A robust algorithm of support vector regression with a trimmed Huber loss function in the primal
Support vector machine for regression (SVR) is an efficient tool for solving function estimation problem. However, it is sensitive to outliers due to its unbounded loss function. In order to reduce the effect of outliers, we propose a robust SVR with a trimmed Huber loss function (SVRT) in this pape...
Saved in:
Published in | Soft computing (Berlin, Germany) Vol. 21; no. 18; pp. 5235 - 5243 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1432-7643 1433-7479 |
DOI | 10.1007/s00500-016-2229-4 |
Cover
Loading…
Abstract | Support vector machine for regression (SVR) is an efficient tool for solving function estimation problem. However, it is sensitive to outliers due to its unbounded loss function. In order to reduce the effect of outliers, we propose a robust SVR with a trimmed Huber loss function (SVRT) in this paper. Synthetic and benchmark datasets were, respectively, employed to comparatively assess the performance of SVRT, and its results were compared with those of SVR, least squares SVR (LS-SVR) and a weighted LS-SVR. The numerical test shows that when training samples are subject to errors with a normal distribution, SVRT is slightly less accurate than SVR and LS-SVR, yet more accurate than the weighted LS-SVR. However, when training samples are contaminated by outliers, SVRT has a better performance than the other methods. Furthermore, SVRT is faster than the weighted LS-SVR. Simulating eight benchmark datasets shows that SVRT is averagely more accurate than the other methods when sample points are contaminated by outliers. In conclusion, SVRT can be considered as an alternative robust method for simulating contaminated sample points. |
---|---|
AbstractList | Support vector machine for regression (SVR) is an efficient tool for solving function estimation problem. However, it is sensitive to outliers due to its unbounded loss function. In order to reduce the effect of outliers, we propose a robust SVR with a trimmed Huber loss function (SVRT) in this paper. Synthetic and benchmark datasets were, respectively, employed to comparatively assess the performance of SVRT, and its results were compared with those of SVR, least squares SVR (LS-SVR) and a weighted LS-SVR. The numerical test shows that when training samples are subject to errors with a normal distribution, SVRT is slightly less accurate than SVR and LS-SVR, yet more accurate than the weighted LS-SVR. However, when training samples are contaminated by outliers, SVRT has a better performance than the other methods. Furthermore, SVRT is faster than the weighted LS-SVR. Simulating eight benchmark datasets shows that SVRT is averagely more accurate than the other methods when sample points are contaminated by outliers. In conclusion, SVRT can be considered as an alternative robust method for simulating contaminated sample points. |
Author | Guo, Bin Chen, Chuanfa Yan, Changqing Zhao, Na Liu, Guolin |
Author_xml | – sequence: 1 givenname: Chuanfa surname: Chen fullname: Chen, Chuanfa email: chencf@lreis.ac.cn organization: State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, College of Geomatics, Shandong University of Science and Technology – sequence: 2 givenname: Changqing surname: Yan fullname: Yan, Changqing organization: Department of Information Engineering, Shandong University of Science and Technology – sequence: 3 givenname: Na surname: Zhao fullname: Zhao, Na organization: State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences – sequence: 4 givenname: Bin surname: Guo fullname: Guo, Bin organization: College of Geomatics, Shandong University of Science and Technology – sequence: 5 givenname: Guolin surname: Liu fullname: Liu, Guolin organization: College of Geomatics, Shandong University of Science and Technology |
BookMark | eNp9kE9LwzAYh4NMcJt-AG8Bz9X8a9Mcx1AnCF70HNM02Tq6piap4rc3XQVB0FNyeJ73_b2_BZh1rjMAXGJ0jRHiNwGhHKEM4SIjhIiMnYA5ZpRmnHExO_5JxgtGz8AihD1CBPOczsHrCnpXDSFC1W6db-LuAJ2FYeh75yN8Nzo6D73ZehNC4zr4kRCoYPTN4WBquBkq42HrQoB26HQckaaDcWdgnxDVnoNTq9pgLr7fJXi5u31eb7LHp_uH9eox0xQXMTNE0VJZXmMlcit0XVkkVKUJybkWlAiTU0ZtupKhvBY15grXtLIFw5oRROkSXE1ze-_eBhOi3LvBd2mlJAKXiFFUlonCE6V9iuyNlceU_lNiJMci5VSkTEXKsUjJksN_ObqJarw0etW0_5pkMkPa0m2N_8n0t_QF_H6Jtg |
CitedBy_id | crossref_primary_10_1109_TNNLS_2022_3202989 crossref_primary_10_1016_j_apenergy_2022_119616 crossref_primary_10_1016_j_eswa_2024_124332 crossref_primary_10_1007_s00521_021_06518_1 crossref_primary_10_1049_gtd2_13276 crossref_primary_10_1016_j_apm_2020_01_053 crossref_primary_10_1007_s11063_018_9875_8 crossref_primary_10_1016_j_ejor_2024_04_028 crossref_primary_10_1016_j_ins_2023_119852 crossref_primary_10_3233_JIFS_191429 crossref_primary_10_1007_s11063_020_10380_y crossref_primary_10_1016_j_asoc_2020_106708 crossref_primary_10_1088_1361_6501_acb003 crossref_primary_10_1109_JBHI_2022_3147524 crossref_primary_10_1016_j_compeleceng_2024_109925 crossref_primary_10_1007_s11063_023_11198_0 crossref_primary_10_1002_for_3118 crossref_primary_10_1016_j_apm_2020_05_012 crossref_primary_10_1007_s00521_019_04625_8 crossref_primary_10_1016_j_measurement_2020_107962 crossref_primary_10_1016_j_chaos_2021_110738 crossref_primary_10_1155_2020_8844464 crossref_primary_10_1016_j_procs_2023_08_049 |
Cites_doi | 10.1016/j.neunet.2010.09.011 10.1023/B:STCO.0000035301.49549.88 10.1016/j.asoc.2009.10.017 10.1016/j.chemolab.2009.05.008 10.1016/S0925-2312(01)00644-0 10.1109/72.478411 10.1016/j.neucom.2014.03.037 10.1016/j.neucom.2007.12.032 10.1016/j.isprsjprs.2010.11.001 10.1162/neco.2007.19.5.1155 10.1162/08997660360581958 10.1142/5089 10.1080/10556788.2011.557725 10.1007/978-1-4757-2440-0 10.1016/j.neunet.2008.09.001 10.1023/A:1009715923555 10.1109/TNN.2002.804227 10.1007/s00500-009-0535-9 10.1016/j.eswa.2009.12.082 10.1016/S0893-6080(03)00169-2 10.1016/j.neucom.2012.05.004 10.1007/s10618-005-0024-4 10.1016/j.neucom.2009.12.028 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 Springer-Verlag Berlin Heidelberg 2016. |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: Springer-Verlag Berlin Heidelberg 2016. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s00500-016-2229-4 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1433-7479 |
EndPage | 5243 |
ExternalDocumentID | 10_1007_s00500_016_2229_4 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 41101433; 41371367 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Qingdao Science and Technology Program of Basic Research Project grantid: 13-1-4-239-jch |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 203 29~ 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV LAS LLZTM M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z5O Z7R Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c316t-e2a38af7d1a95f9cdbf09abc2257c9329e5343f005405d9d17a1d3bf641c42033 |
IEDL.DBID | AGYKE |
ISSN | 1432-7643 |
IngestDate | Sun Jul 13 04:04:46 EDT 2025 Fri Jul 04 01:04:03 EDT 2025 Thu Apr 24 23:08:31 EDT 2025 Fri Feb 21 02:39:27 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Keywords | Outliers Function estimation Support vector regression Robust |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-e2a38af7d1a95f9cdbf09abc2257c9329e5343f005405d9d17a1d3bf641c42033 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2918043088 |
PQPubID | 2043697 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2918043088 crossref_primary_10_1007_s00500_016_2229_4 crossref_citationtrail_10_1007_s00500_016_2229_4 springer_journals_10_1007_s00500_016_2229_4 |
PublicationCentury | 2000 |
PublicationDate | 20170900 2017-9-00 20170901 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 9 year: 2017 text: 20170900 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationSubtitle | A Fusion of Foundations, Methodologies and Applications |
PublicationTitle | Soft computing (Berlin, Germany) |
PublicationTitleAbbrev | Soft Comput |
PublicationYear | 2017 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Chen, Yang, Liang, Ye (CR3) 2012; 97 Zhong (CR26) 2012; 27 Cui, Yan (CR8) 2009; 98 Chuang, Lee (CR5) 2011; 11 Rousseeuw, Leroy (CR12) 2003 Yuille, Rangarajan (CR23) 2003; 15 Smola, Schölkopf (CR15) 2004; 14 Cortes, Vapnik (CR7) 1995; 20 Mountrakis, Im, Ogole (CR11) 2011; 66 Shin, Jin Kim, Kim (CR14) 2011; 24 Yang, Tan, He (CR22) 2014; 140 Burges (CR1) 1998; 2 Zhao, Sun (CR24) 2008; 21 Chuang, Su, Jeng, Hsiao (CR6) 2002; 13 Suykens, De Brabanter, Lukas, Vandewalle (CR16) 2002; 48 Wang, Jia, Li (CR20) 2008; 71 Liano (CR10) 1996; 7 Vapnik (CR18) 1995 Zhao, Sun (CR25) 2010; 37 Chapelle (CR2) 2007; 19 Vapnik, Vapnik (CR19) 1998 Suykens, Gestel, Brabanter, Moor, Vandewalle (CR17) 2002 Jeng, Chuang, Tao (CR9) 2010; 73 Rousseeuw, Van Driessen (CR13) 2006; 12 Cherkassky, Ma (CR4) 2004; 17 Wen, Hao, Yang (CR21) 2010; 14 J Shin (2229_CR14) 2011; 24 L Wang (2229_CR20) 2008; 71 K Liano (2229_CR10) 1996; 7 Y Zhao (2229_CR24) 2008; 21 PJ Rousseeuw (2229_CR13) 2006; 12 V Vapnik (2229_CR19) 1998 C Cortes (2229_CR7) 1995; 20 C-C Chuang (2229_CR5) 2011; 11 X Yang (2229_CR22) 2014; 140 Y Zhao (2229_CR25) 2010; 37 JAK Suykens (2229_CR16) 2002; 48 V Cherkassky (2229_CR4) 2004; 17 W Wen (2229_CR21) 2010; 14 X Chen (2229_CR3) 2012; 97 JAK Suykens (2229_CR17) 2002 CC Burges (2229_CR1) 1998; 2 C-C Chuang (2229_CR6) 2002; 13 A Smola (2229_CR15) 2004; 14 P Zhong (2229_CR26) 2012; 27 J-T Jeng (2229_CR9) 2010; 73 G Mountrakis (2229_CR11) 2011; 66 O Chapelle (2229_CR2) 2007; 19 W Cui (2229_CR8) 2009; 98 P Rousseeuw (2229_CR12) 2003 AL Yuille (2229_CR23) 2003; 15 V Vapnik (2229_CR18) 1995 |
References_xml | – volume: 24 start-page: 109 issue: 1 year: 2011 end-page: 120 ident: CR14 article-title: Adaptive support vector regression for UAV flight control publication-title: Neural Netw doi: 10.1016/j.neunet.2010.09.011 – volume: 14 start-page: 199 issue: 3 year: 2004 end-page: 222 ident: CR15 article-title: A tutorial on support vector regression publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 11 start-page: 64 issue: 1 year: 2011 end-page: 72 ident: CR5 article-title: Hybrid robust support vector machines for regression with outliers publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.10.017 – volume: 98 start-page: 130 issue: 2 year: 2009 end-page: 135 ident: CR8 article-title: Adaptive weighted least square support vector machine regression integrated with outlier detection and its application in QSAR publication-title: Chemometr Intell Lab Syst doi: 10.1016/j.chemolab.2009.05.008 – volume: 48 start-page: 85 issue: 1 year: 2002 end-page: 105 ident: CR16 article-title: Weighted least squares support vector machines: robustness and sparse approximation publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00644-0 – volume: 7 start-page: 246 issue: 1 year: 1996 end-page: 250 ident: CR10 article-title: Robust error measure for supervised neural network learning with outliers publication-title: IEEE Trans Neural Netw doi: 10.1109/72.478411 – volume: 140 start-page: 41 year: 2014 end-page: 52 ident: CR22 article-title: A robust least squares support vector machine for regression and classification with noise publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.037 – volume: 71 start-page: 3020 issue: 13–15 year: 2008 end-page: 3025 ident: CR20 article-title: Training robust support vector machine with smooth Ramp loss in the primal space publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.12.032 – volume: 66 start-page: 247 issue: 3 year: 2011 end-page: 259 ident: CR11 article-title: Support vector machines in remote sensing: a review publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2010.11.001 – volume: 20 start-page: 273 issue: 3 year: 1995 end-page: 297 ident: CR7 article-title: Support-vector networks publication-title: Mach Learn – volume: 19 start-page: 1155 issue: 5 year: 2007 end-page: 1178 ident: CR2 article-title: Training a support vector machine in the primal publication-title: Neural Comput doi: 10.1162/neco.2007.19.5.1155 – volume: 15 start-page: 915 issue: 4 year: 2003 end-page: 936 ident: CR23 article-title: The concave-convex procedure publication-title: Neural Comput doi: 10.1162/08997660360581958 – year: 2003 ident: CR12 publication-title: Robust regression and outlier detection – start-page: 294 year: 2002 ident: CR17 publication-title: Least squares support vector machines doi: 10.1142/5089 – volume: 27 start-page: 1039 issue: 6 year: 2012 end-page: 1058 ident: CR26 article-title: Training robust support vector regression with smooth non-convex loss function publication-title: Optim Methods Softw doi: 10.1080/10556788.2011.557725 – year: 1995 ident: CR18 publication-title: The nature of statistical learning theory doi: 10.1007/978-1-4757-2440-0 – volume: 21 start-page: 1548 issue: 10 year: 2008 end-page: 1555 ident: CR24 article-title: Robust support vector regression in the primal publication-title: Neural Netw doi: 10.1016/j.neunet.2008.09.001 – volume: 2 start-page: 121 issue: 2 year: 1998 end-page: 167 ident: CR1 article-title: A tutorial on support vector machines for pattern recognition publication-title: Data Min Knowl Discov doi: 10.1023/A:1009715923555 – volume: 13 start-page: 1322 issue: 6 year: 2002 end-page: 1330 ident: CR6 article-title: Robust support vector regression networks for function approximation with outliers publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2002.804227 – volume: 14 start-page: 1241 issue: 11 year: 2010 end-page: 1251 ident: CR21 article-title: Robust least squares support vector machine based on recursive outlier elimination publication-title: Soft Comput doi: 10.1007/s00500-009-0535-9 – volume: 37 start-page: 5126 issue: 7 year: 2010 end-page: 5133 ident: CR25 article-title: Robust truncated support vector regression publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.12.082 – volume: 17 start-page: 113 issue: 1 year: 2004 end-page: 126 ident: CR4 article-title: Practical selection of SVM parameters and noise estimation for SVM regression publication-title: Neural Netw doi: 10.1016/S0893-6080(03)00169-2 – volume: 97 start-page: 63 year: 2012 end-page: 73 ident: CR3 article-title: Recursive robust least squares support vector regression based on maximum correntropy criterion publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.05.004 – volume: 12 start-page: 29 issue: 1 year: 2006 end-page: 45 ident: CR13 article-title: Computing LTS regression for large data sets publication-title: Data Min Knowl Discov doi: 10.1007/s10618-005-0024-4 – volume: 73 start-page: 1686 issue: 10–12 year: 2010 end-page: 1693 ident: CR9 article-title: Hybrid SVMR-GPR for modeling of chaotic time series systems with noise and outliers publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.12.028 – year: 1998 ident: CR19 publication-title: Statistical Learning Theory – volume: 2 start-page: 121 issue: 2 year: 1998 ident: 2229_CR1 publication-title: Data Min Knowl Discov doi: 10.1023/A:1009715923555 – volume: 71 start-page: 3020 issue: 13–15 year: 2008 ident: 2229_CR20 publication-title: Neurocomputing doi: 10.1016/j.neucom.2007.12.032 – volume: 13 start-page: 1322 issue: 6 year: 2002 ident: 2229_CR6 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2002.804227 – volume: 66 start-page: 247 issue: 3 year: 2011 ident: 2229_CR11 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2010.11.001 – volume-title: The nature of statistical learning theory year: 1995 ident: 2229_CR18 doi: 10.1007/978-1-4757-2440-0 – volume: 73 start-page: 1686 issue: 10–12 year: 2010 ident: 2229_CR9 publication-title: Neurocomputing doi: 10.1016/j.neucom.2009.12.028 – volume: 21 start-page: 1548 issue: 10 year: 2008 ident: 2229_CR24 publication-title: Neural Netw doi: 10.1016/j.neunet.2008.09.001 – volume: 27 start-page: 1039 issue: 6 year: 2012 ident: 2229_CR26 publication-title: Optim Methods Softw doi: 10.1080/10556788.2011.557725 – volume: 15 start-page: 915 issue: 4 year: 2003 ident: 2229_CR23 publication-title: Neural Comput doi: 10.1162/08997660360581958 – volume: 37 start-page: 5126 issue: 7 year: 2010 ident: 2229_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.12.082 – volume: 97 start-page: 63 year: 2012 ident: 2229_CR3 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.05.004 – volume: 7 start-page: 246 issue: 1 year: 1996 ident: 2229_CR10 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.478411 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 2229_CR7 publication-title: Mach Learn – volume-title: Statistical Learning Theory year: 1998 ident: 2229_CR19 – volume: 11 start-page: 64 issue: 1 year: 2011 ident: 2229_CR5 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.10.017 – volume: 24 start-page: 109 issue: 1 year: 2011 ident: 2229_CR14 publication-title: Neural Netw doi: 10.1016/j.neunet.2010.09.011 – volume: 48 start-page: 85 issue: 1 year: 2002 ident: 2229_CR16 publication-title: Neurocomputing doi: 10.1016/S0925-2312(01)00644-0 – volume: 14 start-page: 199 issue: 3 year: 2004 ident: 2229_CR15 publication-title: Stat Comput doi: 10.1023/B:STCO.0000035301.49549.88 – volume: 14 start-page: 1241 issue: 11 year: 2010 ident: 2229_CR21 publication-title: Soft Comput doi: 10.1007/s00500-009-0535-9 – volume: 17 start-page: 113 issue: 1 year: 2004 ident: 2229_CR4 publication-title: Neural Netw doi: 10.1016/S0893-6080(03)00169-2 – volume: 19 start-page: 1155 issue: 5 year: 2007 ident: 2229_CR2 publication-title: Neural Comput doi: 10.1162/neco.2007.19.5.1155 – start-page: 294 volume-title: Least squares support vector machines year: 2002 ident: 2229_CR17 doi: 10.1142/5089 – volume: 140 start-page: 41 year: 2014 ident: 2229_CR22 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.03.037 – volume: 98 start-page: 130 issue: 2 year: 2009 ident: 2229_CR8 publication-title: Chemometr Intell Lab Syst doi: 10.1016/j.chemolab.2009.05.008 – volume-title: Robust regression and outlier detection year: 2003 ident: 2229_CR12 – volume: 12 start-page: 29 issue: 1 year: 2006 ident: 2229_CR13 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-005-0024-4 |
SSID | ssj0021753 |
Score | 2.2682233 |
Snippet | Support vector machine for regression (SVR) is an efficient tool for solving function estimation problem. However, it is sensitive to outliers due to its... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 5235 |
SubjectTerms | Algorithms Artificial Intelligence Benchmarks Classification Computational Intelligence Contamination Control Convex analysis Data mining Datasets Engineering Foundations Mathematical Logic and Foundations Mechatronics Normal distribution Optimization algorithms Optimization techniques Outliers (statistics) Robotics Robustness (mathematics) Statistical analysis Support vector machines |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA5aL158i_XFHDwpwWaTfZ1ExFoEPVnwtuaphXZb262_38k226Kg590dQmaS78tk9htCLtJEW2ZZQjmyASosyymyEEedSXKlMIZ03abz6Tnp9cXja_waEm6zUFbZ7In1Rm3G2ufIr6OcZV6fKstuJp_Ud43yt6uhhcY62WCIND7Os-7D8sAVVCiREiCLROhtbjU7tYho7P-pxlH6jtZU_MSlFdn8dT9aw053h2wFvgi3CwfvkjVb7pHtphcDhKW5T95uYTpW81kFcviO464-RjB2MJtPPMGGrzo5D1P7vqh7LcEnYEFCNR2MEBChN1dobohDAw913l0wKAHpIUy8IMXwgPS79y93PRq6J1DNWVJRG0meSZcaJvPY5doo18ml0riAU42sLbcxF9wtOJvJDUslM1y5RDAtog7nh6RVjkt7RCBSAlE9NnickkJJJ1NmnFOOR7jTaxe1SaeZu0IHaXHf4WJYLEWR6-kufDmZn-5CtMnl8pPJQlfjv5dPG4cUYYnNilVAtMlV46TV4z-NHf9v7IRsRh656zKyU9KqpnN7hryjUud1cH0D22DTdA priority: 102 providerName: ProQuest |
Title | A robust algorithm of support vector regression with a trimmed Huber loss function in the primal |
URI | https://link.springer.com/article/10.1007/s00500-016-2229-4 https://www.proquest.com/docview/2918043088 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LTxsxEB6VcGkP5dWqaQH50BPIKF57Hz6mVUIEKqoqIsFpa3ttiBo20Wa3h_76jvcRCqJInFbata21Z-z57Bl_A_A5joxllkWUIxqgwjJJEYU46rJIao06ZOo0nd8uoslUnF2FV-097lUX7d65JOuVen3ZzVOV-CCqiPoc1FRswGbIEpn0YHN4en0-Wu-zWvJJRAIIHtHids7Mpxp5aI7uMeYjt2htbcZbcNn9ZxNk8uukKvWJ-fOIwvGFHdmGty36JMNGXXbglc13YavL7EDaib4Lb_6hKdyDn0NSLHS1Koma3yyKWXl7RxaOrKqlB-_kd33wTwp708TU5sQf7hJFymJ2h8aWTCqNjc-x_8SbUa8KZJYThJ5k6cku5u9gOh5dfp3QNjMDNZxFJbWB4olyccaUDJ00mXYDqbTBxSE2iAilDbngrsGDmcxYrFjGtYsEMyIYcP4eevkitx-ABFogYggz3KopoZVTMcuc044HaEWMC_ow6ASUmpa23GfPmKdrwuV6PFMfqubHMxV9OFpXWTacHc8V3u-knrbTd5UGkiWeDC1J-nDcCfH-838b-_ii0p_gdeBBQh2xtg-9sqjsAUKcUh_CRjI-PWwVG59fRhfff-DbaTD8C_se9Js |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QEuUF4iUGAOcAFZZNdrOz4gVKBVStsIoVbqzd1nWyl1QuIU8af4jcz4kQgkeuvZ9sqa_Xbm253Z-QBeZ6n1wos0iokNRMqLPCIWEqLg0twYwpCtZTqPxunoRH09TU434Hd3F4bLKjufWDtqN7V8Rv5e5mLI_amGw4-zHxGrRnF2tZPQaGBx4H_9pC3b4sP-F5rfN1Lu7R5_HkWtqkBkY5FWkZc6HuqQOaHzJOTWmTDItbEE7MwSm8l9Eqs4NFzG5U5kWrjYhFQJq-SAD0DJ5W8qvtHag81Pu-Nv31dbvLbvJZEQ4q0U7Ls86qBuW5rwLW6yC2toR-rvSLimt_9kZOtAt7cF91qGijsNpB7Ahi8fwv1O_QFbZ_AIznZwPjXLRYV6ck6Wqi6ucBpwsZwxpcfrOh2Ac3_eVNqWyEe-qLGaX15RCMbR0tBwE_o15ODKAMHLEomQ4oxbYEwew8mtWPYJ9Mpp6Z8CSqOIRySONnBaGR10JlwIJsSSYosNsg-DznaFbZuZs6bGpFi1Ya7NXXABG5u7UH14u_pk1nTyuOnl7W5CinZRL4o1BPvwrpuk9eP_Dvbs5sFewZ3R8dFhcbg_PngOdyXzhrqIbRt61XzpXxDrqczLFmoIZ7eN7j9deBF4 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB5BKlVwaEsBkT5gDpxAVuO1s5s9Rm2jAG3FgUi9LX62kdJNtNnw-zveR1IqitTzei1rZuzvsz3-BuBzEhvHHY-ZIDbApOMpIxbimbdxqjXFkKnKdF5exeOJ_H7dv27qnC7bbPf2SrJ-0xBUmvLyZGH9yfrhW5AtCQlVMQv1qJl8CVu0GvMQ6JNouN5xNTKUxAmIRhL2ttea_-rib2DasM1HF6QV7oz2YKchjDisPfwGXrh8H3bbYgzYzM19eP1AWfAt_B5iMderZYlqdjMvpuXtHc49LleLwLfxT3VWj4W7qdNgcwznsaiwLKZ3hI84XmnqfEYDxYB8wXs4zZHYIi6CPsXsHUxG579Ox6wppsCM4HHJXKTEQPnEcpX2fWqs9r1UaUPzOTFE4lLXF1L4msLZ1PJEcSu0jyU3MuoJ8R46-Tx3HwAjLQnk-5Z2V0pq5VXCrffai4gWfuOjLvRaS2amURoPBS9m2VojuTJ-FrLLgvEz2YUv618WtczG_xofte7Jmhm3zKKUD4J-2WDQha-tyzafn-zs4FmtP8H2z7NRdvHt6schvIoCxFf5ZkfQKYuVOyaCUuqPVRDeAxUA25U |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+robust+algorithm+of+support+vector+regression+with+a+trimmed+Huber+loss+function+in+the+primal&rft.jtitle=Soft+computing+%28Berlin%2C+Germany%29&rft.au=Chen%2C+Chuanfa&rft.au=Yan%2C+Changqing&rft.au=Zhao%2C+Na&rft.au=Guo%2C+Bin&rft.date=2017-09-01&rft.issn=1432-7643&rft.eissn=1433-7479&rft.volume=21&rft.issue=18&rft.spage=5235&rft.epage=5243&rft_id=info:doi/10.1007%2Fs00500-016-2229-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00500_016_2229_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-7643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-7643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-7643&client=summon |