Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production
•We review the current pyrolysis technology for hydrogen and gas fuel production.•Advanced pyrolysis is promising for sustainable hydrogen and gas fuel production.•Microwave and solar pyrolysis are energy efficient among the advanced pyrolysis.•CO2 pyrolysis is attractive carbon-negative technique o...
Saved in:
Published in | Bioresource technology Vol. 320; no. Pt A; p. 124299 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | •We review the current pyrolysis technology for hydrogen and gas fuel production.•Advanced pyrolysis is promising for sustainable hydrogen and gas fuel production.•Microwave and solar pyrolysis are energy efficient among the advanced pyrolysis.•CO2 pyrolysis is attractive carbon-negative technique of producing CO-rich syngas.•More understanding of the reaction mechanism and process parameters is needed.
Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels. |
---|---|
AbstractList | Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels.Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels. Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels. •We review the current pyrolysis technology for hydrogen and gas fuel production.•Advanced pyrolysis is promising for sustainable hydrogen and gas fuel production.•Microwave and solar pyrolysis are energy efficient among the advanced pyrolysis.•CO2 pyrolysis is attractive carbon-negative technique of producing CO-rich syngas.•More understanding of the reaction mechanism and process parameters is needed. Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels. |
ArticleNumber | 124299 |
Author | Foong, Shin Ying Show, Pau-Loke Chan, Yi Herng Cheah, Wai Yan Kamaludin, Noor Haziqah Peng, Wanxi Sonne, Christian Lam, Su Shiung Tengku Ibrahim, Tengku Nilam Baizura |
Author_xml | – sequence: 1 givenname: Shin Ying surname: Foong fullname: Foong, Shin Ying organization: Henan Province Engineering Research Center For Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China – sequence: 2 givenname: Yi Herng surname: Chan fullname: Chan, Yi Herng organization: PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia – sequence: 3 givenname: Wai Yan surname: Cheah fullname: Cheah, Wai Yan organization: Department of Environmental Health, Faculty of Health Sciences, MAHSA University, 42610 Jenjarom, Selangor, Malaysia – sequence: 4 givenname: Noor Haziqah surname: Kamaludin fullname: Kamaludin, Noor Haziqah organization: Department of Environmental Health, Faculty of Health Sciences, MAHSA University, 42610 Jenjarom, Selangor, Malaysia – sequence: 5 givenname: Tengku Nilam Baizura surname: Tengku Ibrahim fullname: Tengku Ibrahim, Tengku Nilam Baizura organization: Department of Environmental Health, Faculty of Health Sciences, MAHSA University, 42610 Jenjarom, Selangor, Malaysia – sequence: 6 givenname: Christian surname: Sonne fullname: Sonne, Christian organization: Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark – sequence: 7 givenname: Wanxi surname: Peng fullname: Peng, Wanxi organization: Henan Province Engineering Research Center For Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China – sequence: 8 givenname: Pau-Loke surname: Show fullname: Show, Pau-Loke organization: Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia – sequence: 9 givenname: Su Shiung surname: Lam fullname: Lam, Su Shiung email: lam@umt.edu.my organization: Henan Province Engineering Research Center For Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33129091$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUctO4zAUtUagoTx-AXnJJh2_ktgSCxBiYKRKwwLWlmvfFJfULnZS1Pl6Eko3s-nqSveex9U5p-goxAAIXVIypYRWv5bTuY-pA_s6ZYQNSyaYUj_QhMqaF0zV1RGaEFWRQpZMnKDTnJeEEE5r9hOdcE6ZIopO0NtTiosEOWMf8IfJHeCNaWPy_0znY8B99mGBjduYYMHh9TbFdpt9xqN18O89ZNzEhF-3bhCCgE1weGEyxH449NDidYqut6PYOTpuTJvh4nueoZff9893j8Xs78Ofu9tZYTmtugKYKBvCGyqYsFZIyV1jQRrK5wrmyijbcCobRygBKJUDKUQFigHhXBjp-Bm62ukO1uODnV75bKFtTRjf0qwsqaoVI-owVJSVoLWo5QC9_Ib28xU4vU5-ZdJW77McANc7gE0x5wSNtr77SrFLxreaEj1Wp5d6X50eq9O76gZ69R9973CQeLMjwpDpxkPS2XoY6_IJbKdd9IckPgEaY7lQ |
CitedBy_id | crossref_primary_10_1016_j_matpr_2021_09_251 crossref_primary_10_2139_ssrn_4074339 crossref_primary_10_1016_j_jaap_2023_106340 crossref_primary_10_1016_j_enconman_2024_118530 crossref_primary_10_1016_j_energy_2023_126987 crossref_primary_10_1016_j_scitotenv_2022_160393 crossref_primary_10_3389_fceng_2024_1450151 crossref_primary_10_1007_s10934_023_01509_0 crossref_primary_10_1515_ehs_2022_0117 crossref_primary_10_1016_j_ijhydene_2022_08_012 crossref_primary_10_1016_j_jclepro_2023_135881 crossref_primary_10_1016_j_biortech_2022_128153 crossref_primary_10_1007_s12155_023_10598_3 crossref_primary_10_3389_fenrg_2021_753878 crossref_primary_10_5772_geet_01 crossref_primary_10_1007_s12649_023_02373_4 crossref_primary_10_1016_j_biortech_2021_125581 crossref_primary_10_1016_j_jclepro_2022_134292 crossref_primary_10_1016_j_biortech_2022_127588 crossref_primary_10_1007_s10311_020_01177_5 crossref_primary_10_1016_j_biortech_2023_129705 crossref_primary_10_3390_jcs8060220 crossref_primary_10_1007_s10668_024_04760_w crossref_primary_10_1016_j_enconman_2022_115951 crossref_primary_10_1016_j_chemosphere_2022_134181 crossref_primary_10_1016_j_energy_2024_132470 crossref_primary_10_1016_j_renene_2022_08_006 crossref_primary_10_3389_fenrg_2021_660399 crossref_primary_10_1016_j_cej_2023_141285 crossref_primary_10_1016_j_ijhydene_2022_08_268 crossref_primary_10_1557_s43581_024_00090_6 crossref_primary_10_1002_ceat_202300487 crossref_primary_10_1016_j_biteb_2022_101202 crossref_primary_10_1016_j_scitotenv_2021_148722 crossref_primary_10_1016_j_biortech_2022_126687 crossref_primary_10_1016_j_biortech_2022_126720 crossref_primary_10_1016_j_rser_2021_111991 crossref_primary_10_1016_j_enconman_2022_116218 crossref_primary_10_1016_j_apenergy_2024_123576 crossref_primary_10_1016_j_energy_2022_124863 crossref_primary_10_1016_j_energy_2022_125555 crossref_primary_10_1016_j_jece_2023_110009 crossref_primary_10_1016_j_seppur_2024_129336 crossref_primary_10_1016_j_jaap_2021_105227 crossref_primary_10_1016_j_jaap_2022_105746 crossref_primary_10_1016_j_ijhydene_2022_10_044 crossref_primary_10_1016_j_jclepro_2023_137123 crossref_primary_10_1007_s42768_023_00173_z crossref_primary_10_1016_j_ijhydene_2023_05_049 crossref_primary_10_1080_07388551_2023_2254930 crossref_primary_10_1016_j_bcab_2024_103226 crossref_primary_10_3390_en14227502 crossref_primary_10_1016_j_seta_2022_102211 crossref_primary_10_1016_j_enconman_2021_114535 crossref_primary_10_3390_nano12121960 crossref_primary_10_1016_j_ijhydene_2023_12_184 crossref_primary_10_1016_j_rser_2022_112915 crossref_primary_10_1016_j_fuel_2025_134480 crossref_primary_10_1016_j_rser_2023_113191 crossref_primary_10_1016_j_envpol_2021_116843 crossref_primary_10_1016_j_jenvman_2023_119018 crossref_primary_10_1016_j_ijhydene_2021_11_226 crossref_primary_10_1016_j_biortech_2021_126067 crossref_primary_10_3390_en18030650 crossref_primary_10_1016_j_scp_2023_100972 crossref_primary_10_1007_s12155_023_10697_1 crossref_primary_10_1016_j_fuel_2023_128636 crossref_primary_10_1111_gcbb_70001 crossref_primary_10_1016_j_chemosphere_2021_131384 crossref_primary_10_1016_j_envpol_2023_123074 crossref_primary_10_1016_j_jaap_2023_105962 crossref_primary_10_1016_j_fuproc_2023_107845 crossref_primary_10_1007_s13399_023_04521_1 crossref_primary_10_1093_ijlct_ctae026 crossref_primary_10_1007_s10811_023_03104_x crossref_primary_10_1016_j_biortech_2021_125024 crossref_primary_10_1016_j_biortech_2022_128478 crossref_primary_10_1016_j_seta_2022_102991 crossref_primary_10_1016_j_scitotenv_2022_155384 crossref_primary_10_1016_j_fuel_2021_121440 crossref_primary_10_1016_j_cej_2022_137215 crossref_primary_10_1007_s11356_023_28271_9 crossref_primary_10_1016_j_biortech_2021_125813 crossref_primary_10_1016_j_jece_2022_108025 crossref_primary_10_1016_j_apenergy_2023_121307 crossref_primary_10_1016_j_jaap_2022_105577 crossref_primary_10_1016_j_fuproc_2022_107435 crossref_primary_10_4028_p_q43662 crossref_primary_10_14710_ijred_2023_46068 crossref_primary_10_1016_j_enconman_2022_116250 crossref_primary_10_1016_j_scitotenv_2022_153996 crossref_primary_10_1002_asia_202100676 crossref_primary_10_1016_j_biortech_2021_126440 crossref_primary_10_1016_j_biortech_2023_128702 crossref_primary_10_1016_j_fuel_2023_129464 crossref_primary_10_1016_j_biortech_2022_128423 crossref_primary_10_1016_j_fuel_2022_126034 crossref_primary_10_1016_j_fuel_2022_127243 crossref_primary_10_1016_j_psep_2022_09_023 crossref_primary_10_1021_acsomega_2c01538 crossref_primary_10_1007_s11356_023_31186_0 crossref_primary_10_1016_j_est_2024_111563 crossref_primary_10_1007_s10973_023_12645_9 crossref_primary_10_1016_j_csite_2025_105747 crossref_primary_10_1016_j_psep_2022_08_016 crossref_primary_10_1016_j_enconman_2025_119511 crossref_primary_10_1016_j_envres_2023_115553 crossref_primary_10_1002_aenm_202300254 crossref_primary_10_1007_s10973_024_13776_3 crossref_primary_10_1016_j_jhazmat_2021_127215 crossref_primary_10_1016_j_seta_2021_101781 crossref_primary_10_1016_j_rser_2022_112832 crossref_primary_10_1016_j_jclepro_2025_145003 crossref_primary_10_1016_j_joei_2021_06_008 crossref_primary_10_1016_j_enconman_2022_115451 crossref_primary_10_1016_j_indcrop_2024_118212 crossref_primary_10_1016_j_psep_2023_11_071 |
Cites_doi | 10.1016/j.ijhydene.2018.04.024 10.1016/j.ijhydene.2016.03.082 10.1016/j.envint.2019.105037 10.1016/j.renene.2019.09.046 10.1016/j.fuel.2020.117878 10.1016/j.biortech.2020.122876 10.1021/acs.iecr.8b03319 10.1016/j.biortech.2018.11.083 10.1016/j.renene.2015.11.071 10.2478/pjct-2018-0032 10.1016/j.enconman.2018.03.096 10.1016/j.enconman.2016.10.046 10.1016/j.rser.2015.12.185 10.1016/j.ijhydene.2018.10.068 10.1039/C9RA09835F 10.1016/j.energy.2019.116529 10.5541/ijot.5000147483 10.1016/S0196-8904(02)00254-6 10.1016/j.econmod.2018.06.019 10.1016/j.jaap.2017.11.019 10.1016/j.rser.2019.109600 10.1016/j.energy.2018.08.002 10.1021/acssuschemeng.8b00129 10.1016/j.cej.2017.09.063 10.1021/ef060331i 10.1016/j.rser.2019.109266 10.1016/j.scitotenv.2017.12.108 10.1016/j.fuproc.2014.04.035 10.1016/j.biortech.2019.121356 10.1016/j.ijhydene.2017.04.169 10.1016/j.apenergy.2016.04.018 10.1016/B978-1-78242-223-5.00002-9 10.1016/j.rser.2020.109871 10.3390/su11133604 10.1007/s11164-018-3388-y 10.1016/j.energy.2018.04.100 10.1016/j.renene.2019.06.011 10.1021/acs.energyfuels.9b03719 10.1021/acsomega.9b01985 10.1016/j.cattod.2018.01.004 10.1016/j.biortech.2017.06.075 10.1016/j.biortech.2017.04.104 10.1016/j.psep.2016.06.022 10.1016/j.biortech.2020.123756 10.1016/j.biortech.2019.122557 10.1016/j.energy.2019.116016 10.1016/j.wasman.2019.05.022 10.1016/j.ijhydene.2017.05.227 10.1016/j.biortech.2017.11.012 10.1016/j.apcatb.2019.118425 10.1002/slct.202000476 10.1016/j.rser.2016.12.008 10.1016/j.biortech.2018.10.009 10.1016/j.fuel.2019.03.015 10.1016/j.biortech.2009.09.073 10.1016/j.apcata.2013.09.036 10.1016/j.ijhydene.2018.03.049 10.1016/j.jaap.2017.02.008 10.1016/j.wasman.2009.06.005 10.1016/B978-0-12-817807-2.00012-5 10.1021/acs.energyfuels.0c00898 10.1016/j.cej.2020.124401 10.1016/j.cej.2018.05.003 10.1016/j.apenergy.2016.12.099 10.1016/j.rser.2019.109359 10.1016/j.ijhydene.2011.06.052 10.1016/j.apcata.2010.11.013 10.1016/j.ijhydene.2019.10.141 10.1016/j.jhazmat.2017.08.021 10.1016/j.renene.2017.10.023 10.1016/j.fuel.2019.116703 10.3390/en12061007 10.1016/j.fuel.2015.05.040 10.1016/j.biortech.2013.06.102 10.1016/j.scitotenv.2018.12.097 10.1016/j.enconman.2015.10.039 10.1016/j.fuproc.2017.01.006 10.1002/jctb.5884 10.1016/j.renene.2019.11.107 10.1016/j.jechem.2016.03.004 10.1016/j.apcatb.2019.118423 10.1016/j.jaap.2011.04.004 10.1186/s40643-019-0281-5 10.1016/j.fuel.2020.118004 10.1016/j.enconman.2019.112140 10.1007/s12649-016-9784-x 10.1016/j.enconman.2018.07.046 10.1016/j.joei.2018.10.013 10.1016/j.ces.2015.10.021 10.1016/j.renene.2020.07.089 10.1016/j.biortech.2010.05.089 10.1016/j.biortech.2012.01.019 10.1016/j.jechem.2015.11.005 10.1016/j.energy.2019.05.181 10.1016/j.biortech.2015.04.002 10.1016/j.enconman.2017.12.096 10.1016/j.enconman.2018.06.073 10.15376/biores.15.2.2293-2309 10.1016/j.ijhydene.2017.02.026 10.1016/j.fuel.2011.07.027 10.1016/j.jaap.2007.09.011 10.1016/j.fuproc.2018.11.007 10.1016/j.apenergy.2019.113435 10.1016/j.apenergy.2019.113678 10.3390/catal9070615 10.1016/j.ijhydene.2018.06.169 10.1016/j.enconman.2016.02.058 10.1016/j.jclepro.2018.10.214 10.1016/S0921-3449(00)00088-4 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.biortech.2020.124299 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 33129091 10_1016_j_biortech_2020_124299 S096085242031573X |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AACTN AAEDT AAEDW AAHBH AAHCO AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXKI AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFJKZ AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CJTIS CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AATTM AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM 7X8 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c316t-e245f03f1424cc4883dfce8a13b9eb9a9cf318fd010ee59de8446e92e0334a8d3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Tue Aug 05 09:47:08 EDT 2025 Fri Jul 11 10:10:05 EDT 2025 Wed Feb 19 02:30:15 EST 2025 Tue Jul 01 03:18:49 EDT 2025 Thu Apr 24 22:57:28 EDT 2025 Sat Nov 09 16:01:07 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | Pt A |
Keywords | Pyrolysis Waste valorization Biogas Biofuel Syngas |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-e245f03f1424cc4883dfce8a13b9eb9a9cf318fd010ee59de8446e92e0334a8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
PMID | 33129091 |
PQID | 2456417478 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2551979209 proquest_miscellaneous_2456417478 pubmed_primary_33129091 crossref_citationtrail_10_1016_j_biortech_2020_124299 crossref_primary_10_1016_j_biortech_2020_124299 elsevier_sciencedirect_doi_10_1016_j_biortech_2020_124299 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2021 2021-01-00 2021-Jan 20210101 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: January 2021 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Li, Yan, Chen, Feng, Wang, Wang, Song, Ma (b0305) 2019; 657 Fu, Zhang, Luo, Yi, Hu, Zhang (b0140) 2019; 4 Zhao, Zhang, Song, Liu, Li, Ma (b0600) 2011; 92 Duman, Watanabe, Uddin, Yanik (b0120) 2014; 126 Muradov, Fidalgo, Gujar, Ali (b0385) 2010; 101 Lestinsky, Grycova, Pryszcz, Martaus, Matejova (b0300) 2017; 124 Kwon, Lee, Ok, Tsang, Park, Lee (b0265) 2018; 153 Kalamaras, Efstathiou (b0225) 2013 Kim, Oh, Tsang, Park, Lee, Kwon (b0240) 2020; 191 Zhou, Zhou, Dai, Guo, Wang, Li, Deng, Lei, Chen, Liu (b0605) 2020; 314 Guedes, Luna, Torres (b0160) 2018; 129 Adeniyi, Otoikhian, Ighalo (b0010) 2019; 17 Soria, Zeng, Asensio, Gauthier, Flamant, Mazza (b0520) 2017; 158 Su, Azwar, Ya, Sonne, Yek, Liew, Cheng, Show, Lam (b0530) 2020; 122610 Ge, Foong, Ma, Liew, Mahari, Xia, Yek, Peng, Nam, Lim (b0150) 2020; 127 Nam, Phang, Su, Liew, Ma, Rosli, Lam (b0390) 2018; 624 Tang, Chen, Chen, Yang, Chen (b0535) 2019; 274 Weldekidan, Strezov, Li, Kan, Town, Kumar, He, Flamant (b0570) 2020; 151 Ahmed, Hameed (b0015) 2020; 121762 Hu, Tang, Yao, Yang, Shao, Chen (b0185) 2020; 121102 Kong, Lam, Yek, Liew, Ma, Osman, Wong (b0255) 2019; 94 Lan, Qin, Li, Hu, Xu, He, Li (b0285) 2020; 15 Zhang, Lei, Yang, Qian, Villota (b0590) 2018; 6 Foong, Liew, Yang, Cheng, Yek, Mahari, Lee, Han, Vo, Van Le (b0135) 2020; 389 Liao, Chen, Cheng, Wang, Luo, Bu, Jiang, Liang, Shu, Song (b0325) 2019; 252 Rezaei, Shafaghat, Daud (b0435) 2014; 469 Shayan, Zare, Mirzaee (b0500) 2018; 159 Menéndez, Domínguez, Fernández, Pis (b0365) 2007; 21 Beneroso, Bermúdez, Arenillas, Menéndez (b0060) 2013; 144 Basile, Liguori, Iulianelli (b0055) 2015 Kim, Lee (b0245) 2020; 122449 Asimakopoulos, Gavala, Skiadas (b0035) 2018; 348 Cho, Cho, Song, Kwon (b0090) 2015; 189 Cao, Wang, Wang, Zhu, Jin, Li, Hu (b0070) 2020; 5 Kim, Lee, Yi, Tsang, Kwon (b0250) 2019; 272 Dong, Nzihou, Chi, Weiss-Hortala, Ni, Lyczko, Tang, Ducousso (b0110) 2017; 8 Abdullah, Hanapi, Azid, Umar, Juahir, Khatoon, Endut (b0005) 2017; 70 Duman, Yanik (b0125) 2017; 42 Shahabuddin, Krishna, Bhaskar, Perkins (b0495) 2020; 299 Zhao, Yang, Liu, Zhang, Hu (b0595) 2020; 302 Olazar, Lopez, Arabiourrutia, Elordi, Aguado, Bilbao (b0400) 2008; 81 Liu, Zhang, Liu, Ba, Yan, Hu (b0345) 2018; 249 Mahari, Chong, Cheng, Lee, Hendrata, Yek, Ma, Lam (b0355) 2018; 162 Ripoll, Silvestre, Paredes, Toledo (b0440) 2017; 42 Ochoa, Bilbao, Gayubo, Castaño (b0395) 2020; 119 Akubo, Nahil, Williams (b0020) 2019; 92 Duan, Wang, Dai, Ruan, Zhao, Fan, Tayier, Liu (b0115) 2017; 241 Sobek, Werle (b0510) 2019; 143 Salkuyeha, Savilleb, MacLean (b0465) 2018; 43 Lopez, Aguado, Olazar, Arabiourrutia, Bilbao (b0350) 2009; 29 Setiabudi, H., Aziz, M., Abdullah, S., Teh, L., Jusoh, R. 2019. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review. Int. J. Hydrogen Energy. Mahari, Chong, Lam, Anuar, Ma, Ibrahim, Lam (b0360) 2018; 171 Kwon, Oh, Lam, Moon, Kwon (b0260) 2019; 285 Ong, Chen, Farooq, Gan, Lee, Ashokkumar (b0405) 2019; 113 Le Saché, Johnson, Pastor-Pérez, Amini Horri, Reina (b0290) 2019; 12 Bizkarra, Bermudez, Arcelus-Arrillaga, Barrio, Cambra, Millan (b0065) 2018; 43 Miandad, Barakat, Aburiazaiza, Rehan, Nizami (b0370) 2016; 102 Elmously, Jäger, Apfelbacher, Daschner, Hornung (b0130) 2019; 6 Molino, Chianese, Musmarra (b0375) 2016; 25 Li, Zeng, Soria, Mazza, Gauthier, Rodriguez, Flamant (b0310) 2016; 89 Li, Ren, Zhao, Takarada (b0315) 2018; 20 Roy, Blanchette, de Caumia, Dubé, Pinault, Belanger, Laprise (b0445) 2001 Balaji, Rajan, Ragula (b0045) 2019 Liew, Chong, Osazuwa, Nam, Phang, Su, Cheng, Chong, Lam (b0335) 2018; 44 Salaudeen, Acharya, Heidari, Al-Salem, Dutta (b0455) 2020; 34 Rahman (b0425) 2020; 147 Yuan, Dai, Zhou, Chen, Yu, Wang (b0575) 2012; 109 Atsonios, Panopoulos, Bridgwater, Kakaras (b0040) 2015; 18 Iulianelli, A., Basile, A. 2020. Development of membrane reactor technology for H2 production in reforming process for low-temperature fuel cells. In Current Trends and Future Developments on (Bio-) Membranes, 287-305. Barreto (b0050) 2018; 75 Chen, Niu, Zhang, Xu (b0085) 2018; 342 Giwa, Yusuf, Ajumobi, Dzidzienyo (b0155) 2019; 93 Huang, Wang, Yang, Driss, Chu, Zhang (b0190) 2016; 25 Santos, Mäki-Arvela, Monzón, Murzin, Centeno (b0475) 2020; 268 Shagdar, Lougou, Shuai, Ganbold, Chinonso, Tan (b0490) 2020; 10 Jung, Oh, Baek, Lee, Kwon (b0215) 2018; 165 Cho, Lee, Jung, Park, Lin, Lee, Kwon (b0095) 2019; 201 Liu, Chen, Cao, Mao, Wang, Wang, Kawi (b0340) 2020; 161 Huang, Kuan, Lo, Lin (b0195) 2010; 101 Park, Han, Jun, Woo, Park, Kim (b0410) 2019; 9 Gayubo, Valle, Aramburu, Montero, Bilbao (b0145) 2018; 332 Kho, Scott, Amal (b0235) 2016; 140 Jin, Sun, Wu, Ling, Jiang, Williams, Huang (b0210) 2018; 309 Al-Rahbi, Williams (b0025) 2017; 190 Kaiwen, Bin, Tao (b0220) 2017; 13 Shen, Liaw, Costa, Wu (b0505) 2020 Hossain, Ganesan, Jewaratnam, Chinna (b0175) 2017; 133 Hossain, Jewaratnam, Ganesan, Sahu, Ramesh, Poh (b0180) 2016; 115 Santos, Mäki-Arvela, Wärnå, Monzón, Centeno, Murzin (b0480) 2020; 268 He, Zeng, Xie, Flamant, Yang, Yang, Nzihou, Zheng, Ding, Chen (b0165) 2019; 181 Ismail, Banks, Yang, Yang, Chen, Bridgwater, Ramzy, Abd El-Salam (b0200) 2020; 275 Lee, Jang, Jung, Kim, Park, Moon, Kwon (b0295) 2020 Wang, Burra, Zhang, Li, Policella, Lei, Gupta (b0565) 2020; 274 Chen, Wu, Dong, Jin, Williams, Huang (b0075) 2015; 158 Mujeebu (b9000) 2016; 173 Wang, Austin, Song (b0555) 2019; 246 Wang, Li, Koike, Koso, Nakagawa, Xu, Tomishige (b0560) 2011; 392 Parvez, Wu, Afzal, Mareta, He, Zhai (b0415) 2019; 184 Song, Yang, Zhou, Liu, Zhao (b0515) 2017; 42 Taylor, Alabdrabalameer, Skoulou (b0540) 2019; 11 Zeng, Gauthier, Lu, Flamant (b0580) 2015; 106 Lam, Su, Nam, Thoo, Ng, Liew, Yuh Yek, Ma, Nguyen Vo (b0280) 2018; 58 Lam, Mahari, Ok, Peng, Chong, Ma, Chase, Liew, Yusup, Kwon (b0270) 2019; 115 Sánchez, Clifford, Nixon (b0470) 2018; 116 Choi, Oh, Lee, Park, Lam, Kwon (b0100) 2019; 132 Ren, Liu, Zhao, Cao (b0430) 2019 Policella, Wang, Burra, Gupta (b0420) 2019; 254 Salkuyeh, Saville, MacLean (b0460) 2018; 43 Lam, Russell, Lee, Chase (b0275) 2012; 92 