Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix profile
The last decade has seen a flurry of research on all-pairs-similarity-search (or similarity joins ) for text, DNA and a handful of other datatypes, and these systems have been applied to many diverse data mining problems. However, there has been surprisingly little progress made on similarity joins...
Saved in:
Published in | Data mining and knowledge discovery Vol. 32; no. 1; pp. 83 - 123 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.01.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The last decade has seen a flurry of research on
all-pairs-similarity-search
(or
similarity joins
) for text, DNA and a handful of other datatypes, and these systems have been applied to many diverse data mining problems. However, there has been surprisingly little progress made on similarity joins for
time series subsequences
. The lack of progress probably stems from the daunting nature of the problem. For even modest sized datasets the obvious nested-loop algorithm can take months, and the typical speed-up techniques in this domain (i.e., indexing, lower-bounding, triangular-inequality pruning and early abandoning) at best produce only one or two orders of magnitude speedup. In this work we introduce a novel scalable algorithm for time series subsequence all-pairs-similarity-search. For exceptionally large datasets, the algorithm can be trivially cast as an anytime algorithm and produce high-quality approximate solutions in reasonable time and/or be accelerated by a trivial porting to a GPU framework. The exact similarity join algorithm computes the answer to the
time series motif
and
time series discord
problem as a side-effect, and our algorithm incidentally provides the fastest known algorithm for both these extensively-studied problems. We demonstrate the utility of our ideas for many time series data mining problems, including motif discovery, novelty discovery, shapelet discovery, semantic segmentation, density estimation, and contrast set mining. Moreover, we demonstrate the utility of our ideas on domains as diverse as seismology, music processing, bioinformatics, human activity monitoring, electrical power-demand monitoring and medicine. |
---|---|
AbstractList | The last decade has seen a flurry of research on
all-pairs-similarity-search
(or
similarity joins
) for text, DNA and a handful of other datatypes, and these systems have been applied to many diverse data mining problems. However, there has been surprisingly little progress made on similarity joins for
time series subsequences
. The lack of progress probably stems from the daunting nature of the problem. For even modest sized datasets the obvious nested-loop algorithm can take months, and the typical speed-up techniques in this domain (i.e., indexing, lower-bounding, triangular-inequality pruning and early abandoning) at best produce only one or two orders of magnitude speedup. In this work we introduce a novel scalable algorithm for time series subsequence all-pairs-similarity-search. For exceptionally large datasets, the algorithm can be trivially cast as an anytime algorithm and produce high-quality approximate solutions in reasonable time and/or be accelerated by a trivial porting to a GPU framework. The exact similarity join algorithm computes the answer to the
time series motif
and
time series discord
problem as a side-effect, and our algorithm incidentally provides the fastest known algorithm for both these extensively-studied problems. We demonstrate the utility of our ideas for many time series data mining problems, including motif discovery, novelty discovery, shapelet discovery, semantic segmentation, density estimation, and contrast set mining. Moreover, we demonstrate the utility of our ideas on domains as diverse as seismology, music processing, bioinformatics, human activity monitoring, electrical power-demand monitoring and medicine. The last decade has seen a flurry of research on all-pairs-similarity-search (or similarity joins) for text, DNA and a handful of other datatypes, and these systems have been applied to many diverse data mining problems. However, there has been surprisingly little progress made on similarity joins for time series subsequences. The lack of progress probably stems from the daunting nature of the problem. For even modest sized datasets the obvious nested-loop algorithm can take months, and the typical speed-up techniques in this domain (i.e., indexing, lower-bounding, triangular-inequality pruning and early abandoning) at best produce only one or two orders of magnitude speedup. In this work we introduce a novel scalable algorithm for time series subsequence all-pairs-similarity-search. For exceptionally large datasets, the algorithm can be trivially cast as an anytime algorithm and produce high-quality approximate solutions in reasonable time and/or be accelerated by a trivial porting to a GPU framework. The exact similarity join algorithm computes the answer to the time series motif and time series discord problem as a side-effect, and our algorithm incidentally provides the fastest known algorithm for both these extensively-studied problems. We demonstrate the utility of our ideas for many time series data mining problems, including motif discovery, novelty discovery, shapelet discovery, semantic segmentation, density estimation, and contrast set mining. Moreover, we demonstrate the utility of our ideas on domains as diverse as seismology, music processing, bioinformatics, human activity monitoring, electrical power-demand monitoring and medicine. |
Author | Keogh, Eamonn Yeh, Chin-Chia Michael Dau, Hoang Anh Zimmerman, Zachary Begum, Nurjahan Ding, Yifei Silva, Diego Furtado Ulanova, Liudmila Mueen, Abdullah Zhu, Yan |
Author_xml | – sequence: 1 givenname: Chin-Chia Michael surname: Yeh fullname: Yeh, Chin-Chia Michael email: myeh003@ucr.edu organization: University of California, Riverside – sequence: 2 givenname: Yan surname: Zhu fullname: Zhu, Yan organization: University of California, Riverside – sequence: 3 givenname: Liudmila surname: Ulanova fullname: Ulanova, Liudmila organization: University of California, Riverside – sequence: 4 givenname: Nurjahan surname: Begum fullname: Begum, Nurjahan organization: University of California, Riverside – sequence: 5 givenname: Yifei surname: Ding fullname: Ding, Yifei organization: University of California, Riverside – sequence: 6 givenname: Hoang Anh surname: Dau fullname: Dau, Hoang Anh organization: University of California, Riverside – sequence: 7 givenname: Zachary surname: Zimmerman fullname: Zimmerman, Zachary organization: University of California, Riverside – sequence: 8 givenname: Diego Furtado surname: Silva fullname: Silva, Diego Furtado organization: Universidade de São Paulo – sequence: 9 givenname: Abdullah surname: Mueen fullname: Mueen, Abdullah organization: University of New Mexico – sequence: 10 givenname: Eamonn surname: Keogh fullname: Keogh, Eamonn organization: University of California, Riverside |
BookMark | eNp9kEtLBDEQhIMo6K7-AG8Br46mJ5PJjDdZfMGCFwVvIU46mmU2WZOsj39vZD2IoKfqhvq6mpqQbR88EnII7AQYk6cJWAtdxUBWTEBf9VtkD4TklRTtw3aZeddUogO2SyYpLRhjouZsjwx3bok0YXSY6CI4n47pMmRnixqXhhBNotobmp71CkfM6YxquvbOfjj_RF8dvtH8rDPF99UYXE5lQ7rUObp3uorBuhH3yY7VY8KDb52S-8uLu9l1Nb-9upmdz6uBQ5sr81g3BrQUvZVokNtecN1gJ1oODbTS8IF3orPykWGD0iAKMMa0DNu65nbgU3K0uVtyX9aYslqEdfQlUkHf17KTjYDigo1riCGliFatolvq-KGAqa8u1aZLVbpUX12qvjDyFzO4rLMLPkftxn_JekOmkuKfMP746U_oEy0Fi3s |
CitedBy_id | crossref_primary_10_1109_TIE_2021_3050355 crossref_primary_10_3390_math9172146 crossref_primary_10_1371_journal_pone_0286763 crossref_primary_10_1021_acs_analchem_9b01896 crossref_primary_10_1080_10618600_2022_2156522 crossref_primary_10_1002_widm_1372 crossref_primary_10_14778_3594512_3594530 crossref_primary_10_3233_IDA_194759 crossref_primary_10_3390_s18061844 crossref_primary_10_14778_3551793_3551830 crossref_primary_10_1016_j_oceaneng_2023_113717 crossref_primary_10_7717_peerj_cs_1112 crossref_primary_10_1007_s10845_024_02447_7 crossref_primary_10_1007_s41403_021_00230_1 crossref_primary_10_1109_ACCESS_2020_3040245 crossref_primary_10_3389_fpubh_2021_741030 crossref_primary_10_1016_j_engappai_2022_104695 crossref_primary_10_1016_j_is_2025_102524 crossref_primary_10_1007_s10489_023_04859_z crossref_primary_10_1016_j_jclepro_2022_131339 crossref_primary_10_14778_3529337_3529354 crossref_primary_10_1016_j_compbiolchem_2023_107995 crossref_primary_10_1007_s11280_020_00820_z crossref_primary_10_14778_3583140_3583155 crossref_primary_10_1007_s10618_022_00883_8 crossref_primary_10_1109_TKDE_2020_3035685 crossref_primary_10_22144_ctujoisd_2023_029 crossref_primary_10_1134_S1054661823020062 crossref_primary_10_1109_ACCESS_2021_3050014 crossref_primary_10_1142_S021800142050010X crossref_primary_10_3390_ijgi10090594 crossref_primary_10_1016_j_apenergy_2022_118578 crossref_primary_10_3390_en15082960 crossref_primary_10_1002_cpe_5622 crossref_primary_10_32604_cmc_2020_014232 crossref_primary_10_1109_ACCESS_2019_2952564 crossref_primary_10_1142_S0217979219502370 crossref_primary_10_5194_npg_31_433_2024 crossref_primary_10_14778_3611479_3611536 crossref_primary_10_1016_j_jbi_2023_104296 crossref_primary_10_1109_TASE_2024_3394315 crossref_primary_10_1007_s10618_024_01005_2 crossref_primary_10_1016_j_eswa_2022_116864 crossref_primary_10_1109_TIA_2024_3413035 crossref_primary_10_1145_3272127_3275038 crossref_primary_10_1016_j_neucom_2025_129772 crossref_primary_10_1007_s00521_023_08683_x crossref_primary_10_1007_s10618_019_00668_6 crossref_primary_10_1007_s00778_022_00771_z crossref_primary_10_1016_j_procs_2025_01_264 crossref_primary_10_1007_s00500_025_10452_y crossref_primary_10_1109_ACCESS_2020_2987761 crossref_primary_10_3390_app13031778 crossref_primary_10_1016_j_aei_2022_101771 crossref_primary_10_3390_math11143193 crossref_primary_10_3390_electronics12061448 crossref_primary_10_3389_fphys_2021_775052 crossref_primary_10_14778_3282495_3282498 crossref_primary_10_1007_s10489_021_02788_3 crossref_primary_10_1016_j_comnet_2024_110257 |
Cites_doi | 10.3233/IDA-2004-8504 10.14778/1454159.1454226 10.1007/978-3-642-29038-1_18 10.1109/ICDM.2013.33 10.1137/1.9781611972795.41 10.1109/ICDM.2010.56 10.1145/1516360.1516397 10.1073/pnas.1211447110 10.1145/1557019.1557159 10.1038/nature08700 10.1109/EPEC.2013.6802949 10.1145/1007568.1007586 10.1007/3-540-57301-1_5 10.1126/sciadv.1501057 10.1145/1242572.1242591 10.1609/aaai.v27i1.8485 10.1145/2213977.2214029 10.1016/j.bspc.2013.12.003 10.14778/2735471.2735476 10.1109/AFGR.2008.4813468 10.1145/1557019.1557122 10.2307/2370961 10.14778/1978665.1978666 10.1002/cpe.3663 10.1109/ICSMC.2011.6083640 10.1016/j.csda.2009.08.016 10.1109/MDM.2012.25 10.1109/ICDM.2006.21 10.1109/ICDM.2016.0179 10.1109/ICDM.2016.0085 10.1109/ICDM.2016.0069 10.1145/2339530.2339576 10.1007/978-3-319-31750-2_19 10.1137/1.9781611972832.74 10.1109/ICDM.2014.52 10.1145/1645953.1646062 10.1029/GL007i010p00821 10.1504/IJBIDM.2015.072212 10.1109/ICDE.2015.7113316 10.1145/1099554.1099580 10.3389/fmicb.2011.00208 10.1177/1473871611430769 10.1145/2020408.2020587 10.1145/2513092.2500489 10.1145/1807167.1807188 10.1007/978-0-585-26870-5_4 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 Data Mining and Knowledge Discovery is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2017 – notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-017-0519-9 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 123 |
ExternalDocumentID | 10_1007_s10618_017_0519_9 |
GrantInformation_xml | – fundername: Mitsubishi Electric Research Laboratories – fundername: National Science Foundation grantid: IIS-1161997 II funderid: http://dx.doi.org/10.13039/100000001 – fundername: Samsung funderid: http://dx.doi.org/10.13039/100004358 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c316t-db24d1a759f7ede3f953a4e856314167d3c3858f7b0e4e7dee51ddd60e6223fc3 |
IEDL.DBID | BENPR |
ISSN | 1384-5810 |
IngestDate | Sat Aug 16 05:43:01 EDT 2025 Tue Jul 01 00:40:30 EDT 2025 Thu Apr 24 22:56:38 EDT 2025 Fri Feb 21 02:33:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Motif discovery Anomaly detection Time series Joins |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-db24d1a759f7ede3f953a4e856314167d3c3858f7b0e4e7dee51ddd60e6223fc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1992787451 |
PQPubID | 43030 |
PageCount | 41 |
ParticipantIDs | proquest_journals_1992787451 crossref_primary_10_1007_s10618_017_0519_9 crossref_citationtrail_10_1007_s10618_017_0519_9 springer_journals_10_1007_s10618_017_0519_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180100 2018-1-00 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 1 year: 2018 text: 20180100 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Assent I, Kranen P, Baldauf C, Seidl T (2012) AnyOut: anytime outlier detection on streaming data. In: Proceedings of the 17th international conference on database systems for advanced applications—volume part I (DASFAA’12), pp 228–242 Li Y, Yiu ML, Gong Z (2015) Quick-motif: an efficient and scalable framework for exact motif discovery. In: 2015 IEEE 31st international conference on data engineering (ICDE), pp 579–590 TruongCDAnhDTAn efficient method for motif and anomaly detection in time series based on clusteringInt J Bus Intell Data Min201510435637710.1504/IJBIDM.2015.072212 CMU Motion Capture Database (2017) http://mocap.cs.cmu.edu Mueen A, Hamooni H, Estrada T (2014) Time series join on subsequence correlation. In: Proceedings of the 2014 IEEE international conference on data mining (ICDM), pp 450–459 Yeh C-C. M, van Herle H, Keogh E (2016a) Matrix profile III: the matrix profile allows visualization of salient subsequences in massive time series. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 579–588 Luo W, Tan H, Mao H, Ni, LM (2012) Efficient similarity joins on massive high-dimensional datasets using MapReduce. In: 2012 IEEE 13th international conference on mobile data management (MDM), pp 1–10 Zhou F, Torre F, Hodgins J (2008) Aligned cluster analysis for temporal segmentation of human motion. In: 2008 8th IEEE international conference on automatic face & gesture recognition, pp 1–7 Begum N, Keogh E (2014) Rare time series motif discovery from unbounded streams. In: Proceedings of the VLDB endowment (VLDB), vol 8(2), pp 149–160 Niennattrakul V, Keogh, EJ, Ratanamahatana, CA (2010) Data editing techniques to allow the application of distance-based outlier detection to streams. In: 2010 IEEE 10th international conference on data mining (ICDM), pp 947–952 YoonCO’ReillyOBergenKBerozaGEarthquake detection through computationally efficient similarity searchSci Adv2015111e150105710.1126/sciadv.1501057 Hu B, Chen Y, Zakaria J, Ulanova L, Keogh EJ (2013) Classification of multi-dimensional streaming time series by weighting each classifier’s track record. In: 2013 IEEE 13th international conference on data mining (ICDM), pp 281–290 Rakthanmanon T, Keogh E (2013b) Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of the 2013 SIAM international conference on data mining (SDM), pp 668–676 Yeh C-C M, Zhu Y, Ulanova L, Begum N, Ding Y, Dau H A, Silva D F, Mueen A, Keogh E (2016b) Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 1317–1322 Makonin SV (2013) AMPds: a public dataset for load disaggregation and eco-feedback research. In: 2013 IEEE electrical power & energy conference (EPEC) GellerRJMuellerCSFour similar earthquakes in central CaliforniaGeophys Res Lett1980782182410.1029/GL007i010p00821 Seidl T, Assent I, Kranen K, Krieger R, Herrmann J (2009) Indexing density models for incremental learning and anytime classification on data streams. In: Proceedings of the 12th international conference on extending database technology: advances in database technology (EDBT), pp 311–322 Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classification archive. http://www.cs.ucr.edu/~eamonn/time_series_data Mueen A, Keogh E, Zhu Q, Cash S, Westover B (2009) Exact discovery of time series motif. In: Proceedings of the 2009 SIAM international conference on data mining (SDM), pp 473–484 Murray D, Liao J, Stankovic L, Stankovic V, Hauxwell-Baldwin R, Wilson C, Coleman M, Kane T, Firth S (2015) A Data management platform for personalised real-time energy feedback. In: Proceedings of the 8th international conference on energy efficiency in domestic appliances and lighting (EEDAL), pp 1293–1307 Rakthanmanon T, Champana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E (2012) Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 262–270 Patnaik D, Manish M, Sharma RK, Ramakrishnan N (2009) Sustainable operation and management of data center chillers using temporal data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1305–1314 Zilberstein S, Russell S (1995) Approximate reasoning using anytime algorithms. In: Imprecise and approximate computation, pp 43–62 Alibaba.com (2017) http://www.alibaba.com/showroom/seismograph.html MaYMengXWangSParallel similarity joins on massive high-dimensional data using MapReduceConcurr Comput201628116618310.1002/cpe.3663 Beroza G (2016) Personal correspondence. Jan 21, 2016 BrownAEXYeminiEIGrundyLJJucikasTSchaferWRA dictionary of behavioral motifs reveals clusters of genes affecting caenorhabditis elegans locomotionProc Natl Acad Sci USA201311079179610.1073/pnas.1211447110 Lee H, Ng R, Shim K (2011) Similarity join size estimation using locality sensitive hashing. In: Proceedings of the VLDB endowment (VLDB), vol 4(6), pp 338–349 Morales GDF, Gionis A (2016) Streaming similarity self-join. In: Proceedings of the VLDB endowment (VLDB), vol 9(10), pp 792–803 Hassanieh H, Indyk P, Katabi D, Price E (2012) Nearly optimal sparse Fourier transform. In: Proceedings of the forty-fourth annual ACM symposium on theory of computing (STOC), pp 563–78 Reiss A, Weber M, Stricker D (2011) Exploring and extending the boundaries of physical activity recognition. In: IEEE International conference on systems, man, and cybernetics (SMC), pp 46–50 Ye L and Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp 947–956 TuckerALiuXA Bayesian network approach to explaining time series with changing structureIntell Data Anal200485469480 Vlachos M, Vagena Z, Yu PS, Athitsos V (2005) Rotation invariant indexing of shapes and line drawings. In: Proceedings of the 14th ACM international conference on information and knowledge management (CIKM), pp 131–138 Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. In: Proceedings of the VLDB endowment (VLDB), vol 1(2), pp 1542–1552 Lian X, Chen L (2009) Efficient join processing on uncertain data streams. In: Proceedings of the ACM conference on information and knowledge management (CIKM), pp 857–866 Convolution (2016) Wikipedia, The Free Encyclopedia https://en.wikipedia.org/wiki/Convolution Dittmar C, Hildebrand K. F, Gaertner D, Winges M, Müller F, Aichroth P (2012) Audio forensics meets music information retrieval—a toolbox for inspection of music plagiarism. In: 2012 Proceedings of the 20th European signal processing conference (EUSIPCO), pp 126–131 HaoMCMarwahMJanetzkoHDayalUKeimDAPatnaikDRamakrishnanNSharmaRKVisual exploration of frequent patterns in multivariate time seriesInf Vis201211718310.1177/1473871611430769 HughesJFSkaletskyHPyntikovaTGravesTAvan DaalenSKMinxPJFultonRSMcGrathSDLockeDPFriedmanCTraskBJMardisERWarrenWCReppingSRozenSWilsonRKPageDCChimpanzee and human Y chromosomes are remarkably divergent in structure and gene contentNature201046353653910.1038/nature08700 Shao H, Marwah M, Ramakrishnan N (2013) A temporal motif mining approach to unsupervised energy disaggregation: applications to residential and commercial buildings. In: Proceedings of the twenty-seventh AAAI conference on artificial intelligence (AAAI), pp 1327–1333 Bavardo RJ, Ma Y, Srikant R (2007) Scaling up all pairs similarity search. In: Proceedings of the 16th international conference on World Wide Web, pp 131–140 RakthanmanonTChampanaBMueenABatistaGWestoverBZhuQZakariaJKeoghEAddressing big data time series: mining trillions of time series subsequences under dynamic time warpingACM Trans Knowl Discov Data2013731010.1145/2513092.2500489 Quick Motif (2015) http://degroup.cis.umac.mo/quickmotifs Chandola V, Cheboli D, Kumar V (2009) Detecting anomalies in a time series database. UMN TR09-004 Mueen A, Nath S, Liu J (2010) Fast approximate correlation for massive time-series data. In; Proceedings of the 2010 ACM SIGMOD international conference on management of data, pp 171–182 WintnerAOn analytic convolutions of Bernoulli distributionsAm J Math1934561/4659663150704910.2307/23709610010.05905 Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1154–1162 Ueno K, Xi X, Keogh EJ, Lee D-J (2006) Anytime classification using the nearest neighbor algorithm with applications to stream mining. In: Sixth international conference on data mining (ICDM), 2006 Gomez-ValeroLRusniokCCazaletCBuchrieserCComparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactionsFront Microbiol2011220810.3389/fmicb.2011.00208 Vlachos M, Meek C, Vagena Z, Gunopulos D (2004) Identifying similarities, periodicities and bursts for online search queries. In: Proceedings of the 2004 ACM SIGMOD international conference on management of data, pp 131–142 Agrawr R, Faloutsos C, Swami AN (1993) Efficient similarity search in sequence databases. In: Proceedings of the 4th international conference on foundations of data organization and algorithms (FODO’93), pp 69–84 Supporting Page (2017) http://www.cs.ucr.edu/~eamonn/MatrixProfile.html Motamedi-FakhrSMoshrefi-TorbatiMHillMHillCMWhitePRSignal processing techniques applied to human sleep EEG signals—a reviewBiomed Signal Process Control2014102014213310.1016/j.bspc.2013.12.003 BouezmarniTRomboutsJNonparametric density estimation for positive time seriesComput Stat Data Anal201054245261275642310.1016/j.csda.2009.08.01605689586 Huang T, 519_CR20 AEX Brown (519_CR8) 2013; 110 519_CR6 519_CR5 519_CR4 519_CR3 519_CR2 519_CR1 519_CR27 519_CR28 RJ Geller (519_CR15) 1980; 7 519_CR25 519_CR23 519_CR24 519_CR9 519_CR22 519_CR30 519_CR31 S Motamedi-Fakhr (519_CR29) 2014; 10 MC Hao (519_CR17) 2012; 11 A Tucker (519_CR46) 2004; 8 519_CR38 519_CR36 519_CR37 L Gomez-Valero (519_CR16) 2011; 2 519_CR34 Y Ma (519_CR26) 2016; 28 519_CR35 519_CR32 519_CR41 519_CR42 519_CR40 C Yoon (519_CR54) 2015; 1 519_CR49 519_CR47 519_CR48 519_CR43 519_CR44 519_CR52 519_CR53 JF Hughes (519_CR21) 2010; 463 519_CR51 T Rakthanmanon (519_CR39) 2013; 7 CD Truong (519_CR45) 2015; 10 A Wintner (519_CR50) 1934; 56 T Bouezmarni (519_CR7) 2010; 54 cr-split#-519_CR33.2 cr-split#-519_CR33.1 519_CR18 519_CR19 519_CR14 519_CR12 519_CR56 519_CR13 519_CR57 519_CR10 519_CR11 519_CR55 |
References_xml | – reference: Mueen A, Hamooni H, Estrada T (2014) Time series join on subsequence correlation. In: Proceedings of the 2014 IEEE international conference on data mining (ICDM), pp 450–459 – reference: Seidl T, Assent I, Kranen K, Krieger R, Herrmann J (2009) Indexing density models for incremental learning and anytime classification on data streams. In: Proceedings of the 12th international conference on extending database technology: advances in database technology (EDBT), pp 311–322 – reference: GellerRJMuellerCSFour similar earthquakes in central CaliforniaGeophys Res Lett1980782182410.1029/GL007i010p00821 – reference: Rakthanmanon T, Champana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E (2012) Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 262–270 – reference: Motamedi-FakhrSMoshrefi-TorbatiMHillMHillCMWhitePRSignal processing techniques applied to human sleep EEG signals—a reviewBiomed Signal Process Control2014102014213310.1016/j.bspc.2013.12.003 – reference: WintnerAOn analytic convolutions of Bernoulli distributionsAm J Math1934561/4659663150704910.2307/23709610010.05905 – reference: MaYMengXWangSParallel similarity joins on massive high-dimensional data using MapReduceConcurr Comput201628116618310.1002/cpe.3663 – reference: Vlachos M, Meek C, Vagena Z, Gunopulos D (2004) Identifying similarities, periodicities and bursts for online search queries. In: Proceedings of the 2004 ACM SIGMOD international conference on management of data, pp 131–142 – reference: Bavardo RJ, Ma Y, Srikant R (2007) Scaling up all pairs similarity search. In: Proceedings of the 16th international conference on World Wide Web, pp 131–140 – reference: Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. In: Proceedings of the VLDB endowment (VLDB), vol 1(2), pp 1542–1552 – reference: Gomez-ValeroLRusniokCCazaletCBuchrieserCComparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactionsFront Microbiol2011220810.3389/fmicb.2011.00208 – reference: TruongCDAnhDTAn efficient method for motif and anomaly detection in time series based on clusteringInt J Bus Intell Data Min201510435637710.1504/IJBIDM.2015.072212 – reference: TuckerALiuXA Bayesian network approach to explaining time series with changing structureIntell Data Anal200485469480 – reference: Yeh C-C. M, van Herle H, Keogh E (2016a) Matrix profile III: the matrix profile allows visualization of salient subsequences in massive time series. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 579–588 – reference: HaoMCMarwahMJanetzkoHDayalUKeimDAPatnaikDRamakrishnanNSharmaRKVisual exploration of frequent patterns in multivariate time seriesInf Vis201211718310.1177/1473871611430769 – reference: BouezmarniTRomboutsJNonparametric density estimation for positive time seriesComput Stat Data Anal201054245261275642310.1016/j.csda.2009.08.01605689586 – reference: Agrawr R, Faloutsos C, Swami AN (1993) Efficient similarity search in sequence databases. In: Proceedings of the 4th international conference on foundations of data organization and algorithms (FODO’93), pp 69–84 – reference: Assent I, Kranen P, Baldauf C, Seidl T (2012) AnyOut: anytime outlier detection on streaming data. In: Proceedings of the 17th international conference on database systems for advanced applications—volume part I (DASFAA’12), pp 228–242 – reference: Morales GDF, Gionis A (2016) Streaming similarity self-join. In: Proceedings of the VLDB endowment (VLDB), vol 9(10), pp 792–803 – reference: RakthanmanonTChampanaBMueenABatistaGWestoverBZhuQZakariaJKeoghEAddressing big data time series: mining trillions of time series subsequences under dynamic time warpingACM Trans Knowl Discov Data2013731010.1145/2513092.2500489 – reference: Beroza G (2016) Personal correspondence. Jan 21, 2016 – reference: Ye L and Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp 947–956 – reference: Zhu Y, Zimmerman Z, Senobari N S, Yeh C-C M, Funning G, Mueen A, Brisk P, Keogh E (2016) Matrix profile II: exploiting a novel algorithm and GPUs to break the one hundred million barrier for time series motifs and joins. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 739–748 – reference: Supporting Page (2017) http://www.cs.ucr.edu/~eamonn/MatrixProfile.html – reference: CMU Motion Capture Database (2017) http://mocap.cs.cmu.edu/ – reference: Niennattrakul V, Keogh, EJ, Ratanamahatana, CA (2010) Data editing techniques to allow the application of distance-based outlier detection to streams. In: 2010 IEEE 10th international conference on data mining (ICDM), pp 947–952 – reference: Vlachos M, Vagena Z, Yu PS, Athitsos V (2005) Rotation invariant indexing of shapes and line drawings. In: Proceedings of the 14th ACM international conference on information and knowledge management (CIKM), pp 131–138 – reference: Huang T, Zhu Y, Mao Y, Li X, Liu M, Wu Y, Ha Y, Dobbie G (2016) Parallel discord discovery. In: Advances in knowledge discovery and data mining: 20th Pacific-Asia conference, PAKDD 2016, Auckland, New Zealand, April 19–22, 2016. Proceedings, Part II, pp 233–244 – reference: Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1154–1162 – reference: Ueno K, Xi X, Keogh EJ, Lee D-J (2006) Anytime classification using the nearest neighbor algorithm with applications to stream mining. In: Sixth international conference on data mining (ICDM), 2006 – reference: Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classification archive. http://www.cs.ucr.edu/~eamonn/time_series_data/ – reference: BrownAEXYeminiEIGrundyLJJucikasTSchaferWRA dictionary of behavioral motifs reveals clusters of genes affecting caenorhabditis elegans locomotionProc Natl Acad Sci USA201311079179610.1073/pnas.1211447110 – reference: Zhou F, Torre F, Hodgins J (2008) Aligned cluster analysis for temporal segmentation of human motion. In: 2008 8th IEEE international conference on automatic face & gesture recognition, pp 1–7 – reference: Quick Motif (2015) http://degroup.cis.umac.mo/quickmotifs/ – reference: Luo W, Tan H, Mao H, Ni, LM (2012) Efficient similarity joins on massive high-dimensional datasets using MapReduce. In: 2012 IEEE 13th international conference on mobile data management (MDM), pp 1–10 – reference: Lee H, Ng R, Shim K (2011) Similarity join size estimation using locality sensitive hashing. In: Proceedings of the VLDB endowment (VLDB), vol 4(6), pp 338–349 – reference: Lian X, Chen L (2009) Efficient join processing on uncertain data streams. In: Proceedings of the ACM conference on information and knowledge management (CIKM), pp 857–866 – reference: Rakthanmanon T, Keogh E (2013b) Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of the 2013 SIAM international conference on data mining (SDM), pp 668–676 – reference: Li Y, Yiu ML, Gong Z (2015) Quick-motif: an efficient and scalable framework for exact motif discovery. In: 2015 IEEE 31st international conference on data engineering (ICDE), pp 579–590 – reference: Makonin SV (2013) AMPds: a public dataset for load disaggregation and eco-feedback research. In: 2013 IEEE electrical power & energy conference (EPEC) – reference: Convolution (2016) Wikipedia, The Free Encyclopedia https://en.wikipedia.org/wiki/Convolution – reference: Reiss A, Weber M, Stricker D (2011) Exploring and extending the boundaries of physical activity recognition. In: IEEE International conference on systems, man, and cybernetics (SMC), pp 46–50 – reference: Murray D, Liao J, Stankovic L, Stankovic V, Hauxwell-Baldwin R, Wilson C, Coleman M, Kane T, Firth S (2015) A Data management platform for personalised real-time energy feedback. In: Proceedings of the 8th international conference on energy efficiency in domestic appliances and lighting (EEDAL), pp 1293–1307 – reference: Chandola V, Cheboli D, Kumar V (2009) Detecting anomalies in a time series database. UMN TR09-004 – reference: Begum N, Keogh E (2014) Rare time series motif discovery from unbounded streams. In: Proceedings of the VLDB endowment (VLDB), vol 8(2), pp 149–160 – reference: Mueen A, Keogh E, Zhu Q, Cash S, Westover B (2009) Exact discovery of time series motif. In: Proceedings of the 2009 SIAM international conference on data mining (SDM), pp 473–484 – reference: Patnaik D, Manish M, Sharma RK, Ramakrishnan N (2009) Sustainable operation and management of data center chillers using temporal data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1305–1314 – reference: Zilberstein S, Russell S (1995) Approximate reasoning using anytime algorithms. In: Imprecise and approximate computation, pp 43–62 – reference: Alibaba.com (2017) http://www.alibaba.com/showroom/seismograph.html – reference: Dittmar C, Hildebrand K. F, Gaertner D, Winges M, Müller F, Aichroth P (2012) Audio forensics meets music information retrieval—a toolbox for inspection of music plagiarism. In: 2012 Proceedings of the 20th European signal processing conference (EUSIPCO), pp 126–131 – reference: HughesJFSkaletskyHPyntikovaTGravesTAvan DaalenSKMinxPJFultonRSMcGrathSDLockeDPFriedmanCTraskBJMardisERWarrenWCReppingSRozenSWilsonRKPageDCChimpanzee and human Y chromosomes are remarkably divergent in structure and gene contentNature201046353653910.1038/nature08700 – reference: Mueen A, Nath S, Liu J (2010) Fast approximate correlation for massive time-series data. In; Proceedings of the 2010 ACM SIGMOD international conference on management of data, pp 171–182 – reference: Shao H, Marwah M, Ramakrishnan N (2013) A temporal motif mining approach to unsupervised energy disaggregation: applications to residential and commercial buildings. In: Proceedings of the twenty-seventh AAAI conference on artificial intelligence (AAAI), pp 1327–1333 – reference: Hassanieh H, Indyk P, Katabi D, Price E (2012) Nearly optimal sparse Fourier transform. In: Proceedings of the forty-fourth annual ACM symposium on theory of computing (STOC), pp 563–78 – reference: Yeh C-C M, Zhu Y, Ulanova L, Begum N, Ding Y, Dau H A, Silva D F, Mueen A, Keogh E (2016b) Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 1317–1322 – reference: YoonCO’ReillyOBergenKBerozaGEarthquake detection through computationally efficient similarity searchSci Adv2015111e150105710.1126/sciadv.1501057 – reference: Hu B, Chen Y, Zakaria J, Ulanova L, Keogh EJ (2013) Classification of multi-dimensional streaming time series by weighting each classifier’s track record. In: 2013 IEEE 13th international conference on data mining (ICDM), pp 281–290 – volume: 8 start-page: 469 issue: 5 year: 2004 ident: 519_CR46 publication-title: Intell Data Anal doi: 10.3233/IDA-2004-8504 – ident: 519_CR14 – ident: 519_CR13 doi: 10.14778/1454159.1454226 – ident: 519_CR3 doi: 10.1007/978-3-642-29038-1_18 – ident: 519_CR19 doi: 10.1109/ICDM.2013.33 – ident: 519_CR32 doi: 10.1137/1.9781611972795.41 – ident: 519_CR35 doi: 10.1109/ICDM.2010.56 – ident: 519_CR10 – ident: 519_CR42 doi: 10.1145/1516360.1516397 – ident: 519_CR37 – volume: 110 start-page: 791 year: 2013 ident: 519_CR8 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1211447110 – ident: 519_CR36 doi: 10.1145/1557019.1557159 – volume: 463 start-page: 536 year: 2010 ident: 519_CR21 publication-title: Nature doi: 10.1038/nature08700 – ident: 519_CR27 doi: 10.1109/EPEC.2013.6802949 – ident: 519_CR48 doi: 10.1145/1007568.1007586 – ident: 519_CR1 doi: 10.1007/3-540-57301-1_5 – volume: 1 start-page: e1501057 issue: 11 year: 2015 ident: 519_CR54 publication-title: Sci Adv doi: 10.1126/sciadv.1501057 – ident: 519_CR4 doi: 10.1145/1242572.1242591 – ident: 519_CR43 doi: 10.1609/aaai.v27i1.8485 – ident: 519_CR18 doi: 10.1145/2213977.2214029 – volume: 10 start-page: 21 issue: 2014 year: 2014 ident: 519_CR29 publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2013.12.003 – ident: 519_CR5 doi: 10.14778/2735471.2735476 – ident: 519_CR55 doi: 10.1109/AFGR.2008.4813468 – ident: 519_CR51 doi: 10.1145/1557019.1557122 – ident: 519_CR11 – volume: 56 start-page: 659 issue: 1/4 year: 1934 ident: 519_CR50 publication-title: Am J Math doi: 10.2307/2370961 – ident: 519_CR22 doi: 10.14778/1978665.1978666 – volume: 28 start-page: 166 issue: 1 year: 2016 ident: 519_CR26 publication-title: Concurr Comput doi: 10.1002/cpe.3663 – ident: 519_CR41 doi: 10.1109/ICSMC.2011.6083640 – volume: 54 start-page: 245 year: 2010 ident: 519_CR7 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2009.08.016 – ident: 519_CR25 doi: 10.1109/MDM.2012.25 – ident: 519_CR47 doi: 10.1109/ICDM.2006.21 – ident: 519_CR53 doi: 10.1109/ICDM.2016.0179 – ident: 519_CR12 – ident: 519_CR56 doi: 10.1109/ICDM.2016.0085 – ident: 519_CR52 doi: 10.1109/ICDM.2016.0069 – ident: 519_CR38 doi: 10.1145/2339530.2339576 – ident: 519_CR20 doi: 10.1007/978-3-319-31750-2_19 – ident: 519_CR40 doi: 10.1137/1.9781611972832.74 – ident: 519_CR30 doi: 10.1109/ICDM.2014.52 – ident: 519_CR24 doi: 10.1145/1645953.1646062 – ident: 519_CR9 – volume: 7 start-page: 821 year: 1980 ident: 519_CR15 publication-title: Geophys Res Lett doi: 10.1029/GL007i010p00821 – volume: 10 start-page: 356 issue: 4 year: 2015 ident: 519_CR45 publication-title: Int J Bus Intell Data Min doi: 10.1504/IJBIDM.2015.072212 – ident: 519_CR23 doi: 10.1109/ICDE.2015.7113316 – ident: 519_CR49 doi: 10.1145/1099554.1099580 – ident: 519_CR44 – ident: 519_CR2 – volume: 2 start-page: 208 year: 2011 ident: 519_CR16 publication-title: Front Microbiol doi: 10.3389/fmicb.2011.00208 – volume: 11 start-page: 71 year: 2012 ident: 519_CR17 publication-title: Inf Vis doi: 10.1177/1473871611430769 – ident: 519_CR6 – ident: 519_CR34 – ident: 519_CR31 doi: 10.1145/2020408.2020587 – ident: 519_CR28 – volume: 7 start-page: 10 issue: 3 year: 2013 ident: 519_CR39 publication-title: ACM Trans Knowl Discov Data doi: 10.1145/2513092.2500489 – ident: #cr-split#-519_CR33.2 – ident: #cr-split#-519_CR33.1 doi: 10.1145/1807167.1807188 – ident: 519_CR57 doi: 10.1007/978-0-585-26870-5_4 |
SSID | ssj0005230 |
Score | 2.486697 |
Snippet | The last decade has seen a flurry of research on
all-pairs-similarity-search
(or
similarity joins
) for text, DNA and a handful of other datatypes, and these... The last decade has seen a flurry of research on all-pairs-similarity-search (or similarity joins) for text, DNA and a handful of other datatypes, and these... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 83 |
SubjectTerms | Algorithms Artificial Intelligence Bioinformatics Chemistry and Earth Sciences Computer Science Data mining Data Mining and Knowledge Discovery Datasets Deoxyribonucleic acid DNA Information Storage and Retrieval Monitoring Physics Pruning Seismology Similarity Statistics for Engineering Time series |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEA26InjxY1Vcv8jBkxrYpkmaehNRFkFPLuytNMkUV7Qrpgv-fDPddl1FBU-lNM1hJmnedN68IeQEtDVccsk41KLaSjLjbMpyHsAD1xKKWkvv7l4NhuJ2JEdNHbdv2e5tSrL-Ui8Uu6kIiVcJQ9jB0mWyIkPojjyuIb9c4HXEs9JgLZjU0TyV-dMUXw-jT4T5LSlanzU3m2S9AYn0cubVLbIEZZdstA0YaLMfu2S15m9av00slnJQXE7g6dNkXPpzijS7Ilyx8DaEmJ7mpaP-EQlPUPkLmtNpOa7LnCjmB2j1mFcUkJM3rny4A_qC-v3vtOnrvUOGN9cPVwPW9E9gNo5UxZzhwkV5ItMiAQdxkco4F6CliqOAwxIXW0wLFonpg4DEAcjIOaf6oAJoKGy8SzrlpIQ9Qo3iAVcpp2LgQjttUm50iKq1EEIaW_RIvzVkZhtxcexx8Zx9yiKj7bNg-wxtn6U9cjp_5XWmrPHX4MPWO1mzyXyGzNkE5fqjHjlrPbbw-LfJ9v81-oCsBZCkZ79dDkmnepvCUQAilTmuF94HmBTTeA priority: 102 providerName: Springer Nature |
Title | Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix profile |
URI | https://link.springer.com/article/10.1007/s10618-017-0519-9 https://www.proquest.com/docview/1992787451 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB6V3Usv0AcVW-jKh54Aqxsndpxeqm21CyoCVYiV6CmK7YlYRLNAgtSfX0_isLRSOUV5WcqMH18833wD8BG1NUIKyQW2otpKcuNsxgvhwYPQEstWS-_0TB0vku-X8jJsuNWBVtnPie1E7VaW9sg_EU0yJW326MvtHaeqURRdDSU0NmDop2CtBzD8Ojv7cf6E5BF3ecI64VJHj3HNLnlORUTkSjnBGJ79vTKt4eY_EdJ24Zm_gs2AGNm0c_FreIHVG9jqqzGwMDjfgqVsDkY9Cmt2vVpW9SEjpl3pj5R76_8ya1ZUjtVXxHnCpv7MCvZQLdtMJ0afz5qromFItLxlU_szZL9Iwv83C6W9t2Exn118O-ahhAK3caQa7oxIXFSkMitTdBiXmYyLBLVUceShWOpiS5HBMjUTTDB1iDJyzqkJKo8bShu_g0G1qnAHmFHCQyvlVIwi0U6bTBjvD7-8JYk0thzBpDdfboO-OJW5uMnXyshk8dxbPCeL59kI9h9fue3ENZ57eK_3SR7GWZ2ve8UIDno_Pbn9v8beP9_YLrz0wEh3Wy17MGjuH_CDBx-NGcOGnh-NYTg9-nkyG4f-5q8uxPQPZsfYyw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbacqAXHqVVFwrMob2UjrqZVxIkhBCw3T5PrdRbmplxtIsgW0gq4E_xGxnn0S2V6K2nKEoyh8_O-EvszwbYxMRZoYXmApum2kZz613KcxHIg0g0Fk0vveMTMz5TB-f6fAH-9FoYKqvs98Rmo_YzR__Id6lMMqbe7NH7y--cpkZRdrUfodG6xSH-_hk-2ap3-5-CfbeEGH0-_Tjm3VQB7mRkau6tUD7KY50WMXqURaplrjDRRkaBncReOkqWFbEdosLYI-rIe2-GaEIoLZwM6y7CAyVDJCdl-mjvRkmJbFXJieI6ia6zqK1Uz0RUNhZzIk08_TcOzsntrXxsE-ZGT-BRx0_Zh9ahnsIClivwuJ_9wLqt4Bk40o4w8l-s2JfZtKx2GNX1FeFISl8CiOWlZ9WEKqywrt6ynF2V00ZXxQhsVk_ymiEVAU7rKpwh-0YDA36xbpD4KpzdC7RrsFTOSlwHZo0IRM54I1GoxCc2FTZYPwRTpbR1xQCGPXyZ67qZ01CNr9m8DzMhngXEM0I8Swewff3IZdvK466bN3qbZN1bXWVzHxzAm95ONy7_b7Hndy_2Gh6OT4-PsqP9k8MXsBwoWdL-5NmApfrHFb4MtKe2rxpfY3Bx3879F8P9EZs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BIlVcCm2puny0PtBLi8XGiZ2kUlW1hRV029WqKhK3ENsTsQiyQIKgf62_rp58sNtK7I1TFCXxYfziefa8mQHYxshoIYXkAqui2kpybU3MU-HIg4gkZlUtvR9DdXAUfDuWxwvwp82FIVlluyZWC7WdGDoj3yWZZEi12b3drJFFjPb6ny6vOHWQokhr206jhsgAf9-67Vvx8XDPzfVbIfr7v74e8KbDADe-p0putQisl4YyzkK06Gex9NMAI6l8zzGV0PqGAmdZqHsYYGgRpWetVT1Uzq1mxnfjLsJSSLuiDix92R-Ofs4ITPw6RzkKuIy8-5hqnbinPBKRhZwoFI__9YpTqvtfdLZyev1VeNqwVfa5htczWMD8Oay0nSBYszC8AEOZJIzQjAU7m4zzYoeRyi9zV8r7JROxNLesOCW9FZbFB5aym3xcZVkxMj0rT9OSIUkCx2Xh7pBdUPuAO9a0FV-Do0cx7kvo5JMcXwHTSjhap6zyUQSRjXQstMOCc61BILXJutBrzZeYprY5tdg4T6ZVmcniibN4QhZP4i68u__ksi7sMe_lzXZOkuYfL5IpIrvwvp2nmccPDbY-f7A38MQBO_l-OBxswLLjZ1F94rMJnfL6BrccByr16wZsDE4eG99_AR9mFy0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+series+joins%2C+motifs%2C+discords+and+shapelets%3A+a+unifying+view+that+exploits+the+matrix+profile&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Yeh%2C+Chin-Chia+Michael&rft.au=Zhu%2C+Yan&rft.au=Ulanova%2C+Liudmila&rft.au=Begum%2C+Nurjahan&rft.date=2018-01-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=32&rft.issue=1&rft.spage=83&rft.epage=123&rft_id=info:doi/10.1007%2Fs10618-017-0519-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_017_0519_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |