FDNet: A Novel Image Focus Discriminative Network for Enhancing Camera Autofocus
Accurate activation and optimization of autofocus (AF) functions are essential for capturing high-quality images and minimizing camera response time. Traditional contrast detection autofocus (CDAF) methods suffer from a trade-off between accuracy and robustness, while learning-based methods often in...
Saved in:
Published in | Neural processing letters Vol. 57; no. 5; p. 76 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
18.08.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1573-773X 1370-4621 1573-773X |
DOI | 10.1007/s11063-025-11788-0 |
Cover
Abstract | Accurate activation and optimization of autofocus (AF) functions are essential for capturing high-quality images and minimizing camera response time. Traditional contrast detection autofocus (CDAF) methods suffer from a trade-off between accuracy and robustness, while learning-based methods often incur high spatio-temporal computational costs. To address these issues, we propose a lightweight focus discriminative network (FDNet) tailored for AF tasks. Built upon the ShuffleNet V2 backbone, FDNet leverages a genetic algorithm optimization (GAO) strategy to automatically search for efficient network structures, and incorporates coordinate attention (CA) and multi-scale feature fusion (MFF) modules to enhance spatial, directional, and contextual feature extraction. A dedicated focus stack dataset is constructed with high-quality annotations to support training and evaluation. Experimental results show that FDNet outperforms mainstream methods by up to 4% in classification accuracy while requiring only 0.2 GFLOPs, 0.5 M parameters, a model size of 2.1 MB, and an inference time of 0.06 s, achieving a superior balance between performance and efficiency. Ablation studies further confirm the effectiveness of the GAO, CA, and MFF components in improving the accuracy and robustness of focus feature classification. |
---|---|
AbstractList | Accurate activation and optimization of autofocus (AF) functions are essential for capturing high-quality images and minimizing camera response time. Traditional contrast detection autofocus (CDAF) methods suffer from a trade-off between accuracy and robustness, while learning-based methods often incur high spatio-temporal computational costs. To address these issues, we propose a lightweight focus discriminative network (FDNet) tailored for AF tasks. Built upon the ShuffleNet V2 backbone, FDNet leverages a genetic algorithm optimization (GAO) strategy to automatically search for efficient network structures, and incorporates coordinate attention (CA) and multi-scale feature fusion (MFF) modules to enhance spatial, directional, and contextual feature extraction. A dedicated focus stack dataset is constructed with high-quality annotations to support training and evaluation. Experimental results show that FDNet outperforms mainstream methods by up to 4% in classification accuracy while requiring only 0.2 GFLOPs, 0.5 M parameters, a model size of 2.1 MB, and an inference time of 0.06 s, achieving a superior balance between performance and efficiency. Ablation studies further confirm the effectiveness of the GAO, CA, and MFF components in improving the accuracy and robustness of focus feature classification. Accurate activation and optimization of autofocus (AF) functions are essential for capturing high-quality images and minimizing camera response time. Traditional contrast detection autofocus (CDAF) methods suffer from a trade-off between accuracy and robustness, while learning-based methods often incur high spatio-temporal computational costs. To address these issues, we propose a lightweight focus discriminative network (FDNet) tailored for AF tasks. Built upon the ShuffleNet V2 backbone, FDNet leverages a genetic algorithm optimization (GAO) strategy to automatically search for efficient network structures, and incorporates coordinate attention (CA) and multi-scale feature fusion (MFF) modules to enhance spatial, directional, and contextual feature extraction. A dedicated focus stack dataset is constructed with high-quality annotations to support training and evaluation. Experimental results show that FDNet outperforms mainstream methods by up to 4% in classification accuracy while requiring only 0.2 GFLOPs, 0.5 M parameters, a model size of 2.1 MB, and an inference time of 0.06 s, achieving a superior balance between performance and efficiency. Ablation studies further confirm the effectiveness of the GAO, CA, and MFF components in improving the accuracy and robustness of focus feature classification. |
ArticleNumber | 76 |
Author | Guo, Qifeng Xiao, Zhaolin Kou, Chenhao Su, Haonan Jin, Haiyan |
Author_xml | – sequence: 1 givenname: Chenhao surname: Kou fullname: Kou, Chenhao organization: Xi’an University of Technology – sequence: 2 givenname: Zhaolin surname: Xiao fullname: Xiao, Zhaolin email: xiaozhaolin@xaut.edu.cn organization: Xi’an University of Technology, Shaanxi Key Laboratory for Network Computing and Security Technology – sequence: 3 givenname: Haiyan surname: Jin fullname: Jin, Haiyan organization: Xi’an University of Technology, Shaanxi Key Laboratory for Network Computing and Security Technology – sequence: 4 givenname: Qifeng surname: Guo fullname: Guo, Qifeng organization: Shenzhen Shenzhi Weilai Co., Ltd – sequence: 5 givenname: Haonan surname: Su fullname: Su, Haonan organization: Xi’an University of Technology, Shaanxi Key Laboratory for Network Computing and Security Technology |
BookMark | eNp9kMtOwzAQRS1UJNrCD7CyxDrgR2w37Ko-oFJVWIDEznKSSUlp7WInRfw9LkGCFauZxT13NGeAetZZQOiSkmtKiLoJlBLJE8JEQqkajRJygvpUKJ4oxV96f_YzNAhhQ0jEGOmjx_l0Bc0tHuOVO8AWL3ZmDXjuijbgaR0KX-9qa5r6ADjmPpx_w5XzeGZfjS1qu8YTswNv8LhtXHWkztFpZbYBLn7mED3PZ0-T-2T5cLeYjJdJwalsEqA5KVKZFUZUqjRM8kyqPM-zuGd5DnKUq0qIUlBgICsFQpYsHWUkYyXjYPgQXXW9e-_eWwiN3rjW23hSc5YSIdKU0ZhiXarwLgQPld7Hj4z_1JToozndmdPRnP42p0mEeAeFGLZr8L_V_1BfFdVySQ |
Cites_doi | 10.1109/CVPR52688.2022.01167 10.1109/CVPR42600.2020.00230 10.1109/CVPR52729.2023.00764 10.1080/09500340.2017.1411540 10.1109/CVPR46437.2021.01350 10.1109/TCSVT.2021.3114601 10.1016/j.eswa.2024.125665 10.18226/23185279.v3iss1p1 10.1109/TCSVT.2025.3541588 10.1109/TCSVT.2023.3338689 10.1109/CVPR52733.2024.02363 10.1109/ICCV51070.2023.00134 10.1109/ITCA52113.2020.00106 10.1109/TIP.2006.881959 10.1109/CIMSA.2010.5611751 10.1007/978-3-319-24574-4_28 10.1007/s10732-015-9291-4 10.1007/978-3-030-01264-9_8 10.1016/j.displa.2024.102837 10.1007/978-3-540-73190-0_7 10.1007/s11263-024-02056-0 10.1109/TCI.2021.3059497 10.1016/j.optlaseng.2023.107991 10.1016/j.image.2014.10.009 10.1016/j.engappai.2023.106755 10.46632/rmc/3/1/1 10.1088/1742-6596/1634/1/012110 10.1109/SYSMART.2016.7894491 10.1364/AO.57.000F44 10.1109/TPAMI.2024.3510793 10.1109/CVPR46437.2021.01487 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION JQ2 |
DOI | 10.1007/s11063-025-11788-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Computer Science Collection |
DatabaseTitle | CrossRef ProQuest Computer Science Collection |
DatabaseTitleList | ProQuest Computer Science Collection |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1573-773X |
ExternalDocumentID | 10_1007_s11063_025_11788_0 |
GrantInformation_xml | – fundername: NSFC grantid: 62371389; 62272383 |
GroupedDBID | -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 203 29N 2J2 2JY 2KG 2LR 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABBBX ABBXA ABDBE ABDZT ABECU ABEEZ ABFSG ABFTD ABFTV ABHLI ABHQN ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTHY ABTKH ABTMW ABWNU ABXPI ACACY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACSTC ACULB ADHHG ADHIR ADIMF ADKNI ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFGXO AFHIU AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 C24 C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG FEDTE FERAY FFXSO FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM MA- NB0 NPVJJ NQJWS O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT5 QOK QOS R89 R9I RHV RNS RPX RSV S16 S1Z S27 S3B SAP SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WK8 YLTOR Z45 ZMTXR ~EX 77I AAYXX ABTEG BGNMA CITATION M4Y NU0 JQ2 |
ID | FETCH-LOGICAL-c316t-e1b0c469ca5f7da263967bbb9da29bbe68b7f55d51e2e6f7e56d2489092d23ea3 |
IEDL.DBID | C24 |
ISSN | 1573-773X 1370-4621 |
IngestDate | Wed Aug 27 05:10:29 EDT 2025 Thu Sep 11 00:31:16 EDT 2025 Tue Aug 26 01:11:13 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Focus discrimination Genetic algorithm Coordinate attention Multi-scale feature fusion Autofocus |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-e1b0c469ca5f7da263967bbb9da29bbe68b7f55d51e2e6f7e56d2489092d23ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1007/s11063-025-11788-0 |
PQID | 3240554421 |
PQPubID | 2043838 |
ParticipantIDs | proquest_journals_3240554421 crossref_primary_10_1007_s11063_025_11788_0 springer_journals_10_1007_s11063_025_11788_0 |
PublicationCentury | 2000 |
PublicationDate | 2025-08-18 |
PublicationDateYYYYMMDD | 2025-08-18 |
PublicationDate_xml | – month: 08 year: 2025 text: 2025-08-18 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Neural processing letters |
PublicationTitleAbbrev | Neural Process Lett |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | T Wang (11788_CR25) 2024; 132 11788_CR6 11788_CR4 H Mir (11788_CR22) 2015; 21 G Wang (11788_CR16) 2024 Y Ouyang (11788_CR1) 2025; 262 X Zhang (11788_CR28) 2021; 32 Z Li (11788_CR21) 2024; 175 Y Wang (11788_CR14) 2018; 65 11788_CR29 CC Chan (11788_CR2) 2019; 31 11788_CR24 11788_CR23 M Subasi (11788_CR13) 2004; 147 11788_CR20 H Zhai (11788_CR8) 2024; 85 M Song (11788_CR18) 2025 T Wang (11788_CR26) 2023; 37 S Chinnasamy (11788_CR12) 2022; 3 J Tan (11788_CR27) 2023; 34 O Baltag (11788_CR10) 2015; 3 HR Sheikh (11788_CR36) 2006; 15 Y Yao (11788_CR11) 2006; 6246 Y Wan (11788_CR7) 2023; 125 11788_CR17 N Ponomarenko (11788_CR37) 2015; 30 11788_CR15 11788_CR35 11788_CR34 C Guo (11788_CR3) 2018; 57 11788_CR9 11788_CR33 11788_CR32 11788_CR31 11788_CR30 C Wang (11788_CR19) 2021; 7 J Liang (11788_CR5) 2020; 1634 |
References_xml | – volume: 6246 start-page: 132 year: 2006 ident: 11788_CR11 publication-title: Vis Inf Process XV – ident: 11788_CR32 doi: 10.1109/CVPR52688.2022.01167 – ident: 11788_CR20 doi: 10.1109/CVPR42600.2020.00230 – ident: 11788_CR35 doi: 10.1109/CVPR52729.2023.00764 – volume: 65 start-page: 858 issue: 7 year: 2018 ident: 11788_CR14 publication-title: J Mod Opt doi: 10.1080/09500340.2017.1411540 – ident: 11788_CR30 doi: 10.1109/CVPR46437.2021.01350 – volume: 32 start-page: 3490 issue: 6 year: 2021 ident: 11788_CR28 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2021.3114601 – volume: 37 start-page: 2654 issue: 3 year: 2023 ident: 11788_CR26 publication-title: Proc AAAI Conf Artif Intell – volume: 262 start-page: 125665 year: 2025 ident: 11788_CR1 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2024.125665 – volume: 3 start-page: 1 issue: 1 year: 2015 ident: 11788_CR10 publication-title: Science doi: 10.18226/23185279.v3iss1p1 – volume: 31 start-page: 1 year: 2019 ident: 11788_CR2 publication-title: Electr Imaging – year: 2025 ident: 11788_CR18 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2025.3541588 – volume: 34 start-page: 4914 issue: 6 year: 2023 ident: 11788_CR27 publication-title: IEEE Trans Circuits Syst Video Technol doi: 10.1109/TCSVT.2023.3338689 – ident: 11788_CR24 doi: 10.1109/CVPR52733.2024.02363 – ident: 11788_CR33 doi: 10.1109/ICCV51070.2023.00134 – ident: 11788_CR6 doi: 10.1109/ITCA52113.2020.00106 – volume: 15 start-page: 3440 issue: 11 year: 2006 ident: 11788_CR36 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2006.881959 – ident: 11788_CR23 doi: 10.1109/CIMSA.2010.5611751 – ident: 11788_CR31 doi: 10.1007/978-3-319-24574-4_28 – volume: 21 start-page: 599 year: 2015 ident: 11788_CR22 publication-title: J Heuristics doi: 10.1007/s10732-015-9291-4 – ident: 11788_CR9 doi: 10.1007/978-3-030-01264-9_8 – volume: 85 start-page: 102837 year: 2024 ident: 11788_CR8 publication-title: Displays doi: 10.1016/j.displa.2024.102837 – volume: 147 start-page: 893 issue: 3 year: 2004 ident: 11788_CR13 publication-title: Appl Math Comput – ident: 11788_CR29 doi: 10.1007/978-3-540-73190-0_7 – volume: 132 start-page: 4541 issue: 10 year: 2024 ident: 11788_CR25 publication-title: Int J Comput Vis doi: 10.1007/s11263-024-02056-0 – volume: 7 start-page: 258 year: 2021 ident: 11788_CR19 publication-title: IEEE Trans Comput Imaging doi: 10.1109/TCI.2021.3059497 – volume: 175 start-page: 107991 year: 2024 ident: 11788_CR21 publication-title: Opt Lasers Eng doi: 10.1016/j.optlaseng.2023.107991 – volume: 30 start-page: 57 year: 2015 ident: 11788_CR37 publication-title: Signal Process Image Commun doi: 10.1016/j.image.2014.10.009 – volume: 125 start-page: 106755 year: 2023 ident: 11788_CR7 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106755 – ident: 11788_CR4 – volume: 3 start-page: 1 issue: 1 year: 2022 ident: 11788_CR12 publication-title: Recent Trends Manag Commer doi: 10.46632/rmc/3/1/1 – volume: 1634 start-page: 012110 issue: 1 year: 2020 ident: 11788_CR5 publication-title: J Phys Conf Ser doi: 10.1088/1742-6596/1634/1/012110 – ident: 11788_CR34 – ident: 11788_CR15 doi: 10.1109/SYSMART.2016.7894491 – volume: 57 start-page: F44 issue: 34 year: 2018 ident: 11788_CR3 publication-title: Appl Opt doi: 10.1364/AO.57.000F44 – year: 2024 ident: 11788_CR16 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2024.3510793 – ident: 11788_CR17 doi: 10.1109/CVPR46437.2021.01487 |
SSID | ssj0010020 |
Score | 2.3857107 |
Snippet | Accurate activation and optimization of autofocus (AF) functions are essential for capturing high-quality images and minimizing camera response time.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 76 |
SubjectTerms | Ablation Accuracy Annotations Artificial Intelligence Cameras Classification Complex Systems Computational Intelligence Computer Science Datasets Decision making Efficiency Feature extraction Genetic algorithms Image quality Lighting Optimization Robustness Semantics |
Title | FDNet: A Novel Image Focus Discriminative Network for Enhancing Camera Autofocus |
URI | https://link.springer.com/article/10.1007/s11063-025-11788-0 https://www.proquest.com/docview/3240554421 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT4MwFG_MdvHit3E6lx68KQkttFBvhA2nRuLBJfNEWihqomAc8-_3lY8QjR68NAQoh1f63u_X94XQmaa5LT1PWqkvKBCUjFhSmChzpdwcTG7alNi4i_l84d4s2bJNClt10e6dS7LW1H2yG7AX43NkFiFA3Cwg6kMG3N00bAhNjkPXtwButekxv8_7boJ6XPnDFVpbmGgHbbXQEAfNWu6iDV3soe2u7QJud-E-uo-msa4ucYDj8lO_4us30Ak4KtP1Ck9fjBow4S1GjeG4CfLGgEzxrHg2tTWKJxxKcxKFg3VV5mbWAVpEs4dwbrWNEazUIbyyNFF2Crw2lSz3MkkBZXBPKSXgWiilua-8nLGMEU01zz3NeEZdX9iCZtTR0jlEg6Is9BHCRAG_YCLzuARiIR2RKdfNdK5MNIlDnBE672SVvDf1L5K-0rGRbAKSTWrJJvYIjTtxJu1eWCWm5B-AFpeSEbroRNw__vtrx_97_QRtUrPKpl6tP0aD6mOtTwExVGqChsHV4-1sUv8oZuQhjAsafAGx5rut |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2hdoCF8ikKBTywQVDsfLNFbUNL24ihlcoU2YkDCEgQTRj49dhNQkQFQ7dIiS3rzj6_lzs_A1xwEqvUsqgS2g4RBCXCCnVklTljeiy23LCQ2Jj45mCm382NeXkobFFVu1cpyWWkrg-7CfYic46GgrEgboog6k1dcHC1AU339mHU_8keSAxUHpD5u-XvTahGlivJ0OUe47VgVo2uKC15uc4zdh1-rQg3rjv8HdguQSdyi1myCxs82YNWdaEDKtf3Ptx7PZ9nN8hFfvrJX9HwTUQb5KVhvkC9ZxlgZOGMDJDIL8rHkcC8qJ88SdWO5BF1qfzHhdw8S2PZ6gBmXn_aHSjllQtKqGEzUzhmaigYc0iN2IooEfjFtBhjjnh2GOOmzazYMCIDc8LN2OKGGRHddlSHRETjVDuERpIm_AgQZoK5GE5kmVRQFqo5EdP1iMdM1qloWGvDZeWD4L1Q1ghqDWVprEAYK1gaK1Db0KncFJSrbBFIMUEBh3SC23BVWb1-_X9vx-t9fg6bg-lkHIyH_ugEtoh0olTFtTvQyD5yfipwScbOymn4DaMr2Hg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELVQkRAL34hCAQ9sELV2Eidhq9pGLR9RByp1i-zYBiRIKpry-_HlgwCCgS1S4gzPse-93N0zQheK6h73PG4lfkCNQJHE4gFUmQvhaBNyk9Ji4z5i45lzM3fnX7r4i2r3OiVZ9jSAS1OadxdSd5vGN6NkIP_oWoQYEWcZ0b7uQOiDdC0bfOYRgA1VrTK_j_sejhqO-SMtWkSbcAdtVTQR98t53UVrKt1D2_URDLhakftoGg4jlV_jPo6yd_WCJ69mf8BhlqyWePgMWwKUusCWhqOy4BsblopH6RP4bKSPeMDhrxTur_JMw6gDNAtHD4OxVR2SYCU2YbmliOglRuMm3NWe5NQwDuYJIQJzHQihmC887brSJYoqpj3lMkkdP-gFVFJbcfsQtdIsVUcIE2G0hhtIj3EjMrgdSOE4UmkBlSU2sdvossYqXpReGHHjegzIxgbZuEA27rVRp4YzrtbFMgb7P0NgHEra6KqGuLn999uO__f4OdqYDsP4bhLdnqBNChMONrZ-B7Xyt5U6NUQiF2fFt_IBT9-_qw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FDNet%3A+A+Novel+Image+Focus+Discriminative+Network+for+Enhancing+Camera+Autofocus&rft.jtitle=Neural+processing+letters&rft.au=Kou%2C+Chenhao&rft.au=Xiao%2C+Zhaolin&rft.au=Jin%2C+Haiyan&rft.au=Guo%2C+Qifeng&rft.date=2025-08-18&rft.pub=Springer+US&rft.eissn=1573-773X&rft.volume=57&rft.issue=5&rft_id=info:doi/10.1007%2Fs11063-025-11788-0&rft.externalDocID=10_1007_s11063_025_11788_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-773X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-773X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-773X&client=summon |