Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations
In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method involves solving a small nonlinear system on a coarse mesh with mesh size H and a linear system on a fine mesh with mesh size h , which can...
Saved in:
Published in | Advances in computational mathematics Vol. 45; no. 2; pp. 611 - 630 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
02.04.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method involves solving a small nonlinear system on a coarse mesh with mesh size
H
and a linear system on a fine mesh with mesh size
h
, which can still maintain the asymptotically optimal accuracy compared with the standard finite element method. However, the two-grid scheme can reduce workload and save a lot of CPU time. The optimal error estimates in
H
1
-norm show that the two-grid methods can achieve optimal convergence order when the mesh sizes satisfy
h
=
O
(
H
2
). These estimates are shown to be uniform in time. Numerical results are provided to verify the theoretical estimates. |
---|---|
AbstractList | In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method involves solving a small nonlinear system on a coarse mesh with mesh size H and a linear system on a fine mesh with mesh size h, which can still maintain the asymptotically optimal accuracy compared with the standard finite element method. However, the two-grid scheme can reduce workload and save a lot of CPU time. The optimal error estimates in H1-norm show that the two-grid methods can achieve optimal convergence order when the mesh sizes satisfy h = O(H2). These estimates are shown to be uniform in time. Numerical results are provided to verify the theoretical estimates. In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method involves solving a small nonlinear system on a coarse mesh with mesh size H and a linear system on a fine mesh with mesh size h , which can still maintain the asymptotically optimal accuracy compared with the standard finite element method. However, the two-grid scheme can reduce workload and save a lot of CPU time. The optimal error estimates in H 1 -norm show that the two-grid methods can achieve optimal convergence order when the mesh sizes satisfy h = O ( H 2 ). These estimates are shown to be uniform in time. Numerical results are provided to verify the theoretical estimates. |
Author | Li, Kang Huang, Yunqing Chen, Yanping Chen, Chuanjun |
Author_xml | – sequence: 1 givenname: Chuanjun surname: Chen fullname: Chen, Chuanjun organization: School of Mathematics and Information Sciences, Yantai University – sequence: 2 givenname: Kang surname: Li fullname: Li, Kang organization: School of Mathematics and Information Sciences, Yantai University, School of Data and Computer Science, Sun Yat-sen University – sequence: 3 givenname: Yanping surname: Chen fullname: Chen, Yanping email: yanpingchen@scnu.edu.cn organization: School of Mathematical Sciences, South China Normal University – sequence: 4 givenname: Yunqing surname: Huang fullname: Huang, Yunqing organization: Hunan Key Laboratory for Computation and Simulation in Science and Engineering, School of Mathematics and Computational Science, Xiangtan University |
BookMark | eNp9kEtLQzEQhYNUsFV_gLuA62he95GlFF9QdGFdh3uT3Db1NmmT1OK_N_UKgqCrGYbzzZw5EzBy3hkALgi-IhhX15FgzjnCpEaipDWiR2BMiooikeej3GMiUEXK-gRMYlxhjEVZFWOg5nuPFsFq2Flnk4GmN2vjElybtPQ6QuXXrXVGw71NSzgNjXtDT1b5PnoHo1pmNex8gNlPn3VNgC--9b15h2a7a5L1Lp6B467pozn_rqfg9e52Pn1As-f7x-nNDClGyoS0LlsjhCmYqoU2gumSdkxpwXGtFatZUShMmlZTQjhmTBVtwTVrqag6XrWEnYLLYe8m-O3OxCRXfhdcPikpxQUvqaBlVpFBpYKPMZhOboJdN-FDEiwPWcohS5mzlIcsJc1M9YtRNn09l0Jj-39JOpAxX3ELE348_Q19Ak7gi1w |
CitedBy_id | crossref_primary_10_1007_s10444_021_09853_y crossref_primary_10_1016_j_cnsns_2022_106989 crossref_primary_10_1016_j_camwa_2024_12_010 crossref_primary_10_1155_2020_5010589 crossref_primary_10_1007_s10092_024_00631_y crossref_primary_10_1155_2020_8874787 crossref_primary_10_1007_s11075_023_01553_6 crossref_primary_10_1016_j_camwa_2022_01_008 crossref_primary_10_1016_j_matcom_2019_10_015 crossref_primary_10_3934_era_2023342 crossref_primary_10_1002_num_22823 crossref_primary_10_1007_s10596_023_10266_7 crossref_primary_10_1016_j_apnum_2021_12_005 crossref_primary_10_1016_j_jmaa_2023_127845 crossref_primary_10_1007_s11075_021_01091_z crossref_primary_10_1007_s11075_024_01811_1 crossref_primary_10_1007_s11071_023_08265_5 crossref_primary_10_1016_j_apnum_2021_05_018 crossref_primary_10_1155_2020_3527430 crossref_primary_10_1155_2020_6821637 crossref_primary_10_1016_j_camwa_2023_04_027 crossref_primary_10_1007_s10444_021_09867_6 crossref_primary_10_1016_j_joes_2022_06_037 crossref_primary_10_1155_2020_3965269 crossref_primary_10_1155_2020_3707924 crossref_primary_10_3390_math9243313 crossref_primary_10_1016_j_apnum_2021_04_019 crossref_primary_10_1016_j_camwa_2022_01_019 crossref_primary_10_1155_2021_5549288 crossref_primary_10_1155_2020_5042724 crossref_primary_10_33401_fujma_633905 crossref_primary_10_1016_j_jmaa_2022_126207 crossref_primary_10_33401_fujma_1125858 crossref_primary_10_1002_zamm_201900275 crossref_primary_10_1007_s11075_021_01218_2 crossref_primary_10_1155_2020_5894518 crossref_primary_10_1155_2020_7139795 crossref_primary_10_1002_num_22511 crossref_primary_10_1155_2020_9168124 crossref_primary_10_1016_j_apnum_2019_08_027 crossref_primary_10_1016_j_cnsns_2023_107778 crossref_primary_10_1155_2020_5362989 crossref_primary_10_1007_s11075_020_00943_4 crossref_primary_10_1155_2020_8571625 crossref_primary_10_1155_2020_5747425 crossref_primary_10_1002_nla_2292 crossref_primary_10_1155_2020_5740310 crossref_primary_10_1051_m2an_2024008 crossref_primary_10_1016_j_camwa_2021_03_033 crossref_primary_10_1155_2020_6301757 crossref_primary_10_1155_2020_8868200 crossref_primary_10_1007_s12190_024_02333_8 crossref_primary_10_1155_2020_6183214 crossref_primary_10_1016_j_camwa_2019_12_008 crossref_primary_10_1155_2020_7319098 crossref_primary_10_1016_j_apnum_2022_10_005 crossref_primary_10_1016_j_camwa_2023_04_040 crossref_primary_10_1016_j_apnum_2021_08_008 crossref_primary_10_1016_j_jocs_2023_102177 crossref_primary_10_1080_00036811_2020_1834087 crossref_primary_10_1007_s11075_023_01518_9 crossref_primary_10_1007_s11464_021_0974_x crossref_primary_10_1155_2020_1894861 crossref_primary_10_1016_j_cnsns_2023_107360 crossref_primary_10_1155_2020_5174529 crossref_primary_10_1016_j_aej_2025_02_036 crossref_primary_10_1155_2021_8036814 crossref_primary_10_1016_j_camwa_2024_07_001 crossref_primary_10_2478_amns_2021_2_00089 |
Cites_doi | 10.1007/BF01594969 10.1137/S0036142992232949 10.1016/0021-8928(60)90107-6 10.1007/BF02112280 10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U 10.1007/s00211-007-0115-9 10.1002/nme.1775 10.1002/nme.668 10.1090/S0025-5718-99-01180-1 10.1016/j.matcom.2017.04.004 10.1002/num.21753 10.4208/aamm.09-m09S09 10.1016/0022-247X(92)90074-N 10.1137/S0036142993247104 10.1007/s10915-011-9469-3 10.4134/BKMS.2011.48.5.897 10.1016/0022-247X(72)90054-6 10.1016/j.cam.2008.09.001 10.1090/conm/180/01971 10.1016/j.matcom.2014.03.008 10.1137/0915016 10.1137/0503051 10.1080/01630563.2015.1115415 10.1137/0715075 10.1137/S0036142995293493 10.1016/j.apnum.2009.08.004 10.1007/s11464-013-0307-9 10.1016/j.amc.2007.10.053 10.1016/S0096-3003(98)10019-X 10.1016/j.amc.2015.09.004 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10444-018-9628-2 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Mathematics |
EISSN | 1572-9044 |
EndPage | 630 |
ExternalDocumentID | 10_1007_s10444_018_9628_2 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11671157 funderid: https://doi.org/10.13039/501100001809 – fundername: China Postdoctoral Science Foundation funded project grantid: 2017M610501 – fundername: National Natural Science Foundation of China grantid: 11771375 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11571297 funderid: https://doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Shandong Province grantid: ZR2018MAQ008 funderid: https://doi.org/10.13039/501100007129 – fundername: National Natural Science Foundation of China grantid: 91430213 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -52 -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 23M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MK~ N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF0 PT4 PT5 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SCO SDD SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z83 ZMTXR ~EX -Y2 1SB 2.D 28- 2P1 2VQ 5QI AAPKM AARHV AAYTO AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG AEBTG AEFIE AEKMD AEZWR AFDZB AFEXP AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHWEU AIXLP AJBLW AMVHM ATHPR AYFIA BBWZM CAG CITATION COF H13 HZ~ KOW N2Q NDZJH O9- OVD R4E RNI RZC RZE RZK S1Z S26 S28 SCLPG T16 TEORI ZWQNP ABRTQ |
ID | FETCH-LOGICAL-c316t-dd6be99e53c89de93d62f3cd9408dc38355c01abd2114033c5b54d3b297f47b13 |
IEDL.DBID | U2A |
ISSN | 1019-7168 |
IngestDate | Fri Jul 25 11:06:35 EDT 2025 Tue Jul 01 02:55:33 EDT 2025 Thu Apr 24 22:56:41 EDT 2025 Fri Feb 21 02:38:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Nonlinear Sobolev equations 65N15 Error estimates Crank-Nicolson scheme 65N08 Two-grid finite element method |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-dd6be99e53c89de93d62f3cd9408dc38355c01abd2114033c5b54d3b297f47b13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2205462926 |
PQPubID | 2043875 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2205462926 crossref_primary_10_1007_s10444_018_9628_2 crossref_citationtrail_10_1007_s10444_018_9628_2 springer_journals_10_1007_s10444_018_9628_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190402 |
PublicationDateYYYYMMDD | 2019-04-02 |
PublicationDate_xml | – month: 4 year: 2019 text: 20190402 day: 2 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Advances in computational mathematics |
PublicationTitleAbbrev | Adv Comput Math |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Chen, Yang, Bi (CR4) 2009; 228 Lin, Zhang (CR21) 1992; 165 Yan, Zhang, Zhu, Zhang (CR32) 2016; 37 Lin (CR20) 1990; 40 Davis (CR13) 1972; 40 Xu (CR30) 1994; 15 Shi, Tang, Gong (CR24) 2015; 114 Axelsson, Layton (CR1) 2006; 33 Chen, Huang (CR9) 2003; 57 Gu (CR17) 1999; 102 Huang, Chen (CR18) 1994; 16 Chen, Gurtin (CR8) 1968; 19 Chen, Chen, Zhang (CR12) 2013; 29 Chen, Liu (CR10) 2007; 69 Liu (CR22) 2017; 142 He, Li, Liu (CR19) 2013; 8 Zhang, Lin (CR33) 1991; 13 Showalter (CR26) 1972; 3 Chen, Chen (CR7) 2011; 49 Wu, Allen (CR28) 1999; 15 Xu, Zhou (CR31) 1999; 70 Ewing (CR16) 1978; 15 Xu (CR29) 1996; 33 Chen, Liu (CR6) 2012; 2012 Ohm, Lee (CR23) 2011; 48 Shi, Yan, Wang (CR25) 2016; 274 Dawson, Wheeler (CR14) 1994; 180 Dawson, Wheeler, Woodward (CR15) 1998; 35 Sun, Yang (CR27) 2008; 200 Barenblatt, Zheltov, Kochina (CR2) 1960; 24 Chen, Luan, Lu (CR11) 2009; 1 Bi, Ginting (CR3) 2007; 107 Chen, Liu (CR5) 2010; 60 Y Chen (9628_CR12) 2013; 29 PL Davis (9628_CR13) 1972; 40 RE Showalter (9628_CR26) 1972; 3 S He (9628_CR19) 2013; 8 T Sun (9628_CR27) 2008; 200 H Gu (9628_CR17) 1999; 102 C Chen (9628_CR6) 2012; 2012 L Chen (9628_CR7) 2011; 49 Y Chen (9628_CR9) 2003; 57 CN Dawson (9628_CR15) 1998; 35 D Shi (9628_CR25) 2016; 274 J Yan (9628_CR32) 2016; 37 Y Chen (9628_CR11) 2009; 1 Y Lin (9628_CR21) 1992; 165 J Xu (9628_CR31) 1999; 70 RE Ewing (9628_CR16) 1978; 15 GI Barenblatt (9628_CR2) 1960; 24 CN Dawson (9628_CR14) 1994; 180 Y Huang (9628_CR18) 1994; 16 J Xu (9628_CR29) 1996; 33 W Liu (9628_CR22) 2017; 142 D Shi (9628_CR24) 2015; 114 MR Ohm (9628_CR23) 2011; 48 T Zhang (9628_CR33) 1991; 13 Y Lin (9628_CR20) 1990; 40 P Chen (9628_CR8) 1968; 19 L Wu (9628_CR28) 1999; 15 C Chen (9628_CR4) 2009; 228 J Xu (9628_CR30) 1994; 15 C Chen (9628_CR5) 2010; 60 C Bi (9628_CR3) 2007; 107 O Axelsson (9628_CR1) 2006; 33 Y Chen (9628_CR10) 2007; 69 |
References_xml | – volume: 19 start-page: 614 year: 1968 end-page: 627 ident: CR8 article-title: On a theory of heat conduction involving two temperatures publication-title: Zeitschrif für Angewandte Mathematik und Physik doi: 10.1007/BF01594969 – volume: 33 start-page: 1759 year: 1996 end-page: 1777 ident: CR29 article-title: Two-grid discretization techniques for linear and nonlinear PDEs publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142992232949 – volume: 24 start-page: 1286 year: 1960 end-page: 1303 ident: CR2 article-title: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks publication-title: J. Appl. Math. Mech. doi: 10.1016/0021-8928(60)90107-6 – volume: 16 start-page: 23 year: 1994 end-page: 26 ident: CR18 article-title: A multi-level iterative method for solving finite element equations of nonlinear singular two-point boundary value problems publication-title: Natural Science Journal of Xiantan University – volume: 40 start-page: 54 year: 1990 end-page: 66 ident: CR20 article-title: Galerkin methods for nonlinear Sobolev equations publication-title: Aequationes Math. doi: 10.1007/BF02112280 – volume: 15 start-page: 317 year: 1999 end-page: 332 ident: CR28 article-title: A two-grid method for mixed finite-element solution of reaction-diffusion equations publication-title: Numerical Methods for Partial Differential Equations doi: 10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U – volume: 107 start-page: 177 year: 2007 end-page: 198 ident: CR3 article-title: Two-grid finite volume element method for linear and nonlinear elliptic problems publication-title: Numer. Math. doi: 10.1007/s00211-007-0115-9 – volume: 69 start-page: 408 year: 2007 end-page: 422 ident: CR10 article-title: Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1775 – volume: 57 start-page: 193 year: 2003 end-page: 209 ident: CR9 article-title: A two-grid method for expanded mixed finite-element solution of semilinear reaction-diffusion equations publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.668 – volume: 70 start-page: 17 year: 1999 end-page: 25 ident: CR31 article-title: A two-grid discretization scheme for eigenvalue problems publication-title: Mathematics of Computation of the American Mathematical Society doi: 10.1090/S0025-5718-99-01180-1 – volume: 200 start-page: 147 year: 2008 end-page: 159 ident: CR27 article-title: A priori error estimates for interior penalty discontinuous Galerkin method applied to nonlinear Sobolev equations publication-title: Appl. Math. Comput. – volume: 142 start-page: 34 year: 2017 end-page: 50 ident: CR22 article-title: A two-grid method for the semi-linear reaction-diffusion system of the solutes in the groundwater flow by finite volume element publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2017.04.004 – volume: 29 start-page: 1238 year: 2013 end-page: 1256 ident: CR12 article-title: Two-grid method for nonlinear parabolic equations by expanded mixed finite element methods publication-title: Numerical Methods for Partial Differential Equations doi: 10.1002/num.21753 – volume: 102 start-page: 51 year: 1999 end-page: 62 ident: CR17 article-title: Characteristic finite element methods for nonlinear Sobolev equations publication-title: Appl. Math. Comput. – volume: 1 start-page: 830 year: 2009 end-page: 844 ident: CR11 article-title: Analysis of two-grid methods for nonlinear parabolic equations by expanded mixed finite element methods publication-title: Adv. Appl. Math. Mech. doi: 10.4208/aamm.09-m09S09 – volume: 274 start-page: 182 year: 2016 end-page: 194 ident: CR25 article-title: Unconditional superconvergence analysis of a new mixed finite element method for nonlinear Sobolev equation publication-title: Appl. Math. Comput. – volume: 165 start-page: 180 year: 1992 end-page: 191 ident: CR21 article-title: Finite element methods for nonlinear Sobolev equations with nonlinear boundary conditions publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(92)90074-N – volume: 33 start-page: 2359 year: 2006 end-page: 2374 ident: CR1 article-title: A two-level discretization of nonlinear boundary value problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142993247104 – volume: 2012 start-page: 11 year: 2012 ident: CR6 article-title: A two-grid method for finite element solutions for nonlinear parabolic equations publication-title: Abstract and Applied Analysis – volume: 49 start-page: 383 year: 2011 end-page: 401 ident: CR7 article-title: Two-grid method for nonlinear reaction-diffusion equations by mixed finite element methods publication-title: J. Sci. Comput. doi: 10.1007/s10915-011-9469-3 – volume: 48 start-page: 897 year: 2011 end-page: 915 ident: CR23 article-title: L2-error analysis of fully discrete discontinuous Galerkin approximations for nonlinear Sobolev equations publication-title: Bulletin of the Korean Mathematical Society doi: 10.4134/BKMS.2011.48.5.897 – volume: 13 start-page: 177 year: 1991 end-page: 186 ident: CR33 article-title: $L^{\infty }$L∞-error bounds for some nonliner integro-differential equations by finite element approximations publication-title: Mathematica Numerica Sinica – volume: 40 start-page: 327 year: 1972 end-page: 335 ident: CR13 article-title: A quasilinear parabolic and a related third order problem publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(72)90054-6 – volume: 228 start-page: 123 year: 2009 end-page: 132 ident: CR4 article-title: Two-grid methods for finite volume element approximations of nonlinear parabolic equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.09.001 – volume: 180 start-page: 191 year: 1994 end-page: 203 ident: CR14 article-title: Two-grid methods for mixed finite element approximations of nonlinear parabolic equations publication-title: Contemp. Math. doi: 10.1090/conm/180/01971 – volume: 114 start-page: 25 year: 2015 end-page: 36 ident: CR24 article-title: A low order characteristic-nonconforming finite element method for nonlinear Sobolev equation with convection-dominated term publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2014.03.008 – volume: 15 start-page: 231 year: 1994 end-page: 237 ident: CR30 article-title: A novel two-grid method for semi-linear equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/0915016 – volume: 3 start-page: 527 year: 1972 end-page: 543 ident: CR26 article-title: Existence and representation theorems for a semi-linear Sobolev equation in Banach space publication-title: SIAM J. Math. Anal. doi: 10.1137/0503051 – volume: 37 start-page: 391 year: 2016 end-page: 414 ident: CR32 article-title: Two-grid methods for finite volume element approximations of nonlinear Sobolev equations publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2015.1115415 – volume: 15 start-page: 1125 year: 1978 end-page: 1150 ident: CR16 article-title: Time-stepping Galerkin methods for nonlinear Sobolev partial differential equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/0715075 – volume: 35 start-page: 435 year: 1998 end-page: 452 ident: CR15 article-title: A two-grid finite difference scheme for nonlinear parabolic equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142995293493 – volume: 60 start-page: 10 year: 2010 end-page: 18 ident: CR5 article-title: Two-grid finite volume element methods for semilinear parabolic problems publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2009.08.004 – volume: 8 start-page: 825 year: 2013 end-page: 836 ident: CR19 article-title: Time discontinuous Galerkin space-time finite element method for nonlinear Sobolev equations publication-title: Frontiers of Mathematics in China doi: 10.1007/s11464-013-0307-9 – volume: 165 start-page: 180 year: 1992 ident: 9628_CR21 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(92)90074-N – volume: 24 start-page: 1286 year: 1960 ident: 9628_CR2 publication-title: J. Appl. Math. Mech. doi: 10.1016/0021-8928(60)90107-6 – volume: 15 start-page: 231 year: 1994 ident: 9628_CR30 publication-title: SIAM J. Sci. Comput. doi: 10.1137/0915016 – volume: 15 start-page: 1125 year: 1978 ident: 9628_CR16 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0715075 – volume: 114 start-page: 25 year: 2015 ident: 9628_CR24 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2014.03.008 – volume: 228 start-page: 123 year: 2009 ident: 9628_CR4 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2008.09.001 – volume: 33 start-page: 2359 year: 2006 ident: 9628_CR1 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142993247104 – volume: 8 start-page: 825 year: 2013 ident: 9628_CR19 publication-title: Frontiers of Mathematics in China doi: 10.1007/s11464-013-0307-9 – volume: 200 start-page: 147 year: 2008 ident: 9628_CR27 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2007.10.053 – volume: 33 start-page: 1759 year: 1996 ident: 9628_CR29 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142992232949 – volume: 37 start-page: 391 year: 2016 ident: 9628_CR32 publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630563.2015.1115415 – volume: 69 start-page: 408 year: 2007 ident: 9628_CR10 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1775 – volume: 1 start-page: 830 year: 2009 ident: 9628_CR11 publication-title: Adv. Appl. Math. Mech. doi: 10.4208/aamm.09-m09S09 – volume: 15 start-page: 317 year: 1999 ident: 9628_CR28 publication-title: Numerical Methods for Partial Differential Equations doi: 10.1002/(SICI)1098-2426(199905)15:3<317::AID-NUM4>3.0.CO;2-U – volume: 107 start-page: 177 year: 2007 ident: 9628_CR3 publication-title: Numer. Math. doi: 10.1007/s00211-007-0115-9 – volume: 40 start-page: 54 year: 1990 ident: 9628_CR20 publication-title: Aequationes Math. doi: 10.1007/BF02112280 – volume: 29 start-page: 1238 year: 2013 ident: 9628_CR12 publication-title: Numerical Methods for Partial Differential Equations doi: 10.1002/num.21753 – volume: 35 start-page: 435 year: 1998 ident: 9628_CR15 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142995293493 – volume: 2012 start-page: 11 year: 2012 ident: 9628_CR6 publication-title: Abstract and Applied Analysis – volume: 19 start-page: 614 year: 1968 ident: 9628_CR8 publication-title: Zeitschrif für Angewandte Mathematik und Physik doi: 10.1007/BF01594969 – volume: 102 start-page: 51 year: 1999 ident: 9628_CR17 publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(98)10019-X – volume: 3 start-page: 527 year: 1972 ident: 9628_CR26 publication-title: SIAM J. Math. Anal. doi: 10.1137/0503051 – volume: 48 start-page: 897 year: 2011 ident: 9628_CR23 publication-title: Bulletin of the Korean Mathematical Society doi: 10.4134/BKMS.2011.48.5.897 – volume: 16 start-page: 23 year: 1994 ident: 9628_CR18 publication-title: Natural Science Journal of Xiantan University – volume: 57 start-page: 193 year: 2003 ident: 9628_CR9 publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.668 – volume: 142 start-page: 34 year: 2017 ident: 9628_CR22 publication-title: Math. Comput. Simul. doi: 10.1016/j.matcom.2017.04.004 – volume: 180 start-page: 191 year: 1994 ident: 9628_CR14 publication-title: Contemp. Math. doi: 10.1090/conm/180/01971 – volume: 60 start-page: 10 year: 2010 ident: 9628_CR5 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2009.08.004 – volume: 13 start-page: 177 year: 1991 ident: 9628_CR33 publication-title: Mathematica Numerica Sinica – volume: 40 start-page: 327 year: 1972 ident: 9628_CR13 publication-title: J. Math. Anal. Appl. doi: 10.1016/0022-247X(72)90054-6 – volume: 49 start-page: 383 year: 2011 ident: 9628_CR7 publication-title: J. Sci. Comput. doi: 10.1007/s10915-011-9469-3 – volume: 274 start-page: 182 year: 2016 ident: 9628_CR25 publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2015.09.004 – volume: 70 start-page: 17 year: 1999 ident: 9628_CR31 publication-title: Mathematics of Computation of the American Mathematical Society doi: 10.1090/S0025-5718-99-01180-1 |
SSID | ssj0009675 |
Score | 2.4556818 |
Snippet | In this paper, we present a second-order accurate Crank-Nicolson scheme for the two-grid finite element methods of the nonlinear Sobolev equations. This method... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 611 |
SubjectTerms | Computational mathematics Computational Mathematics and Numerical Analysis Computational Science and Engineering Crank-Nicholson method Estimates Finite element method Mathematical analysis Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Nonlinear equations Nonlinear systems Visualization Workload |
Title | Two-grid finite element methods combined with Crank-Nicolson scheme for nonlinear Sobolev equations |
URI | https://link.springer.com/article/10.1007/s10444-018-9628-2 https://www.proquest.com/docview/2205462926 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZgXODAGzEYUw6cQJHavNocx8RAoHGBSXCq2iRFSIjBOuDv4_SxAQIkTlXV1FVtp_lcO58BDo3QURqqgDIEq1SkcUhjlmua69jhGTNpmcEfXqnzkbi4lbf1Pu6iqXZvUpLll_rTZjchfMUETlDF0LyLsCR96I5OPGK9OdOuKtl10dU0xWAgblKZP4n4uhjNEea3pGi51gzWYbUGiaRXWXUDFtzTJqzVgJHU07HYhJXhjHS12AJz8z6m95MHS_IHjySJq0rDSdUluiD4nhgHowT_85X0fbt2WnoCYm6CUS6OJohhyVNFn5FOyPU4Gz-6N-JeKkbwYhtGg9Ob_jmteyhQw0M1pdaqzGntJDextk5zq1jOjdUiiK3B8FRKE4RpZjEQFAHnRmZSWJ6h6XIRZSHfgRY-1e0CSdPQo7E8TLUVsdSZDa2LrI14hBKlbEPQKDMxNcG473PxmMypkb3-E9R_4vWfsDYczW55rtg1_hrcaSyU1BOtSPw-YaGYZqoNx43V5pd_Fbb3r9H7sMy8P_mKHdaB1nTy6g4QjEyzLiz1BicnV_54dnd52i2d8QNzitiP |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4HIADb8RgQA6cQJHavNocEWIasO3CJnGr2iRFSIjBOuDv4_TBAAESx6qpq9pO8zl2PgMcG6GjNFQBZQhWqUjjkMYs1zTXscMrZtIyg98fqO5IXN3K2_ocd9FUuzcpyfJP_emwmxC-YgInqGJo3nlYRCwQ-zquETubMe2qkl0XXU1TDAbiJpX5k4ivi9EMYX5LipZrTWcdVmuQSM4qq27AnHvchLUaMJJ6OhabsNL_IF0ttsAM38b0bnJvSX7vkSRxVWk4qbpEFwS_E-NglOA3X8m5b9dOS09AzE0wysXRBDEseazoM9IJuRln4wf3StxzxQhebMOoczE879K6hwI1PFRTaq3KnNZOchNr6zS3iuXcWC2C2BoMT6U0QZhmFgNBEXBuZCaF5RmaLhdRFvIdWMC3ul0gaRp6NJaHqbYiljqzoXWRtRGPUKKULQgaZSamJhj3fS4ekhk1std_gvpPvP4T1oKTj0eeKnaNvwa3Gwsl9UQrEn9OWCimmWrBaWO12e1fhe39a_QRLHWH_V7Suxxc78My877lq3dYGxamkxd3gMBkmh2WjvgOPBvYcg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NJk3wAKNjosCGH_bEZBF_Jn6sChUbUE2ilXiLEttBSKhlTYF_n3M-WkADaY9RnItyd45_5zv_DuCHlSbOmI4oR7BKZZYwmvDC0MIkHq-4zaoM_sVQn47l7yt11fQ5Ldtq9zYlWZ9pCCxNk_nRnSuOnh18kzJUT-Bk1RxNvQIf8W_MgluPeW_Juqsrpl10O0MxMEjatOa_RLxcmJZo81WCtFp3Bp9howGMpFdbeAs--EkHNhvwSJqpWXZg_WJBwFp-ATt6nNLr2Y0jxU1AlcTXZeKk7hhdEvxmjIlRQtiIJf3Qup1WXoH4m2DEi6MJ4lkyqak0shm5nObTW_9A_N-aHbzchvHgZNQ_pU0_BWoF03PqnM69MV4JmxjnjXCaF8I6I6PEWQxVlbIRy3KHQaGMhLAqV9KJHM1YyDhn4ius4lv9DpAsYwGZFSwzTibK5I45HzsXixglKtWFqFVmahuy8dDz4jZd0iQH_aeo_zToP-VdOFw8clczbbw3eL-1UNpMujINZ4al5obrLvxsrba8_aaw3f8afQCf_hwP0vNfw7M9WOPBtUIhD9-H1fns3n9DjDLPv1d--ATbI9yu |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two-grid+finite+element+methods+combined+with+Crank-Nicolson+scheme+for+nonlinear+Sobolev+equations&rft.jtitle=Advances+in+computational+mathematics&rft.au=Chen%2C+Chuanjun&rft.au=Li%2C+Kang&rft.au=Chen%2C+Yanping&rft.au=Huang%2C+Yunqing&rft.date=2019-04-02&rft.issn=1019-7168&rft.eissn=1572-9044&rft.volume=45&rft.issue=2&rft.spage=611&rft.epage=630&rft_id=info:doi/10.1007%2Fs10444-018-9628-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10444_018_9628_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1019-7168&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1019-7168&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1019-7168&client=summon |