Spragg, Mahmud, Dupont (b0525) 2018; 43 Li, Huang, Wu, Wu, Gao (b0320) 2020; 263 Arribas, Arconada, González-Fernández, Löhrl, González-Aguilar, Kaltschmitt, Romero (b0030) 2017; 42 Zeng, Li, Minh, Weiss-Hortala, Nzihou, He, Flamant (b0585) 2019; 187 Chen, Andries, Spliethoff (b0080) 2003; 44 Heracleous (b0170) 2011; 36 Toledo, Ripoll, Céspedes, Zbogar-Rasic, Fedorova, Jovicic, Delgado (b0545) 2018; 172 Liew, Chai, Yek, Phang, Chong, Nam, Su, Lam, Ma, Lam (b0330) 2019; 208 Roy, Chaala (b0450) 2001; 32 Kan, Strezov, Evans (b0230) 2016; 57 Chong, Abdullah, Bukhari, Ainirazali, Teh, Setiabudi (b0105) 2019; 44 Wainaina, Horváth, Taherzadeh (b0550) 2018; 248 Le Saché (10.1016/j.biortech.2020.124299_b0290) 2019; 12 Li (10.1016/j.biortech.2020.124299_b0320) 2020; 263 Kong (10.1016/j.biortech.2020.124299_b0255) 2019; 94 Chen (10.1016/j.biortech.2020.124299_b0075) 2015; 158 Chen (10.1016/j.biortech.2020.124299_b0080) 2003; 44 Wainaina (10.1016/j.biortech.2020.124299_b0550) 2018; 248 Molino (10.1016/j.biortech.2020.124299_b0375) 2016; 25 Kalamaras (10.1016/j.biortech.2020.124299_b0225) 2013 Cho (10.1016/j.biortech.2020.124299_b0095) 2019; 201 Barreto (10.1016/j.biortech.2020.124299_b0050) 2018; 75 Olazar (10.1016/j.biortech.2020.124299_b0400) 2008; 81 Atsonios (10.1016/j.biortech.2020.124299_b0040) 2015; 18 Duman (10.1016/j.biortech.2020.124299_b0125) 2017; 42 Song (10.1016/j.biortech.2020.124299_b0515) 2017; 42 Mahari (10.1016/j.biortech.2020.124299_b0355) 2018; 162 Mujeebu (10.1016/j.biortech.2020.124299_b9000) 2016; 173 Huang (10.1016/j.biortech.2020.124299_b0190) 2016; 25 Guedes (10.1016/j.biortech.2020.124299_b0160) 2018; 129 Kwon (10.1016/j.biortech.2020.124299_b0260) 2019; 285 Lam (10.1016/j.biortech.2020.124299_b0280) 2018; 58 Zhou (10.1016/j.biortech.2020.124299_b0605) 2020; 314 Beneroso (10.1016/j.biortech.2020.124299_b0060) 2013; 144 Tang (10.1016/j.biortech.2020.124299_b0535) 2019; 274 Chen (10.1016/j.biortech.2020.124299_b0085) 2018; 342 Kan (10.1016/j.biortech.2020.124299_b0230) 2016; 57 Hossain (10.1016/j.biortech.2020.124299_b0175) 2017; 133 Wang (10.1016/j.biortech.2020.124299_b0565) 2020; 274 Giwa (10.1016/j.biortech.2020.124299_b0155) 2019; 93 Lestinsky (10.1016/j.biortech.2020.124299_b0300) 2017; 124 Ochoa (10.1016/j.biortech.2020.124299_b0395) 2020; 119 Sobek (10.1016/j.biortech.2020.124299_b0510) 2019; 143 Miandad (10.1016/j.biortech.2020.124299_b0370) 2016; 102 Foong (10.1016/j.biortech.2020.124299_b0135) 2020; 389 Kim (10.1016/j.biortech.2020.124299_b0245) 2020; 122449 Lam (10.1016/j.biortech.2020.124299_b0270) 2019; 115 Cho (10.1016/j.biortech.2020.124299_b0090) 2015; 189 Elmously (10.1016/j.biortech.2020.124299_b0130) 2019; 6 Salkuyeha (10.1016/j.biortech.2020.124299_b0465) 2018; 43 Santos (10.1016/j.biortech.2020.124299_b0475) 2020; 268 Kho (10.1016/j.biortech.2020.124299_b0235) 2016; 140 Akubo (10.1016/j.biortech.2020.124299_b0020) 2019; 92 Li (10.1016/j.biortech.2020.124299_b0305) 2019; 657 Mahari (10.1016/j.biortech.2020.124299_b0360) 2018; 171 Roy (10.1016/j.biortech.2020.124299_b0445) 2001 Hossain (10.1016/j.biortech.2020.124299_b0180) 2016; 115 Liew (10.1016/j.biortech.2020.124299_b0330) 2019; 208 Liew (10.1016/j.biortech.2020.124299_b0335) 2018; 44 Shayan (10.1016/j.biortech.2020.124299_b0500) 2018; 159 Li (10.1016/j.biortech.2020.124299_b0310) 2016; 89 Ge (10.1016/j.biortech.2020.124299_b0150) 2020; 127 Soria (10.1016/j.biortech.2020.124299_b0520) 2017; 158 Liu (10.1016/j.biortech.2020.124299_b0345) 2018; 249 Cao (10.1016/j.biortech.2020.124299_b0070) 2020; 5 Weldekidan (10.1016/j.biortech.2020.124299_b0570) 2020; 151 Duman (10.1016/j.biortech.2020.124299_b0120) 2014; 126 Adeniyi (10.1016/j.biortech.2020.124299_b0010) 2019; 17 Roy (10.1016/j.biortech.2020.124299_b0450) 2001; 32 Kim (10.1016/j.biortech.2020.124299_b0240) 2020; 191 Ripoll (10.1016/j.biortech.2020.124299_b0440) 2017; 42 10.1016/j.biortech.2020.124299_b0485 Taylor (10.1016/j.biortech.2020.124299_b0540) 2019; 11 Zeng (10.1016/j.biortech.2020.124299_b0585) 2019; 187 Park (10.1016/j.biortech.2020.124299_b0410) 2019; 9 Salkuyeh (10.1016/j.biortech.2020.124299_b0460) 2018; 43 Heracleous (10.1016/j.biortech.2020.124299_b0170) 2011; 36 Duan (10.1016/j.biortech.2020.124299_b0115) 2017; 241 Kaiwen (10.1016/j.biortech.2020.124299_b0220) 2017; 13 Lan (10.1016/j.biortech.2020.124299_b0285) 2020; 15 Zhang (10.1016/j.biortech.2020.124299_b0590) 2018; 6 Jin (10.1016/j.biortech.2020.124299_b0210) 2018; 309 Yuan (10.1016/j.biortech.2020.124299_b0575) 2012; 109 He (10.1016/j.biortech.2020.124299_b0165) 2019; 181 Li (10.1016/j.biortech.2020.124299_b0315) 2018; 20 Kim (10.1016/j.biortech.2020.124299_b0250) 2019; 272 Bizkarra (10.1016/j.biortech.2020.124299_b0065) 2018; 43 Wang (10.1016/j.biortech.2020.124299_b0555) 2019; 246 Parvez (10.1016/j.biortech.2020.124299_b0415) 2019; 184 Basile (10.1016/j.biortech.2020.124299_b0055) 2015 Menéndez (10.1016/j.biortech.2020.124299_b0365) 2007; 21 Rezaei (10.1016/j.biortech.2020.124299_b0435) 2014; 469 Hu (10.1016/j.biortech.2020.124299_b0185) 2020; 121102 Shagdar (10.1016/j.biortech.2020.124299_b0490) 2020; 10 Zhao (10.1016/j.biortech.2020.124299_b0595) 2020; 302 Lee (10.1016/j.biortech.2020.124299_b0295) 2020 Abdullah (10.1016/j.biortech.2020.124299_b0005) 2017; 70 Lopez (10.1016/j.biortech.2020.124299_b0350) 2009; 29 Spragg (10.1016/j.biortech.2020.124299_b0525) 2018; 43 Toledo (10.1016/j.biortech.2020.124299_b0545) 2018; 172 Salaudeen (10.1016/j.biortech.2020.124299_b0455) 2020; 34 Liao (10.1016/j.biortech.2020.124299_b0325) 2019; 252 Nam (10.1016/j.biortech.2020.124299_b0390) 2018; 624 Ismail (10.1016/j.biortech.2020.124299_b0200) 2020; 275 Sánchez (10.1016/j.biortech.2020.124299_b0470) 2018; 116 Ong (10.1016/j.biortech.2020.124299_b0405) 2019; 113 Rahman (10.1016/j.biortech.2020.124299_b0425) 2020; 147 Muradov (10.1016/j.biortech.2020.124299_b0385) 2010; 101 Shahabuddin (10.1016/j.biortech.2020.124299_b0495) 2020; 299 Fu (10.1016/j.biortech.2020.124299_b0140) 2019; 4 Wang (10.1016/j.biortech.2020.124299_b0560) 2011; 392 Lam (10.1016/j.biortech.2020.124299_b0275) 2012; 92 Balaji (10.1016/j.biortech.2020.124299_b0045) 2019 Shen (10.1016/j.biortech.2020.124299_b0505) 2020 Dong (10.1016/j.biortech.2020.124299_b0110) 2017; 8 Asimakopoulos (10.1016/j.biortech.2020.124299_b0035) 2018; 348 Choi (10.1016/j.biortech.2020.124299_b0100) 2019; 132 Zeng (10.1016/j.biortech.2020.124299_b0580) 2015; 106 Liu (10.1016/j.biortech.2020.124299_b0340) 2020; 161 Ahmed (10.1016/j.biortech.2020.124299_b0015) 2020; 121762 Chong (10.1016/j.biortech.2020.124299_b0105) 2019; 44 Santos (10.1016/j.biortech.2020.124299_b0480) 2020; 268 Jung (10.1016/j.biortech.2020.124299_b0215) 2018; 165 Su (10.1016/j.biortech.2020.124299_b0530) 2020; 122610 Ren (10.1016/j.biortech.2020.124299_b0430) 2019 Zhao (10.1016/j.biortech.2020.124299_b0600) 2011; 92 Arribas (10.1016/j.biortech.2020.124299_b0030) 2017; 42 10.1016/j.biortech.2020.124299_b0205 Kwon (10.1016/j.biortech.2020.124299_b0265) 2018; 153 Huang (10.1016/j.biortech.2020.124299_b0195) 2010; 101 Policella (10.1016/j.biortech.2020.124299_b0420) 2019; 254 Gayubo (10.1016/j.biortech.2020.124299_b0145) 2018; 332 Al-Rahbi (10.1016/j.biortech.2020.124299_b0025) 2017; 190 |
References_xml | – volume: 171 start-page: 1292 year: 2018 end-page: 1301 ident: b0360 article-title: Microwave co-pyrolysis of waste polyolefins and waste cooking oil: influence of N2 atmosphere versus vacuum environment publication-title: Energy Convers. Manage. – volume: 657 start-page: 1357 year: 2019 end-page: 1367 ident: b0305 article-title: Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide publication-title: Sci. Total Environ. – volume: 11 start-page: 3604 year: 2019 ident: b0540 article-title: Choosing physical, physicochemical and chemical methods of pre-treating lignocellulosic wastes to repurpose into solid fuels publication-title: Sustainability – volume: 43 start-page: 9514 year: 2018 end-page: 9528 ident: b0465 article-title: Techno-economic analysis and life cycleassessment of hydrogen production from differentbiomass gasification processes publication-title: Int. J. Hydrogen Energy – start-page: 1032 year: 2001 end-page: 1035 ident: b0445 publication-title: Industrial scale demonstration of the Pyrocycling (TM) process for the conversion of biomass to biofuels and chemicals – year: 2013 ident: b0225 article-title: Hydrogen production technologies: current state and future developments publication-title: . Hindawi – volume: 101 start-page: 1968 year: 2010 end-page: 1973 ident: b0195 article-title: Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis publication-title: Bioresour. Technol. – volume: 309 start-page: 2 year: 2018 end-page: 10 ident: b0210 article-title: Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass publication-title: Catal. Today – volume: 101 start-page: 8424 year: 2010 end-page: 8428 ident: b0385 article-title: Pyrolysis of fast-growing aquatic biomass–Lemna minor (duckweed): Characterization of pyrolysis products publication-title: Bioresour. Technol. – volume: 89 start-page: 27 year: 2016 end-page: 35 ident: b0310 article-title: Product distribution from solar pyrolysis of agricultural and forestry biomass residues publication-title: Renew. Energy – volume: 274 start-page: 145 year: 2019 end-page: 152 ident: b0535 article-title: Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects publication-title: Bioresour. Technol. – volume: 92 start-page: 327 year: 2012 end-page: 339 ident: b0275 article-title: Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil publication-title: Fuel – volume: 121102 year: 2020 ident: b0185 article-title: Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes publication-title: J. Cleaner Prod. – volume: 42 start-page: 13598 year: 2017 end-page: 13606 ident: b0030 article-title: Solar-driven pyrolysis and gasification of low-grade carbonaceous materials publication-title: Int. J. Hydrogen Energy – volume: 348 start-page: 732 year: 2018 end-page: 744 ident: b0035 article-title: Reactor systems for syngas fermentation processes: A review publication-title: Chem. Eng. J. – volume: 201 year: 2019 ident: b0095 article-title: Carbon dioxide-cofeeding pyrolysis of pine sawdust over nickle-based catalyst for hydrogen production publication-title: Energy Convers. Manage. – volume: 92 start-page: 1987 year: 2019 end-page: 1996 ident: b0020 article-title: Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas publication-title: J. Energy Inst. – volume: 129 start-page: 134 year: 2018 end-page: 149 ident: b0160 article-title: Operating parameters for bio-oil production in biomass pyrolysis: A review publication-title: Journal of Analytical and Applied Pyrolysis – volume: 314 year: 2020 ident: b0605 article-title: Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system publication-title: Bioresour. Technol. – volume: 285 year: 2019 ident: b0260 article-title: Orange peel valorization by pyrolysis under the carbon dioxide environment publication-title: Bioresour. Technol. – volume: 122610 year: 2020 ident: b0530 article-title: Simultaneous removal of toxic ammonia and lettuce cultivation in aquaponic system using microwave pyrolysis biochar publication-title: J. Hazard. Mater. – volume: 6 start-page: 44 year: 2019 ident: b0130 article-title: Thermo-Catalytic Reforming of spent coffee grounds publication-title: Bioresour. Bioprocess. – year: 2020 ident: b0505 article-title: Rapid pyrolysis of pulverised biomass at high temperature: Effect of particle size on char yield, retentions of alkali and alkaline earth metallic species and char particle shape publication-title: Energy Fuels – volume: 81 start-page: 127 year: 2008 end-page: 132 ident: b0400 article-title: Kinetic modelling of tyre pyrolysis in a conical spouted bed reactor publication-title: J. Anal. Appl. Pyrolysis – volume: 5 start-page: 4905 year: 2020 end-page: 4912 ident: b0070 article-title: In-Situ Upgrading of Coal Pyrolysis Tar with Steam Catalytic Cracking over Ni/Al2O3 Catalysts publication-title: ChemistrySelect – volume: 299 year: 2020 ident: b0495 article-title: Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses publication-title: Bioresour. Technol. – volume: 246 start-page: 443 year: 2019 end-page: 453 ident: b0555 article-title: Investigations of thermochemical upgrading of biomass and its model compounds: Opportunities for methane utilization publication-title: Fuel – volume: 268 year: 2020 ident: b0475 article-title: Metal catalysts supported on biochars: Part I synthesis and characterization publication-title: Appl. Catal., B – volume: 143 start-page: 1939 year: 2019 end-page: 1948 ident: b0510 article-title: Solar pyrolysis of waste biomass: Part 1 reactor design publication-title: Renew. Energy – volume: 115 year: 2019 ident: b0270 article-title: Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis publication-title: Renewable Sustainable Energy Rev. – volume: 42 start-page: 17000 year: 2017 end-page: 17008 ident: b0125 article-title: Two-step steam pyrolysis of biomass for hydrogen production publication-title: Int. J. Hydrogen Energy – volume: 165 start-page: 628 year: 2018 end-page: 633 ident: b0215 article-title: Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst publication-title: Energy Convers. Manage. – volume: 13 start-page: 109 year: 2017 end-page: 115 ident: b0220 article-title: Economic analysis of hydrogen production from steam reforming process: A literature review publication-title: Energ. Sourc. B Energ. Econ. Plann – volume: 102 start-page: 822 year: 2016 end-page: 838 ident: b0370 article-title: Catalytic pyrolysis of plastic waste: A review publication-title: Process Saf. Environ. Prot. – volume: 158 start-page: 999 year: 2015 end-page: 1005 ident: b0075 article-title: Catalytic steam reforming of volatiles released via pyrolysis of wood sawdust for hydrogen-rich gas production on Fe–Zn/Al2O3 nanocatalysts publication-title: Fuel – volume: 469 start-page: 490 year: 2014 end-page: 511 ident: b0435 article-title: Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review publication-title: Appl. Catal. A – volume: 43 start-page: 11706 year: 2018 end-page: 11718 ident: b0065 article-title: Nickel based monometallic and bimetallic catalysts for synthetic and real bio-oil steam reforming publication-title: Int. J. Hydrogen Energy – volume: 161 start-page: 408 year: 2020 end-page: 418 ident: b0340 article-title: Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas publication-title: Renew. Energy – volume: 189 start-page: 1 year: 2015 end-page: 6 ident: b0090 article-title: Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: a case study with spent coffee ground publication-title: Bioresour. Technol. – volume: 173 start-page: 210 year: 2016 end-page: 224 ident: b9000 article-title: Hydrogen and syngas production by superadiabatic combustion–a review publication-title: Appl. Energy – volume: 127 year: 2020 ident: b0150 article-title: Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products publication-title: Renewable Sustainable Energy Rev. – volume: 184 start-page: 1 year: 2019 end-page: 11 ident: b0415 article-title: Conventional and microwave-assisted pyrolysis of gumwood: A comparison study using thermodynamic evaluation and hydrogen production publication-title: Fuel Process. Technol. – volume: 70 start-page: 1040 year: 2017 end-page: 1051 ident: b0005 article-title: A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production publication-title: Renewable Sustainable Energy Rev. – volume: 158 start-page: 226 year: 2017 end-page: 237 ident: b0520 article-title: Comprehensive CFD modelling of solar fast pyrolysis of beech wood pellets publication-title: Fuel Process. Technol. – volume: 190 start-page: 501 year: 2017 end-page: 509 ident: b0025 article-title: Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char publication-title: Appl. Energy – volume: 272 start-page: 48 year: 2019 end-page: 53 ident: b0250 article-title: Investigation into role of CO2 in two-stage pyrolysis of spent coffee grounds publication-title: Bioresour. Technol. – volume: 9 start-page: 615 year: 2019 ident: b0410 article-title: Bench-Scale Steam Reforming of Methane for Hydrogen Production publication-title: Catalysts – year: 2019 ident: b0045 article-title: Modeling & optimization of renewable hydrogen production from biomass via anaerobic digestion & dry reformation – volume: 109 start-page: 188 year: 2012 end-page: 197 ident: b0575 article-title: Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char publication-title: Bioresour. Technol. – volume: 248 start-page: 113 year: 2018 end-page: 121 ident: b0550 article-title: Biochemicals from food waste and recalcitrant biomass via syngasfermentation: A review publication-title: Bioresour. Technol. – volume: 121762 year: 2020 ident: b0015 article-title: Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review publication-title: J. Cleaner Prod. – volume: 122449 year: 2020 ident: b0245 article-title: Pyrolysis of food waste over a Pt catalyst in CO2 atmosphere publication-title: J. Hazard. Mater. – volume: 159 start-page: 30 year: 2018 end-page: 41 ident: b0500 article-title: Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents publication-title: Energy Convers. Manage. – volume: 75 start-page: 196 year: 2018 end-page: 220 ident: b0050 article-title: Fossil fuels, alternative energy and economic growth publication-title: Econ. Model. – volume: 18 start-page: 267 year: 2015 end-page: 275 ident: b0040 article-title: Biomass fast pyrolysis energy balance of a 1kg/h test rig publication-title: Int. J. Thermodyn. – volume: 241 start-page: 207 year: 2017 end-page: 213 ident: b0115 article-title: Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating publication-title: Bioresour. Technol. – volume: 4 start-page: 13585 year: 2019 end-page: 13593 ident: b0140 article-title: Catalytic steam reforming of biomass-derived acetic acid over two supported Ni catalysts for hydrogen-rich syngas production publication-title: ACS Omega – volume: 58 start-page: 695 year: 2018 end-page: 703 ident: b0280 article-title: Microwave pyrolysis with steam activation in producing activated carbon for removal of herbicides in agricultural surface water publication-title: Ind. Eng. Chem. Res. – volume: 44 start-page: 2289 year: 2003 end-page: 2296 ident: b0080 article-title: Catalytic pyrolysis of biomass for hydrogen rich fuel gas production publication-title: Energy Convers. Manage. – volume: 119 year: 2020 ident: b0395 article-title: Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review publication-title: Renewable Sustainable Energy Rev. – volume: 116 start-page: 630 year: 2018 end-page: 638 ident: b0470 article-title: Modelling and evaluating a solar pyrolysis system publication-title: Renew. Energy – volume: 57 start-page: 1126 year: 2016 end-page: 1140 ident: b0230 article-title: Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters publication-title: Renewable Sustainable Energy Rev. – volume: 15 start-page: 2293 year: 2020 end-page: 2309 ident: b0285 article-title: Syngas Production by Catalytic Pyrolysis of Rice Straw over Modified Ni-based Catalyst publication-title: Bioresources – volume: 208 start-page: 1436 year: 2019 end-page: 1445 ident: b0330 article-title: Innovative production of highly porous carbon for industrial effluent remediation via microwave vacuum pyrolysis plus sodium-potassium hydroxide mixture activation publication-title: J. Cleaner Prod. – volume: 275 year: 2020 ident: b0200 article-title: Coal and biomass co-pyrolysis in a fluidized-bed reactor: Numerical assessment of fuel type and blending conditions publication-title: Fuel – volume: 342 start-page: 192 year: 2018 end-page: 200 ident: b0085 article-title: Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors publication-title: J. Hazard. Mater. – volume: 624 start-page: 9 year: 2018 end-page: 16 ident: b0390 article-title: Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus) publication-title: Sci. Total Environ. – volume: 25 start-page: 709 year: 2016 end-page: 719 ident: b0190 article-title: Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen publication-title: J. Energy Chem. – volume: 191 year: 2020 ident: b0240 article-title: CO2-assisted catalytic pyrolysis of digestate with steel slag publication-title: Energy – volume: 126 start-page: 276 year: 2014 end-page: 283 ident: b0120 article-title: Steam gasification of safflower seed cake and catalytic tar decomposition over ceria modified iron oxide catalysts publication-title: Fuel Process. Technol. – volume: 132 year: 2019 ident: b0100 article-title: Valorization of alum sludge via a pyrolysis platform using CO2 as reactive gas medium publication-title: Environ. Int. – volume: 94 start-page: 1397 year: 2019 end-page: 1405 ident: b0255 article-title: Self-purging microwave pyrolysis: an innovative approach to convert oil palm shell into carbon-rich biochar for methylene blue adsorption publication-title: J. Chem. Technol. Biotechnol. – volume: 274 year: 2020 ident: b0565 article-title: Co-pyrolysis of waste tire and pine bark for syngas and char production publication-title: Fuel – volume: 133 start-page: 349 year: 2017 end-page: 362 ident: b0175 article-title: Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production publication-title: Energy Convers. Manage. – volume: 12 start-page: 1007 year: 2019 ident: b0290 article-title: Biogas upgrading via dry reforming over a Ni-Sn/CeO2-Al2O3 catalyst: Influence of the biogas source publication-title: Energies – volume: 20 start-page: 8 year: 2018 end-page: 14 ident: b0315 article-title: H2 and syngas production from catalytic cracking of pig manure and compost pyrolysis vapor over Ni-based catalysts publication-title: Pol. J. Chem. Technol. – volume: 25 start-page: 10 year: 2016 end-page: 25 ident: b0375 article-title: Biomass gasification technology: The state of the art overview publication-title: J. Energy Chem. – volume: 392 start-page: 248 year: 2011 end-page: 255 ident: b0560 article-title: Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas publication-title: Appl. Catal., A – year: 2019 ident: b0430 article-title: Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification publication-title: J. Energy Inst. – volume: 332 start-page: 192 year: 2018 end-page: 204 ident: b0145 article-title: Kinetic model considering catalyst deactivation for the steam reforming of bio-oil over Ni/La2O3-αAl2O3 publication-title: Chem. Eng. J. – volume: 17 year: 2019 ident: b0010 article-title: Steam Reforming of Biomass Pyrolysis Oil: A Review publication-title: Int. J. Chem. React. Eng. – volume: 162 start-page: 309 year: 2018 end-page: 317 ident: b0355 article-title: Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste publication-title: Energy – volume: 34 start-page: 4828 year: 2020 end-page: 4836 ident: b0455 article-title: Hydrogen-Rich Gas Stream from Steam Gasification of Biomass: Eggshell as a CO2 Sorbent publication-title: Energy Fuels – reference: Setiabudi, H., Aziz, M., Abdullah, S., Teh, L., Jusoh, R. 2019. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review. Int. J. Hydrogen Energy. – volume: 92 start-page: 43 year: 2011 end-page: 49 ident: b0600 article-title: Microwave pyrolysis of straw bale and energy balance analysis publication-title: J. Anal. Appl. Pyrolysis – volume: 10 start-page: 12582 year: 2020 end-page: 12597 ident: b0490 article-title: Process analysis of solar steam reforming of methane for producing low-carbon hydrogen publication-title: RSC Adv. – volume: 263 year: 2020 ident: b0320 article-title: Co-pyrolysis of lignite and vacuum residue: Product distribution and hydrogen transfer publication-title: Fuel – volume: 187 year: 2019 ident: b0585 article-title: Solar pyrolysis of heavy metal contaminated biomass for gas fuel production publication-title: Energy – volume: 29 start-page: 2649 year: 2009 end-page: 2655 ident: b0350 article-title: Kinetics of scrap tyre pyrolysis under vacuum conditions publication-title: Waste Manage. – volume: 44 start-page: 3849 year: 2018 end-page: 3865 ident: b0335 article-title: Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation publication-title: Res. Chem. Intermed. – reference: Iulianelli, A., Basile, A. 2020. Development of membrane reactor technology for H2 production in reforming process for low-temperature fuel cells. In Current Trends and Future Developments on (Bio-) Membranes, 287-305. – volume: 249 start-page: 983 year: 2018 end-page: 991 ident: b0345 article-title: Pyrolysis/gasification of pine sawdust biomass briquettes under carbon dioxide atmosphere: Study on carbon dioxide reduction (utilization) and biochar briquettes physicochemical properties publication-title: Bioresour. Technol. – volume: 268 year: 2020 ident: b0480 article-title: Hydrodeoxygenation of vanillin over noble metal catalyst supported on biochars: Part II: Catalytic behaviour publication-title: Appl. Catal., B – volume: 147 start-page: 937 year: 2020 end-page: 946 ident: b0425 article-title: Valorizing of weeds algae through the solar assisted pyrolysis: Effects of dependable parameters on yields and characterization of products publication-title: Renew. Energy – volume: 115 start-page: 232 year: 2016 end-page: 243 ident: b0180 article-title: Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production: parametric investigation publication-title: Energy Convers. Manage. – volume: 140 start-page: 161 year: 2016 end-page: 170 ident: b0235 article-title: Ni/TiO2 for low temperature steam reforming of methane publication-title: Chem. Eng. Sci. – volume: 389 year: 2020 ident: b0135 article-title: Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions publication-title: Chem. Eng. J. – volume: 42 start-page: 5513 year: 2017 end-page: 5522 ident: b0440 article-title: Hydrogen production from algae biomass in rich natural gas-air filtration combustion publication-title: Int. J. Hydrogen Energy – volume: 106 start-page: 987 year: 2015 end-page: 998 ident: b0580 article-title: Parametric study and process optimization for solar pyrolysis of beech wood publication-title: Energy Convers. Manage. – volume: 8 start-page: 2735 year: 2017 end-page: 2746 ident: b0110 article-title: Hydrogen-rich gas production from steam gasification of bio-char in the presence of CaO publication-title: Waste Biomass Valorization – volume: 153 start-page: 726 year: 2018 end-page: 731 ident: b0265 article-title: Effects of calcium carbonate on pyrolysis of sewage sludge publication-title: Energy – volume: 124 start-page: 175 year: 2017 end-page: 179 ident: b0300 article-title: Hydrogen production from microwave catalytic pyrolysis of spruce sawdust publication-title: J. Anal. Appl. Pyrolysis – volume: 42 start-page: 18209 year: 2017 end-page: 18215 ident: b0515 article-title: Gaseous products evolution during microwave pyrolysis of tire powders publication-title: Int. J. Hydrogen Energy – start-page: 125331 year: 2020 ident: b0295 article-title: CO2 Effects on Catalytic Pyrolysis of Yard Trimming over Concrete Waste – volume: 113 year: 2019 ident: b0405 article-title: Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review publication-title: Renewable Sustainable Energy Rev. – volume: 172 start-page: 381 year: 2018 end-page: 390 ident: b0545 article-title: Syngas production from waste tires using a hybrid filtration reactor under different gasifier agents publication-title: Energy Convers. Manage. – volume: 252 year: 2019 ident: b0325 article-title: Hydrogen production from partial oxidation of propane: Effect of SiC addition on Ni/Al2O3 catalyst publication-title: Appl. Energy – start-page: 31 year: 2015 end-page: 59 ident: b0055 article-title: Membrane reactors for methane steam reforming (MSR) publication-title: Membrane Reactors for Energy Applications and Basic Chemical Production – volume: 36 start-page: 11501 year: 2011 end-page: 11511 ident: b0170 article-title: Well-to-Wheels analysis of hydrogen production from bio-oil reforming for use in internal combustion engines publication-title: Int. J. Hydrogen Energy – volume: 254 year: 2019 ident: b0420 article-title: Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires publication-title: Appl. Energy – volume: 43 start-page: 22032 year: 2018 end-page: 22045 ident: b0525 article-title: Hydrogen production from bio-oil: A thermodynamic analysis of sorption-enhanced chemical looping steam reforming publication-title: Int. J. Hydrogen Energy – volume: 43 start-page: 9514 year: 2018 end-page: 9528 ident: b0460 article-title: Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes publication-title: Int. J. Hydrogen Energy – volume: 21 start-page: 373 year: 2007 end-page: 378 ident: b0365 article-title: Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls publication-title: Energy Fuels – volume: 181 start-page: 407 year: 2019 end-page: 416 ident: b0165 article-title: The effects of temperature and molten salt on solar pyrolysis of lignite publication-title: Energy – volume: 151 start-page: 1102 year: 2020 end-page: 1109 ident: b0570 article-title: Distribution of solar pyrolysis products and product gas composition produced from agricultural residues and animal wastes at different operating parameters publication-title: Renew. Energy – volume: 44 start-page: 20815 year: 2019 end-page: 20825 ident: b0105 article-title: Hydrogen production via CO2 reforming of CH4 over low-cost Ni/SBA-15 from silica-rich palm oil fuel ash (POFA) waste publication-title: Int. J. Hydrogen Energy – volume: 32 start-page: 1 year: 2001 end-page: 27 ident: b0450 article-title: Vacuum pyrolysis of automobile shredder residues publication-title: Resour. Conserv. Recycl. – volume: 144 start-page: 240 year: 2013 end-page: 246 ident: b0060 article-title: Microwave pyrolysis of microalgae for high syngas production publication-title: Bioresour. Technol. – volume: 302 year: 2020 ident: b0595 article-title: Synergistic effect of mixing wheat straw and lignite in co-pyrolysis and steam co-gasification publication-title: Bioresour. Technol. – volume: 93 start-page: 14 year: 2019 end-page: 22 ident: b0155 article-title: Pyrolysis of date palm waste to biochar using concentrated solar thermal energy: Economic and sustainability implications publication-title: Waste Manage. – volume: 6 start-page: 5349 year: 2018 end-page: 5357 ident: b0590 article-title: Renewable high-purity mono-phenol production from catalytic microwave-induced pyrolysis of cellulose over biomass-derived activated carbon catalyst publication-title: ACS Sustain. Chem. Eng. – volume: 121762 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0015 article-title: Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review publication-title: J. Cleaner Prod. – volume: 43 start-page: 9514 issue: 20 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0465 article-title: Techno-economic analysis and life cycleassessment of hydrogen production from differentbiomass gasification processes publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.04.024 – volume: 42 start-page: 5513 issue: 8 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0440 article-title: Hydrogen production from algae biomass in rich natural gas-air filtration combustion publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2016.03.082 – volume: 132 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0100 article-title: Valorization of alum sludge via a pyrolysis platform using CO2 as reactive gas medium publication-title: Environ. Int. doi: 10.1016/j.envint.2019.105037 – volume: 147 start-page: 937 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0425 article-title: Valorizing of weeds algae through the solar assisted pyrolysis: Effects of dependable parameters on yields and characterization of products publication-title: Renew. Energy doi: 10.1016/j.renene.2019.09.046 – volume: 274 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0565 article-title: Co-pyrolysis of waste tire and pine bark for syngas and char production publication-title: Fuel doi: 10.1016/j.fuel.2020.117878 – volume: 302 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0595 article-title: Synergistic effect of mixing wheat straw and lignite in co-pyrolysis and steam co-gasification publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.122876 – volume: 58 start-page: 695 issue: 2 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0280 article-title: Microwave pyrolysis with steam activation in producing activated carbon for removal of herbicides in agricultural surface water publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.8b03319 – volume: 274 start-page: 145 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0535 article-title: Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.11.083 – volume: 89 start-page: 27 year: 2016 ident: 10.1016/j.biortech.2020.124299_b0310 article-title: Product distribution from solar pyrolysis of agricultural and forestry biomass residues publication-title: Renew. Energy doi: 10.1016/j.renene.2015.11.071 – volume: 20 start-page: 8 issue: 3 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0315 article-title: H2 and syngas production from catalytic cracking of pig manure and compost pyrolysis vapor over Ni-based catalysts publication-title: Pol. J. Chem. Technol. doi: 10.2478/pjct-2018-0032 – volume: 165 start-page: 628 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0215 article-title: Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.03.096 – volume: 133 start-page: 349 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0175 article-title: Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.10.046 – volume: 57 start-page: 1126 year: 2016 ident: 10.1016/j.biortech.2020.124299_b0230 article-title: Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2015.12.185 – volume: 43 start-page: 22032 issue: 49 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0525 article-title: Hydrogen production from bio-oil: A thermodynamic analysis of sorption-enhanced chemical looping steam reforming publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.10.068 – volume: 10 start-page: 12582 issue: 21 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0490 article-title: Process analysis of solar steam reforming of methane for producing low-carbon hydrogen publication-title: RSC Adv. doi: 10.1039/C9RA09835F – volume: 191 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0240 article-title: CO2-assisted catalytic pyrolysis of digestate with steel slag publication-title: Energy doi: 10.1016/j.energy.2019.116529 – volume: 18 start-page: 267 issue: 4 year: 2015 ident: 10.1016/j.biortech.2020.124299_b0040 article-title: Biomass fast pyrolysis energy balance of a 1kg/h test rig publication-title: Int. J. Thermodyn. doi: 10.5541/ijot.5000147483 – volume: 44 start-page: 2289 issue: 14 year: 2003 ident: 10.1016/j.biortech.2020.124299_b0080 article-title: Catalytic pyrolysis of biomass for hydrogen rich fuel gas production publication-title: Energy Convers. Manage. doi: 10.1016/S0196-8904(02)00254-6 – volume: 75 start-page: 196 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0050 article-title: Fossil fuels, alternative energy and economic growth publication-title: Econ. Model. doi: 10.1016/j.econmod.2018.06.019 – volume: 129 start-page: 134 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0160 article-title: Operating parameters for bio-oil production in biomass pyrolysis: A review publication-title: Journal of Analytical and Applied Pyrolysis doi: 10.1016/j.jaap.2017.11.019 – volume: 119 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0395 article-title: Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2019.109600 – volume: 13 start-page: 109 issue: 2 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0220 article-title: Economic analysis of hydrogen production from steam reforming process: A literature review publication-title: Energ. Sourc. B Energ. Econ. Plann – volume: 162 start-page: 309 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0355 article-title: Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste publication-title: Energy doi: 10.1016/j.energy.2018.08.002 – volume: 6 start-page: 5349 issue: 4 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0590 article-title: Renewable high-purity mono-phenol production from catalytic microwave-induced pyrolysis of cellulose over biomass-derived activated carbon catalyst publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b00129 – volume: 332 start-page: 192 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0145 article-title: Kinetic model considering catalyst deactivation for the steam reforming of bio-oil over Ni/La2O3-αAl2O3 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.09.063 – volume: 21 start-page: 373 issue: 1 year: 2007 ident: 10.1016/j.biortech.2020.124299_b0365 article-title: Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls publication-title: Energy Fuels doi: 10.1021/ef060331i – volume: 113 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0405 article-title: Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2019.109266 – volume: 624 start-page: 9 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0390 article-title: Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus) publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.12.108 – volume: 126 start-page: 276 year: 2014 ident: 10.1016/j.biortech.2020.124299_b0120 article-title: Steam gasification of safflower seed cake and catalytic tar decomposition over ceria modified iron oxide catalysts publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2014.04.035 – volume: 122449 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0245 article-title: Pyrolysis of food waste over a Pt catalyst in CO2 atmosphere publication-title: J. Hazard. Mater. – volume: 285 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0260 article-title: Orange peel valorization by pyrolysis under the carbon dioxide environment publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.121356 – volume: 42 start-page: 18209 issue: 29 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0515 article-title: Gaseous products evolution during microwave pyrolysis of tire powders publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.04.169 – volume: 173 start-page: 210 year: 2016 ident: 10.1016/j.biortech.2020.124299_b9000 article-title: Hydrogen and syngas production by superadiabatic combustion–a review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.04.018 – start-page: 31 year: 2015 ident: 10.1016/j.biortech.2020.124299_b0055 article-title: Membrane reactors for methane steam reforming (MSR) publication-title: Membrane Reactors for Energy Applications and Basic Chemical Production doi: 10.1016/B978-1-78242-223-5.00002-9 – volume: 127 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0150 article-title: Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2020.109871 – volume: 11 start-page: 3604 issue: 13 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0540 article-title: Choosing physical, physicochemical and chemical methods of pre-treating lignocellulosic wastes to repurpose into solid fuels publication-title: Sustainability doi: 10.3390/su11133604 – volume: 44 start-page: 3849 issue: 6 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0335 article-title: Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation publication-title: Res. Chem. Intermed. doi: 10.1007/s11164-018-3388-y – start-page: 1032 year: 2001 ident: 10.1016/j.biortech.2020.124299_b0445 – volume: 17 issue: 4 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0010 article-title: Steam Reforming of Biomass Pyrolysis Oil: A Review publication-title: Int. J. Chem. React. Eng. – volume: 43 start-page: 9514 issue: 20 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0460 article-title: Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.04.024 – volume: 153 start-page: 726 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0265 article-title: Effects of calcium carbonate on pyrolysis of sewage sludge publication-title: Energy doi: 10.1016/j.energy.2018.04.100 – volume: 143 start-page: 1939 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0510 article-title: Solar pyrolysis of waste biomass: Part 1 reactor design publication-title: Renew. Energy doi: 10.1016/j.renene.2019.06.011 – start-page: 125331 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0295 – volume: 34 start-page: 4828 issue: 4 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0455 article-title: Hydrogen-Rich Gas Stream from Steam Gasification of Biomass: Eggshell as a CO2 Sorbent publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.9b03719 – volume: 4 start-page: 13585 issue: 8 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0140 article-title: Catalytic steam reforming of biomass-derived acetic acid over two supported Ni catalysts for hydrogen-rich syngas production publication-title: ACS Omega doi: 10.1021/acsomega.9b01985 – volume: 309 start-page: 2 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0210 article-title: Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass publication-title: Catal. Today doi: 10.1016/j.cattod.2018.01.004 – volume: 121102 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0185 article-title: Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes publication-title: J. Cleaner Prod. – volume: 248 start-page: 113 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0550 article-title: Biochemicals from food waste and recalcitrant biomass via syngasfermentation: A review publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.06.075 – volume: 241 start-page: 207 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0115 article-title: Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.04.104 – volume: 102 start-page: 822 year: 2016 ident: 10.1016/j.biortech.2020.124299_b0370 article-title: Catalytic pyrolysis of plastic waste: A review publication-title: Process Saf. Environ. Prot. doi: 10.1016/j.psep.2016.06.022 – volume: 314 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0605 article-title: Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2020.123756 – volume: 299 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0495 article-title: Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2019.122557 – volume: 187 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0585 article-title: Solar pyrolysis of heavy metal contaminated biomass for gas fuel production publication-title: Energy doi: 10.1016/j.energy.2019.116016 – volume: 93 start-page: 14 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0155 article-title: Pyrolysis of date palm waste to biochar using concentrated solar thermal energy: Economic and sustainability implications publication-title: Waste Manage. doi: 10.1016/j.wasman.2019.05.022 – volume: 42 start-page: 17000 issue: 27 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0125 article-title: Two-step steam pyrolysis of biomass for hydrogen production publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.05.227 – volume: 249 start-page: 983 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0345 article-title: Pyrolysis/gasification of pine sawdust biomass briquettes under carbon dioxide atmosphere: Study on carbon dioxide reduction (utilization) and biochar briquettes physicochemical properties publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.11.012 – volume: 268 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0480 article-title: Hydrodeoxygenation of vanillin over noble metal catalyst supported on biochars: Part II: Catalytic behaviour publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118425 – volume: 5 start-page: 4905 issue: 16 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0070 article-title: In-Situ Upgrading of Coal Pyrolysis Tar with Steam Catalytic Cracking over Ni/Al2O3 Catalysts publication-title: ChemistrySelect doi: 10.1002/slct.202000476 – volume: 70 start-page: 1040 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0005 article-title: A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2016.12.008 – volume: 272 start-page: 48 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0250 article-title: Investigation into role of CO2 in two-stage pyrolysis of spent coffee grounds publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2018.10.009 – volume: 246 start-page: 443 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0555 article-title: Investigations of thermochemical upgrading of biomass and its model compounds: Opportunities for methane utilization publication-title: Fuel doi: 10.1016/j.fuel.2019.03.015 – volume: 101 start-page: 1968 issue: 6 year: 2010 ident: 10.1016/j.biortech.2020.124299_b0195 article-title: Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.09.073 – year: 2019 ident: 10.1016/j.biortech.2020.124299_b0430 article-title: Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification publication-title: J. Energy Inst. – volume: 469 start-page: 490 year: 2014 ident: 10.1016/j.biortech.2020.124299_b0435 article-title: Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2013.09.036 – volume: 43 start-page: 11706 issue: 26 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0065 article-title: Nickel based monometallic and bimetallic catalysts for synthetic and real bio-oil steam reforming publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.03.049 – volume: 124 start-page: 175 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0300 article-title: Hydrogen production from microwave catalytic pyrolysis of spruce sawdust publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2017.02.008 – volume: 29 start-page: 2649 issue: 10 year: 2009 ident: 10.1016/j.biortech.2020.124299_b0350 article-title: Kinetics of scrap tyre pyrolysis under vacuum conditions publication-title: Waste Manage. doi: 10.1016/j.wasman.2009.06.005 – ident: 10.1016/j.biortech.2020.124299_b0205 doi: 10.1016/B978-0-12-817807-2.00012-5 – year: 2020 ident: 10.1016/j.biortech.2020.124299_b0505 article-title: Rapid pyrolysis of pulverised biomass at high temperature: Effect of particle size on char yield, retentions of alkali and alkaline earth metallic species and char particle shape publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.0c00898 – volume: 389 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0135 article-title: Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124401 – volume: 348 start-page: 732 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0035 article-title: Reactor systems for syngas fermentation processes: A review publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2018.05.003 – year: 2013 ident: 10.1016/j.biortech.2020.124299_b0225 article-title: Hydrogen production technologies: current state and future developments – volume: 190 start-page: 501 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0025 article-title: Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.12.099 – volume: 115 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0270 article-title: Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2019.109359 – volume: 36 start-page: 11501 issue: 18 year: 2011 ident: 10.1016/j.biortech.2020.124299_b0170 article-title: Well-to-Wheels analysis of hydrogen production from bio-oil reforming for use in internal combustion engines publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2011.06.052 – volume: 392 start-page: 248 issue: 1–2 year: 2011 ident: 10.1016/j.biortech.2020.124299_b0560 article-title: Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2010.11.013 – ident: 10.1016/j.biortech.2020.124299_b0485 doi: 10.1016/j.ijhydene.2019.10.141 – volume: 342 start-page: 192 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0085 article-title: Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2017.08.021 – volume: 116 start-page: 630 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0470 article-title: Modelling and evaluating a solar pyrolysis system publication-title: Renew. Energy doi: 10.1016/j.renene.2017.10.023 – volume: 263 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0320 article-title: Co-pyrolysis of lignite and vacuum residue: Product distribution and hydrogen transfer publication-title: Fuel doi: 10.1016/j.fuel.2019.116703 – volume: 12 start-page: 1007 issue: 6 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0290 article-title: Biogas upgrading via dry reforming over a Ni-Sn/CeO2-Al2O3 catalyst: Influence of the biogas source publication-title: Energies doi: 10.3390/en12061007 – volume: 158 start-page: 999 year: 2015 ident: 10.1016/j.biortech.2020.124299_b0075 article-title: Catalytic steam reforming of volatiles released via pyrolysis of wood sawdust for hydrogen-rich gas production on Fe–Zn/Al2O3 nanocatalysts publication-title: Fuel doi: 10.1016/j.fuel.2015.05.040 – volume: 144 start-page: 240 year: 2013 ident: 10.1016/j.biortech.2020.124299_b0060 article-title: Microwave pyrolysis of microalgae for high syngas production publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2013.06.102 – volume: 657 start-page: 1357 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0305 article-title: Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.12.097 – volume: 106 start-page: 987 year: 2015 ident: 10.1016/j.biortech.2020.124299_b0580 article-title: Parametric study and process optimization for solar pyrolysis of beech wood publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.10.039 – volume: 158 start-page: 226 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0520 article-title: Comprehensive CFD modelling of solar fast pyrolysis of beech wood pellets publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2017.01.006 – volume: 94 start-page: 1397 issue: 5 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0255 article-title: Self-purging microwave pyrolysis: an innovative approach to convert oil palm shell into carbon-rich biochar for methylene blue adsorption publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/jctb.5884 – volume: 151 start-page: 1102 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0570 article-title: Distribution of solar pyrolysis products and product gas composition produced from agricultural residues and animal wastes at different operating parameters publication-title: Renew. Energy doi: 10.1016/j.renene.2019.11.107 – volume: 25 start-page: 709 issue: 4 year: 2016 ident: 10.1016/j.biortech.2020.124299_b0190 article-title: Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2016.03.004 – volume: 268 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0475 article-title: Metal catalysts supported on biochars: Part I synthesis and characterization publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118423 – volume: 92 start-page: 43 issue: 1 year: 2011 ident: 10.1016/j.biortech.2020.124299_b0600 article-title: Microwave pyrolysis of straw bale and energy balance analysis publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2011.04.004 – volume: 6 start-page: 44 issue: 1 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0130 article-title: Thermo-Catalytic Reforming of spent coffee grounds publication-title: Bioresour. Bioprocess. doi: 10.1186/s40643-019-0281-5 – volume: 275 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0200 article-title: Coal and biomass co-pyrolysis in a fluidized-bed reactor: Numerical assessment of fuel type and blending conditions publication-title: Fuel doi: 10.1016/j.fuel.2020.118004 – volume: 201 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0095 article-title: Carbon dioxide-cofeeding pyrolysis of pine sawdust over nickle-based catalyst for hydrogen production publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2019.112140 – volume: 8 start-page: 2735 issue: 8 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0110 article-title: Hydrogen-rich gas production from steam gasification of bio-char in the presence of CaO publication-title: Waste Biomass Valorization doi: 10.1007/s12649-016-9784-x – volume: 172 start-page: 381 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0545 article-title: Syngas production from waste tires using a hybrid filtration reactor under different gasifier agents publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.07.046 – volume: 92 start-page: 1987 issue: 6 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0020 article-title: Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas publication-title: J. Energy Inst. doi: 10.1016/j.joei.2018.10.013 – volume: 140 start-page: 161 year: 2016 ident: 10.1016/j.biortech.2020.124299_b0235 article-title: Ni/TiO2 for low temperature steam reforming of methane publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.10.021 – volume: 161 start-page: 408 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0340 article-title: Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas publication-title: Renew. Energy doi: 10.1016/j.renene.2020.07.089 – volume: 101 start-page: 8424 issue: 21 year: 2010 ident: 10.1016/j.biortech.2020.124299_b0385 article-title: Pyrolysis of fast-growing aquatic biomass–Lemna minor (duckweed): Characterization of pyrolysis products publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.05.089 – volume: 109 start-page: 188 year: 2012 ident: 10.1016/j.biortech.2020.124299_b0575 article-title: Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.01.019 – volume: 25 start-page: 10 issue: 1 year: 2016 ident: 10.1016/j.biortech.2020.124299_b0375 article-title: Biomass gasification technology: The state of the art overview publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2015.11.005 – volume: 181 start-page: 407 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0165 article-title: The effects of temperature and molten salt on solar pyrolysis of lignite publication-title: Energy doi: 10.1016/j.energy.2019.05.181 – volume: 189 start-page: 1 year: 2015 ident: 10.1016/j.biortech.2020.124299_b0090 article-title: Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: a case study with spent coffee ground publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2015.04.002 – volume: 122610 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0530 article-title: Simultaneous removal of toxic ammonia and lettuce cultivation in aquaponic system using microwave pyrolysis biochar publication-title: J. Hazard. Mater. – volume: 159 start-page: 30 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0500 article-title: Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2017.12.096 – volume: 171 start-page: 1292 year: 2018 ident: 10.1016/j.biortech.2020.124299_b0360 article-title: Microwave co-pyrolysis of waste polyolefins and waste cooking oil: influence of N2 atmosphere versus vacuum environment publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.06.073 – volume: 15 start-page: 2293 issue: 2 year: 2020 ident: 10.1016/j.biortech.2020.124299_b0285 article-title: Syngas Production by Catalytic Pyrolysis of Rice Straw over Modified Ni-based Catalyst publication-title: Bioresources doi: 10.15376/biores.15.2.2293-2309 – volume: 42 start-page: 13598 issue: 19 year: 2017 ident: 10.1016/j.biortech.2020.124299_b0030 article-title: Solar-driven pyrolysis and gasification of low-grade carbonaceous materials publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2017.02.026 – volume: 92 start-page: 327 issue: 1 year: 2012 ident: 10.1016/j.biortech.2020.124299_b0275 article-title: Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil publication-title: Fuel doi: 10.1016/j.fuel.2011.07.027 – volume: 81 start-page: 127 issue: 1 year: 2008 ident: 10.1016/j.biortech.2020.124299_b0400 article-title: Kinetic modelling of tyre pyrolysis in a conical spouted bed reactor publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2007.09.011 – volume: 184 start-page: 1 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0415 article-title: Conventional and microwave-assisted pyrolysis of gumwood: A comparison study using thermodynamic evaluation and hydrogen production publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2018.11.007 – volume: 252 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0325 article-title: Hydrogen production from partial oxidation of propane: Effect of SiC addition on Ni/Al2O3 catalyst publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113435 – volume: 254 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0420 article-title: Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.113678 – volume: 9 start-page: 615 issue: 7 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0410 article-title: Bench-Scale Steam Reforming of Methane for Hydrogen Production publication-title: Catalysts doi: 10.3390/catal9070615 – year: 2019 ident: 10.1016/j.biortech.2020.124299_b0045 – volume: 44 start-page: 20815 issue: 37 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0105 article-title: Hydrogen production via CO2 reforming of CH4 over low-cost Ni/SBA-15 from silica-rich palm oil fuel ash (POFA) waste publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2018.06.169 – volume: 115 start-page: 232 year: 2016 ident: 10.1016/j.biortech.2020.124299_b0180 article-title: Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production: parametric investigation publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2016.02.058 – volume: 208 start-page: 1436 year: 2019 ident: 10.1016/j.biortech.2020.124299_b0330 article-title: Innovative production of highly porous carbon for industrial effluent remediation via microwave vacuum pyrolysis plus sodium-potassium hydroxide mixture activation publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2018.10.214 – volume: 32 start-page: 1 issue: 1 year: 2001 ident: 10.1016/j.biortech.2020.124299_b0450 article-title: Vacuum pyrolysis of automobile shredder residues publication-title: Resour. Conserv. Recycl. doi: 10.1016/S0921-3449(00)00088-4 |
SSID | ssj0003172 |
Score | 2.6296813 |
SecondaryResourceType | review_article |
Snippet | •We review the current pyrolysis technology for hydrogen and gas fuel production.•Advanced pyrolysis is promising for sustainable hydrogen and gas fuel... Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 124299 |
SubjectTerms | Biofuel Biogas fossil fuels fuel production gasification Hydrogen pollution Pyrolysis Syngas Waste Products Waste valorization |
Title | Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production |
URI | https://dx.doi.org/10.1016/j.biortech.2020.124299 https://www.ncbi.nlm.nih.gov/pubmed/33129091 https://www.proquest.com/docview/2456417478 https://www.proquest.com/docview/2551979209 |
Volume | 320 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLYQDMCAuG9kJNbQJk6cZKwqUAGBkACpm2XHz6UFpVVphVj47byXo8AADKzxIcvf8zvyLsZO_MTY2CXGs4HvvND5oaddHHvSSKubiZPgKN_5-kZ2HsLLbtSdY-06F4bCKiveX_L0gltXXxrVbTZG_X7jjpTvJEIRQ40KYtGlDPYwJio_ff8M80D5WHgScLJHs79kCQ9OTZ8iWgunRECFFog5_ySgflJAC0F0vspWKg2St8pDrrE5yNfZcqs3rqpowDpbbNdt3HDkS8XBDfZ0S_FYyN14P-evGiHmSGrDcZWNySkMvsfrwAA-ehsPi5olfFbr9YWjmssf3yxuBDnXueU9lITDKQ5M4ZmPyhKyuNkmezg_u293vKrfgpcJX048CMLINYWj5Lcsw5ctrMsg0b4wKZhUp5lDDuAsmnAAUWohQVsS0gCaQoQ6sWKLzefDHHYY1wKkiSTNcWhTSaMRc5BkzsQuc_Eui-pLVllVjJx6YjyrOupsoGpwFIGjSnB2WWO2blSW4_hzRVpjqL4RlkKZ8efa4xp0haiRK0XndKGK3MWhT70HfpkTUVJwGjRxn-2SYmZnFoL-_6X-3j9Ot8-WAgqwKf4HHbD5yXgKh6ghTcxR8QSO2ELr4qpz8wG7iRRQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtUGzdq91LA3b1Elu2bB-DYEW6tsGAtUBugmRRWbrCCbIEQ__9SFsO2kPbw66WKAiixIdJfgT4EhfW5b6wkUtiH6U-TiPj8zxSVjkzKLxCz_XO5xM1vky_T7PpDoy6WhhOqwyyv5XpjbQOX_rhNPvL-bz_k43vIiMVw40Kcjl9AruMTpX1YHd4cjqebAUyqcgmmEDzIya4VSh89dXOOam1iUskjLXA8vk-HXWfDdroouPnsB-MSDFs9_kCdrA-gGfD2SoAaeAB7I26Tm40cgt08CX8_sEpWSTgxLwWfw1xWdBtW6xCQabgTPiZ6HIDxPJmtWhgS8QW7vWPIEtX_LpxtBDWwtROzEgZLjY0sMFrsWxRZGmxV3B5_O1iNI5Cy4WokrFaR5ikmR9Iz_VvVUWPWzpfYWFiaUu0pSkrT0LAO_LiELPSYUHuJJYJDqRMTeHka-jVixrfgjASlc0Uz_HkVilriO2o2KPJfeXzQ8i6Q9ZVwCPnthjXuks8u9IdczQzR7fMOYT-lm7ZInI8SlF2PNR37pYmtfEo7eeO6Zq4xtEUU_OBao4YpzG3H3hgTsZ1wWUyoHXetDdmu2cp-RdgGR_9x-4-wd744vxMn51MTt_B04TzbZrfQ--ht15t8AMZTGv7MTyIfx43FwE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+waste+valorization+using+advanced+pyrolysis+techniques+for+hydrogen+and+gaseous+fuel+production&rft.jtitle=Bioresource+technology&rft.au=Foong%2C+Shin+Ying&rft.au=Chan%2C+Yi+Herng&rft.au=Cheah%2C+Wai+Yan&rft.au=Kamaludin%2C+Noor+Haziqah&rft.date=2021-01-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=320&rft.issue=Pt+A&rft.spage=124299&rft_id=info:doi/10.1016%2Fj.biortech.2020.124299&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |