Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations

In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method involves solving a small nonlinear system on a coarse mesh with mesh size H and a linear system on a fine mesh with mesh size h , which can...

Full description

Saved in:
Bibliographic Details
Published inAdvances in computational mathematics Vol. 45; no. 2; pp. 611 - 630
Main Authors Chen, Chuanjun, Li, Kang, Chen, Yanping, Huang, Yunqing
Format Journal Article
LanguageEnglish
Published New York Springer US 02.04.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method involves solving a small nonlinear system on a coarse mesh with mesh size H and a linear system on a fine mesh with mesh size h , which can still maintain the asymptotically optimal accuracy compared with the standard finite element method. However, the two-grid scheme can reduce workload and save a lot of CPU time. The optimal error estimates in H 1 -norm show that the two-grid methods can achieve optimal convergence order when the mesh sizes satisfy h = O ( H 2 ). These estimates are shown to be uniform in time. Numerical results are provided to verify the theoretical estimates.
AbstractList In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method involves solving a small nonlinear system on a coarse mesh with mesh size H and a linear system on a fine mesh with mesh size h, which can still maintain the asymptotically optimal accuracy compared with the standard finite element method. However, the two-grid scheme can reduce workload and save a lot of CPU time. The optimal error estimates in H1-norm show that the two-grid methods can achieve optimal convergence order when the mesh sizes satisfy h = O(H2). These estimates are shown to be uniform in time. Numerical results are provided to verify the theoretical estimates.
In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method involves solving a small nonlinear system on a coarse mesh with mesh size H and a linear system on a fine mesh with mesh size h , which can still maintain the asymptotically optimal accuracy compared with the standard finite element method. However, the two-grid scheme can reduce workload and save a lot of CPU time. The optimal error estimates in H 1 -norm show that the two-grid methods can achieve optimal convergence order when the mesh sizes satisfy h = O ( H 2 ). These estimates are shown to be uniform in time. Numerical results are provided to verify the theoretical estimates.
Author Li, Kang
Huang, Yunqing
Chen, Yanping
Chen, Chuanjun
Author_xml – sequence: 1
  givenname: Chuanjun
  surname: Chen
  fullname: Chen, Chuanjun
  organization: School of Mathematics and Information Sciences, Yantai University
– sequence: 2
  givenname: Kang
  surname: Li
  fullname: Li, Kang
  organization: School of Mathematics and Information Sciences, Yantai University, School of Data and Computer Science, Sun Yat-sen University
– sequence: 3
  givenname: Yanping
  surname: Chen
  fullname: Chen, Yanping
  email: yanpingchen@scnu.edu.cn
  organization: School of Mathematical Sciences, South China Normal University
– sequence: 4
  givenname: Yunqing
  surname: Huang
  fullname: Huang, Yunqing
  organization: Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University
BookMark eNp9kEtLQzEQhYNUsFV_gLuA62he95GlFF9QdGFdh3uT3Db1NmmT1OK_N_UKgqCrGYbzzZw5EzBy3hkALgi-IhhX15FgzjnCpEaipDWiR2BMiooikeej3GMiUEXK-gRMYlxhjEVZFWOg5nuPFsFq2Flnk4GmN2vjElybtPQ6QuXXrXVGw71NSzgNjXtDT1b5PnoHo1pmNex8gNlPn3VNgC--9b15h2a7a5L1Lp6B467pozn_rqfg9e52Pn1As-f7x-nNDClGyoS0LlsjhCmYqoU2gumSdkxpwXGtFatZUShMmlZTQjhmTBVtwTVrqag6XrWEnYLLYe8m-O3OxCRXfhdcPikpxQUvqaBlVpFBpYKPMZhOboJdN-FDEiwPWcohS5mzlIcsJc1M9YtRNn09l0Jj-39JOpAxX3ELE348_Q19Ak7gi1w
CitedBy_id crossref_primary_10_1007_s10444_021_09853_y
crossref_primary_10_1016_j_cnsns_2022_106989
crossref_primary_10_1016_j_camwa_2024_12_010
crossref_primary_10_1155_2020_5010589
crossref_primary_10_1007_s10092_024_00631_y
crossref_primary_10_1155_2020_8874787
crossref_primary_10_1007_s11075_023_01553_6
crossref_primary_10_1016_j_camwa_2022_01_008
crossref_primary_10_1016_j_matcom_2019_10_015
crossref_primary_10_3934_era_2023342
crossref_primary_10_1002_num_22823
crossref_primary_10_1007_s10596_023_10266_7
crossref_primary_10_1016_j_apnum_2021_12_005
crossref_primary_10_1016_j_jmaa_2023_127845
crossref_primary_10_1007_s11075_021_01091_z
crossref_primary_10_1007_s11075_024_01811_1
crossref_primary_10_1007_s11071_023_08265_5
crossref_primary_10_1016_j_apnum_2021_05_018
crossref_primary_10_1155_2020_3527430
crossref_primary_10_1155_2020_6821637
crossref_primary_10_1016_j_camwa_2023_04_027
crossref_primary_10_1007_s10444_021_09867_6
crossref_primary_10_1016_j_joes_2022_06_037
crossref_primary_10_1155_2020_3965269
crossref_primary_10_1155_2020_3707924
crossref_primary_10_3390_math9243313
crossref_primary_10_1016_j_apnum_2021_04_019
crossref_primary_10_1016_j_camwa_2022_01_019
crossref_primary_10_1155_2021_5549288
crossref_primary_10_1155_2020_5042724
crossref_primary_10_33401_fujma_633905
crossref_primary_10_1016_j_jmaa_2022_126207
crossref_primary_10_33401_fujma_1125858
crossref_primary_10_1002_zamm_201900275
crossref_primary_10_1007_s11075_021_01218_2
crossref_primary_10_1155_2020_5894518
crossref_primary_10_1155_2020_7139795
crossref_primary_10_1002_num_22511
crossref_primary_10_1155_2020_9168124
crossref_primary_10_1016_j_apnum_2019_08_027
crossref_primary_10_1016_j_cnsns_2023_107778
crossref_primary_10_1155_2020_5362989
crossref_primary_10_1007_s11075_020_00943_4
crossref_primary_10_1155_2020_8571625
crossref_primary_10_1155_2020_5747425
crossref_primary_10_1002_nla_2292
crossref_primary_10_1155_2020_5740310
crossref_primary_10_1051_m2an_2024008
crossref_primary_10_1016_j_camwa_2021_03_033
crossref_primary_10_1155_2020_6301757
crossref_primary_10_1155_2020_8868200
crossref_primary_10_1007_s12190_024_02333_8
crossref_primary_10_1155_2020_6183214
crossref_primary_10_1016_j_camwa_2019_12_008
crossref_primary_10_1155_2020_7319098
crossref_primary_10_1016_j_apnum_2022_10_005
crossref_primary_10_1016_j_camwa_2023_04_040
crossref_primary_10_1016_j_apnum_2021_08_008
crossref_primary_10_1016_j_jocs_2023_102177
crossref_primary_10_1080_00036811_2020_1834087
crossref_primary_10_1007_s11075_023_01518_9
crossref_primary_10_1007_s11464_021_0974_x
crossref_primary_10_1155_2020_1894861
crossref_primary_10_1016_j_cnsns_2023_107360
crossref_primary_10_1155_2020_5174529
crossref_primary_10_1016_j_aej_2025_02_036
crossref_primary_10_1155_2021_8036814
crossref_primary_10_1016_j_camwa_2024_07_001
crossref_primary_10_2478_amns_2021_2_00089
Cites_doi 10.1007/BF01594969
10.1137/S0036142992232949
10.1016/0021-8928(60)90107-6
10.1007/BF02112280
10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U
10.1007/s00211-007-0115-9
10.1002/nme.1775
10.1002/nme.668
10.1090/S0025-5718-99-01180-1
10.1016/j.matcom.2017.04.004
10.1002/num.21753
10.4208/aamm.09-m09S09
10.1016/0022-247X(92)90074-N
10.1137/S0036142993247104
10.1007/s10915-011-9469-3
10.4134/BKMS.2011.48.5.897
10.1016/0022-247X(72)90054-6
10.1016/j.cam.2008.09.001
10.1090/conm/180/01971
10.1016/j.matcom.2014.03.008
10.1137/0915016
10.1137/0503051
10.1080/01630563.2015.1115415
10.1137/0715075
10.1137/S0036142995293493
10.1016/j.apnum.2009.08.004
10.1007/s11464-013-0307-9
10.1016/j.amc.2007.10.053
10.1016/S0096-3003(98)10019-X
10.1016/j.amc.2015.09.004
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s10444-018-9628-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
EISSN 1572-9044
EndPage 630
ExternalDocumentID 10_1007_s10444_018_9628_2
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11671157
  funderid: https://doi.org/10.13039/501100001809
– fundername: China Postdoctoral Science Foundation funded project
  grantid: 2017M610501
– fundername: National Natural Science Foundation of China
  grantid: 11771375
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11571297
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Shandong Province
  grantid: ZR2018MAQ008
  funderid: https://doi.org/10.13039/501100007129
– fundername: National Natural Science Foundation of China
  grantid: 91430213
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -52
-59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
23M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MK~
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDD
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z83
ZMTXR
~EX
-Y2
1SB
2.D
28-
2P1
2VQ
5QI
AAPKM
AARHV
AAYTO
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
AEBTG
AEFIE
AEKMD
AEZWR
AFDZB
AFEXP
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHWEU
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
BBWZM
CAG
CITATION
COF
H13
HZ~
KOW
N2Q
NDZJH
O9-
OVD
R4E
RNI
RZC
RZE
RZK
S1Z
S26
S28
SCLPG
T16
TEORI
ZWQNP
ABRTQ
ID FETCH-LOGICAL-c316t-dd6be99e53c89de93d62f3cd9408dc38355c01abd2114033c5b54d3b297f47b13
IEDL.DBID U2A
ISSN 1019-7168
IngestDate Fri Jul 25 11:06:35 EDT 2025
Tue Jul 01 02:55:33 EDT 2025
Thu Apr 24 22:56:41 EDT 2025
Fri Feb 21 02:38:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Nonlinear Sobolev equations
65N15
Error estimates
Crank-Nicolson scheme
65N08
Two-grid finite element method
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-dd6be99e53c89de93d62f3cd9408dc38355c01abd2114033c5b54d3b297f47b13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2205462926
PQPubID 2043875
PageCount 20
ParticipantIDs proquest_journals_2205462926
crossref_primary_10_1007_s10444_018_9628_2
crossref_citationtrail_10_1007_s10444_018_9628_2
springer_journals_10_1007_s10444_018_9628_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190402
PublicationDateYYYYMMDD 2019-04-02
PublicationDate_xml – month: 4
  year: 2019
  text: 20190402
  day: 2
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Advances in computational mathematics
PublicationTitleAbbrev Adv Comput Math
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chen, Yang, Bi (CR4) 2009; 228
Lin, Zhang (CR21) 1992; 165
Yan, Zhang, Zhu, Zhang (CR32) 2016; 37
Lin (CR20) 1990; 40
Davis (CR13) 1972; 40
Xu (CR30) 1994; 15
Shi, Tang, Gong (CR24) 2015; 114
Axelsson, Layton (CR1) 2006; 33
Chen, Huang (CR9) 2003; 57
Gu (CR17) 1999; 102
Huang, Chen (CR18) 1994; 16
Chen, Gurtin (CR8) 1968; 19
Chen, Chen, Zhang (CR12) 2013; 29
Chen, Liu (CR10) 2007; 69
Liu (CR22) 2017; 142
He, Li, Liu (CR19) 2013; 8
Zhang, Lin (CR33) 1991; 13
Showalter (CR26) 1972; 3
Chen, Chen (CR7) 2011; 49
Wu, Allen (CR28) 1999; 15
Xu, Zhou (CR31) 1999; 70
Ewing (CR16) 1978; 15
Xu (CR29) 1996; 33
Chen, Liu (CR6) 2012; 2012
Ohm, Lee (CR23) 2011; 48
Shi, Yan, Wang (CR25) 2016; 274
Dawson, Wheeler (CR14) 1994; 180
Dawson, Wheeler, Woodward (CR15) 1998; 35
Sun, Yang (CR27) 2008; 200
Barenblatt, Zheltov, Kochina (CR2) 1960; 24
Chen, Luan, Lu (CR11) 2009; 1
Bi, Ginting (CR3) 2007; 107
Chen, Liu (CR5) 2010; 60
Y Chen (9628_CR12) 2013; 29
PL Davis (9628_CR13) 1972; 40
RE Showalter (9628_CR26) 1972; 3
S He (9628_CR19) 2013; 8
T Sun (9628_CR27) 2008; 200
H Gu (9628_CR17) 1999; 102
C Chen (9628_CR6) 2012; 2012
L Chen (9628_CR7) 2011; 49
Y Chen (9628_CR9) 2003; 57
CN Dawson (9628_CR15) 1998; 35
D Shi (9628_CR25) 2016; 274
J Yan (9628_CR32) 2016; 37
Y Chen (9628_CR11) 2009; 1
Y Lin (9628_CR21) 1992; 165
J Xu (9628_CR31) 1999; 70
RE Ewing (9628_CR16) 1978; 15
GI Barenblatt (9628_CR2) 1960; 24
CN Dawson (9628_CR14) 1994; 180
Y Huang (9628_CR18) 1994; 16
J Xu (9628_CR29) 1996; 33
W Liu (9628_CR22) 2017; 142
D Shi (9628_CR24) 2015; 114
MR Ohm (9628_CR23) 2011; 48
T Zhang (9628_CR33) 1991; 13
Y Lin (9628_CR20) 1990; 40
P Chen (9628_CR8) 1968; 19
L Wu (9628_CR28) 1999; 15
C Chen (9628_CR4) 2009; 228
J Xu (9628_CR30) 1994; 15
C Chen (9628_CR5) 2010; 60
C Bi (9628_CR3) 2007; 107
O Axelsson (9628_CR1) 2006; 33
Y Chen (9628_CR10) 2007; 69
References_xml – volume: 19
  start-page: 614
  year: 1968
  end-page: 627
  ident: CR8
  article-title: On a theory of heat conduction involving two temperatures
  publication-title: Zeitschrif für Angewandte Mathematik und Physik
  doi: 10.1007/BF01594969
– volume: 33
  start-page: 1759
  year: 1996
  end-page: 1777
  ident: CR29
  article-title: Two-grid discretization techniques for linear and nonlinear PDEs
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142992232949
– volume: 24
  start-page: 1286
  year: 1960
  end-page: 1303
  ident: CR2
  article-title: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/0021-8928(60)90107-6
– volume: 16
  start-page: 23
  year: 1994
  end-page: 26
  ident: CR18
  article-title: A multi-level iterative method for solving finite element equations of nonlinear singular two-point boundary value problems
  publication-title: Natural Science Journal of Xiantan University
– volume: 40
  start-page: 54
  year: 1990
  end-page: 66
  ident: CR20
  article-title: Galerkin methods for nonlinear Sobolev equations
  publication-title: Aequationes Math.
  doi: 10.1007/BF02112280
– volume: 15
  start-page: 317
  year: 1999
  end-page: 332
  ident: CR28
  article-title: A two-grid method for mixed finite-element solution of reaction-diffusion equations
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U
– volume: 107
  start-page: 177
  year: 2007
  end-page: 198
  ident: CR3
  article-title: Two-grid finite volume element method for linear and nonlinear elliptic problems
  publication-title: Numer. Math.
  doi: 10.1007/s00211-007-0115-9
– volume: 69
  start-page: 408
  year: 2007
  end-page: 422
  ident: CR10
  article-title: Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1775
– volume: 57
  start-page: 193
  year: 2003
  end-page: 209
  ident: CR9
  article-title: A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.668
– volume: 70
  start-page: 17
  year: 1999
  end-page: 25
  ident: CR31
  article-title: A two-grid discretization scheme for eigenvalue problems
  publication-title: Mathematics of Computation of the American Mathematical Society
  doi: 10.1090/S0025-5718-99-01180-1
– volume: 200
  start-page: 147
  year: 2008
  end-page: 159
  ident: CR27
  article-title: A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations
  publication-title: Appl. Math. Comput.
– volume: 142
  start-page: 34
  year: 2017
  end-page: 50
  ident: CR22
  article-title: A two-grid method for the semi-linear reaction-diffusion system of the solutes in the groundwater flow by finite volume element
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2017.04.004
– volume: 29
  start-page: 1238
  year: 2013
  end-page: 1256
  ident: CR12
  article-title: Two-grid method for nonlinear parabolic equations by expanded mixed finite element methods
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.21753
– volume: 102
  start-page: 51
  year: 1999
  end-page: 62
  ident: CR17
  article-title: Characteristic finite element methods for nonlinear Sobolev equations
  publication-title: Appl. Math. Comput.
– volume: 1
  start-page: 830
  year: 2009
  end-page: 844
  ident: CR11
  article-title: Analysis of two-grid methods for nonlinear parabolic equations by expanded mixed finite element methods
  publication-title: Adv. Appl. Math. Mech.
  doi: 10.4208/aamm.09-m09S09
– volume: 274
  start-page: 182
  year: 2016
  end-page: 194
  ident: CR25
  article-title: Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation
  publication-title: Appl. Math. Comput.
– volume: 165
  start-page: 180
  year: 1992
  end-page: 191
  ident: CR21
  article-title: Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(92)90074-N
– volume: 33
  start-page: 2359
  year: 2006
  end-page: 2374
  ident: CR1
  article-title: A two-level discretization of nonlinear boundary value problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142993247104
– volume: 2012
  start-page: 11
  year: 2012
  ident: CR6
  article-title: A two-grid method for finite element solutions for nonlinear parabolic equations
  publication-title: Abstract and Applied Analysis
– volume: 49
  start-page: 383
  year: 2011
  end-page: 401
  ident: CR7
  article-title: Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-011-9469-3
– volume: 48
  start-page: 897
  year: 2011
  end-page: 915
  ident: CR23
  article-title: L2-error analysis of fully discrete discontinuous Galerkin approximations for nonlinear Sobolev equations
  publication-title: Bulletin of the Korean Mathematical Society
  doi: 10.4134/BKMS.2011.48.5.897
– volume: 13
  start-page: 177
  year: 1991
  end-page: 186
  ident: CR33
  article-title: $L^{\infty }$L∞-error bounds for some nonliner integro-differential equations by finite element approximations
  publication-title: Mathematica Numerica Sinica
– volume: 40
  start-page: 327
  year: 1972
  end-page: 335
  ident: CR13
  article-title: A quasilinear parabolic and a related third order problem
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(72)90054-6
– volume: 228
  start-page: 123
  year: 2009
  end-page: 132
  ident: CR4
  article-title: Two-grid methods for finite volume element approximations of nonlinear parabolic equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.09.001
– volume: 180
  start-page: 191
  year: 1994
  end-page: 203
  ident: CR14
  article-title: Two-grid methods for mixed finite element approximations of nonlinear parabolic equations
  publication-title: Contemp. Math.
  doi: 10.1090/conm/180/01971
– volume: 114
  start-page: 25
  year: 2015
  end-page: 36
  ident: CR24
  article-title: A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2014.03.008
– volume: 15
  start-page: 231
  year: 1994
  end-page: 237
  ident: CR30
  article-title: A novel two-grid method for semi-linear equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0915016
– volume: 3
  start-page: 527
  year: 1972
  end-page: 543
  ident: CR26
  article-title: Existence and representation theorems for a semi-linear Sobolev equation in Banach space
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0503051
– volume: 37
  start-page: 391
  year: 2016
  end-page: 414
  ident: CR32
  article-title: Two-grid methods for finite volume element approximations of nonlinear Sobolev equations
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2015.1115415
– volume: 15
  start-page: 1125
  year: 1978
  end-page: 1150
  ident: CR16
  article-title: Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0715075
– volume: 35
  start-page: 435
  year: 1998
  end-page: 452
  ident: CR15
  article-title: A two-grid finite difference scheme for nonlinear parabolic equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142995293493
– volume: 60
  start-page: 10
  year: 2010
  end-page: 18
  ident: CR5
  article-title: Two-grid finite volume element methods for semilinear parabolic problems
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2009.08.004
– volume: 8
  start-page: 825
  year: 2013
  end-page: 836
  ident: CR19
  article-title: Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations
  publication-title: Frontiers of Mathematics in China
  doi: 10.1007/s11464-013-0307-9
– volume: 165
  start-page: 180
  year: 1992
  ident: 9628_CR21
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(92)90074-N
– volume: 24
  start-page: 1286
  year: 1960
  ident: 9628_CR2
  publication-title: J. Appl. Math. Mech.
  doi: 10.1016/0021-8928(60)90107-6
– volume: 15
  start-page: 231
  year: 1994
  ident: 9628_CR30
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0915016
– volume: 15
  start-page: 1125
  year: 1978
  ident: 9628_CR16
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0715075
– volume: 114
  start-page: 25
  year: 2015
  ident: 9628_CR24
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2014.03.008
– volume: 228
  start-page: 123
  year: 2009
  ident: 9628_CR4
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2008.09.001
– volume: 33
  start-page: 2359
  year: 2006
  ident: 9628_CR1
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142993247104
– volume: 8
  start-page: 825
  year: 2013
  ident: 9628_CR19
  publication-title: Frontiers of Mathematics in China
  doi: 10.1007/s11464-013-0307-9
– volume: 200
  start-page: 147
  year: 2008
  ident: 9628_CR27
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2007.10.053
– volume: 33
  start-page: 1759
  year: 1996
  ident: 9628_CR29
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142992232949
– volume: 37
  start-page: 391
  year: 2016
  ident: 9628_CR32
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630563.2015.1115415
– volume: 69
  start-page: 408
  year: 2007
  ident: 9628_CR10
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1775
– volume: 1
  start-page: 830
  year: 2009
  ident: 9628_CR11
  publication-title: Adv. Appl. Math. Mech.
  doi: 10.4208/aamm.09-m09S09
– volume: 15
  start-page: 317
  year: 1999
  ident: 9628_CR28
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U
– volume: 107
  start-page: 177
  year: 2007
  ident: 9628_CR3
  publication-title: Numer. Math.
  doi: 10.1007/s00211-007-0115-9
– volume: 40
  start-page: 54
  year: 1990
  ident: 9628_CR20
  publication-title: Aequationes Math.
  doi: 10.1007/BF02112280
– volume: 29
  start-page: 1238
  year: 2013
  ident: 9628_CR12
  publication-title: Numerical Methods for Partial Differential Equations
  doi: 10.1002/num.21753
– volume: 35
  start-page: 435
  year: 1998
  ident: 9628_CR15
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142995293493
– volume: 2012
  start-page: 11
  year: 2012
  ident: 9628_CR6
  publication-title: Abstract and Applied Analysis
– volume: 19
  start-page: 614
  year: 1968
  ident: 9628_CR8
  publication-title: Zeitschrif für Angewandte Mathematik und Physik
  doi: 10.1007/BF01594969
– volume: 102
  start-page: 51
  year: 1999
  ident: 9628_CR17
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(98)10019-X
– volume: 3
  start-page: 527
  year: 1972
  ident: 9628_CR26
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0503051
– volume: 48
  start-page: 897
  year: 2011
  ident: 9628_CR23
  publication-title: Bulletin of the Korean Mathematical Society
  doi: 10.4134/BKMS.2011.48.5.897
– volume: 16
  start-page: 23
  year: 1994
  ident: 9628_CR18
  publication-title: Natural Science Journal of Xiantan University
– volume: 57
  start-page: 193
  year: 2003
  ident: 9628_CR9
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.668
– volume: 142
  start-page: 34
  year: 2017
  ident: 9628_CR22
  publication-title: Math. Comput. Simul.
  doi: 10.1016/j.matcom.2017.04.004
– volume: 180
  start-page: 191
  year: 1994
  ident: 9628_CR14
  publication-title: Contemp. Math.
  doi: 10.1090/conm/180/01971
– volume: 60
  start-page: 10
  year: 2010
  ident: 9628_CR5
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2009.08.004
– volume: 13
  start-page: 177
  year: 1991
  ident: 9628_CR33
  publication-title: Mathematica Numerica Sinica
– volume: 40
  start-page: 327
  year: 1972
  ident: 9628_CR13
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(72)90054-6
– volume: 49
  start-page: 383
  year: 2011
  ident: 9628_CR7
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-011-9469-3
– volume: 274
  start-page: 182
  year: 2016
  ident: 9628_CR25
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2015.09.004
– volume: 70
  start-page: 17
  year: 1999
  ident: 9628_CR31
  publication-title: Mathematics of Computation of the American Mathematical Society
  doi: 10.1090/S0025-5718-99-01180-1
SSID ssj0009675
Score 2.4556818
Snippet In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 611
SubjectTerms Computational mathematics
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Crank-Nicholson method
Estimates
Finite element method
Mathematical analysis
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Nonlinear equations
Nonlinear systems
Visualization
Workload
Title Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations
URI https://link.springer.com/article/10.1007/s10444-018-9628-2
https://www.proquest.com/docview/2205462926
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAGzEYUw6cQJHavNocx8RAoHGBSXCq2iRFSIjBOuDv4_SxAQIkTlXV1FVtp_lcO58BDo3QURqqgDIEq1SkcUhjlmua69jhGTNpmcEfXqnzkbi4lbf1Pu6iqXZvUpLll_rTZjchfMUETlDF0LyLsCR96I5OPGK9OdOuKtl10dU0xWAgblKZP4n4uhjNEea3pGi51gzWYbUGiaRXWXUDFtzTJqzVgJHU07HYhJXhjHS12AJz8z6m95MHS_IHjySJq0rDSdUluiD4nhgHowT_85X0fbt2WnoCYm6CUS6OJohhyVNFn5FOyPU4Gz-6N-JeKkbwYhtGg9Ob_jmteyhQw0M1pdaqzGntJDextk5zq1jOjdUiiK3B8FRKE4RpZjEQFAHnRmZSWJ6h6XIRZSHfgRY-1e0CSdPQo7E8TLUVsdSZDa2LrI14hBKlbEPQKDMxNcG473PxmMypkb3-E9R_4vWfsDYczW55rtg1_hrcaSyU1BOtSPw-YaGYZqoNx43V5pd_Fbb3r9H7sMy8P_mKHdaB1nTy6g4QjEyzLiz1BicnV_54dnd52i2d8QNzitiP
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HIADb8RgQA6cQJHavNocEWIasO3CJnGr2iRFSIjBOuDv4_TBAAESx6qpq9pO8zl2PgMcG6GjNFQBZQhWqUjjkMYs1zTXscMrZtIyg98fqO5IXN3K2_ocd9FUuzcpyfJP_emwmxC-YgInqGJo3nlYRCwQ-zquETubMe2qkl0XXU1TDAbiJpX5k4ivi9EMYX5LipZrTWcdVmuQSM4qq27AnHvchLUaMJJ6OhabsNL_IF0ttsAM38b0bnJvSX7vkSRxVWk4qbpEFwS_E-NglOA3X8m5b9dOS09AzE0wysXRBDEseazoM9IJuRln4wf3StxzxQhebMOoczE879K6hwI1PFRTaq3KnNZOchNr6zS3iuXcWC2C2BoMT6U0QZhmFgNBEXBuZCaF5RmaLhdRFvIdWMC3ul0gaRp6NJaHqbYiljqzoXWRtRGPUKKULQgaZSamJhj3fS4ekhk1std_gvpPvP4T1oKTj0eeKnaNvwa3Gwsl9UQrEn9OWCimmWrBaWO12e1fhe39a_QRLHWH_V7Suxxc78My877lq3dYGxamkxd3gMBkmh2WjvgOPBvYcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NJk3wAKNjosCGH_bEZBF_Jn6sChUbUE2ilXiLEttBSKhlTYF_n3M-WkADaY9RnItyd45_5zv_DuCHlSbOmI4oR7BKZZYwmvDC0MIkHq-4zaoM_sVQn47l7yt11fQ5Ldtq9zYlWZ9pCCxNk_nRnSuOnh18kzJUT-Bk1RxNvQIf8W_MgluPeW_Juqsrpl10O0MxMEjatOa_RLxcmJZo81WCtFp3Bp9howGMpFdbeAs--EkHNhvwSJqpWXZg_WJBwFp-ATt6nNLr2Y0jxU1AlcTXZeKk7hhdEvxmjIlRQtiIJf3Qup1WXoH4m2DEi6MJ4lkyqak0shm5nObTW_9A_N-aHbzchvHgZNQ_pU0_BWoF03PqnM69MV4JmxjnjXCaF8I6I6PEWQxVlbIRy3KHQaGMhLAqV9KJHM1YyDhn4ius4lv9DpAsYwGZFSwzTibK5I45HzsXixglKtWFqFVmahuy8dDz4jZd0iQH_aeo_zToP-VdOFw8clczbbw3eL-1UNpMujINZ4al5obrLvxsrba8_aaw3f8afQCf_hwP0vNfw7M9WOPBtUIhD9-H1fns3n9DjDLPv1d--ATbI9yu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-grid+finite+element+methods+combined+with+Crank-Nicolson+scheme+for+nonlinear+Sobolev+equations&rft.jtitle=Advances+in+computational+mathematics&rft.au=Chen%2C+Chuanjun&rft.au=Li%2C+Kang&rft.au=Chen%2C+Yanping&rft.au=Huang%2C+Yunqing&rft.date=2019-04-02&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=45&rft.issue=2&rft.spage=611&rft.epage=630&rft_id=info:doi/10.1007%2Fs10444-018-9628-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_018_9628_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon