A robust algorithm of support vector regression with a trimmed Huber loss function in the primal

Support vector machine for regression (SVR) is an efficient tool for solving function estimation problem. However, it is sensitive to outliers due to its unbounded loss function. In order to reduce the effect of outliers, we propose a robust SVR with a trimmed Huber loss function (SVRT) in this pape...

Full description

Saved in:
Bibliographic Details
Published inSoft computing (Berlin, Germany) Vol. 21; no. 18; pp. 5235 - 5243
Main Authors Chen, Chuanfa, Yan, Changqing, Zhao, Na, Guo, Bin, Liu, Guolin
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-7643
1433-7479
DOI10.1007/s00500-016-2229-4

Cover

Loading…
Abstract Support vector machine for regression (SVR) is an efficient tool for solving function estimation problem. However, it is sensitive to outliers due to its unbounded loss function. In order to reduce the effect of outliers, we propose a robust SVR with a trimmed Huber loss function (SVRT) in this paper. Synthetic and benchmark datasets were, respectively, employed to comparatively assess the performance of SVRT, and its results were compared with those of SVR, least squares SVR (LS-SVR) and a weighted LS-SVR. The numerical test shows that when training samples are subject to errors with a normal distribution, SVRT is slightly less accurate than SVR and LS-SVR, yet more accurate than the weighted LS-SVR. However, when training samples are contaminated by outliers, SVRT has a better performance than the other methods. Furthermore, SVRT is faster than the weighted LS-SVR. Simulating eight benchmark datasets shows that SVRT is averagely more accurate than the other methods when sample points are contaminated by outliers. In conclusion, SVRT can be considered as an alternative robust method for simulating contaminated sample points.
AbstractList Support vector machine for regression (SVR) is an efficient tool for solving function estimation problem. However, it is sensitive to outliers due to its unbounded loss function. In order to reduce the effect of outliers, we propose a robust SVR with a trimmed Huber loss function (SVRT) in this paper. Synthetic and benchmark datasets were, respectively, employed to comparatively assess the performance of SVRT, and its results were compared with those of SVR, least squares SVR (LS-SVR) and a weighted LS-SVR. The numerical test shows that when training samples are subject to errors with a normal distribution, SVRT is slightly less accurate than SVR and LS-SVR, yet more accurate than the weighted LS-SVR. However, when training samples are contaminated by outliers, SVRT has a better performance than the other methods. Furthermore, SVRT is faster than the weighted LS-SVR. Simulating eight benchmark datasets shows that SVRT is averagely more accurate than the other methods when sample points are contaminated by outliers. In conclusion, SVRT can be considered as an alternative robust method for simulating contaminated sample points.
Author Guo, Bin
Chen, Chuanfa
Yan, Changqing
Zhao, Na
Liu, Guolin
Author_xml – sequence: 1
  givenname: Chuanfa
  surname: Chen
  fullname: Chen, Chuanfa
  email: chencf@lreis.ac.cn
  organization: State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, College of Geomatics, Shandong University of Science and Technology
– sequence: 2
  givenname: Changqing
  surname: Yan
  fullname: Yan, Changqing
  organization: Department of Information Engineering, Shandong University of Science and Technology
– sequence: 3
  givenname: Na
  surname: Zhao
  fullname: Zhao, Na
  organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences
– sequence: 4
  givenname: Bin
  surname: Guo
  fullname: Guo, Bin
  organization: College of Geomatics, Shandong University of Science and Technology
– sequence: 5
  givenname: Guolin
  surname: Liu
  fullname: Liu, Guolin
  organization: College of Geomatics, Shandong University of Science and Technology
BookMark eNp9kE9LwzAYh4NMcJt-AG8Bz9X8a9Mcx1AnCF70HNM02Tq6piap4rc3XQVB0FNyeJ73_b2_BZh1rjMAXGJ0jRHiNwGhHKEM4SIjhIiMnYA5ZpRmnHExO_5JxgtGz8AihD1CBPOczsHrCnpXDSFC1W6db-LuAJ2FYeh75yN8Nzo6D73ZehNC4zr4kRCoYPTN4WBquBkq42HrQoB26HQckaaDcWdgnxDVnoNTq9pgLr7fJXi5u31eb7LHp_uH9eox0xQXMTNE0VJZXmMlcit0XVkkVKUJybkWlAiTU0ZtupKhvBY15grXtLIFw5oRROkSXE1ze-_eBhOi3LvBd2mlJAKXiFFUlonCE6V9iuyNlceU_lNiJMci5VSkTEXKsUjJksN_ObqJarw0etW0_5pkMkPa0m2N_8n0t_QF_H6Jtg
CitedBy_id crossref_primary_10_1109_TNNLS_2022_3202989
crossref_primary_10_1016_j_apenergy_2022_119616
crossref_primary_10_1016_j_eswa_2024_124332
crossref_primary_10_1007_s00521_021_06518_1
crossref_primary_10_1049_gtd2_13276
crossref_primary_10_1016_j_apm_2020_01_053
crossref_primary_10_1007_s11063_018_9875_8
crossref_primary_10_1016_j_ejor_2024_04_028
crossref_primary_10_1016_j_ins_2023_119852
crossref_primary_10_3233_JIFS_191429
crossref_primary_10_1007_s11063_020_10380_y
crossref_primary_10_1016_j_asoc_2020_106708
crossref_primary_10_1088_1361_6501_acb003
crossref_primary_10_1109_JBHI_2022_3147524
crossref_primary_10_1016_j_compeleceng_2024_109925
crossref_primary_10_1007_s11063_023_11198_0
crossref_primary_10_1002_for_3118
crossref_primary_10_1016_j_apm_2020_05_012
crossref_primary_10_1007_s00521_019_04625_8
crossref_primary_10_1016_j_measurement_2020_107962
crossref_primary_10_1016_j_chaos_2021_110738
crossref_primary_10_1155_2020_8844464
crossref_primary_10_1016_j_procs_2023_08_049
Cites_doi 10.1016/j.neunet.2010.09.011
10.1023/B:STCO.0000035301.49549.88
10.1016/j.asoc.2009.10.017
10.1016/j.chemolab.2009.05.008
10.1016/S0925-2312(01)00644-0
10.1109/72.478411
10.1016/j.neucom.2014.03.037
10.1016/j.neucom.2007.12.032
10.1016/j.isprsjprs.2010.11.001
10.1162/neco.2007.19.5.1155
10.1162/08997660360581958
10.1142/5089
10.1080/10556788.2011.557725
10.1007/978-1-4757-2440-0
10.1016/j.neunet.2008.09.001
10.1023/A:1009715923555
10.1109/TNN.2002.804227
10.1007/s00500-009-0535-9
10.1016/j.eswa.2009.12.082
10.1016/S0893-6080(03)00169-2
10.1016/j.neucom.2012.05.004
10.1007/s10618-005-0024-4
10.1016/j.neucom.2009.12.028
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Springer-Verlag Berlin Heidelberg 2016.
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Springer-Verlag Berlin Heidelberg 2016.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s00500-016-2229-4
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest
Technology Collection
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1433-7479
EndPage 5243
ExternalDocumentID 10_1007_s00500_016_2229_4
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41101433; 41371367
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Qingdao Science and Technology Program of Basic Research Project
  grantid: 13-1-4-239-jch
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
203
29~
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z5O
Z7R
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-e2a38af7d1a95f9cdbf09abc2257c9329e5343f005405d9d17a1d3bf641c42033
IEDL.DBID AGYKE
ISSN 1432-7643
IngestDate Sun Jul 13 04:04:46 EDT 2025
Fri Jul 04 01:04:03 EDT 2025
Thu Apr 24 23:08:31 EDT 2025
Fri Feb 21 02:39:27 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords Outliers
Function estimation
Support vector regression
Robust
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-e2a38af7d1a95f9cdbf09abc2257c9329e5343f005405d9d17a1d3bf641c42033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918043088
PQPubID 2043697
PageCount 9
ParticipantIDs proquest_journals_2918043088
crossref_primary_10_1007_s00500_016_2229_4
crossref_citationtrail_10_1007_s00500_016_2229_4
springer_journals_10_1007_s00500_016_2229_4
PublicationCentury 2000
PublicationDate 20170900
2017-9-00
20170901
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 9
  year: 2017
  text: 20170900
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Fusion of Foundations, Methodologies and Applications
PublicationTitle Soft computing (Berlin, Germany)
PublicationTitleAbbrev Soft Comput
PublicationYear 2017
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Chen, Yang, Liang, Ye (CR3) 2012; 97
Zhong (CR26) 2012; 27
Cui, Yan (CR8) 2009; 98
Chuang, Lee (CR5) 2011; 11
Rousseeuw, Leroy (CR12) 2003
Yuille, Rangarajan (CR23) 2003; 15
Smola, Schölkopf (CR15) 2004; 14
Cortes, Vapnik (CR7) 1995; 20
Mountrakis, Im, Ogole (CR11) 2011; 66
Shin, Jin Kim, Kim (CR14) 2011; 24
Yang, Tan, He (CR22) 2014; 140
Burges (CR1) 1998; 2
Zhao, Sun (CR24) 2008; 21
Chuang, Su, Jeng, Hsiao (CR6) 2002; 13
Suykens, De Brabanter, Lukas, Vandewalle (CR16) 2002; 48
Wang, Jia, Li (CR20) 2008; 71
Liano (CR10) 1996; 7
Vapnik (CR18) 1995
Zhao, Sun (CR25) 2010; 37
Chapelle (CR2) 2007; 19
Vapnik, Vapnik (CR19) 1998
Suykens, Gestel, Brabanter, Moor, Vandewalle (CR17) 2002
Jeng, Chuang, Tao (CR9) 2010; 73
Rousseeuw, Van Driessen (CR13) 2006; 12
Cherkassky, Ma (CR4) 2004; 17
Wen, Hao, Yang (CR21) 2010; 14
J Shin (2229_CR14) 2011; 24
L Wang (2229_CR20) 2008; 71
K Liano (2229_CR10) 1996; 7
Y Zhao (2229_CR24) 2008; 21
PJ Rousseeuw (2229_CR13) 2006; 12
V Vapnik (2229_CR19) 1998
C Cortes (2229_CR7) 1995; 20
C-C Chuang (2229_CR5) 2011; 11
X Yang (2229_CR22) 2014; 140
Y Zhao (2229_CR25) 2010; 37
JAK Suykens (2229_CR16) 2002; 48
V Cherkassky (2229_CR4) 2004; 17
W Wen (2229_CR21) 2010; 14
X Chen (2229_CR3) 2012; 97
JAK Suykens (2229_CR17) 2002
CC Burges (2229_CR1) 1998; 2
C-C Chuang (2229_CR6) 2002; 13
A Smola (2229_CR15) 2004; 14
P Zhong (2229_CR26) 2012; 27
J-T Jeng (2229_CR9) 2010; 73
G Mountrakis (2229_CR11) 2011; 66
O Chapelle (2229_CR2) 2007; 19
W Cui (2229_CR8) 2009; 98
P Rousseeuw (2229_CR12) 2003
AL Yuille (2229_CR23) 2003; 15
V Vapnik (2229_CR18) 1995
References_xml – volume: 24
  start-page: 109
  issue: 1
  year: 2011
  end-page: 120
  ident: CR14
  article-title: Adaptive support vector regression for UAV flight control
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2010.09.011
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  end-page: 222
  ident: CR15
  article-title: A tutorial on support vector regression
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 11
  start-page: 64
  issue: 1
  year: 2011
  end-page: 72
  ident: CR5
  article-title: Hybrid robust support vector machines for regression with outliers
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.10.017
– volume: 98
  start-page: 130
  issue: 2
  year: 2009
  end-page: 135
  ident: CR8
  article-title: Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR
  publication-title: Chemometr Intell Lab Syst
  doi: 10.1016/j.chemolab.2009.05.008
– volume: 48
  start-page: 85
  issue: 1
  year: 2002
  end-page: 105
  ident: CR16
  article-title: Weighted least squares support vector machines: robustness and sparse approximation
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00644-0
– volume: 7
  start-page: 246
  issue: 1
  year: 1996
  end-page: 250
  ident: CR10
  article-title: Robust error measure for supervised neural network learning with outliers
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.478411
– volume: 140
  start-page: 41
  year: 2014
  end-page: 52
  ident: CR22
  article-title: A robust least squares support vector machine for regression and classification with noise
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.037
– volume: 71
  start-page: 3020
  issue: 13–15
  year: 2008
  end-page: 3025
  ident: CR20
  article-title: Training robust support vector machine with smooth Ramp loss in the primal space
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.12.032
– volume: 66
  start-page: 247
  issue: 3
  year: 2011
  end-page: 259
  ident: CR11
  article-title: Support vector machines in remote sensing: a review
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  end-page: 297
  ident: CR7
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 19
  start-page: 1155
  issue: 5
  year: 2007
  end-page: 1178
  ident: CR2
  article-title: Training a support vector machine in the primal
  publication-title: Neural Comput
  doi: 10.1162/neco.2007.19.5.1155
– volume: 15
  start-page: 915
  issue: 4
  year: 2003
  end-page: 936
  ident: CR23
  article-title: The concave-convex procedure
  publication-title: Neural Comput
  doi: 10.1162/08997660360581958
– year: 2003
  ident: CR12
  publication-title: Robust regression and outlier detection
– start-page: 294
  year: 2002
  ident: CR17
  publication-title: Least squares support vector machines
  doi: 10.1142/5089
– volume: 27
  start-page: 1039
  issue: 6
  year: 2012
  end-page: 1058
  ident: CR26
  article-title: Training robust support vector regression with smooth non-convex loss function
  publication-title: Optim Methods Softw
  doi: 10.1080/10556788.2011.557725
– year: 1995
  ident: CR18
  publication-title: The nature of statistical learning theory
  doi: 10.1007/978-1-4757-2440-0
– volume: 21
  start-page: 1548
  issue: 10
  year: 2008
  end-page: 1555
  ident: CR24
  article-title: Robust support vector regression in the primal
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2008.09.001
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  end-page: 167
  ident: CR1
  article-title: A tutorial on support vector machines for pattern recognition
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1009715923555
– volume: 13
  start-page: 1322
  issue: 6
  year: 2002
  end-page: 1330
  ident: CR6
  article-title: Robust support vector regression networks for function approximation with outliers
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.804227
– volume: 14
  start-page: 1241
  issue: 11
  year: 2010
  end-page: 1251
  ident: CR21
  article-title: Robust least squares support vector machine based on recursive outlier elimination
  publication-title: Soft Comput
  doi: 10.1007/s00500-009-0535-9
– volume: 37
  start-page: 5126
  issue: 7
  year: 2010
  end-page: 5133
  ident: CR25
  article-title: Robust truncated support vector regression
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.12.082
– volume: 17
  start-page: 113
  issue: 1
  year: 2004
  end-page: 126
  ident: CR4
  article-title: Practical selection of SVM parameters and noise estimation for SVM regression
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00169-2
– volume: 97
  start-page: 63
  year: 2012
  end-page: 73
  ident: CR3
  article-title: Recursive robust least squares support vector regression based on maximum correntropy criterion
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.05.004
– volume: 12
  start-page: 29
  issue: 1
  year: 2006
  end-page: 45
  ident: CR13
  article-title: Computing LTS regression for large data sets
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-005-0024-4
– volume: 73
  start-page: 1686
  issue: 10–12
  year: 2010
  end-page: 1693
  ident: CR9
  article-title: Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.12.028
– year: 1998
  ident: CR19
  publication-title: Statistical Learning Theory
– volume: 2
  start-page: 121
  issue: 2
  year: 1998
  ident: 2229_CR1
  publication-title: Data Min Knowl Discov
  doi: 10.1023/A:1009715923555
– volume: 71
  start-page: 3020
  issue: 13–15
  year: 2008
  ident: 2229_CR20
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2007.12.032
– volume: 13
  start-page: 1322
  issue: 6
  year: 2002
  ident: 2229_CR6
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.804227
– volume: 66
  start-page: 247
  issue: 3
  year: 2011
  ident: 2229_CR11
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2010.11.001
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 2229_CR18
  doi: 10.1007/978-1-4757-2440-0
– volume: 73
  start-page: 1686
  issue: 10–12
  year: 2010
  ident: 2229_CR9
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2009.12.028
– volume: 21
  start-page: 1548
  issue: 10
  year: 2008
  ident: 2229_CR24
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2008.09.001
– volume: 27
  start-page: 1039
  issue: 6
  year: 2012
  ident: 2229_CR26
  publication-title: Optim Methods Softw
  doi: 10.1080/10556788.2011.557725
– volume: 15
  start-page: 915
  issue: 4
  year: 2003
  ident: 2229_CR23
  publication-title: Neural Comput
  doi: 10.1162/08997660360581958
– volume: 37
  start-page: 5126
  issue: 7
  year: 2010
  ident: 2229_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.12.082
– volume: 97
  start-page: 63
  year: 2012
  ident: 2229_CR3
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.05.004
– volume: 7
  start-page: 246
  issue: 1
  year: 1996
  ident: 2229_CR10
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.478411
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 2229_CR7
  publication-title: Mach Learn
– volume-title: Statistical Learning Theory
  year: 1998
  ident: 2229_CR19
– volume: 11
  start-page: 64
  issue: 1
  year: 2011
  ident: 2229_CR5
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.10.017
– volume: 24
  start-page: 109
  issue: 1
  year: 2011
  ident: 2229_CR14
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2010.09.011
– volume: 48
  start-page: 85
  issue: 1
  year: 2002
  ident: 2229_CR16
  publication-title: Neurocomputing
  doi: 10.1016/S0925-2312(01)00644-0
– volume: 14
  start-page: 199
  issue: 3
  year: 2004
  ident: 2229_CR15
  publication-title: Stat Comput
  doi: 10.1023/B:STCO.0000035301.49549.88
– volume: 14
  start-page: 1241
  issue: 11
  year: 2010
  ident: 2229_CR21
  publication-title: Soft Comput
  doi: 10.1007/s00500-009-0535-9
– volume: 17
  start-page: 113
  issue: 1
  year: 2004
  ident: 2229_CR4
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00169-2
– volume: 19
  start-page: 1155
  issue: 5
  year: 2007
  ident: 2229_CR2
  publication-title: Neural Comput
  doi: 10.1162/neco.2007.19.5.1155
– start-page: 294
  volume-title: Least squares support vector machines
  year: 2002
  ident: 2229_CR17
  doi: 10.1142/5089
– volume: 140
  start-page: 41
  year: 2014
  ident: 2229_CR22
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.03.037
– volume: 98
  start-page: 130
  issue: 2
  year: 2009
  ident: 2229_CR8
  publication-title: Chemometr Intell Lab Syst
  doi: 10.1016/j.chemolab.2009.05.008
– volume-title: Robust regression and outlier detection
  year: 2003
  ident: 2229_CR12
– volume: 12
  start-page: 29
  issue: 1
  year: 2006
  ident: 2229_CR13
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-005-0024-4
SSID ssj0021753
Score 2.2682233
Snippet Support vector machine for regression (SVR) is an efficient tool for solving function estimation problem. However, it is sensitive to outliers due to its...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5235
SubjectTerms Algorithms
Artificial Intelligence
Benchmarks
Classification
Computational Intelligence
Contamination
Control
Convex analysis
Data mining
Datasets
Engineering
Foundations
Mathematical Logic and Foundations
Mechatronics
Normal distribution
Optimization algorithms
Optimization techniques
Outliers (statistics)
Robotics
Robustness (mathematics)
Statistical analysis
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL158i_XFHDwpwWaTfZ1ExFoEPVnwtuaphXZb262_38k226Kg590dQmaS78tk9htCLtJEW2ZZQjmyASosyymyEEedSXKlMIZ03abz6Tnp9cXja_waEm6zUFbZ7In1Rm3G2ufIr6OcZV6fKstuJp_Ud43yt6uhhcY62WCIND7Os-7D8sAVVCiREiCLROhtbjU7tYho7P-pxlH6jtZU_MSlFdn8dT9aw053h2wFvgi3CwfvkjVb7pHtphcDhKW5T95uYTpW81kFcviO464-RjB2MJtPPMGGrzo5D1P7vqh7LcEnYEFCNR2MEBChN1dobohDAw913l0wKAHpIUy8IMXwgPS79y93PRq6J1DNWVJRG0meSZcaJvPY5doo18ml0riAU42sLbcxF9wtOJvJDUslM1y5RDAtog7nh6RVjkt7RCBSAlE9NnickkJJJ1NmnFOOR7jTaxe1SaeZu0IHaXHf4WJYLEWR6-kufDmZn-5CtMnl8pPJQlfjv5dPG4cUYYnNilVAtMlV46TV4z-NHf9v7IRsRh656zKyU9KqpnN7hryjUud1cH0D22DTdA
  priority: 102
  providerName: ProQuest
Title A robust algorithm of support vector regression with a trimmed Huber loss function in the primal
URI https://link.springer.com/article/10.1007/s00500-016-2229-4
https://www.proquest.com/docview/2918043088
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB6VcGkP5dWqaQH50BPIKF57Hz6mVUIEKqoqIsFpa3ttiBo20Wa3h_76jvcRCqJInFbata21Z-z57Bl_A_A5joxllkWUIxqgwjJJEYU46rJIao06ZOo0nd8uoslUnF2FV-097lUX7d65JOuVen3ZzVOV-CCqiPoc1FRswGbIEpn0YHN4en0-Wu-zWvJJRAIIHtHids7Mpxp5aI7uMeYjt2htbcZbcNn9ZxNk8uukKvWJ-fOIwvGFHdmGty36JMNGXXbglc13YavL7EDaib4Lb_6hKdyDn0NSLHS1Koma3yyKWXl7RxaOrKqlB-_kd33wTwp708TU5sQf7hJFymJ2h8aWTCqNjc-x_8SbUa8KZJYThJ5k6cku5u9gOh5dfp3QNjMDNZxFJbWB4olyccaUDJ00mXYDqbTBxSE2iAilDbngrsGDmcxYrFjGtYsEMyIYcP4eevkitx-ABFogYggz3KopoZVTMcuc044HaEWMC_ow6ASUmpa23GfPmKdrwuV6PFMfqubHMxV9OFpXWTacHc8V3u-knrbTd5UGkiWeDC1J-nDcCfH-838b-_ii0p_gdeBBQh2xtg-9sqjsAUKcUh_CRjI-PWwVG59fRhfff-DbaTD8C_se9Js
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QEuUF4iUGAOcAFZZNdrOz4gVKBVStsIoVbqzd1nWyl1QuIU8af4jcz4kQgkeuvZ9sqa_Xbm253Z-QBeZ6n1wos0iokNRMqLPCIWEqLg0twYwpCtZTqPxunoRH09TU434Hd3F4bLKjufWDtqN7V8Rv5e5mLI_amGw4-zHxGrRnF2tZPQaGBx4H_9pC3b4sP-F5rfN1Lu7R5_HkWtqkBkY5FWkZc6HuqQOaHzJOTWmTDItbEE7MwSm8l9Eqs4NFzG5U5kWrjYhFQJq-SAD0DJ5W8qvtHag81Pu-Nv31dbvLbvJZEQ4q0U7Ls86qBuW5rwLW6yC2toR-rvSLimt_9kZOtAt7cF91qGijsNpB7Ahi8fwv1O_QFbZ_AIznZwPjXLRYV6ck6Wqi6ucBpwsZwxpcfrOh2Ac3_eVNqWyEe-qLGaX15RCMbR0tBwE_o15ODKAMHLEomQ4oxbYEwew8mtWPYJ9Mpp6Z8CSqOIRySONnBaGR10JlwIJsSSYosNsg-DznaFbZuZs6bGpFi1Ya7NXXABG5u7UH14u_pk1nTyuOnl7W5CinZRL4o1BPvwrpuk9eP_Dvbs5sFewZ3R8dFhcbg_PngOdyXzhrqIbRt61XzpXxDrqczLFmoIZ7eN7j9deBF4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BKlVwaEsBkT5gDpxAVuO1s5s9Rm2jAG3FgUi9LX62kdJNtNnw-zveR1IqitTzei1rZuzvsz3-BuBzEhvHHY-ZIDbApOMpIxbimbdxqjXFkKnKdF5exeOJ_H7dv27qnC7bbPf2SrJ-0xBUmvLyZGH9yfrhW5AtCQlVMQv1qJl8CVu0GvMQ6JNouN5xNTKUxAmIRhL2ttea_-rib2DasM1HF6QV7oz2YKchjDisPfwGXrh8H3bbYgzYzM19eP1AWfAt_B5iMderZYlqdjMvpuXtHc49LleLwLfxT3VWj4W7qdNgcwznsaiwLKZ3hI84XmnqfEYDxYB8wXs4zZHYIi6CPsXsHUxG579Ox6wppsCM4HHJXKTEQPnEcpX2fWqs9r1UaUPzOTFE4lLXF1L4msLZ1PJEcSu0jyU3MuoJ8R46-Tx3HwAjLQnk-5Z2V0pq5VXCrffai4gWfuOjLvRaS2amURoPBS9m2VojuTJ-FrLLgvEz2YUv618WtczG_xofte7Jmhm3zKKUD4J-2WDQha-tyzafn-zs4FmtP8H2z7NRdvHt6schvIoCxFf5ZkfQKYuVOyaCUuqPVRDeAxUA25U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+algorithm+of+support+vector+regression+with+a+trimmed+Huber+loss+function+in+the+primal&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Chen%2C+Chuanfa&rft.au=Yan%2C+Changqing&rft.au=Zhao%2C+Na&rft.au=Guo%2C+Bin&rft.date=2017-09-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=21&rft.issue=18&rft.spage=5235&rft.epage=5243&rft_id=info:doi/10.1007%2Fs00500-016-2229-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_016_2229_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon