9752_CR2) 1962; 58 |
References_xml | – reference: LuGOuBA Poincaré inequality on $\mathbb {R}^{n}$ℝn and its application to potential fluid flows in spaceCommun. Appl. Nonlinear Anal.2005121241060.26017 – reference: AntunesPRSFreitasPKrejčiříkDBounds and extremal domains for Robin eigenvalues with negative boundary parameterAdv. Calc Var.201710357380370708310.1515/acv-2015-0045 – reference: BareketMOn an isoperimetric inequality for the first eigenvalue of a boundary value problemSIAM J. Math. Anal.1977828028743055210.1137/0508020 – reference: DanersDA Faber-Krahn inequality for Robin problems in any space dimensionMath. Ann.2006335767785223201610.1007/s00208-006-0753-8 – reference: Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. 2nd. 1st. paperback ed. Cambridge University Press, Cambridge (1988) – reference: SchneiderRConvex bodies: The Brunn-Minkowski Theory1993CambridgeCambridge University Press10.1017/CBO9780511526282 – reference: BosselM-HMembranes élastiquement liées: Extension du théoréme de Rayleigh-Faber-Krahn et de l’inégalité de CheegerC. R. Acad. Sci. Paris Sér. I Math.198630247508271060606.73018 – reference: ReedMSimonBMethods of Modern Mathematical Physics, IV. Analysis of Operators1978New YorkAcademic Press0401.47001 – reference: SavoALower bounds for the nodal length of eigenfunctions of the LaplacianAnn. Glob. Anal. Geom.200116133151182639810.1023/A:1010774905973 – reference: BehrndtJLangerMLotoreichikVRohlederJQuasi boundary triples and semi-bounded self-adjoint extensionsProc. Roy. Soc. Edinburgh Sect. A2017147895916370531210.1017/S0308210516000421 – reference: PayneLEWeinbergerHFSome isoperimetric inequalities for membrane frequencies and torsional rigidityJ. Math. Anal. Appl.1961221021614973510.1016/0022-247X(61)90031-2 – reference: HenrotAExtremum Problems for Eigenvalues of Elliptic Operators2006BaselBirkhäuser10.1007/3-7643-7706-2 – reference: AlexandrovADA characteristic property of spheresAnn. Mat. Pura Appl.196258430331514316210.1007/BF02413056 – reference: Henrot, A.: Shape Optimization and Spectral Theory. De Gruyter, Warsaw (2017) – reference: Sz.-NagyBÜber Parallelmengen nichtkonvexer ebener BereicheActa Sci. Math.19592036471072130101.14701 – reference: McLeanWStrongly Elliptic Systems and Boundary Integral Equations2000CambridgeCambridge University Press0948.35001 – reference: SeguraJBounds for ratios of modified Bessel functions and associated Turán-type inequalitiesJ. Math. Anal. Appl.2011374516528272923810.1016/j.jmaa.2010.09.030 – reference: KrejčiříkDRaymondNTušekMThe magnetic Laplacian in shrinking tubular neighbourhoods of hypersurfacesJ. Geom. Anal.20152525462564342713710.1007/s12220-014-9525-y – reference: PankrashkinKPopoffNAn effective Hamiltonian for the eigenvalue asymptotics of a Robin Laplacian with a large parameterJ. Math. Pures Appl.2016106615650353946810.1016/j.matpur.2016.03.005 – reference: FreitasPKrejčiříkDThe first Robin eigenvalue with negative boundary parameterAdv. Math.2015280322339335022210.1016/j.aim.2015.04.023 – reference: KrejčiříkDLotoreichikVOptimisation of the lowest Robin eigenvalue in the exterior of a compact setJ. Convex Anal.20182531933737569391401.35223 – reference: BuragoYDZalgallerVAGeometric Inequalities1988BerlinSpringer10.1007/978-3-662-07441-1 – reference: DanersDPrincipal eigenvalues for generalised indefinite Robin problemsPotential Anal.2013381047106930426941264.35152 – reference: KlingenbergWA Course in Differential Geometry1978New YorkSpringer10.1007/978-1-4612-9923-3 – reference: KatoTPerturbation Theory for Linear Operators1966BerlinSpringer10.1007/978-3-642-53393-8 – reference: WillmoreTJRiemannian Geometry1993OxfordClarendon Press0797.53002 – reference: AbramowitzMSStegunIAHandbook of Mathematical Functions1964New YorkDover0171.38503 – volume: 20 start-page: 36 year: 1959 ident: 9752_CR26 publication-title: Acta Sci. Math. – volume-title: Geometric Inequalities year: 1988 ident: 9752_CR7 doi: 10.1007/978-3-662-07441-1 – volume: 2 start-page: 210 year: 1961 ident: 9752_CR21 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(61)90031-2 – volume: 25 start-page: 2546 year: 2015 ident: 9752_CR17 publication-title: J. Geom. Anal. doi: 10.1007/s12220-014-9525-y – volume-title: Handbook of Mathematical Functions year: 1964 ident: 9752_CR1 – volume: 58 start-page: 303 issue: 4 year: 1962 ident: 9752_CR2 publication-title: Ann. Mat. Pura Appl. doi: 10.1007/BF02413056 – volume: 280 start-page: 322 year: 2015 ident: 9752_CR10 publication-title: Adv. Math. doi: 10.1016/j.aim.2015.04.023 – volume-title: Strongly Elliptic Systems and Boundary Integral Equations year: 2000 ident: 9752_CR19 – ident: 9752_CR11 – volume-title: Convex bodies: The Brunn-Minkowski Theory year: 1993 ident: 9752_CR24 doi: 10.1017/CBO9780511526282 – volume: 106 start-page: 615 year: 2016 ident: 9752_CR20 publication-title: J. Math. Pures Appl. doi: 10.1016/j.matpur.2016.03.005 – volume: 302 start-page: 47 year: 1986 ident: 9752_CR6 publication-title: C. R. Acad. Sci. Paris Sér. I Math. – ident: 9752_CR13 doi: 10.1515/9783110550887 – volume-title: Extremum Problems for Eigenvalues of Elliptic Operators year: 2006 ident: 9752_CR12 doi: 10.1007/3-7643-7706-2 – volume: 25 start-page: 319 year: 2018 ident: 9752_CR16 publication-title: J. Convex Anal. – volume-title: Methods of Modern Mathematical Physics, IV. Analysis of Operators year: 1978 ident: 9752_CR22 – volume: 38 start-page: 1047 year: 2013 ident: 9752_CR9 publication-title: Potential Anal. – volume-title: A Course in Differential Geometry year: 1978 ident: 9752_CR15 doi: 10.1007/978-1-4612-9923-3 – volume: 335 start-page: 767 year: 2006 ident: 9752_CR8 publication-title: Math. Ann. doi: 10.1007/s00208-006-0753-8 – volume: 16 start-page: 133 year: 2001 ident: 9752_CR23 publication-title: Ann. Glob. Anal. Geom. doi: 10.1023/A:1010774905973 – volume: 8 start-page: 280 year: 1977 ident: 9752_CR4 publication-title: SIAM J. Math. Anal. doi: 10.1137/0508020 – volume: 10 start-page: 357 year: 2017 ident: 9752_CR3 publication-title: Adv. Calc Var. doi: 10.1515/acv-2015-0045 – volume: 12 start-page: 1 year: 2005 ident: 9752_CR18 publication-title: Commun. Appl. Nonlinear Anal. – volume-title: Perturbation Theory for Linear Operators year: 1966 ident: 9752_CR14 doi: 10.1007/978-3-642-53393-8 – volume: 374 start-page: 516 year: 2011 ident: 9752_CR25 publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2010.09.030 – volume-title: Riemannian Geometry year: 1993 ident: 9752_CR27 doi: 10.1093/oso/9780198532538.001.0001 – volume: 147 start-page: 895 year: 2017 ident: 9752_CR5 publication-title: Proc. Roy. Soc. Edinburgh Sect. A doi: 10.1017/S0308210516000421 |
SSID | ssj0002778 |
Score | 2.3453655 |
Snippet | We consider the problem of geometric optimisation of the lowest eigenvalue of the Laplacian in the exterior of a compact set in any dimension, subject to... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 601 |
SubjectTerms | Boundary conditions Convexity Coupling Eigenvalues Exteriors Functional Analysis Geometry Mathematics Mathematics and Statistics Optimization Potential Theory Probability Theory and Stochastic Processes |
Title | Optimisation of the Lowest Robin Eigenvalue in the Exterior of a Compact Set, II: Non-Convex Domains and Higher Dimensions |
URI | https://link.springer.com/article/10.1007/s11118-018-9752-0 https://www.proquest.com/docview/2394551951 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYQXWBAPEV5VB6YgEjBju2arYWWZ8sAlcoU2YkjIUGCSJAQv567NGkBARJZIsuOB599_i539x0he0lirBS2DUaORANFtD3jO9-DzWNZxDh3AWYjD4byfBRcjsW4yuPO62j32iVZaupZshs8GHgFB1QJ5oGd3hBousMmHrHOVP0yNVG_mkkP-bJqV-ZPU3y9jGYI85tTtLxr-stkqQKJtDOR6gqZc-kqWfxEHQitwZRvNV8j7zdw8p-qyByaJRT66HWGNAi0zPCiPWTdRGZvR6GF3T3Uyg_ZCw43tNQLUUFvXXFILy6O6TBLvRMMSX-jp9mTeUhzatKYTuJC6CkWBcAfbfk6uev37k7OvaqqghfxI1l4jiurdBTEidTcSpUomyhfMuOUBjwSM9vmkSiJz7SvIwMYA0CbiI2xPOaGb5D5NEvdJqFGO1hKJ7UAjAALqp0JlI1ZAKAvUn67Sfx6dcOoYhzHwheP4YwrGQUSwiwhCiT0m2R_-snzhG7jr8E7tcjC6uTlIZZ6F0iZc9QkB7UYZ92_Trb1r9HbZIGh4V2G8OyQ-eLl1e0COilsizQ6_W53iO-z-6teq9ydH2He2-U |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFA6iB_Ug_sT5MwdPaqEmbdJ4G3Oy6TYPbrBbSdoUBq4VW0H8632vazcVFewtJM0hL3n9XvO97xFyliTaCN8EEOQIDFD8wNGudR3YPIZFjHPrYTZyfyA6I-9u7I-rPO68ZrvXV5Klp14ku8GDxCs4oNJnDsTpK4AFAuRxjVhz7n6ZnLlfxYSDeln1VeZPU3z9GC0Q5rdL0fJbc7tJNiqQSJszq26RJZtuk_VP0oHQ6s_1VvMd8v4AJ39aMXNollDoo70MZRBomeFF26i6icrelkILu9volSfZCw7XtPQLUUEfbXFJu91rOshSp4WU9Dd6k031JM2pTmM644XQGywKgD_a8l0yvG0PWx2nqqrgRPxKFI7l0kgVeXEiFDdCJtIk0hVMW6kAj8TMBDzyS-Ez5apIA8YA0ObHWhsec833yHKapXafUK0sLKUVygeMAAuqrPakiZkHoC-SbtAgbr26YVQpjmPhi6dwoZWMBglhlhANEroNcj5_5Xkmt_HX4KPaZGF18vIQS737KJlz1SAXtRkX3b9OdvCv0adktTPs98Jed3B_SNYYBuElneeILBcvr_YYkEphTsqd-QEeHNvI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iIPogfuL8zINParFL2mTxTdyG020KKvhWkjaFgWuHrSD-9d71Y1NRwb6FfDzkksvvene_I-QojrURvmmBkSPQQPFbjnat68DhMSxknFsPs5EHQ3H16F0_-U9VndOsjnavXZJlTgOyNCX52SSKz2aJb_BhEBZcVukzB2z2BdDGTTzWj-xiqoqZLFWxYsJB7qzarfnTEl8fphna_OYgLd6d7ipZqQAjvSglvEbmbLJOlj_RCEJrMOVezTbI-y1ogXEVpUPTmEIf7adIiUCLbC_aQQZOZPm2FFrY3UENPUpfcLimhY4Ic3pv81Pa653TYZo4lxie_kbb6ViPkozqJKJljAhtY4EA_OmWbZKHbufh8sqpKiw4IW-K3LFcGqlCL4qF4kbIWJpYuoJpKxVgk4iZFg_9ggRNuSrUgDcAwPmR1oZHXPMtMp-kid0mVCsLW2mF8gEvwIYqqz1pIuYBAAyl22oQt97dIKzYx7EIxnMw401GgQSwSoACCdwGOZ5OmZTUG38N3qtFFlS3MAuw7LuP9DnNBjmpxTjr_nWxnX-NPiSLd-1u0O8Nb3bJEkN7vIjs2SPz-cur3QfQkpuD4mB-AAq84AQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimisation+of+the+Lowest+Robin+Eigenvalue+in+the+Exterior+of+a+Compact+Set%2C+II%3A+Non-Convex+Domains+and+Higher+Dimensions&rft.jtitle=Potential+analysis&rft.au=Krej%C4%8Di%C5%99%C3%ADk%2C+David&rft.au=Lotoreichik%2C+Vladimir&rft.date=2020-04-01&rft.pub=Springer+Netherlands&rft.issn=0926-2601&rft.eissn=1572-929X&rft.volume=52&rft.issue=4&rft.spage=601&rft.epage=614&rft_id=info:doi/10.1007%2Fs11118-018-9752-0&rft.externalDocID=10_1007_s11118_018_9752_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-2601&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-2601&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-2601&client=summon |