Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production

•We review the current pyrolysis technology for hydrogen and gas fuel production.•Advanced pyrolysis is promising for sustainable hydrogen and gas fuel production.•Microwave and solar pyrolysis are energy efficient among the advanced pyrolysis.•CO2 pyrolysis is attractive carbon-negative technique o...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 320; no. Pt A; p. 124299
Main Authors Foong, Shin Ying, Chan, Yi Herng, Cheah, Wai Yan, Kamaludin, Noor Haziqah, Tengku Ibrahim, Tengku Nilam Baizura, Sonne, Christian, Peng, Wanxi, Show, Pau-Loke, Lam, Su Shiung
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •We review the current pyrolysis technology for hydrogen and gas fuel production.•Advanced pyrolysis is promising for sustainable hydrogen and gas fuel production.•Microwave and solar pyrolysis are energy efficient among the advanced pyrolysis.•CO2 pyrolysis is attractive carbon-negative technique of producing CO-rich syngas.•More understanding of the reaction mechanism and process parameters is needed. Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels.
AbstractList Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels.Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels.
Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels.
•We review the current pyrolysis technology for hydrogen and gas fuel production.•Advanced pyrolysis is promising for sustainable hydrogen and gas fuel production.•Microwave and solar pyrolysis are energy efficient among the advanced pyrolysis.•CO2 pyrolysis is attractive carbon-negative technique of producing CO-rich syngas.•More understanding of the reaction mechanism and process parameters is needed. Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute classical fossil energy resources that cause global warming and pollution. Existing review articles focus mostly on gasification, reforming and pyrolysis processes, with limited information on particularly gaseous fuel production via pyrolysis of various waste products. This review provides an overview on the recent advanced pyrolysis technology used in hydrogen and gaseous fuel production. The key parameters to maximize the production of specific compounds were discussed. More studies are needed to optimize the process parameters and improve the understanding of reaction mechanisms and co-relationship between these advanced techniques. These advanced techniques provide novel environmentally sustainable and commercially procedures for waste-based production of hydrogen and gaseous fuels.
ArticleNumber 124299
Author Foong, Shin Ying
Show, Pau-Loke
Chan, Yi Herng
Cheah, Wai Yan
Kamaludin, Noor Haziqah
Peng, Wanxi
Sonne, Christian
Lam, Su Shiung
Tengku Ibrahim, Tengku Nilam Baizura
Author_xml – sequence: 1
  givenname: Shin Ying
  surname: Foong
  fullname: Foong, Shin Ying
  organization: Henan Province Engineering Research Center For Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
– sequence: 2
  givenname: Yi Herng
  surname: Chan
  fullname: Chan, Yi Herng
  organization: PETRONAS Research Sdn. Bhd. (PRSB), Lot 3288 & 3289, Off Jalan Ayer Itam, Kawasan Institusi Bangi, 43000 Kajang, Selangor, Malaysia
– sequence: 3
  givenname: Wai Yan
  surname: Cheah
  fullname: Cheah, Wai Yan
  organization: Department of Environmental Health, Faculty of Health Sciences, MAHSA University, 42610 Jenjarom, Selangor, Malaysia
– sequence: 4
  givenname: Noor Haziqah
  surname: Kamaludin
  fullname: Kamaludin, Noor Haziqah
  organization: Department of Environmental Health, Faculty of Health Sciences, MAHSA University, 42610 Jenjarom, Selangor, Malaysia
– sequence: 5
  givenname: Tengku Nilam Baizura
  surname: Tengku Ibrahim
  fullname: Tengku Ibrahim, Tengku Nilam Baizura
  organization: Department of Environmental Health, Faculty of Health Sciences, MAHSA University, 42610 Jenjarom, Selangor, Malaysia
– sequence: 6
  givenname: Christian
  surname: Sonne
  fullname: Sonne, Christian
  organization: Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
– sequence: 7
  givenname: Wanxi
  surname: Peng
  fullname: Peng, Wanxi
  organization: Henan Province Engineering Research Center For Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
– sequence: 8
  givenname: Pau-Loke
  surname: Show
  fullname: Show, Pau-Loke
  organization: Department of Chemical and Environmental Engineering, Faculty of Engineering, University of Nottingham Malaysia Campus, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
– sequence: 9
  givenname: Su Shiung
  surname: Lam
  fullname: Lam, Su Shiung
  email: lam@umt.edu.my
  organization: Henan Province Engineering Research Center For Biomass Value-Added Products, School of Forestry, Henan Agricultural University, Zhengzhou 450002, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33129091$$D View this record in MEDLINE/PubMed
BookMark eNqFUctO4zAUtUagoTx-AXnJJh2_ktgSCxBiYKRKwwLWlmvfFJfULnZS1Pl6Eko3s-nqSveex9U5p-goxAAIXVIypYRWv5bTuY-pA_s6ZYQNSyaYUj_QhMqaF0zV1RGaEFWRQpZMnKDTnJeEEE5r9hOdcE6ZIopO0NtTiosEOWMf8IfJHeCNaWPy_0znY8B99mGBjduYYMHh9TbFdpt9xqN18O89ZNzEhF-3bhCCgE1weGEyxH449NDidYqut6PYOTpuTJvh4nueoZff9893j8Xs78Ofu9tZYTmtugKYKBvCGyqYsFZIyV1jQRrK5wrmyijbcCobRygBKJUDKUQFigHhXBjp-Bm62ukO1uODnV75bKFtTRjf0qwsqaoVI-owVJSVoLWo5QC9_Ib28xU4vU5-ZdJW77McANc7gE0x5wSNtr77SrFLxreaEj1Wp5d6X50eq9O76gZ69R9973CQeLMjwpDpxkPS2XoY6_IJbKdd9IckPgEaY7lQ
CitedBy_id crossref_primary_10_1016_j_matpr_2021_09_251
crossref_primary_10_2139_ssrn_4074339
crossref_primary_10_1016_j_jaap_2023_106340
crossref_primary_10_1016_j_enconman_2024_118530
crossref_primary_10_1016_j_energy_2023_126987
crossref_primary_10_1016_j_scitotenv_2022_160393
crossref_primary_10_3389_fceng_2024_1450151
crossref_primary_10_1007_s10934_023_01509_0
crossref_primary_10_1515_ehs_2022_0117
crossref_primary_10_1016_j_ijhydene_2022_08_012
crossref_primary_10_1016_j_jclepro_2023_135881
crossref_primary_10_1016_j_biortech_2022_128153
crossref_primary_10_1007_s12155_023_10598_3
crossref_primary_10_3389_fenrg_2021_753878
crossref_primary_10_5772_geet_01
crossref_primary_10_1007_s12649_023_02373_4
crossref_primary_10_1016_j_biortech_2021_125581
crossref_primary_10_1016_j_jclepro_2022_134292
crossref_primary_10_1016_j_biortech_2022_127588
crossref_primary_10_1007_s10311_020_01177_5
crossref_primary_10_1016_j_biortech_2023_129705
crossref_primary_10_3390_jcs8060220
crossref_primary_10_1007_s10668_024_04760_w
crossref_primary_10_1016_j_enconman_2022_115951
crossref_primary_10_1016_j_chemosphere_2022_134181
crossref_primary_10_1016_j_energy_2024_132470
crossref_primary_10_1016_j_renene_2022_08_006
crossref_primary_10_3389_fenrg_2021_660399
crossref_primary_10_1016_j_cej_2023_141285
crossref_primary_10_1016_j_ijhydene_2022_08_268
crossref_primary_10_1557_s43581_024_00090_6
crossref_primary_10_1002_ceat_202300487
crossref_primary_10_1016_j_biteb_2022_101202
crossref_primary_10_1016_j_scitotenv_2021_148722
crossref_primary_10_1016_j_biortech_2022_126687
crossref_primary_10_1016_j_biortech_2022_126720
crossref_primary_10_1016_j_rser_2021_111991
crossref_primary_10_1016_j_enconman_2022_116218
crossref_primary_10_1016_j_apenergy_2024_123576
crossref_primary_10_1016_j_energy_2022_124863
crossref_primary_10_1016_j_energy_2022_125555
crossref_primary_10_1016_j_jece_2023_110009
crossref_primary_10_1016_j_seppur_2024_129336
crossref_primary_10_1016_j_jaap_2021_105227
crossref_primary_10_1016_j_jaap_2022_105746
crossref_primary_10_1016_j_ijhydene_2022_10_044
crossref_primary_10_1016_j_jclepro_2023_137123
crossref_primary_10_1007_s42768_023_00173_z
crossref_primary_10_1016_j_ijhydene_2023_05_049
crossref_primary_10_1080_07388551_2023_2254930
crossref_primary_10_1016_j_bcab_2024_103226
crossref_primary_10_3390_en14227502
crossref_primary_10_1016_j_seta_2022_102211
crossref_primary_10_1016_j_enconman_2021_114535
crossref_primary_10_3390_nano12121960
crossref_primary_10_1016_j_ijhydene_2023_12_184
crossref_primary_10_1016_j_rser_2022_112915
crossref_primary_10_1016_j_fuel_2025_134480
crossref_primary_10_1016_j_rser_2023_113191
crossref_primary_10_1016_j_envpol_2021_116843
crossref_primary_10_1016_j_jenvman_2023_119018
crossref_primary_10_1016_j_ijhydene_2021_11_226
crossref_primary_10_1016_j_biortech_2021_126067
crossref_primary_10_3390_en18030650
crossref_primary_10_1016_j_scp_2023_100972
crossref_primary_10_1007_s12155_023_10697_1
crossref_primary_10_1016_j_fuel_2023_128636
crossref_primary_10_1111_gcbb_70001
crossref_primary_10_1016_j_chemosphere_2021_131384
crossref_primary_10_1016_j_envpol_2023_123074
crossref_primary_10_1016_j_jaap_2023_105962
crossref_primary_10_1016_j_fuproc_2023_107845
crossref_primary_10_1007_s13399_023_04521_1
crossref_primary_10_1093_ijlct_ctae026
crossref_primary_10_1007_s10811_023_03104_x
crossref_primary_10_1016_j_biortech_2021_125024
crossref_primary_10_1016_j_biortech_2022_128478
crossref_primary_10_1016_j_seta_2022_102991
crossref_primary_10_1016_j_scitotenv_2022_155384
crossref_primary_10_1016_j_fuel_2021_121440
crossref_primary_10_1016_j_cej_2022_137215
crossref_primary_10_1007_s11356_023_28271_9
crossref_primary_10_1016_j_biortech_2021_125813
crossref_primary_10_1016_j_jece_2022_108025
crossref_primary_10_1016_j_apenergy_2023_121307
crossref_primary_10_1016_j_jaap_2022_105577
crossref_primary_10_1016_j_fuproc_2022_107435
crossref_primary_10_4028_p_q43662
crossref_primary_10_14710_ijred_2023_46068
crossref_primary_10_1016_j_enconman_2022_116250
crossref_primary_10_1016_j_scitotenv_2022_153996
crossref_primary_10_1002_asia_202100676
crossref_primary_10_1016_j_biortech_2021_126440
crossref_primary_10_1016_j_biortech_2023_128702
crossref_primary_10_1016_j_fuel_2023_129464
crossref_primary_10_1016_j_biortech_2022_128423
crossref_primary_10_1016_j_fuel_2022_126034
crossref_primary_10_1016_j_fuel_2022_127243
crossref_primary_10_1016_j_psep_2022_09_023
crossref_primary_10_1021_acsomega_2c01538
crossref_primary_10_1007_s11356_023_31186_0
crossref_primary_10_1016_j_est_2024_111563
crossref_primary_10_1007_s10973_023_12645_9
crossref_primary_10_1016_j_csite_2025_105747
crossref_primary_10_1016_j_psep_2022_08_016
crossref_primary_10_1016_j_enconman_2025_119511
crossref_primary_10_1016_j_envres_2023_115553
crossref_primary_10_1002_aenm_202300254
crossref_primary_10_1007_s10973_024_13776_3
crossref_primary_10_1016_j_jhazmat_2021_127215
crossref_primary_10_1016_j_seta_2021_101781
crossref_primary_10_1016_j_rser_2022_112832
crossref_primary_10_1016_j_jclepro_2025_145003
crossref_primary_10_1016_j_joei_2021_06_008
crossref_primary_10_1016_j_enconman_2022_115451
crossref_primary_10_1016_j_indcrop_2024_118212
crossref_primary_10_1016_j_psep_2023_11_071
Cites_doi 10.1016/j.ijhydene.2018.04.024
10.1016/j.ijhydene.2016.03.082
10.1016/j.envint.2019.105037
10.1016/j.renene.2019.09.046
10.1016/j.fuel.2020.117878
10.1016/j.biortech.2020.122876
10.1021/acs.iecr.8b03319
10.1016/j.biortech.2018.11.083
10.1016/j.renene.2015.11.071
10.2478/pjct-2018-0032
10.1016/j.enconman.2018.03.096
10.1016/j.enconman.2016.10.046
10.1016/j.rser.2015.12.185
10.1016/j.ijhydene.2018.10.068
10.1039/C9RA09835F
10.1016/j.energy.2019.116529
10.5541/ijot.5000147483
10.1016/S0196-8904(02)00254-6
10.1016/j.econmod.2018.06.019
10.1016/j.jaap.2017.11.019
10.1016/j.rser.2019.109600
10.1016/j.energy.2018.08.002
10.1021/acssuschemeng.8b00129
10.1016/j.cej.2017.09.063
10.1021/ef060331i
10.1016/j.rser.2019.109266
10.1016/j.scitotenv.2017.12.108
10.1016/j.fuproc.2014.04.035
10.1016/j.biortech.2019.121356
10.1016/j.ijhydene.2017.04.169
10.1016/j.apenergy.2016.04.018
10.1016/B978-1-78242-223-5.00002-9
10.1016/j.rser.2020.109871
10.3390/su11133604
10.1007/s11164-018-3388-y
10.1016/j.energy.2018.04.100
10.1016/j.renene.2019.06.011
10.1021/acs.energyfuels.9b03719
10.1021/acsomega.9b01985
10.1016/j.cattod.2018.01.004
10.1016/j.biortech.2017.06.075
10.1016/j.biortech.2017.04.104
10.1016/j.psep.2016.06.022
10.1016/j.biortech.2020.123756
10.1016/j.biortech.2019.122557
10.1016/j.energy.2019.116016
10.1016/j.wasman.2019.05.022
10.1016/j.ijhydene.2017.05.227
10.1016/j.biortech.2017.11.012
10.1016/j.apcatb.2019.118425
10.1002/slct.202000476
10.1016/j.rser.2016.12.008
10.1016/j.biortech.2018.10.009
10.1016/j.fuel.2019.03.015
10.1016/j.biortech.2009.09.073
10.1016/j.apcata.2013.09.036
10.1016/j.ijhydene.2018.03.049
10.1016/j.jaap.2017.02.008
10.1016/j.wasman.2009.06.005
10.1016/B978-0-12-817807-2.00012-5
10.1021/acs.energyfuels.0c00898
10.1016/j.cej.2020.124401
10.1016/j.cej.2018.05.003
10.1016/j.apenergy.2016.12.099
10.1016/j.rser.2019.109359
10.1016/j.ijhydene.2011.06.052
10.1016/j.apcata.2010.11.013
10.1016/j.ijhydene.2019.10.141
10.1016/j.jhazmat.2017.08.021
10.1016/j.renene.2017.10.023
10.1016/j.fuel.2019.116703
10.3390/en12061007
10.1016/j.fuel.2015.05.040
10.1016/j.biortech.2013.06.102
10.1016/j.scitotenv.2018.12.097
10.1016/j.enconman.2015.10.039
10.1016/j.fuproc.2017.01.006
10.1002/jctb.5884
10.1016/j.renene.2019.11.107
10.1016/j.jechem.2016.03.004
10.1016/j.apcatb.2019.118423
10.1016/j.jaap.2011.04.004
10.1186/s40643-019-0281-5
10.1016/j.fuel.2020.118004
10.1016/j.enconman.2019.112140
10.1007/s12649-016-9784-x
10.1016/j.enconman.2018.07.046
10.1016/j.joei.2018.10.013
10.1016/j.ces.2015.10.021
10.1016/j.renene.2020.07.089
10.1016/j.biortech.2010.05.089
10.1016/j.biortech.2012.01.019
10.1016/j.jechem.2015.11.005
10.1016/j.energy.2019.05.181
10.1016/j.biortech.2015.04.002
10.1016/j.enconman.2017.12.096
10.1016/j.enconman.2018.06.073
10.15376/biores.15.2.2293-2309
10.1016/j.ijhydene.2017.02.026
10.1016/j.fuel.2011.07.027
10.1016/j.jaap.2007.09.011
10.1016/j.fuproc.2018.11.007
10.1016/j.apenergy.2019.113435
10.1016/j.apenergy.2019.113678
10.3390/catal9070615
10.1016/j.ijhydene.2018.06.169
10.1016/j.enconman.2016.02.058
10.1016/j.jclepro.2018.10.214
10.1016/S0921-3449(00)00088-4
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.biortech.2020.124299
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 33129091
10_1016_j_biortech_2020_124299
S096085242031573X
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAHCO
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXKI
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CJTIS
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AATTM
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c316t-e245f03f1424cc4883dfce8a13b9eb9a9cf318fd010ee59de8446e92e0334a8d3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Tue Aug 05 09:47:08 EDT 2025
Fri Jul 11 10:10:05 EDT 2025
Wed Feb 19 02:30:15 EST 2025
Tue Jul 01 03:18:49 EDT 2025
Thu Apr 24 22:57:28 EDT 2025
Sat Nov 09 16:01:07 EST 2024
IsPeerReviewed true
IsScholarly true
Issue Pt A
Keywords Pyrolysis
Waste valorization
Biogas
Biofuel
Syngas
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-e245f03f1424cc4883dfce8a13b9eb9a9cf318fd010ee59de8446e92e0334a8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
PMID 33129091
PQID 2456417478
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2551979209
proquest_miscellaneous_2456417478
pubmed_primary_33129091
crossref_citationtrail_10_1016_j_biortech_2020_124299
crossref_primary_10_1016_j_biortech_2020_124299
elsevier_sciencedirect_doi_10_1016_j_biortech_2020_124299
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2021
2021-01-00
2021-Jan
20210101
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: January 2021
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Yan, Chen, Feng, Wang, Wang, Song, Ma (b0305) 2019; 657
Fu, Zhang, Luo, Yi, Hu, Zhang (b0140) 2019; 4
Zhao, Zhang, Song, Liu, Li, Ma (b0600) 2011; 92
Duman, Watanabe, Uddin, Yanik (b0120) 2014; 126
Muradov, Fidalgo, Gujar, Ali (b0385) 2010; 101
Lestinsky, Grycova, Pryszcz, Martaus, Matejova (b0300) 2017; 124
Kwon, Lee, Ok, Tsang, Park, Lee (b0265) 2018; 153
Kalamaras, Efstathiou (b0225) 2013
Kim, Oh, Tsang, Park, Lee, Kwon (b0240) 2020; 191
Zhou, Zhou, Dai, Guo, Wang, Li, Deng, Lei, Chen, Liu (b0605) 2020; 314
Guedes, Luna, Torres (b0160) 2018; 129
Adeniyi, Otoikhian, Ighalo (b0010) 2019; 17
Soria, Zeng, Asensio, Gauthier, Flamant, Mazza (b0520) 2017; 158
Su, Azwar, Ya, Sonne, Yek, Liew, Cheng, Show, Lam (b0530) 2020; 122610
Ge, Foong, Ma, Liew, Mahari, Xia, Yek, Peng, Nam, Lim (b0150) 2020; 127
Nam, Phang, Su, Liew, Ma, Rosli, Lam (b0390) 2018; 624
Tang, Chen, Chen, Yang, Chen (b0535) 2019; 274
Weldekidan, Strezov, Li, Kan, Town, Kumar, He, Flamant (b0570) 2020; 151
Ahmed, Hameed (b0015) 2020; 121762
Hu, Tang, Yao, Yang, Shao, Chen (b0185) 2020; 121102
Kong, Lam, Yek, Liew, Ma, Osman, Wong (b0255) 2019; 94
Lan, Qin, Li, Hu, Xu, He, Li (b0285) 2020; 15
Zhang, Lei, Yang, Qian, Villota (b0590) 2018; 6
Foong, Liew, Yang, Cheng, Yek, Mahari, Lee, Han, Vo, Van Le (b0135) 2020; 389
Liao, Chen, Cheng, Wang, Luo, Bu, Jiang, Liang, Shu, Song (b0325) 2019; 252
Rezaei, Shafaghat, Daud (b0435) 2014; 469
Shayan, Zare, Mirzaee (b0500) 2018; 159
Menéndez, Domínguez, Fernández, Pis (b0365) 2007; 21
Beneroso, Bermúdez, Arenillas, Menéndez (b0060) 2013; 144
Basile, Liguori, Iulianelli (b0055) 2015
Kim, Lee (b0245) 2020; 122449
Asimakopoulos, Gavala, Skiadas (b0035) 2018; 348
Cho, Cho, Song, Kwon (b0090) 2015; 189
Cao, Wang, Wang, Zhu, Jin, Li, Hu (b0070) 2020; 5
Kim, Lee, Yi, Tsang, Kwon (b0250) 2019; 272
Dong, Nzihou, Chi, Weiss-Hortala, Ni, Lyczko, Tang, Ducousso (b0110) 2017; 8
Abdullah, Hanapi, Azid, Umar, Juahir, Khatoon, Endut (b0005) 2017; 70
Duman, Yanik (b0125) 2017; 42
Shahabuddin, Krishna, Bhaskar, Perkins (b0495) 2020; 299
Zhao, Yang, Liu, Zhang, Hu (b0595) 2020; 302
Olazar, Lopez, Arabiourrutia, Elordi, Aguado, Bilbao (b0400) 2008; 81
Liu, Zhang, Liu, Ba, Yan, Hu (b0345) 2018; 249
Mahari, Chong, Cheng, Lee, Hendrata, Yek, Ma, Lam (b0355) 2018; 162
Ripoll, Silvestre, Paredes, Toledo (b0440) 2017; 42
Ochoa, Bilbao, Gayubo, Castaño (b0395) 2020; 119
Akubo, Nahil, Williams (b0020) 2019; 92
Duan, Wang, Dai, Ruan, Zhao, Fan, Tayier, Liu (b0115) 2017; 241
Sobek, Werle (b0510) 2019; 143
Salkuyeha, Savilleb, MacLean (b0465) 2018; 43
Lopez, Aguado, Olazar, Arabiourrutia, Bilbao (b0350) 2009; 29
Setiabudi, H., Aziz, M., Abdullah, S., Teh, L., Jusoh, R. 2019. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review. Int. J. Hydrogen Energy.
Mahari, Chong, Lam, Anuar, Ma, Ibrahim, Lam (b0360) 2018; 171
Kwon, Oh, Lam, Moon, Kwon (b0260) 2019; 285
Ong, Chen, Farooq, Gan, Lee, Ashokkumar (b0405) 2019; 113
Le Saché, Johnson, Pastor-Pérez, Amini Horri, Reina (b0290) 2019; 12
Bizkarra, Bermudez, Arcelus-Arrillaga, Barrio, Cambra, Millan (b0065) 2018; 43
Miandad, Barakat, Aburiazaiza, Rehan, Nizami (b0370) 2016; 102
Elmously, Jäger, Apfelbacher, Daschner, Hornung (b0130) 2019; 6
Molino, Chianese, Musmarra (b0375) 2016; 25
Li, Zeng, Soria, Mazza, Gauthier, Rodriguez, Flamant (b0310) 2016; 89
Li, Ren, Zhao, Takarada (b0315) 2018; 20
Roy, Blanchette, de Caumia, Dubé, Pinault, Belanger, Laprise (b0445) 2001
Balaji, Rajan, Ragula (b0045) 2019
Liew, Chong, Osazuwa, Nam, Phang, Su, Cheng, Chong, Lam (b0335) 2018; 44
Salaudeen, Acharya, Heidari, Al-Salem, Dutta (b0455) 2020; 34
Rahman (b0425) 2020; 147
Yuan, Dai, Zhou, Chen, Yu, Wang (b0575) 2012; 109
Atsonios, Panopoulos, Bridgwater, Kakaras (b0040) 2015; 18
Iulianelli, A., Basile, A. 2020. Development of membrane reactor technology for H2 production in reforming process for low-temperature fuel cells. In Current Trends and Future Developments on (Bio-) Membranes, 287-305.
Barreto (b0050) 2018; 75
Chen, Niu, Zhang, Xu (b0085) 2018; 342
Giwa, Yusuf, Ajumobi, Dzidzienyo (b0155) 2019; 93
Huang, Wang, Yang, Driss, Chu, Zhang (b0190) 2016; 25
Santos, Mäki-Arvela, Monzón, Murzin, Centeno (b0475) 2020; 268
Shagdar, Lougou, Shuai, Ganbold, Chinonso, Tan (b0490) 2020; 10
Jung, Oh, Baek, Lee, Kwon (b0215) 2018; 165
Cho, Lee, Jung, Park, Lin, Lee, Kwon (b0095) 2019; 201
Liu, Chen, Cao, Mao, Wang, Wang, Kawi (b0340) 2020; 161
Huang, Kuan, Lo, Lin (b0195) 2010; 101
Park, Han, Jun, Woo, Park, Kim (b0410) 2019; 9
Gayubo, Valle, Aramburu, Montero, Bilbao (b0145) 2018; 332
Kho, Scott, Amal (b0235) 2016; 140
Jin, Sun, Wu, Ling, Jiang, Williams, Huang (b0210) 2018; 309
Al-Rahbi, Williams (b0025) 2017; 190
Kaiwen, Bin, Tao (b0220) 2017; 13
Shen, Liaw, Costa, Wu (b0505) 2020
Hossain, Ganesan, Jewaratnam, Chinna (b0175) 2017; 133
Hossain, Jewaratnam, Ganesan, Sahu, Ramesh, Poh (b0180) 2016; 115
Santos, Mäki-Arvela, Wärnå, Monzón, Centeno, Murzin (b0480) 2020; 268
He, Zeng, Xie, Flamant, Yang, Yang, Nzihou, Zheng, Ding, Chen (b0165) 2019; 181
Ismail, Banks, Yang, Yang, Chen, Bridgwater, Ramzy, Abd El-Salam (b0200) 2020; 275
Lee, Jang, Jung, Kim, Park, Moon, Kwon (b0295) 2020
Wang, Burra, Zhang, Li, Policella, Lei, Gupta (b0565) 2020; 274
Chen, Wu, Dong, Jin, Williams, Huang (b0075) 2015; 158
Mujeebu (b9000) 2016; 173
Wang, Austin, Song (b0555) 2019; 246
Wang, Li, Koike, Koso, Nakagawa, Xu, Tomishige (b0560) 2011; 392
Parvez, Wu, Afzal, Mareta, He, Zhai (b0415) 2019; 184
Song, Yang, Zhou, Liu, Zhao (b0515) 2017; 42
Taylor, Alabdrabalameer, Skoulou (b0540) 2019; 11
Zeng, Gauthier, Lu, Flamant (b0580) 2015; 106
Lam, Su, Nam, Thoo, Ng, Liew, Yuh Yek, Ma, Nguyen Vo (b0280) 2018; 58
Lam, Mahari, Ok, Peng, Chong, Ma, Chase, Liew, Yusup, Kwon (b0270) 2019; 115
Sánchez, Clifford, Nixon (b0470) 2018; 116
Choi, Oh, Lee, Park, Lam, Kwon (b0100) 2019; 132
Ren, Liu, Zhao, Cao (b0430) 2019
Policella, Wang, Burra, Gupta (b0420) 2019; 254
Salkuyeh, Saville, MacLean (b0460) 2018; 43
Lam, Russell, Lee, Chase (b0275) 2012; 92
Spragg, Mahmud, Dupont (b0525) 2018; 43
Li, Huang, Wu, Wu, Gao (b0320) 2020; 263
Arribas, Arconada, González-Fernández, Löhrl, González-Aguilar, Kaltschmitt, Romero (b0030) 2017; 42
Zeng, Li, Minh, Weiss-Hortala, Nzihou, He, Flamant (b0585) 2019; 187
Chen, Andries, Spliethoff (b0080) 2003; 44
Heracleous (b0170) 2011; 36
Toledo, Ripoll, Céspedes, Zbogar-Rasic, Fedorova, Jovicic, Delgado (b0545) 2018; 172
Liew, Chai, Yek, Phang, Chong, Nam, Su, Lam, Ma, Lam (b0330) 2019; 208
Roy, Chaala (b0450) 2001; 32
Kan, Strezov, Evans (b0230) 2016; 57
Chong, Abdullah, Bukhari, Ainirazali, Teh, Setiabudi (b0105) 2019; 44
Wainaina, Horváth, Taherzadeh (b0550) 2018; 248
Le Saché (10.1016/j.biortech.2020.124299_b0290) 2019; 12
Li (10.1016/j.biortech.2020.124299_b0320) 2020; 263
Kong (10.1016/j.biortech.2020.124299_b0255) 2019; 94
Chen (10.1016/j.biortech.2020.124299_b0075) 2015; 158
Chen (10.1016/j.biortech.2020.124299_b0080) 2003; 44
Wainaina (10.1016/j.biortech.2020.124299_b0550) 2018; 248
Molino (10.1016/j.biortech.2020.124299_b0375) 2016; 25
Kalamaras (10.1016/j.biortech.2020.124299_b0225) 2013
Cho (10.1016/j.biortech.2020.124299_b0095) 2019; 201
Barreto (10.1016/j.biortech.2020.124299_b0050) 2018; 75
Olazar (10.1016/j.biortech.2020.124299_b0400) 2008; 81
Atsonios (10.1016/j.biortech.2020.124299_b0040) 2015; 18
Duman (10.1016/j.biortech.2020.124299_b0125) 2017; 42
Song (10.1016/j.biortech.2020.124299_b0515) 2017; 42
Mahari (10.1016/j.biortech.2020.124299_b0355) 2018; 162
Mujeebu (10.1016/j.biortech.2020.124299_b9000) 2016; 173
Huang (10.1016/j.biortech.2020.124299_b0190) 2016; 25
Guedes (10.1016/j.biortech.2020.124299_b0160) 2018; 129
Kwon (10.1016/j.biortech.2020.124299_b0260) 2019; 285
Lam (10.1016/j.biortech.2020.124299_b0280) 2018; 58
Zhou (10.1016/j.biortech.2020.124299_b0605) 2020; 314
Beneroso (10.1016/j.biortech.2020.124299_b0060) 2013; 144
Tang (10.1016/j.biortech.2020.124299_b0535) 2019; 274
Chen (10.1016/j.biortech.2020.124299_b0085) 2018; 342
Kan (10.1016/j.biortech.2020.124299_b0230) 2016; 57
Hossain (10.1016/j.biortech.2020.124299_b0175) 2017; 133
Wang (10.1016/j.biortech.2020.124299_b0565) 2020; 274
Giwa (10.1016/j.biortech.2020.124299_b0155) 2019; 93
Lestinsky (10.1016/j.biortech.2020.124299_b0300) 2017; 124
Ochoa (10.1016/j.biortech.2020.124299_b0395) 2020; 119
Sobek (10.1016/j.biortech.2020.124299_b0510) 2019; 143
Miandad (10.1016/j.biortech.2020.124299_b0370) 2016; 102
Foong (10.1016/j.biortech.2020.124299_b0135) 2020; 389
Kim (10.1016/j.biortech.2020.124299_b0245) 2020; 122449
Lam (10.1016/j.biortech.2020.124299_b0270) 2019; 115
Cho (10.1016/j.biortech.2020.124299_b0090) 2015; 189
Elmously (10.1016/j.biortech.2020.124299_b0130) 2019; 6
Salkuyeha (10.1016/j.biortech.2020.124299_b0465) 2018; 43
Santos (10.1016/j.biortech.2020.124299_b0475) 2020; 268
Kho (10.1016/j.biortech.2020.124299_b0235) 2016; 140
Akubo (10.1016/j.biortech.2020.124299_b0020) 2019; 92
Li (10.1016/j.biortech.2020.124299_b0305) 2019; 657
Mahari (10.1016/j.biortech.2020.124299_b0360) 2018; 171
Roy (10.1016/j.biortech.2020.124299_b0445) 2001
Hossain (10.1016/j.biortech.2020.124299_b0180) 2016; 115
Liew (10.1016/j.biortech.2020.124299_b0330) 2019; 208
Liew (10.1016/j.biortech.2020.124299_b0335) 2018; 44
Shayan (10.1016/j.biortech.2020.124299_b0500) 2018; 159
Li (10.1016/j.biortech.2020.124299_b0310) 2016; 89
Ge (10.1016/j.biortech.2020.124299_b0150) 2020; 127
Soria (10.1016/j.biortech.2020.124299_b0520) 2017; 158
Liu (10.1016/j.biortech.2020.124299_b0345) 2018; 249
Cao (10.1016/j.biortech.2020.124299_b0070) 2020; 5
Weldekidan (10.1016/j.biortech.2020.124299_b0570) 2020; 151
Duman (10.1016/j.biortech.2020.124299_b0120) 2014; 126
Adeniyi (10.1016/j.biortech.2020.124299_b0010) 2019; 17
Roy (10.1016/j.biortech.2020.124299_b0450) 2001; 32
Kim (10.1016/j.biortech.2020.124299_b0240) 2020; 191
Ripoll (10.1016/j.biortech.2020.124299_b0440) 2017; 42
10.1016/j.biortech.2020.124299_b0485
Taylor (10.1016/j.biortech.2020.124299_b0540) 2019; 11
Zeng (10.1016/j.biortech.2020.124299_b0585) 2019; 187
Park (10.1016/j.biortech.2020.124299_b0410) 2019; 9
Salkuyeh (10.1016/j.biortech.2020.124299_b0460) 2018; 43
Heracleous (10.1016/j.biortech.2020.124299_b0170) 2011; 36
Duan (10.1016/j.biortech.2020.124299_b0115) 2017; 241
Kaiwen (10.1016/j.biortech.2020.124299_b0220) 2017; 13
Lan (10.1016/j.biortech.2020.124299_b0285) 2020; 15
Zhang (10.1016/j.biortech.2020.124299_b0590) 2018; 6
Jin (10.1016/j.biortech.2020.124299_b0210) 2018; 309
Yuan (10.1016/j.biortech.2020.124299_b0575) 2012; 109
He (10.1016/j.biortech.2020.124299_b0165) 2019; 181
Li (10.1016/j.biortech.2020.124299_b0315) 2018; 20
Kim (10.1016/j.biortech.2020.124299_b0250) 2019; 272
Bizkarra (10.1016/j.biortech.2020.124299_b0065) 2018; 43
Wang (10.1016/j.biortech.2020.124299_b0555) 2019; 246
Parvez (10.1016/j.biortech.2020.124299_b0415) 2019; 184
Basile (10.1016/j.biortech.2020.124299_b0055) 2015
Menéndez (10.1016/j.biortech.2020.124299_b0365) 2007; 21
Rezaei (10.1016/j.biortech.2020.124299_b0435) 2014; 469
Hu (10.1016/j.biortech.2020.124299_b0185) 2020; 121102
Shagdar (10.1016/j.biortech.2020.124299_b0490) 2020; 10
Zhao (10.1016/j.biortech.2020.124299_b0595) 2020; 302
Lee (10.1016/j.biortech.2020.124299_b0295) 2020
Abdullah (10.1016/j.biortech.2020.124299_b0005) 2017; 70
Lopez (10.1016/j.biortech.2020.124299_b0350) 2009; 29
Spragg (10.1016/j.biortech.2020.124299_b0525) 2018; 43
Toledo (10.1016/j.biortech.2020.124299_b0545) 2018; 172
Salaudeen (10.1016/j.biortech.2020.124299_b0455) 2020; 34
Liao (10.1016/j.biortech.2020.124299_b0325) 2019; 252
Nam (10.1016/j.biortech.2020.124299_b0390) 2018; 624
Ismail (10.1016/j.biortech.2020.124299_b0200) 2020; 275
Sánchez (10.1016/j.biortech.2020.124299_b0470) 2018; 116
Ong (10.1016/j.biortech.2020.124299_b0405) 2019; 113
Rahman (10.1016/j.biortech.2020.124299_b0425) 2020; 147
Muradov (10.1016/j.biortech.2020.124299_b0385) 2010; 101
Shahabuddin (10.1016/j.biortech.2020.124299_b0495) 2020; 299
Fu (10.1016/j.biortech.2020.124299_b0140) 2019; 4
Wang (10.1016/j.biortech.2020.124299_b0560) 2011; 392
Lam (10.1016/j.biortech.2020.124299_b0275) 2012; 92
Balaji (10.1016/j.biortech.2020.124299_b0045) 2019
Shen (10.1016/j.biortech.2020.124299_b0505) 2020
Dong (10.1016/j.biortech.2020.124299_b0110) 2017; 8
Asimakopoulos (10.1016/j.biortech.2020.124299_b0035) 2018; 348
Choi (10.1016/j.biortech.2020.124299_b0100) 2019; 132
Zeng (10.1016/j.biortech.2020.124299_b0580) 2015; 106
Liu (10.1016/j.biortech.2020.124299_b0340) 2020; 161
Ahmed (10.1016/j.biortech.2020.124299_b0015) 2020; 121762
Chong (10.1016/j.biortech.2020.124299_b0105) 2019; 44
Santos (10.1016/j.biortech.2020.124299_b0480) 2020; 268
Jung (10.1016/j.biortech.2020.124299_b0215) 2018; 165
Su (10.1016/j.biortech.2020.124299_b0530) 2020; 122610
Ren (10.1016/j.biortech.2020.124299_b0430) 2019
Zhao (10.1016/j.biortech.2020.124299_b0600) 2011; 92
Arribas (10.1016/j.biortech.2020.124299_b0030) 2017; 42
10.1016/j.biortech.2020.124299_b0205
Kwon (10.1016/j.biortech.2020.124299_b0265) 2018; 153
Huang (10.1016/j.biortech.2020.124299_b0195) 2010; 101
Policella (10.1016/j.biortech.2020.124299_b0420) 2019; 254
Gayubo (10.1016/j.biortech.2020.124299_b0145) 2018; 332
Al-Rahbi (10.1016/j.biortech.2020.124299_b0025) 2017; 190
References_xml – volume: 171
  start-page: 1292
  year: 2018
  end-page: 1301
  ident: b0360
  article-title: Microwave co-pyrolysis of waste polyolefins and waste cooking oil: influence of N2 atmosphere versus vacuum environment
  publication-title: Energy Convers. Manage.
– volume: 657
  start-page: 1357
  year: 2019
  end-page: 1367
  ident: b0305
  article-title: Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide
  publication-title: Sci. Total Environ.
– volume: 11
  start-page: 3604
  year: 2019
  ident: b0540
  article-title: Choosing physical, physicochemical and chemical methods of pre-treating lignocellulosic wastes to repurpose into solid fuels
  publication-title: Sustainability
– volume: 43
  start-page: 9514
  year: 2018
  end-page: 9528
  ident: b0465
  article-title: Techno-economic analysis and life cycleassessment of hydrogen production from differentbiomass gasification processes
  publication-title: Int. J. Hydrogen Energy
– start-page: 1032
  year: 2001
  end-page: 1035
  ident: b0445
  publication-title: Industrial scale demonstration of the Pyrocycling (TM) process for the conversion of biomass to biofuels and chemicals
– year: 2013
  ident: b0225
  article-title: Hydrogen production technologies: current state and future developments
  publication-title: . Hindawi
– volume: 101
  start-page: 1968
  year: 2010
  end-page: 1973
  ident: b0195
  article-title: Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis
  publication-title: Bioresour. Technol.
– volume: 309
  start-page: 2
  year: 2018
  end-page: 10
  ident: b0210
  article-title: Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass
  publication-title: Catal. Today
– volume: 101
  start-page: 8424
  year: 2010
  end-page: 8428
  ident: b0385
  article-title: Pyrolysis of fast-growing aquatic biomass–Lemna minor (duckweed): Characterization of pyrolysis products
  publication-title: Bioresour. Technol.
– volume: 89
  start-page: 27
  year: 2016
  end-page: 35
  ident: b0310
  article-title: Product distribution from solar pyrolysis of agricultural and forestry biomass residues
  publication-title: Renew. Energy
– volume: 274
  start-page: 145
  year: 2019
  end-page: 152
  ident: b0535
  article-title: Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects
  publication-title: Bioresour. Technol.
– volume: 92
  start-page: 327
  year: 2012
  end-page: 339
  ident: b0275
  article-title: Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil
  publication-title: Fuel
– volume: 121102
  year: 2020
  ident: b0185
  article-title: Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes
  publication-title: J. Cleaner Prod.
– volume: 42
  start-page: 13598
  year: 2017
  end-page: 13606
  ident: b0030
  article-title: Solar-driven pyrolysis and gasification of low-grade carbonaceous materials
  publication-title: Int. J. Hydrogen Energy
– volume: 348
  start-page: 732
  year: 2018
  end-page: 744
  ident: b0035
  article-title: Reactor systems for syngas fermentation processes: A review
  publication-title: Chem. Eng. J.
– volume: 201
  year: 2019
  ident: b0095
  article-title: Carbon dioxide-cofeeding pyrolysis of pine sawdust over nickle-based catalyst for hydrogen production
  publication-title: Energy Convers. Manage.
– volume: 92
  start-page: 1987
  year: 2019
  end-page: 1996
  ident: b0020
  article-title: Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas
  publication-title: J. Energy Inst.
– volume: 129
  start-page: 134
  year: 2018
  end-page: 149
  ident: b0160
  article-title: Operating parameters for bio-oil production in biomass pyrolysis: A review
  publication-title: Journal of Analytical and Applied Pyrolysis
– volume: 314
  year: 2020
  ident: b0605
  article-title: Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system
  publication-title: Bioresour. Technol.
– volume: 285
  year: 2019
  ident: b0260
  article-title: Orange peel valorization by pyrolysis under the carbon dioxide environment
  publication-title: Bioresour. Technol.
– volume: 122610
  year: 2020
  ident: b0530
  article-title: Simultaneous removal of toxic ammonia and lettuce cultivation in aquaponic system using microwave pyrolysis biochar
  publication-title: J. Hazard. Mater.
– volume: 6
  start-page: 44
  year: 2019
  ident: b0130
  article-title: Thermo-Catalytic Reforming of spent coffee grounds
  publication-title: Bioresour. Bioprocess.
– year: 2020
  ident: b0505
  article-title: Rapid pyrolysis of pulverised biomass at high temperature: Effect of particle size on char yield, retentions of alkali and alkaline earth metallic species and char particle shape
  publication-title: Energy Fuels
– volume: 81
  start-page: 127
  year: 2008
  end-page: 132
  ident: b0400
  article-title: Kinetic modelling of tyre pyrolysis in a conical spouted bed reactor
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 5
  start-page: 4905
  year: 2020
  end-page: 4912
  ident: b0070
  article-title: In-Situ Upgrading of Coal Pyrolysis Tar with Steam Catalytic Cracking over Ni/Al2O3 Catalysts
  publication-title: ChemistrySelect
– volume: 299
  year: 2020
  ident: b0495
  article-title: Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses
  publication-title: Bioresour. Technol.
– volume: 246
  start-page: 443
  year: 2019
  end-page: 453
  ident: b0555
  article-title: Investigations of thermochemical upgrading of biomass and its model compounds: Opportunities for methane utilization
  publication-title: Fuel
– volume: 268
  year: 2020
  ident: b0475
  article-title: Metal catalysts supported on biochars: Part I synthesis and characterization
  publication-title: Appl. Catal., B
– volume: 143
  start-page: 1939
  year: 2019
  end-page: 1948
  ident: b0510
  article-title: Solar pyrolysis of waste biomass: Part 1 reactor design
  publication-title: Renew. Energy
– volume: 115
  year: 2019
  ident: b0270
  article-title: Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis
  publication-title: Renewable Sustainable Energy Rev.
– volume: 42
  start-page: 17000
  year: 2017
  end-page: 17008
  ident: b0125
  article-title: Two-step steam pyrolysis of biomass for hydrogen production
  publication-title: Int. J. Hydrogen Energy
– volume: 165
  start-page: 628
  year: 2018
  end-page: 633
  ident: b0215
  article-title: Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst
  publication-title: Energy Convers. Manage.
– volume: 13
  start-page: 109
  year: 2017
  end-page: 115
  ident: b0220
  article-title: Economic analysis of hydrogen production from steam reforming process: A literature review
  publication-title: Energ. Sourc. B Energ. Econ. Plann
– volume: 102
  start-page: 822
  year: 2016
  end-page: 838
  ident: b0370
  article-title: Catalytic pyrolysis of plastic waste: A review
  publication-title: Process Saf. Environ. Prot.
– volume: 158
  start-page: 999
  year: 2015
  end-page: 1005
  ident: b0075
  article-title: Catalytic steam reforming of volatiles released via pyrolysis of wood sawdust for hydrogen-rich gas production on Fe–Zn/Al2O3 nanocatalysts
  publication-title: Fuel
– volume: 469
  start-page: 490
  year: 2014
  end-page: 511
  ident: b0435
  article-title: Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review
  publication-title: Appl. Catal. A
– volume: 43
  start-page: 11706
  year: 2018
  end-page: 11718
  ident: b0065
  article-title: Nickel based monometallic and bimetallic catalysts for synthetic and real bio-oil steam reforming
  publication-title: Int. J. Hydrogen Energy
– volume: 161
  start-page: 408
  year: 2020
  end-page: 418
  ident: b0340
  article-title: Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas
  publication-title: Renew. Energy
– volume: 189
  start-page: 1
  year: 2015
  end-page: 6
  ident: b0090
  article-title: Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: a case study with spent coffee ground
  publication-title: Bioresour. Technol.
– volume: 173
  start-page: 210
  year: 2016
  end-page: 224
  ident: b9000
  article-title: Hydrogen and syngas production by superadiabatic combustion–a review
  publication-title: Appl. Energy
– volume: 127
  year: 2020
  ident: b0150
  article-title: Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products
  publication-title: Renewable Sustainable Energy Rev.
– volume: 184
  start-page: 1
  year: 2019
  end-page: 11
  ident: b0415
  article-title: Conventional and microwave-assisted pyrolysis of gumwood: A comparison study using thermodynamic evaluation and hydrogen production
  publication-title: Fuel Process. Technol.
– volume: 70
  start-page: 1040
  year: 2017
  end-page: 1051
  ident: b0005
  article-title: A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production
  publication-title: Renewable Sustainable Energy Rev.
– volume: 158
  start-page: 226
  year: 2017
  end-page: 237
  ident: b0520
  article-title: Comprehensive CFD modelling of solar fast pyrolysis of beech wood pellets
  publication-title: Fuel Process. Technol.
– volume: 190
  start-page: 501
  year: 2017
  end-page: 509
  ident: b0025
  article-title: Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char
  publication-title: Appl. Energy
– volume: 272
  start-page: 48
  year: 2019
  end-page: 53
  ident: b0250
  article-title: Investigation into role of CO2 in two-stage pyrolysis of spent coffee grounds
  publication-title: Bioresour. Technol.
– volume: 9
  start-page: 615
  year: 2019
  ident: b0410
  article-title: Bench-Scale Steam Reforming of Methane for Hydrogen Production
  publication-title: Catalysts
– year: 2019
  ident: b0045
  article-title: Modeling & optimization of renewable hydrogen production from biomass via anaerobic digestion & dry reformation
– volume: 109
  start-page: 188
  year: 2012
  end-page: 197
  ident: b0575
  article-title: Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char
  publication-title: Bioresour. Technol.
– volume: 248
  start-page: 113
  year: 2018
  end-page: 121
  ident: b0550
  article-title: Biochemicals from food waste and recalcitrant biomass via syngasfermentation: A review
  publication-title: Bioresour. Technol.
– volume: 121762
  year: 2020
  ident: b0015
  article-title: Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review
  publication-title: J. Cleaner Prod.
– volume: 122449
  year: 2020
  ident: b0245
  article-title: Pyrolysis of food waste over a Pt catalyst in CO2 atmosphere
  publication-title: J. Hazard. Mater.
– volume: 159
  start-page: 30
  year: 2018
  end-page: 41
  ident: b0500
  article-title: Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents
  publication-title: Energy Convers. Manage.
– volume: 75
  start-page: 196
  year: 2018
  end-page: 220
  ident: b0050
  article-title: Fossil fuels, alternative energy and economic growth
  publication-title: Econ. Model.
– volume: 18
  start-page: 267
  year: 2015
  end-page: 275
  ident: b0040
  article-title: Biomass fast pyrolysis energy balance of a 1kg/h test rig
  publication-title: Int. J. Thermodyn.
– volume: 241
  start-page: 207
  year: 2017
  end-page: 213
  ident: b0115
  article-title: Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating
  publication-title: Bioresour. Technol.
– volume: 4
  start-page: 13585
  year: 2019
  end-page: 13593
  ident: b0140
  article-title: Catalytic steam reforming of biomass-derived acetic acid over two supported Ni catalysts for hydrogen-rich syngas production
  publication-title: ACS Omega
– volume: 58
  start-page: 695
  year: 2018
  end-page: 703
  ident: b0280
  article-title: Microwave pyrolysis with steam activation in producing activated carbon for removal of herbicides in agricultural surface water
  publication-title: Ind. Eng. Chem. Res.
– volume: 44
  start-page: 2289
  year: 2003
  end-page: 2296
  ident: b0080
  article-title: Catalytic pyrolysis of biomass for hydrogen rich fuel gas production
  publication-title: Energy Convers. Manage.
– volume: 119
  year: 2020
  ident: b0395
  article-title: Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review
  publication-title: Renewable Sustainable Energy Rev.
– volume: 116
  start-page: 630
  year: 2018
  end-page: 638
  ident: b0470
  article-title: Modelling and evaluating a solar pyrolysis system
  publication-title: Renew. Energy
– volume: 57
  start-page: 1126
  year: 2016
  end-page: 1140
  ident: b0230
  article-title: Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters
  publication-title: Renewable Sustainable Energy Rev.
– volume: 15
  start-page: 2293
  year: 2020
  end-page: 2309
  ident: b0285
  article-title: Syngas Production by Catalytic Pyrolysis of Rice Straw over Modified Ni-based Catalyst
  publication-title: Bioresources
– volume: 208
  start-page: 1436
  year: 2019
  end-page: 1445
  ident: b0330
  article-title: Innovative production of highly porous carbon for industrial effluent remediation via microwave vacuum pyrolysis plus sodium-potassium hydroxide mixture activation
  publication-title: J. Cleaner Prod.
– volume: 275
  year: 2020
  ident: b0200
  article-title: Coal and biomass co-pyrolysis in a fluidized-bed reactor: Numerical assessment of fuel type and blending conditions
  publication-title: Fuel
– volume: 342
  start-page: 192
  year: 2018
  end-page: 200
  ident: b0085
  article-title: Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors
  publication-title: J. Hazard. Mater.
– volume: 624
  start-page: 9
  year: 2018
  end-page: 16
  ident: b0390
  article-title: Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus)
  publication-title: Sci. Total Environ.
– volume: 25
  start-page: 709
  year: 2016
  end-page: 719
  ident: b0190
  article-title: Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen
  publication-title: J. Energy Chem.
– volume: 191
  year: 2020
  ident: b0240
  article-title: CO2-assisted catalytic pyrolysis of digestate with steel slag
  publication-title: Energy
– volume: 126
  start-page: 276
  year: 2014
  end-page: 283
  ident: b0120
  article-title: Steam gasification of safflower seed cake and catalytic tar decomposition over ceria modified iron oxide catalysts
  publication-title: Fuel Process. Technol.
– volume: 132
  year: 2019
  ident: b0100
  article-title: Valorization of alum sludge via a pyrolysis platform using CO2 as reactive gas medium
  publication-title: Environ. Int.
– volume: 94
  start-page: 1397
  year: 2019
  end-page: 1405
  ident: b0255
  article-title: Self-purging microwave pyrolysis: an innovative approach to convert oil palm shell into carbon-rich biochar for methylene blue adsorption
  publication-title: J. Chem. Technol. Biotechnol.
– volume: 274
  year: 2020
  ident: b0565
  article-title: Co-pyrolysis of waste tire and pine bark for syngas and char production
  publication-title: Fuel
– volume: 133
  start-page: 349
  year: 2017
  end-page: 362
  ident: b0175
  article-title: Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production
  publication-title: Energy Convers. Manage.
– volume: 12
  start-page: 1007
  year: 2019
  ident: b0290
  article-title: Biogas upgrading via dry reforming over a Ni-Sn/CeO2-Al2O3 catalyst: Influence of the biogas source
  publication-title: Energies
– volume: 20
  start-page: 8
  year: 2018
  end-page: 14
  ident: b0315
  article-title: H2 and syngas production from catalytic cracking of pig manure and compost pyrolysis vapor over Ni-based catalysts
  publication-title: Pol. J. Chem. Technol.
– volume: 25
  start-page: 10
  year: 2016
  end-page: 25
  ident: b0375
  article-title: Biomass gasification technology: The state of the art overview
  publication-title: J. Energy Chem.
– volume: 392
  start-page: 248
  year: 2011
  end-page: 255
  ident: b0560
  article-title: Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas
  publication-title: Appl. Catal., A
– year: 2019
  ident: b0430
  article-title: Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification
  publication-title: J. Energy Inst.
– volume: 332
  start-page: 192
  year: 2018
  end-page: 204
  ident: b0145
  article-title: Kinetic model considering catalyst deactivation for the steam reforming of bio-oil over Ni/La2O3-αAl2O3
  publication-title: Chem. Eng. J.
– volume: 17
  year: 2019
  ident: b0010
  article-title: Steam Reforming of Biomass Pyrolysis Oil: A Review
  publication-title: Int. J. Chem. React. Eng.
– volume: 162
  start-page: 309
  year: 2018
  end-page: 317
  ident: b0355
  article-title: Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste
  publication-title: Energy
– volume: 34
  start-page: 4828
  year: 2020
  end-page: 4836
  ident: b0455
  article-title: Hydrogen-Rich Gas Stream from Steam Gasification of Biomass: Eggshell as a CO2 Sorbent
  publication-title: Energy Fuels
– reference: Setiabudi, H., Aziz, M., Abdullah, S., Teh, L., Jusoh, R. 2019. Hydrogen production from catalytic steam reforming of biomass pyrolysis oil or bio-oil derivatives: A review. Int. J. Hydrogen Energy.
– volume: 92
  start-page: 43
  year: 2011
  end-page: 49
  ident: b0600
  article-title: Microwave pyrolysis of straw bale and energy balance analysis
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 10
  start-page: 12582
  year: 2020
  end-page: 12597
  ident: b0490
  article-title: Process analysis of solar steam reforming of methane for producing low-carbon hydrogen
  publication-title: RSC Adv.
– volume: 263
  year: 2020
  ident: b0320
  article-title: Co-pyrolysis of lignite and vacuum residue: Product distribution and hydrogen transfer
  publication-title: Fuel
– volume: 187
  year: 2019
  ident: b0585
  article-title: Solar pyrolysis of heavy metal contaminated biomass for gas fuel production
  publication-title: Energy
– volume: 29
  start-page: 2649
  year: 2009
  end-page: 2655
  ident: b0350
  article-title: Kinetics of scrap tyre pyrolysis under vacuum conditions
  publication-title: Waste Manage.
– volume: 44
  start-page: 3849
  year: 2018
  end-page: 3865
  ident: b0335
  article-title: Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation
  publication-title: Res. Chem. Intermed.
– reference: Iulianelli, A., Basile, A. 2020. Development of membrane reactor technology for H2 production in reforming process for low-temperature fuel cells. In Current Trends and Future Developments on (Bio-) Membranes, 287-305.
– volume: 249
  start-page: 983
  year: 2018
  end-page: 991
  ident: b0345
  article-title: Pyrolysis/gasification of pine sawdust biomass briquettes under carbon dioxide atmosphere: Study on carbon dioxide reduction (utilization) and biochar briquettes physicochemical properties
  publication-title: Bioresour. Technol.
– volume: 268
  year: 2020
  ident: b0480
  article-title: Hydrodeoxygenation of vanillin over noble metal catalyst supported on biochars: Part II: Catalytic behaviour
  publication-title: Appl. Catal., B
– volume: 147
  start-page: 937
  year: 2020
  end-page: 946
  ident: b0425
  article-title: Valorizing of weeds algae through the solar assisted pyrolysis: Effects of dependable parameters on yields and characterization of products
  publication-title: Renew. Energy
– volume: 115
  start-page: 232
  year: 2016
  end-page: 243
  ident: b0180
  article-title: Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production: parametric investigation
  publication-title: Energy Convers. Manage.
– volume: 140
  start-page: 161
  year: 2016
  end-page: 170
  ident: b0235
  article-title: Ni/TiO2 for low temperature steam reforming of methane
  publication-title: Chem. Eng. Sci.
– volume: 389
  year: 2020
  ident: b0135
  article-title: Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions
  publication-title: Chem. Eng. J.
– volume: 42
  start-page: 5513
  year: 2017
  end-page: 5522
  ident: b0440
  article-title: Hydrogen production from algae biomass in rich natural gas-air filtration combustion
  publication-title: Int. J. Hydrogen Energy
– volume: 106
  start-page: 987
  year: 2015
  end-page: 998
  ident: b0580
  article-title: Parametric study and process optimization for solar pyrolysis of beech wood
  publication-title: Energy Convers. Manage.
– volume: 8
  start-page: 2735
  year: 2017
  end-page: 2746
  ident: b0110
  article-title: Hydrogen-rich gas production from steam gasification of bio-char in the presence of CaO
  publication-title: Waste Biomass Valorization
– volume: 153
  start-page: 726
  year: 2018
  end-page: 731
  ident: b0265
  article-title: Effects of calcium carbonate on pyrolysis of sewage sludge
  publication-title: Energy
– volume: 124
  start-page: 175
  year: 2017
  end-page: 179
  ident: b0300
  article-title: Hydrogen production from microwave catalytic pyrolysis of spruce sawdust
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 42
  start-page: 18209
  year: 2017
  end-page: 18215
  ident: b0515
  article-title: Gaseous products evolution during microwave pyrolysis of tire powders
  publication-title: Int. J. Hydrogen Energy
– start-page: 125331
  year: 2020
  ident: b0295
  article-title: CO2 Effects on Catalytic Pyrolysis of Yard Trimming over Concrete Waste
– volume: 113
  year: 2019
  ident: b0405
  article-title: Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review
  publication-title: Renewable Sustainable Energy Rev.
– volume: 172
  start-page: 381
  year: 2018
  end-page: 390
  ident: b0545
  article-title: Syngas production from waste tires using a hybrid filtration reactor under different gasifier agents
  publication-title: Energy Convers. Manage.
– volume: 252
  year: 2019
  ident: b0325
  article-title: Hydrogen production from partial oxidation of propane: Effect of SiC addition on Ni/Al2O3 catalyst
  publication-title: Appl. Energy
– start-page: 31
  year: 2015
  end-page: 59
  ident: b0055
  article-title: Membrane reactors for methane steam reforming (MSR)
  publication-title: Membrane Reactors for Energy Applications and Basic Chemical Production
– volume: 36
  start-page: 11501
  year: 2011
  end-page: 11511
  ident: b0170
  article-title: Well-to-Wheels analysis of hydrogen production from bio-oil reforming for use in internal combustion engines
  publication-title: Int. J. Hydrogen Energy
– volume: 254
  year: 2019
  ident: b0420
  article-title: Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires
  publication-title: Appl. Energy
– volume: 43
  start-page: 22032
  year: 2018
  end-page: 22045
  ident: b0525
  article-title: Hydrogen production from bio-oil: A thermodynamic analysis of sorption-enhanced chemical looping steam reforming
  publication-title: Int. J. Hydrogen Energy
– volume: 43
  start-page: 9514
  year: 2018
  end-page: 9528
  ident: b0460
  article-title: Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes
  publication-title: Int. J. Hydrogen Energy
– volume: 21
  start-page: 373
  year: 2007
  end-page: 378
  ident: b0365
  article-title: Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls
  publication-title: Energy Fuels
– volume: 181
  start-page: 407
  year: 2019
  end-page: 416
  ident: b0165
  article-title: The effects of temperature and molten salt on solar pyrolysis of lignite
  publication-title: Energy
– volume: 151
  start-page: 1102
  year: 2020
  end-page: 1109
  ident: b0570
  article-title: Distribution of solar pyrolysis products and product gas composition produced from agricultural residues and animal wastes at different operating parameters
  publication-title: Renew. Energy
– volume: 44
  start-page: 20815
  year: 2019
  end-page: 20825
  ident: b0105
  article-title: Hydrogen production via CO2 reforming of CH4 over low-cost Ni/SBA-15 from silica-rich palm oil fuel ash (POFA) waste
  publication-title: Int. J. Hydrogen Energy
– volume: 32
  start-page: 1
  year: 2001
  end-page: 27
  ident: b0450
  article-title: Vacuum pyrolysis of automobile shredder residues
  publication-title: Resour. Conserv. Recycl.
– volume: 144
  start-page: 240
  year: 2013
  end-page: 246
  ident: b0060
  article-title: Microwave pyrolysis of microalgae for high syngas production
  publication-title: Bioresour. Technol.
– volume: 302
  year: 2020
  ident: b0595
  article-title: Synergistic effect of mixing wheat straw and lignite in co-pyrolysis and steam co-gasification
  publication-title: Bioresour. Technol.
– volume: 93
  start-page: 14
  year: 2019
  end-page: 22
  ident: b0155
  article-title: Pyrolysis of date palm waste to biochar using concentrated solar thermal energy: Economic and sustainability implications
  publication-title: Waste Manage.
– volume: 6
  start-page: 5349
  year: 2018
  end-page: 5357
  ident: b0590
  article-title: Renewable high-purity mono-phenol production from catalytic microwave-induced pyrolysis of cellulose over biomass-derived activated carbon catalyst
  publication-title: ACS Sustain. Chem. Eng.
– volume: 121762
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0015
  article-title: Insight into the co-pyrolysis of different blended feedstocks to biochar for the adsorption of organic and inorganic pollutants: A review
  publication-title: J. Cleaner Prod.
– volume: 43
  start-page: 9514
  issue: 20
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0465
  article-title: Techno-economic analysis and life cycleassessment of hydrogen production from differentbiomass gasification processes
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.04.024
– volume: 42
  start-page: 5513
  issue: 8
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0440
  article-title: Hydrogen production from algae biomass in rich natural gas-air filtration combustion
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2016.03.082
– volume: 132
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0100
  article-title: Valorization of alum sludge via a pyrolysis platform using CO2 as reactive gas medium
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.105037
– volume: 147
  start-page: 937
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0425
  article-title: Valorizing of weeds algae through the solar assisted pyrolysis: Effects of dependable parameters on yields and characterization of products
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.09.046
– volume: 274
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0565
  article-title: Co-pyrolysis of waste tire and pine bark for syngas and char production
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.117878
– volume: 302
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0595
  article-title: Synergistic effect of mixing wheat straw and lignite in co-pyrolysis and steam co-gasification
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.122876
– volume: 58
  start-page: 695
  issue: 2
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0280
  article-title: Microwave pyrolysis with steam activation in producing activated carbon for removal of herbicides in agricultural surface water
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.8b03319
– volume: 274
  start-page: 145
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0535
  article-title: Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.11.083
– volume: 89
  start-page: 27
  year: 2016
  ident: 10.1016/j.biortech.2020.124299_b0310
  article-title: Product distribution from solar pyrolysis of agricultural and forestry biomass residues
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2015.11.071
– volume: 20
  start-page: 8
  issue: 3
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0315
  article-title: H2 and syngas production from catalytic cracking of pig manure and compost pyrolysis vapor over Ni-based catalysts
  publication-title: Pol. J. Chem. Technol.
  doi: 10.2478/pjct-2018-0032
– volume: 165
  start-page: 628
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0215
  article-title: Biodiesel production from waste cooking oil using biochar derived from chicken manure as a porous media and catalyst
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.03.096
– volume: 133
  start-page: 349
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0175
  article-title: Optimization of process parameters for microwave pyrolysis of oil palm fiber (OPF) for hydrogen and biochar production
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.10.046
– volume: 57
  start-page: 1126
  year: 2016
  ident: 10.1016/j.biortech.2020.124299_b0230
  article-title: Lignocellulosic biomass pyrolysis: A review of product properties and effects of pyrolysis parameters
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2015.12.185
– volume: 43
  start-page: 22032
  issue: 49
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0525
  article-title: Hydrogen production from bio-oil: A thermodynamic analysis of sorption-enhanced chemical looping steam reforming
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.10.068
– volume: 10
  start-page: 12582
  issue: 21
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0490
  article-title: Process analysis of solar steam reforming of methane for producing low-carbon hydrogen
  publication-title: RSC Adv.
  doi: 10.1039/C9RA09835F
– volume: 191
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0240
  article-title: CO2-assisted catalytic pyrolysis of digestate with steel slag
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116529
– volume: 18
  start-page: 267
  issue: 4
  year: 2015
  ident: 10.1016/j.biortech.2020.124299_b0040
  article-title: Biomass fast pyrolysis energy balance of a 1kg/h test rig
  publication-title: Int. J. Thermodyn.
  doi: 10.5541/ijot.5000147483
– volume: 44
  start-page: 2289
  issue: 14
  year: 2003
  ident: 10.1016/j.biortech.2020.124299_b0080
  article-title: Catalytic pyrolysis of biomass for hydrogen rich fuel gas production
  publication-title: Energy Convers. Manage.
  doi: 10.1016/S0196-8904(02)00254-6
– volume: 75
  start-page: 196
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0050
  article-title: Fossil fuels, alternative energy and economic growth
  publication-title: Econ. Model.
  doi: 10.1016/j.econmod.2018.06.019
– volume: 129
  start-page: 134
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0160
  article-title: Operating parameters for bio-oil production in biomass pyrolysis: A review
  publication-title: Journal of Analytical and Applied Pyrolysis
  doi: 10.1016/j.jaap.2017.11.019
– volume: 119
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0395
  article-title: Coke formation and deactivation during catalytic reforming of biomass and waste pyrolysis products: A review
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2019.109600
– volume: 13
  start-page: 109
  issue: 2
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0220
  article-title: Economic analysis of hydrogen production from steam reforming process: A literature review
  publication-title: Energ. Sourc. B Energ. Econ. Plann
– volume: 162
  start-page: 309
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0355
  article-title: Production of value-added liquid fuel via microwave co-pyrolysis of used frying oil and plastic waste
  publication-title: Energy
  doi: 10.1016/j.energy.2018.08.002
– volume: 6
  start-page: 5349
  issue: 4
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0590
  article-title: Renewable high-purity mono-phenol production from catalytic microwave-induced pyrolysis of cellulose over biomass-derived activated carbon catalyst
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b00129
– volume: 332
  start-page: 192
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0145
  article-title: Kinetic model considering catalyst deactivation for the steam reforming of bio-oil over Ni/La2O3-αAl2O3
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2017.09.063
– volume: 21
  start-page: 373
  issue: 1
  year: 2007
  ident: 10.1016/j.biortech.2020.124299_b0365
  article-title: Evidence of self-gasification during the microwave-induced pyrolysis of coffee hulls
  publication-title: Energy Fuels
  doi: 10.1021/ef060331i
– volume: 113
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0405
  article-title: Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2019.109266
– volume: 624
  start-page: 9
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0390
  article-title: Production of bio-fertilizer from microwave vacuum pyrolysis of palm kernel shell for cultivation of Oyster mushroom (Pleurotus ostreatus)
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.12.108
– volume: 126
  start-page: 276
  year: 2014
  ident: 10.1016/j.biortech.2020.124299_b0120
  article-title: Steam gasification of safflower seed cake and catalytic tar decomposition over ceria modified iron oxide catalysts
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2014.04.035
– volume: 122449
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0245
  article-title: Pyrolysis of food waste over a Pt catalyst in CO2 atmosphere
  publication-title: J. Hazard. Mater.
– volume: 285
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0260
  article-title: Orange peel valorization by pyrolysis under the carbon dioxide environment
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.121356
– volume: 42
  start-page: 18209
  issue: 29
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0515
  article-title: Gaseous products evolution during microwave pyrolysis of tire powders
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.04.169
– volume: 173
  start-page: 210
  year: 2016
  ident: 10.1016/j.biortech.2020.124299_b9000
  article-title: Hydrogen and syngas production by superadiabatic combustion–a review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.04.018
– start-page: 31
  year: 2015
  ident: 10.1016/j.biortech.2020.124299_b0055
  article-title: Membrane reactors for methane steam reforming (MSR)
  publication-title: Membrane Reactors for Energy Applications and Basic Chemical Production
  doi: 10.1016/B978-1-78242-223-5.00002-9
– volume: 127
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0150
  article-title: Vacuum pyrolysis incorporating microwave heating and base mixture modification: An integrated approach to transform biowaste into eco-friendly bioenergy products
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2020.109871
– volume: 11
  start-page: 3604
  issue: 13
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0540
  article-title: Choosing physical, physicochemical and chemical methods of pre-treating lignocellulosic wastes to repurpose into solid fuels
  publication-title: Sustainability
  doi: 10.3390/su11133604
– volume: 44
  start-page: 3849
  issue: 6
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0335
  article-title: Production of activated carbon as catalyst support by microwave pyrolysis of palm kernel shell: a comparative study of chemical versus physical activation
  publication-title: Res. Chem. Intermed.
  doi: 10.1007/s11164-018-3388-y
– start-page: 1032
  year: 2001
  ident: 10.1016/j.biortech.2020.124299_b0445
– volume: 17
  issue: 4
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0010
  article-title: Steam Reforming of Biomass Pyrolysis Oil: A Review
  publication-title: Int. J. Chem. React. Eng.
– volume: 43
  start-page: 9514
  issue: 20
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0460
  article-title: Techno-economic analysis and life cycle assessment of hydrogen production from different biomass gasification processes
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.04.024
– volume: 153
  start-page: 726
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0265
  article-title: Effects of calcium carbonate on pyrolysis of sewage sludge
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.100
– volume: 143
  start-page: 1939
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0510
  article-title: Solar pyrolysis of waste biomass: Part 1 reactor design
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.06.011
– start-page: 125331
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0295
– volume: 34
  start-page: 4828
  issue: 4
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0455
  article-title: Hydrogen-Rich Gas Stream from Steam Gasification of Biomass: Eggshell as a CO2 Sorbent
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.9b03719
– volume: 4
  start-page: 13585
  issue: 8
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0140
  article-title: Catalytic steam reforming of biomass-derived acetic acid over two supported Ni catalysts for hydrogen-rich syngas production
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b01985
– volume: 309
  start-page: 2
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0210
  article-title: Effect of calcium addition on Mg-AlOx supported Ni catalysts for hydrogen production from pyrolysis-gasification of biomass
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2018.01.004
– volume: 121102
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0185
  article-title: Thermal behavior, kinetics and gas evolution characteristics for the co-pyrolysis of real-world plastic and tyre wastes
  publication-title: J. Cleaner Prod.
– volume: 248
  start-page: 113
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0550
  article-title: Biochemicals from food waste and recalcitrant biomass via syngasfermentation: A review
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.06.075
– volume: 241
  start-page: 207
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0115
  article-title: Ex-situ catalytic co-pyrolysis of lignin and polypropylene to upgrade bio-oil quality by microwave heating
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.04.104
– volume: 102
  start-page: 822
  year: 2016
  ident: 10.1016/j.biortech.2020.124299_b0370
  article-title: Catalytic pyrolysis of plastic waste: A review
  publication-title: Process Saf. Environ. Prot.
  doi: 10.1016/j.psep.2016.06.022
– volume: 314
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0605
  article-title: Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2020.123756
– volume: 299
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0495
  article-title: Advances in the thermo-chemical production of hydrogen from biomass and residual wastes: Summary of recent techno-economic analyses
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2019.122557
– volume: 187
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0585
  article-title: Solar pyrolysis of heavy metal contaminated biomass for gas fuel production
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116016
– volume: 93
  start-page: 14
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0155
  article-title: Pyrolysis of date palm waste to biochar using concentrated solar thermal energy: Economic and sustainability implications
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2019.05.022
– volume: 42
  start-page: 17000
  issue: 27
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0125
  article-title: Two-step steam pyrolysis of biomass for hydrogen production
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.05.227
– volume: 249
  start-page: 983
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0345
  article-title: Pyrolysis/gasification of pine sawdust biomass briquettes under carbon dioxide atmosphere: Study on carbon dioxide reduction (utilization) and biochar briquettes physicochemical properties
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.11.012
– volume: 268
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0480
  article-title: Hydrodeoxygenation of vanillin over noble metal catalyst supported on biochars: Part II: Catalytic behaviour
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118425
– volume: 5
  start-page: 4905
  issue: 16
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0070
  article-title: In-Situ Upgrading of Coal Pyrolysis Tar with Steam Catalytic Cracking over Ni/Al2O3 Catalysts
  publication-title: ChemistrySelect
  doi: 10.1002/slct.202000476
– volume: 70
  start-page: 1040
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0005
  article-title: A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2016.12.008
– volume: 272
  start-page: 48
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0250
  article-title: Investigation into role of CO2 in two-stage pyrolysis of spent coffee grounds
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2018.10.009
– volume: 246
  start-page: 443
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0555
  article-title: Investigations of thermochemical upgrading of biomass and its model compounds: Opportunities for methane utilization
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.03.015
– volume: 101
  start-page: 1968
  issue: 6
  year: 2010
  ident: 10.1016/j.biortech.2020.124299_b0195
  article-title: Hydrogen-rich fuel gas from rice straw via microwave-induced pyrolysis
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.09.073
– year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0430
  article-title: Biomass thermochemical conversion: A review on tar elimination from biomass catalytic gasification
  publication-title: J. Energy Inst.
– volume: 469
  start-page: 490
  year: 2014
  ident: 10.1016/j.biortech.2020.124299_b0435
  article-title: Production of green aromatics and olefins by catalytic cracking of oxygenate compounds derived from biomass pyrolysis: A review
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2013.09.036
– volume: 43
  start-page: 11706
  issue: 26
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0065
  article-title: Nickel based monometallic and bimetallic catalysts for synthetic and real bio-oil steam reforming
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.03.049
– volume: 124
  start-page: 175
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0300
  article-title: Hydrogen production from microwave catalytic pyrolysis of spruce sawdust
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2017.02.008
– volume: 29
  start-page: 2649
  issue: 10
  year: 2009
  ident: 10.1016/j.biortech.2020.124299_b0350
  article-title: Kinetics of scrap tyre pyrolysis under vacuum conditions
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2009.06.005
– ident: 10.1016/j.biortech.2020.124299_b0205
  doi: 10.1016/B978-0-12-817807-2.00012-5
– year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0505
  article-title: Rapid pyrolysis of pulverised biomass at high temperature: Effect of particle size on char yield, retentions of alkali and alkaline earth metallic species and char particle shape
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.0c00898
– volume: 389
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0135
  article-title: Valorization of biomass waste to engineered activated biochar by microwave pyrolysis: Progress, challenges, and future directions
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2020.124401
– volume: 348
  start-page: 732
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0035
  article-title: Reactor systems for syngas fermentation processes: A review
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2018.05.003
– year: 2013
  ident: 10.1016/j.biortech.2020.124299_b0225
  article-title: Hydrogen production technologies: current state and future developments
– volume: 190
  start-page: 501
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0025
  article-title: Hydrogen-rich syngas production and tar removal from biomass gasification using sacrificial tyre pyrolysis char
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.12.099
– volume: 115
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0270
  article-title: Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2019.109359
– volume: 36
  start-page: 11501
  issue: 18
  year: 2011
  ident: 10.1016/j.biortech.2020.124299_b0170
  article-title: Well-to-Wheels analysis of hydrogen production from bio-oil reforming for use in internal combustion engines
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2011.06.052
– volume: 392
  start-page: 248
  issue: 1–2
  year: 2011
  ident: 10.1016/j.biortech.2020.124299_b0560
  article-title: Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas
  publication-title: Appl. Catal., A
  doi: 10.1016/j.apcata.2010.11.013
– ident: 10.1016/j.biortech.2020.124299_b0485
  doi: 10.1016/j.ijhydene.2019.10.141
– volume: 342
  start-page: 192
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0085
  article-title: Vacuum pyrolysis characteristics and parameter optimization of recycling organic materials from waste tantalum capacitors
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2017.08.021
– volume: 116
  start-page: 630
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0470
  article-title: Modelling and evaluating a solar pyrolysis system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.10.023
– volume: 263
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0320
  article-title: Co-pyrolysis of lignite and vacuum residue: Product distribution and hydrogen transfer
  publication-title: Fuel
  doi: 10.1016/j.fuel.2019.116703
– volume: 12
  start-page: 1007
  issue: 6
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0290
  article-title: Biogas upgrading via dry reforming over a Ni-Sn/CeO2-Al2O3 catalyst: Influence of the biogas source
  publication-title: Energies
  doi: 10.3390/en12061007
– volume: 158
  start-page: 999
  year: 2015
  ident: 10.1016/j.biortech.2020.124299_b0075
  article-title: Catalytic steam reforming of volatiles released via pyrolysis of wood sawdust for hydrogen-rich gas production on Fe–Zn/Al2O3 nanocatalysts
  publication-title: Fuel
  doi: 10.1016/j.fuel.2015.05.040
– volume: 144
  start-page: 240
  year: 2013
  ident: 10.1016/j.biortech.2020.124299_b0060
  article-title: Microwave pyrolysis of microalgae for high syngas production
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2013.06.102
– volume: 657
  start-page: 1357
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0305
  article-title: Fe-rich biomass derived char for microwave-assisted methane reforming with carbon dioxide
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2018.12.097
– volume: 106
  start-page: 987
  year: 2015
  ident: 10.1016/j.biortech.2020.124299_b0580
  article-title: Parametric study and process optimization for solar pyrolysis of beech wood
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.10.039
– volume: 158
  start-page: 226
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0520
  article-title: Comprehensive CFD modelling of solar fast pyrolysis of beech wood pellets
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2017.01.006
– volume: 94
  start-page: 1397
  issue: 5
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0255
  article-title: Self-purging microwave pyrolysis: an innovative approach to convert oil palm shell into carbon-rich biochar for methylene blue adsorption
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/jctb.5884
– volume: 151
  start-page: 1102
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0570
  article-title: Distribution of solar pyrolysis products and product gas composition produced from agricultural residues and animal wastes at different operating parameters
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.11.107
– volume: 25
  start-page: 709
  issue: 4
  year: 2016
  ident: 10.1016/j.biortech.2020.124299_b0190
  article-title: Catalytic performances of Ni/mesoporous SiO2 catalysts for dry reforming of methane to hydrogen
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2016.03.004
– volume: 268
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0475
  article-title: Metal catalysts supported on biochars: Part I synthesis and characterization
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118423
– volume: 92
  start-page: 43
  issue: 1
  year: 2011
  ident: 10.1016/j.biortech.2020.124299_b0600
  article-title: Microwave pyrolysis of straw bale and energy balance analysis
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2011.04.004
– volume: 6
  start-page: 44
  issue: 1
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0130
  article-title: Thermo-Catalytic Reforming of spent coffee grounds
  publication-title: Bioresour. Bioprocess.
  doi: 10.1186/s40643-019-0281-5
– volume: 275
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0200
  article-title: Coal and biomass co-pyrolysis in a fluidized-bed reactor: Numerical assessment of fuel type and blending conditions
  publication-title: Fuel
  doi: 10.1016/j.fuel.2020.118004
– volume: 201
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0095
  article-title: Carbon dioxide-cofeeding pyrolysis of pine sawdust over nickle-based catalyst for hydrogen production
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2019.112140
– volume: 8
  start-page: 2735
  issue: 8
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0110
  article-title: Hydrogen-rich gas production from steam gasification of bio-char in the presence of CaO
  publication-title: Waste Biomass Valorization
  doi: 10.1007/s12649-016-9784-x
– volume: 172
  start-page: 381
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0545
  article-title: Syngas production from waste tires using a hybrid filtration reactor under different gasifier agents
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.07.046
– volume: 92
  start-page: 1987
  issue: 6
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0020
  article-title: Pyrolysis-catalytic steam reforming of agricultural biomass wastes and biomass components for production of hydrogen/syngas
  publication-title: J. Energy Inst.
  doi: 10.1016/j.joei.2018.10.013
– volume: 140
  start-page: 161
  year: 2016
  ident: 10.1016/j.biortech.2020.124299_b0235
  article-title: Ni/TiO2 for low temperature steam reforming of methane
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.10.021
– volume: 161
  start-page: 408
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0340
  article-title: Catalytic steam reforming of in-situ tar from rice husk over MCM-41 supported LaNiO3 to produce hydrogen rich syngas
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.07.089
– volume: 101
  start-page: 8424
  issue: 21
  year: 2010
  ident: 10.1016/j.biortech.2020.124299_b0385
  article-title: Pyrolysis of fast-growing aquatic biomass–Lemna minor (duckweed): Characterization of pyrolysis products
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.05.089
– volume: 109
  start-page: 188
  year: 2012
  ident: 10.1016/j.biortech.2020.124299_b0575
  article-title: Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.01.019
– volume: 25
  start-page: 10
  issue: 1
  year: 2016
  ident: 10.1016/j.biortech.2020.124299_b0375
  article-title: Biomass gasification technology: The state of the art overview
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2015.11.005
– volume: 181
  start-page: 407
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0165
  article-title: The effects of temperature and molten salt on solar pyrolysis of lignite
  publication-title: Energy
  doi: 10.1016/j.energy.2019.05.181
– volume: 189
  start-page: 1
  year: 2015
  ident: 10.1016/j.biortech.2020.124299_b0090
  article-title: Carbon dioxide assisted sustainability enhancement of pyrolysis of waste biomass: a case study with spent coffee ground
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2015.04.002
– volume: 122610
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0530
  article-title: Simultaneous removal of toxic ammonia and lettuce cultivation in aquaponic system using microwave pyrolysis biochar
  publication-title: J. Hazard. Mater.
– volume: 159
  start-page: 30
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0500
  article-title: Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2017.12.096
– volume: 171
  start-page: 1292
  year: 2018
  ident: 10.1016/j.biortech.2020.124299_b0360
  article-title: Microwave co-pyrolysis of waste polyolefins and waste cooking oil: influence of N2 atmosphere versus vacuum environment
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.06.073
– volume: 15
  start-page: 2293
  issue: 2
  year: 2020
  ident: 10.1016/j.biortech.2020.124299_b0285
  article-title: Syngas Production by Catalytic Pyrolysis of Rice Straw over Modified Ni-based Catalyst
  publication-title: Bioresources
  doi: 10.15376/biores.15.2.2293-2309
– volume: 42
  start-page: 13598
  issue: 19
  year: 2017
  ident: 10.1016/j.biortech.2020.124299_b0030
  article-title: Solar-driven pyrolysis and gasification of low-grade carbonaceous materials
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2017.02.026
– volume: 92
  start-page: 327
  issue: 1
  year: 2012
  ident: 10.1016/j.biortech.2020.124299_b0275
  article-title: Microwave-heated pyrolysis of waste automotive engine oil: Influence of operation parameters on the yield, composition, and fuel properties of pyrolysis oil
  publication-title: Fuel
  doi: 10.1016/j.fuel.2011.07.027
– volume: 81
  start-page: 127
  issue: 1
  year: 2008
  ident: 10.1016/j.biortech.2020.124299_b0400
  article-title: Kinetic modelling of tyre pyrolysis in a conical spouted bed reactor
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2007.09.011
– volume: 184
  start-page: 1
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0415
  article-title: Conventional and microwave-assisted pyrolysis of gumwood: A comparison study using thermodynamic evaluation and hydrogen production
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2018.11.007
– volume: 252
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0325
  article-title: Hydrogen production from partial oxidation of propane: Effect of SiC addition on Ni/Al2O3 catalyst
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113435
– volume: 254
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0420
  article-title: Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.113678
– volume: 9
  start-page: 615
  issue: 7
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0410
  article-title: Bench-Scale Steam Reforming of Methane for Hydrogen Production
  publication-title: Catalysts
  doi: 10.3390/catal9070615
– year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0045
– volume: 44
  start-page: 20815
  issue: 37
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0105
  article-title: Hydrogen production via CO2 reforming of CH4 over low-cost Ni/SBA-15 from silica-rich palm oil fuel ash (POFA) waste
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2018.06.169
– volume: 115
  start-page: 232
  year: 2016
  ident: 10.1016/j.biortech.2020.124299_b0180
  article-title: Microwave pyrolysis of oil palm fiber (OPF) for hydrogen production: parametric investigation
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2016.02.058
– volume: 208
  start-page: 1436
  year: 2019
  ident: 10.1016/j.biortech.2020.124299_b0330
  article-title: Innovative production of highly porous carbon for industrial effluent remediation via microwave vacuum pyrolysis plus sodium-potassium hydroxide mixture activation
  publication-title: J. Cleaner Prod.
  doi: 10.1016/j.jclepro.2018.10.214
– volume: 32
  start-page: 1
  issue: 1
  year: 2001
  ident: 10.1016/j.biortech.2020.124299_b0450
  article-title: Vacuum pyrolysis of automobile shredder residues
  publication-title: Resour. Conserv. Recycl.
  doi: 10.1016/S0921-3449(00)00088-4
SSID ssj0003172
Score 2.6296813
SecondaryResourceType review_article
Snippet •We review the current pyrolysis technology for hydrogen and gas fuel production.•Advanced pyrolysis is promising for sustainable hydrogen and gas fuel...
Hydrogen and gaseous fuel derived from wastes have opened up promising alternative pathways for the production of renewable and sustainable fuels to substitute...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 124299
SubjectTerms Biofuel
Biogas
fossil fuels
fuel production
gasification
Hydrogen
pollution
Pyrolysis
Syngas
Waste Products
Waste valorization
Title Progress in waste valorization using advanced pyrolysis techniques for hydrogen and gaseous fuel production
URI https://dx.doi.org/10.1016/j.biortech.2020.124299
https://www.ncbi.nlm.nih.gov/pubmed/33129091
https://www.proquest.com/docview/2456417478
https://www.proquest.com/docview/2551979209
Volume 320
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLYQDMCAuG9kJNbQJk6cZKwqUAGBkACpm2XHz6UFpVVphVj47byXo8AADKzxIcvf8zvyLsZO_MTY2CXGs4HvvND5oaddHHvSSKubiZPgKN_5-kZ2HsLLbtSdY-06F4bCKiveX_L0gltXXxrVbTZG_X7jjpTvJEIRQ40KYtGlDPYwJio_ff8M80D5WHgScLJHs79kCQ9OTZ8iWgunRECFFog5_ySgflJAC0F0vspWKg2St8pDrrE5yNfZcqs3rqpowDpbbNdt3HDkS8XBDfZ0S_FYyN14P-evGiHmSGrDcZWNySkMvsfrwAA-ehsPi5olfFbr9YWjmssf3yxuBDnXueU9lITDKQ5M4ZmPyhKyuNkmezg_u293vKrfgpcJX048CMLINYWj5Lcsw5ctrMsg0b4wKZhUp5lDDuAsmnAAUWohQVsS0gCaQoQ6sWKLzefDHHYY1wKkiSTNcWhTSaMRc5BkzsQuc_Eui-pLVllVjJx6YjyrOupsoGpwFIGjSnB2WWO2blSW4_hzRVpjqL4RlkKZ8efa4xp0haiRK0XndKGK3MWhT70HfpkTUVJwGjRxn-2SYmZnFoL-_6X-3j9Ot8-WAgqwKf4HHbD5yXgKh6ghTcxR8QSO2ELr4qpz8wG7iRRQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCa69NDtUGzdq91LA3b1Elu2bB-DYEW6tsGAtUBugmRRWbrCCbIEQ__9SFsO2kPbw66WKAiixIdJfgT4EhfW5b6wkUtiH6U-TiPj8zxSVjkzKLxCz_XO5xM1vky_T7PpDoy6WhhOqwyyv5XpjbQOX_rhNPvL-bz_k43vIiMVw40Kcjl9AruMTpX1YHd4cjqebAUyqcgmmEDzIya4VSh89dXOOam1iUskjLXA8vk-HXWfDdroouPnsB-MSDFs9_kCdrA-gGfD2SoAaeAB7I26Tm40cgt08CX8_sEpWSTgxLwWfw1xWdBtW6xCQabgTPiZ6HIDxPJmtWhgS8QW7vWPIEtX_LpxtBDWwtROzEgZLjY0sMFrsWxRZGmxV3B5_O1iNI5Cy4WokrFaR5ikmR9Iz_VvVUWPWzpfYWFiaUu0pSkrT0LAO_LiELPSYUHuJJYJDqRMTeHka-jVixrfgjASlc0Uz_HkVilriO2o2KPJfeXzQ8i6Q9ZVwCPnthjXuks8u9IdczQzR7fMOYT-lm7ZInI8SlF2PNR37pYmtfEo7eeO6Zq4xtEUU_OBao4YpzG3H3hgTsZ1wWUyoHXetDdmu2cp-RdgGR_9x-4-wd744vxMn51MTt_B04TzbZrfQ--ht15t8AMZTGv7MTyIfx43FwE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Progress+in+waste+valorization+using+advanced+pyrolysis+techniques+for+hydrogen+and+gaseous+fuel+production&rft.jtitle=Bioresource+technology&rft.au=Foong%2C+Shin+Ying&rft.au=Chan%2C+Yi+Herng&rft.au=Cheah%2C+Wai+Yan&rft.au=Kamaludin%2C+Noor+Haziqah&rft.date=2021-01-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=320&rft.issue=Pt+A&rft.spage=124299&rft_id=info:doi/10.1016%2Fj.biortech.2020.124299&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon