Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix profile

The last decade has seen a flurry of research on all-pairs-similarity-search (or similarity joins ) for text, DNA and a handful of other datatypes, and these systems have been applied to many diverse data mining problems. However, there has been surprisingly little progress made on similarity joins...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 32; no. 1; pp. 83 - 123
Main Authors Yeh, Chin-Chia Michael, Zhu, Yan, Ulanova, Liudmila, Begum, Nurjahan, Ding, Yifei, Dau, Hoang Anh, Zimmerman, Zachary, Silva, Diego Furtado, Mueen, Abdullah, Keogh, Eamonn
Format Journal Article
LanguageEnglish
Published New York Springer US 01.01.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The last decade has seen a flurry of research on all-pairs-similarity-search (or similarity joins ) for text, DNA and a handful of other datatypes, and these systems have been applied to many diverse data mining problems. However, there has been surprisingly little progress made on similarity joins for time series subsequences . The lack of progress probably stems from the daunting nature of the problem. For even modest sized datasets the obvious nested-loop algorithm can take months, and the typical speed-up techniques in this domain (i.e., indexing, lower-bounding, triangular-inequality pruning and early abandoning) at best produce only one or two orders of magnitude speedup. In this work we introduce a novel scalable algorithm for time series subsequence all-pairs-similarity-search. For exceptionally large datasets, the algorithm can be trivially cast as an anytime algorithm and produce high-quality approximate solutions in reasonable time and/or be accelerated by a trivial porting to a GPU framework. The exact similarity join algorithm computes the answer to the time series motif and time series discord problem as a side-effect, and our algorithm incidentally provides the fastest known algorithm for both these extensively-studied problems. We demonstrate the utility of our ideas for many time series data mining problems, including motif discovery, novelty discovery, shapelet discovery, semantic segmentation, density estimation, and contrast set mining. Moreover, we demonstrate the utility of our ideas on domains as diverse as seismology, music processing, bioinformatics, human activity monitoring, electrical power-demand monitoring and medicine.
AbstractList The last decade has seen a flurry of research on all-pairs-similarity-search (or similarity joins ) for text, DNA and a handful of other datatypes, and these systems have been applied to many diverse data mining problems. However, there has been surprisingly little progress made on similarity joins for time series subsequences . The lack of progress probably stems from the daunting nature of the problem. For even modest sized datasets the obvious nested-loop algorithm can take months, and the typical speed-up techniques in this domain (i.e., indexing, lower-bounding, triangular-inequality pruning and early abandoning) at best produce only one or two orders of magnitude speedup. In this work we introduce a novel scalable algorithm for time series subsequence all-pairs-similarity-search. For exceptionally large datasets, the algorithm can be trivially cast as an anytime algorithm and produce high-quality approximate solutions in reasonable time and/or be accelerated by a trivial porting to a GPU framework. The exact similarity join algorithm computes the answer to the time series motif and time series discord problem as a side-effect, and our algorithm incidentally provides the fastest known algorithm for both these extensively-studied problems. We demonstrate the utility of our ideas for many time series data mining problems, including motif discovery, novelty discovery, shapelet discovery, semantic segmentation, density estimation, and contrast set mining. Moreover, we demonstrate the utility of our ideas on domains as diverse as seismology, music processing, bioinformatics, human activity monitoring, electrical power-demand monitoring and medicine.
The last decade has seen a flurry of research on all-pairs-similarity-search (or similarity joins) for text, DNA and a handful of other datatypes, and these systems have been applied to many diverse data mining problems. However, there has been surprisingly little progress made on similarity joins for time series subsequences. The lack of progress probably stems from the daunting nature of the problem. For even modest sized datasets the obvious nested-loop algorithm can take months, and the typical speed-up techniques in this domain (i.e., indexing, lower-bounding, triangular-inequality pruning and early abandoning) at best produce only one or two orders of magnitude speedup. In this work we introduce a novel scalable algorithm for time series subsequence all-pairs-similarity-search. For exceptionally large datasets, the algorithm can be trivially cast as an anytime algorithm and produce high-quality approximate solutions in reasonable time and/or be accelerated by a trivial porting to a GPU framework. The exact similarity join algorithm computes the answer to the time series motif and time series discord problem as a side-effect, and our algorithm incidentally provides the fastest known algorithm for both these extensively-studied problems. We demonstrate the utility of our ideas for many time series data mining problems, including motif discovery, novelty discovery, shapelet discovery, semantic segmentation, density estimation, and contrast set mining. Moreover, we demonstrate the utility of our ideas on domains as diverse as seismology, music processing, bioinformatics, human activity monitoring, electrical power-demand monitoring and medicine.
Author Keogh, Eamonn
Yeh, Chin-Chia Michael
Dau, Hoang Anh
Zimmerman, Zachary
Begum, Nurjahan
Ding, Yifei
Silva, Diego Furtado
Ulanova, Liudmila
Mueen, Abdullah
Zhu, Yan
Author_xml – sequence: 1
  givenname: Chin-Chia Michael
  surname: Yeh
  fullname: Yeh, Chin-Chia Michael
  email: myeh003@ucr.edu
  organization: University of California, Riverside
– sequence: 2
  givenname: Yan
  surname: Zhu
  fullname: Zhu, Yan
  organization: University of California, Riverside
– sequence: 3
  givenname: Liudmila
  surname: Ulanova
  fullname: Ulanova, Liudmila
  organization: University of California, Riverside
– sequence: 4
  givenname: Nurjahan
  surname: Begum
  fullname: Begum, Nurjahan
  organization: University of California, Riverside
– sequence: 5
  givenname: Yifei
  surname: Ding
  fullname: Ding, Yifei
  organization: University of California, Riverside
– sequence: 6
  givenname: Hoang Anh
  surname: Dau
  fullname: Dau, Hoang Anh
  organization: University of California, Riverside
– sequence: 7
  givenname: Zachary
  surname: Zimmerman
  fullname: Zimmerman, Zachary
  organization: University of California, Riverside
– sequence: 8
  givenname: Diego Furtado
  surname: Silva
  fullname: Silva, Diego Furtado
  organization: Universidade de São Paulo
– sequence: 9
  givenname: Abdullah
  surname: Mueen
  fullname: Mueen, Abdullah
  organization: University of New Mexico
– sequence: 10
  givenname: Eamonn
  surname: Keogh
  fullname: Keogh, Eamonn
  organization: University of California, Riverside
BookMark eNp9kEtLBDEQhIMo6K7-AG8Br46mJ5PJjDdZfMGCFwVvIU46mmU2WZOsj39vZD2IoKfqhvq6mpqQbR88EnII7AQYk6cJWAtdxUBWTEBf9VtkD4TklRTtw3aZeddUogO2SyYpLRhjouZsjwx3bok0YXSY6CI4n47pMmRnixqXhhBNotobmp71CkfM6YxquvbOfjj_RF8dvtH8rDPF99UYXE5lQ7rUObp3uorBuhH3yY7VY8KDb52S-8uLu9l1Nb-9upmdz6uBQ5sr81g3BrQUvZVokNtecN1gJ1oODbTS8IF3orPykWGD0iAKMMa0DNu65nbgU3K0uVtyX9aYslqEdfQlUkHf17KTjYDigo1riCGliFatolvq-KGAqa8u1aZLVbpUX12qvjDyFzO4rLMLPkftxn_JekOmkuKfMP746U_oEy0Fi3s
CitedBy_id crossref_primary_10_1109_TIE_2021_3050355
crossref_primary_10_3390_math9172146
crossref_primary_10_1371_journal_pone_0286763
crossref_primary_10_1021_acs_analchem_9b01896
crossref_primary_10_1080_10618600_2022_2156522
crossref_primary_10_1002_widm_1372
crossref_primary_10_14778_3594512_3594530
crossref_primary_10_3233_IDA_194759
crossref_primary_10_3390_s18061844
crossref_primary_10_14778_3551793_3551830
crossref_primary_10_1016_j_oceaneng_2023_113717
crossref_primary_10_7717_peerj_cs_1112
crossref_primary_10_1007_s10845_024_02447_7
crossref_primary_10_1007_s41403_021_00230_1
crossref_primary_10_1109_ACCESS_2020_3040245
crossref_primary_10_3389_fpubh_2021_741030
crossref_primary_10_1016_j_engappai_2022_104695
crossref_primary_10_1016_j_is_2025_102524
crossref_primary_10_1007_s10489_023_04859_z
crossref_primary_10_1016_j_jclepro_2022_131339
crossref_primary_10_14778_3529337_3529354
crossref_primary_10_1016_j_compbiolchem_2023_107995
crossref_primary_10_1007_s11280_020_00820_z
crossref_primary_10_14778_3583140_3583155
crossref_primary_10_1007_s10618_022_00883_8
crossref_primary_10_1109_TKDE_2020_3035685
crossref_primary_10_22144_ctujoisd_2023_029
crossref_primary_10_1134_S1054661823020062
crossref_primary_10_1109_ACCESS_2021_3050014
crossref_primary_10_1142_S021800142050010X
crossref_primary_10_3390_ijgi10090594
crossref_primary_10_1016_j_apenergy_2022_118578
crossref_primary_10_3390_en15082960
crossref_primary_10_1002_cpe_5622
crossref_primary_10_32604_cmc_2020_014232
crossref_primary_10_1109_ACCESS_2019_2952564
crossref_primary_10_1142_S0217979219502370
crossref_primary_10_5194_npg_31_433_2024
crossref_primary_10_14778_3611479_3611536
crossref_primary_10_1016_j_jbi_2023_104296
crossref_primary_10_1109_TASE_2024_3394315
crossref_primary_10_1007_s10618_024_01005_2
crossref_primary_10_1016_j_eswa_2022_116864
crossref_primary_10_1109_TIA_2024_3413035
crossref_primary_10_1145_3272127_3275038
crossref_primary_10_1016_j_neucom_2025_129772
crossref_primary_10_1007_s00521_023_08683_x
crossref_primary_10_1007_s10618_019_00668_6
crossref_primary_10_1007_s00778_022_00771_z
crossref_primary_10_1016_j_procs_2025_01_264
crossref_primary_10_1007_s00500_025_10452_y
crossref_primary_10_1109_ACCESS_2020_2987761
crossref_primary_10_3390_app13031778
crossref_primary_10_1016_j_aei_2022_101771
crossref_primary_10_3390_math11143193
crossref_primary_10_3390_electronics12061448
crossref_primary_10_3389_fphys_2021_775052
crossref_primary_10_14778_3282495_3282498
crossref_primary_10_1007_s10489_021_02788_3
crossref_primary_10_1016_j_comnet_2024_110257
Cites_doi 10.3233/IDA-2004-8504
10.14778/1454159.1454226
10.1007/978-3-642-29038-1_18
10.1109/ICDM.2013.33
10.1137/1.9781611972795.41
10.1109/ICDM.2010.56
10.1145/1516360.1516397
10.1073/pnas.1211447110
10.1145/1557019.1557159
10.1038/nature08700
10.1109/EPEC.2013.6802949
10.1145/1007568.1007586
10.1007/3-540-57301-1_5
10.1126/sciadv.1501057
10.1145/1242572.1242591
10.1609/aaai.v27i1.8485
10.1145/2213977.2214029
10.1016/j.bspc.2013.12.003
10.14778/2735471.2735476
10.1109/AFGR.2008.4813468
10.1145/1557019.1557122
10.2307/2370961
10.14778/1978665.1978666
10.1002/cpe.3663
10.1109/ICSMC.2011.6083640
10.1016/j.csda.2009.08.016
10.1109/MDM.2012.25
10.1109/ICDM.2006.21
10.1109/ICDM.2016.0179
10.1109/ICDM.2016.0085
10.1109/ICDM.2016.0069
10.1145/2339530.2339576
10.1007/978-3-319-31750-2_19
10.1137/1.9781611972832.74
10.1109/ICDM.2014.52
10.1145/1645953.1646062
10.1029/GL007i010p00821
10.1504/IJBIDM.2015.072212
10.1109/ICDE.2015.7113316
10.1145/1099554.1099580
10.3389/fmicb.2011.00208
10.1177/1473871611430769
10.1145/2020408.2020587
10.1145/2513092.2500489
10.1145/1807167.1807188
10.1007/978-0-585-26870-5_4
ContentType Journal Article
Copyright The Author(s) 2017
Data Mining and Knowledge Discovery is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2017
– notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-017-0519-9
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 123
ExternalDocumentID 10_1007_s10618_017_0519_9
GrantInformation_xml – fundername: Mitsubishi Electric Research Laboratories
– fundername: National Science Foundation
  grantid: IIS-1161997 II
  funderid: http://dx.doi.org/10.13039/100000001
– fundername: Samsung
  funderid: http://dx.doi.org/10.13039/100004358
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-db24d1a759f7ede3f953a4e856314167d3c3858f7b0e4e7dee51ddd60e6223fc3
IEDL.DBID BENPR
ISSN 1384-5810
IngestDate Sat Aug 16 05:43:01 EDT 2025
Tue Jul 01 00:40:30 EDT 2025
Thu Apr 24 22:56:38 EDT 2025
Fri Feb 21 02:33:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Motif discovery
Anomaly detection
Time series
Joins
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-db24d1a759f7ede3f953a4e856314167d3c3858f7b0e4e7dee51ddd60e6223fc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1992787451
PQPubID 43030
PageCount 41
ParticipantIDs proquest_journals_1992787451
crossref_primary_10_1007_s10618_017_0519_9
crossref_citationtrail_10_1007_s10618_017_0519_9
springer_journals_10_1007_s10618_017_0519_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180100
2018-1-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 1
  year: 2018
  text: 20180100
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Assent I, Kranen P, Baldauf C, Seidl T (2012) AnyOut: anytime outlier detection on streaming data. In: Proceedings of the 17th international conference on database systems for advanced applications—volume part I (DASFAA’12), pp 228–242
Li Y, Yiu ML, Gong Z (2015) Quick-motif: an efficient and scalable framework for exact motif discovery. In: 2015 IEEE 31st international conference on data engineering (ICDE), pp 579–590
TruongCDAnhDTAn efficient method for motif and anomaly detection in time series based on clusteringInt J Bus Intell Data Min201510435637710.1504/IJBIDM.2015.072212
CMU Motion Capture Database (2017) http://mocap.cs.cmu.edu
Mueen A, Hamooni H, Estrada T (2014) Time series join on subsequence correlation. In: Proceedings of the 2014 IEEE international conference on data mining (ICDM), pp 450–459
Yeh C-C. M, van Herle H, Keogh E (2016a) Matrix profile III: the matrix profile allows visualization of salient subsequences in massive time series. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 579–588
Luo W, Tan H, Mao H, Ni, LM (2012) Efficient similarity joins on massive high-dimensional datasets using MapReduce. In: 2012 IEEE 13th international conference on mobile data management (MDM), pp 1–10
Zhou F, Torre F, Hodgins J (2008) Aligned cluster analysis for temporal segmentation of human motion. In: 2008 8th IEEE international conference on automatic face & gesture recognition, pp 1–7
Begum N, Keogh E (2014) Rare time series motif discovery from unbounded streams. In: Proceedings of the VLDB endowment (VLDB), vol 8(2), pp 149–160
Niennattrakul V, Keogh, EJ, Ratanamahatana, CA (2010) Data editing techniques to allow the application of distance-based outlier detection to streams. In: 2010 IEEE 10th international conference on data mining (ICDM), pp 947–952
YoonCO’ReillyOBergenKBerozaGEarthquake detection through computationally efficient similarity searchSci Adv2015111e150105710.1126/sciadv.1501057
Hu B, Chen Y, Zakaria J, Ulanova L, Keogh EJ (2013) Classification of multi-dimensional streaming time series by weighting each classifier’s track record. In: 2013 IEEE 13th international conference on data mining (ICDM), pp 281–290
Rakthanmanon T, Keogh E (2013b) Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of the 2013 SIAM international conference on data mining (SDM), pp 668–676
Yeh C-C M, Zhu Y, Ulanova L, Begum N, Ding Y, Dau H A, Silva D F, Mueen A, Keogh E (2016b) Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 1317–1322
Makonin SV (2013) AMPds: a public dataset for load disaggregation and eco-feedback research. In: 2013 IEEE electrical power & energy conference (EPEC)
GellerRJMuellerCSFour similar earthquakes in central CaliforniaGeophys Res Lett1980782182410.1029/GL007i010p00821
Seidl T, Assent I, Kranen K, Krieger R, Herrmann J (2009) Indexing density models for incremental learning and anytime classification on data streams. In: Proceedings of the 12th international conference on extending database technology: advances in database technology (EDBT), pp 311–322
Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classification archive. http://www.cs.ucr.edu/~eamonn/time_series_data
Mueen A, Keogh E, Zhu Q, Cash S, Westover B (2009) Exact discovery of time series motif. In: Proceedings of the 2009 SIAM international conference on data mining (SDM), pp 473–484
Murray D, Liao J, Stankovic L, Stankovic V, Hauxwell-Baldwin R, Wilson C, Coleman M, Kane T, Firth S (2015) A Data management platform for personalised real-time energy feedback. In: Proceedings of the 8th international conference on energy efficiency in domestic appliances and lighting (EEDAL), pp 1293–1307
Rakthanmanon T, Champana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E (2012) Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 262–270
Patnaik D, Manish M, Sharma RK, Ramakrishnan N (2009) Sustainable operation and management of data center chillers using temporal data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1305–1314
Zilberstein S, Russell S (1995) Approximate reasoning using anytime algorithms. In: Imprecise and approximate computation, pp 43–62
Alibaba.com (2017) http://www.alibaba.com/showroom/seismograph.html
MaYMengXWangSParallel similarity joins on massive high-dimensional data using MapReduceConcurr Comput201628116618310.1002/cpe.3663
Beroza G (2016) Personal correspondence. Jan 21, 2016
BrownAEXYeminiEIGrundyLJJucikasTSchaferWRA dictionary of behavioral motifs reveals clusters of genes affecting caenorhabditis elegans locomotionProc Natl Acad Sci USA201311079179610.1073/pnas.1211447110
Lee H, Ng R, Shim K (2011) Similarity join size estimation using locality sensitive hashing. In: Proceedings of the VLDB endowment (VLDB), vol 4(6), pp 338–349
Morales GDF, Gionis A (2016) Streaming similarity self-join. In: Proceedings of the VLDB endowment (VLDB), vol 9(10), pp 792–803
Hassanieh H, Indyk P, Katabi D, Price E (2012) Nearly optimal sparse Fourier transform. In: Proceedings of the forty-fourth annual ACM symposium on theory of computing (STOC), pp 563–78
Reiss A, Weber M, Stricker D (2011) Exploring and extending the boundaries of physical activity recognition. In: IEEE International conference on systems, man, and cybernetics (SMC), pp 46–50
Ye L and Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp 947–956
TuckerALiuXA Bayesian network approach to explaining time series with changing structureIntell Data Anal200485469480
Vlachos M, Vagena Z, Yu PS, Athitsos V (2005) Rotation invariant indexing of shapes and line drawings. In: Proceedings of the 14th ACM international conference on information and knowledge management (CIKM), pp 131–138
Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. In: Proceedings of the VLDB endowment (VLDB), vol 1(2), pp 1542–1552
Lian X, Chen L (2009) Efficient join processing on uncertain data streams. In: Proceedings of the ACM conference on information and knowledge management (CIKM), pp 857–866
Convolution (2016) Wikipedia, The Free Encyclopedia https://en.wikipedia.org/wiki/Convolution
Dittmar C, Hildebrand K. F, Gaertner D, Winges M, Müller F, Aichroth P (2012) Audio forensics meets music information retrieval—a toolbox for inspection of music plagiarism. In: 2012 Proceedings of the 20th European signal processing conference (EUSIPCO), pp 126–131
HaoMCMarwahMJanetzkoHDayalUKeimDAPatnaikDRamakrishnanNSharmaRKVisual exploration of frequent patterns in multivariate time seriesInf Vis201211718310.1177/1473871611430769
HughesJFSkaletskyHPyntikovaTGravesTAvan DaalenSKMinxPJFultonRSMcGrathSDLockeDPFriedmanCTraskBJMardisERWarrenWCReppingSRozenSWilsonRKPageDCChimpanzee and human Y chromosomes are remarkably divergent in structure and gene contentNature201046353653910.1038/nature08700
Shao H, Marwah M, Ramakrishnan N (2013) A temporal motif mining approach to unsupervised energy disaggregation: applications to residential and commercial buildings. In: Proceedings of the twenty-seventh AAAI conference on artificial intelligence (AAAI), pp 1327–1333
Bavardo RJ, Ma Y, Srikant R (2007) Scaling up all pairs similarity search. In: Proceedings of the 16th international conference on World Wide Web, pp 131–140
RakthanmanonTChampanaBMueenABatistaGWestoverBZhuQZakariaJKeoghEAddressing big data time series: mining trillions of time series subsequences under dynamic time warpingACM Trans Knowl Discov Data2013731010.1145/2513092.2500489
Quick Motif (2015) http://degroup.cis.umac.mo/quickmotifs
Chandola V, Cheboli D, Kumar V (2009) Detecting anomalies in a time series database. UMN TR09-004
Mueen A, Nath S, Liu J (2010) Fast approximate correlation for massive time-series data. In; Proceedings of the 2010 ACM SIGMOD international conference on management of data, pp 171–182
WintnerAOn analytic convolutions of Bernoulli distributionsAm J Math1934561/4659663150704910.2307/23709610010.05905
Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1154–1162
Ueno K, Xi X, Keogh EJ, Lee D-J (2006) Anytime classification using the nearest neighbor algorithm with applications to stream mining. In: Sixth international conference on data mining (ICDM), 2006
Gomez-ValeroLRusniokCCazaletCBuchrieserCComparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactionsFront Microbiol2011220810.3389/fmicb.2011.00208
Vlachos M, Meek C, Vagena Z, Gunopulos D (2004) Identifying similarities, periodicities and bursts for online search queries. In: Proceedings of the 2004 ACM SIGMOD international conference on management of data, pp 131–142
Agrawr R, Faloutsos C, Swami AN (1993) Efficient similarity search in sequence databases. In: Proceedings of the 4th international conference on foundations of data organization and algorithms (FODO’93), pp 69–84
Supporting Page (2017) http://www.cs.ucr.edu/~eamonn/MatrixProfile.html
Motamedi-FakhrSMoshrefi-TorbatiMHillMHillCMWhitePRSignal processing techniques applied to human sleep EEG signals—a reviewBiomed Signal Process Control2014102014213310.1016/j.bspc.2013.12.003
BouezmarniTRomboutsJNonparametric density estimation for positive time seriesComput Stat Data Anal201054245261275642310.1016/j.csda.2009.08.01605689586
Huang T,
519_CR20
AEX Brown (519_CR8) 2013; 110
519_CR6
519_CR5
519_CR4
519_CR3
519_CR2
519_CR1
519_CR27
519_CR28
RJ Geller (519_CR15) 1980; 7
519_CR25
519_CR23
519_CR24
519_CR9
519_CR22
519_CR30
519_CR31
S Motamedi-Fakhr (519_CR29) 2014; 10
MC Hao (519_CR17) 2012; 11
A Tucker (519_CR46) 2004; 8
519_CR38
519_CR36
519_CR37
L Gomez-Valero (519_CR16) 2011; 2
519_CR34
Y Ma (519_CR26) 2016; 28
519_CR35
519_CR32
519_CR41
519_CR42
519_CR40
C Yoon (519_CR54) 2015; 1
519_CR49
519_CR47
519_CR48
519_CR43
519_CR44
519_CR52
519_CR53
JF Hughes (519_CR21) 2010; 463
519_CR51
T Rakthanmanon (519_CR39) 2013; 7
CD Truong (519_CR45) 2015; 10
A Wintner (519_CR50) 1934; 56
T Bouezmarni (519_CR7) 2010; 54
cr-split#-519_CR33.2
cr-split#-519_CR33.1
519_CR18
519_CR19
519_CR14
519_CR12
519_CR56
519_CR13
519_CR57
519_CR10
519_CR11
519_CR55
References_xml – reference: Mueen A, Hamooni H, Estrada T (2014) Time series join on subsequence correlation. In: Proceedings of the 2014 IEEE international conference on data mining (ICDM), pp 450–459
– reference: Seidl T, Assent I, Kranen K, Krieger R, Herrmann J (2009) Indexing density models for incremental learning and anytime classification on data streams. In: Proceedings of the 12th international conference on extending database technology: advances in database technology (EDBT), pp 311–322
– reference: GellerRJMuellerCSFour similar earthquakes in central CaliforniaGeophys Res Lett1980782182410.1029/GL007i010p00821
– reference: Rakthanmanon T, Champana B, Mueen A, Batista G, Westover B, Zhu Q, Zakaria J, Keogh E (2012) Searching and mining trillions of time series subsequences under dynamic time warping. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 262–270
– reference: Motamedi-FakhrSMoshrefi-TorbatiMHillMHillCMWhitePRSignal processing techniques applied to human sleep EEG signals—a reviewBiomed Signal Process Control2014102014213310.1016/j.bspc.2013.12.003
– reference: WintnerAOn analytic convolutions of Bernoulli distributionsAm J Math1934561/4659663150704910.2307/23709610010.05905
– reference: MaYMengXWangSParallel similarity joins on massive high-dimensional data using MapReduceConcurr Comput201628116618310.1002/cpe.3663
– reference: Vlachos M, Meek C, Vagena Z, Gunopulos D (2004) Identifying similarities, periodicities and bursts for online search queries. In: Proceedings of the 2004 ACM SIGMOD international conference on management of data, pp 131–142
– reference: Bavardo RJ, Ma Y, Srikant R (2007) Scaling up all pairs similarity search. In: Proceedings of the 16th international conference on World Wide Web, pp 131–140
– reference: Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series data: experimental comparison of representations and distance measures. In: Proceedings of the VLDB endowment (VLDB), vol 1(2), pp 1542–1552
– reference: Gomez-ValeroLRusniokCCazaletCBuchrieserCComparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactionsFront Microbiol2011220810.3389/fmicb.2011.00208
– reference: TruongCDAnhDTAn efficient method for motif and anomaly detection in time series based on clusteringInt J Bus Intell Data Min201510435637710.1504/IJBIDM.2015.072212
– reference: TuckerALiuXA Bayesian network approach to explaining time series with changing structureIntell Data Anal200485469480
– reference: Yeh C-C. M, van Herle H, Keogh E (2016a) Matrix profile III: the matrix profile allows visualization of salient subsequences in massive time series. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 579–588
– reference: HaoMCMarwahMJanetzkoHDayalUKeimDAPatnaikDRamakrishnanNSharmaRKVisual exploration of frequent patterns in multivariate time seriesInf Vis201211718310.1177/1473871611430769
– reference: BouezmarniTRomboutsJNonparametric density estimation for positive time seriesComput Stat Data Anal201054245261275642310.1016/j.csda.2009.08.01605689586
– reference: Agrawr R, Faloutsos C, Swami AN (1993) Efficient similarity search in sequence databases. In: Proceedings of the 4th international conference on foundations of data organization and algorithms (FODO’93), pp 69–84
– reference: Assent I, Kranen P, Baldauf C, Seidl T (2012) AnyOut: anytime outlier detection on streaming data. In: Proceedings of the 17th international conference on database systems for advanced applications—volume part I (DASFAA’12), pp 228–242
– reference: Morales GDF, Gionis A (2016) Streaming similarity self-join. In: Proceedings of the VLDB endowment (VLDB), vol 9(10), pp 792–803
– reference: RakthanmanonTChampanaBMueenABatistaGWestoverBZhuQZakariaJKeoghEAddressing big data time series: mining trillions of time series subsequences under dynamic time warpingACM Trans Knowl Discov Data2013731010.1145/2513092.2500489
– reference: Beroza G (2016) Personal correspondence. Jan 21, 2016
– reference: Ye L and Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp 947–956
– reference: Zhu Y, Zimmerman Z, Senobari N S, Yeh C-C M, Funning G, Mueen A, Brisk P, Keogh E (2016) Matrix profile II: exploiting a novel algorithm and GPUs to break the one hundred million barrier for time series motifs and joins. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 739–748
– reference: Supporting Page (2017) http://www.cs.ucr.edu/~eamonn/MatrixProfile.html
– reference: CMU Motion Capture Database (2017) http://mocap.cs.cmu.edu/
– reference: Niennattrakul V, Keogh, EJ, Ratanamahatana, CA (2010) Data editing techniques to allow the application of distance-based outlier detection to streams. In: 2010 IEEE 10th international conference on data mining (ICDM), pp 947–952
– reference: Vlachos M, Vagena Z, Yu PS, Athitsos V (2005) Rotation invariant indexing of shapes and line drawings. In: Proceedings of the 14th ACM international conference on information and knowledge management (CIKM), pp 131–138
– reference: Huang T, Zhu Y, Mao Y, Li X, Liu M, Wu Y, Ha Y, Dobbie G (2016) Parallel discord discovery. In: Advances in knowledge discovery and data mining: 20th Pacific-Asia conference, PAKDD 2016, Auckland, New Zealand, April 19–22, 2016. Proceedings, Part II, pp 233–244
– reference: Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp 1154–1162
– reference: Ueno K, Xi X, Keogh EJ, Lee D-J (2006) Anytime classification using the nearest neighbor algorithm with applications to stream mining. In: Sixth international conference on data mining (ICDM), 2006
– reference: Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista G (2015) The UCR time series classification archive. http://www.cs.ucr.edu/~eamonn/time_series_data/
– reference: BrownAEXYeminiEIGrundyLJJucikasTSchaferWRA dictionary of behavioral motifs reveals clusters of genes affecting caenorhabditis elegans locomotionProc Natl Acad Sci USA201311079179610.1073/pnas.1211447110
– reference: Zhou F, Torre F, Hodgins J (2008) Aligned cluster analysis for temporal segmentation of human motion. In: 2008 8th IEEE international conference on automatic face & gesture recognition, pp 1–7
– reference: Quick Motif (2015) http://degroup.cis.umac.mo/quickmotifs/
– reference: Luo W, Tan H, Mao H, Ni, LM (2012) Efficient similarity joins on massive high-dimensional datasets using MapReduce. In: 2012 IEEE 13th international conference on mobile data management (MDM), pp 1–10
– reference: Lee H, Ng R, Shim K (2011) Similarity join size estimation using locality sensitive hashing. In: Proceedings of the VLDB endowment (VLDB), vol 4(6), pp 338–349
– reference: Lian X, Chen L (2009) Efficient join processing on uncertain data streams. In: Proceedings of the ACM conference on information and knowledge management (CIKM), pp 857–866
– reference: Rakthanmanon T, Keogh E (2013b) Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of the 2013 SIAM international conference on data mining (SDM), pp 668–676
– reference: Li Y, Yiu ML, Gong Z (2015) Quick-motif: an efficient and scalable framework for exact motif discovery. In: 2015 IEEE 31st international conference on data engineering (ICDE), pp 579–590
– reference: Makonin SV (2013) AMPds: a public dataset for load disaggregation and eco-feedback research. In: 2013 IEEE electrical power & energy conference (EPEC)
– reference: Convolution (2016) Wikipedia, The Free Encyclopedia https://en.wikipedia.org/wiki/Convolution
– reference: Reiss A, Weber M, Stricker D (2011) Exploring and extending the boundaries of physical activity recognition. In: IEEE International conference on systems, man, and cybernetics (SMC), pp 46–50
– reference: Murray D, Liao J, Stankovic L, Stankovic V, Hauxwell-Baldwin R, Wilson C, Coleman M, Kane T, Firth S (2015) A Data management platform for personalised real-time energy feedback. In: Proceedings of the 8th international conference on energy efficiency in domestic appliances and lighting (EEDAL), pp 1293–1307
– reference: Chandola V, Cheboli D, Kumar V (2009) Detecting anomalies in a time series database. UMN TR09-004
– reference: Begum N, Keogh E (2014) Rare time series motif discovery from unbounded streams. In: Proceedings of the VLDB endowment (VLDB), vol 8(2), pp 149–160
– reference: Mueen A, Keogh E, Zhu Q, Cash S, Westover B (2009) Exact discovery of time series motif. In: Proceedings of the 2009 SIAM international conference on data mining (SDM), pp 473–484
– reference: Patnaik D, Manish M, Sharma RK, Ramakrishnan N (2009) Sustainable operation and management of data center chillers using temporal data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1305–1314
– reference: Zilberstein S, Russell S (1995) Approximate reasoning using anytime algorithms. In: Imprecise and approximate computation, pp 43–62
– reference: Alibaba.com (2017) http://www.alibaba.com/showroom/seismograph.html
– reference: Dittmar C, Hildebrand K. F, Gaertner D, Winges M, Müller F, Aichroth P (2012) Audio forensics meets music information retrieval—a toolbox for inspection of music plagiarism. In: 2012 Proceedings of the 20th European signal processing conference (EUSIPCO), pp 126–131
– reference: HughesJFSkaletskyHPyntikovaTGravesTAvan DaalenSKMinxPJFultonRSMcGrathSDLockeDPFriedmanCTraskBJMardisERWarrenWCReppingSRozenSWilsonRKPageDCChimpanzee and human Y chromosomes are remarkably divergent in structure and gene contentNature201046353653910.1038/nature08700
– reference: Mueen A, Nath S, Liu J (2010) Fast approximate correlation for massive time-series data. In; Proceedings of the 2010 ACM SIGMOD international conference on management of data, pp 171–182
– reference: Shao H, Marwah M, Ramakrishnan N (2013) A temporal motif mining approach to unsupervised energy disaggregation: applications to residential and commercial buildings. In: Proceedings of the twenty-seventh AAAI conference on artificial intelligence (AAAI), pp 1327–1333
– reference: Hassanieh H, Indyk P, Katabi D, Price E (2012) Nearly optimal sparse Fourier transform. In: Proceedings of the forty-fourth annual ACM symposium on theory of computing (STOC), pp 563–78
– reference: Yeh C-C M, Zhu Y, Ulanova L, Begum N, Ding Y, Dau H A, Silva D F, Mueen A, Keogh E (2016b) Matrix profile I: all pairs similarity joins for time series: a unifying view that includes motifs, discords and shapelets. In: 2016 IEEE 16th international conference on data mining (ICDM), pp 1317–1322
– reference: YoonCO’ReillyOBergenKBerozaGEarthquake detection through computationally efficient similarity searchSci Adv2015111e150105710.1126/sciadv.1501057
– reference: Hu B, Chen Y, Zakaria J, Ulanova L, Keogh EJ (2013) Classification of multi-dimensional streaming time series by weighting each classifier’s track record. In: 2013 IEEE 13th international conference on data mining (ICDM), pp 281–290
– volume: 8
  start-page: 469
  issue: 5
  year: 2004
  ident: 519_CR46
  publication-title: Intell Data Anal
  doi: 10.3233/IDA-2004-8504
– ident: 519_CR14
– ident: 519_CR13
  doi: 10.14778/1454159.1454226
– ident: 519_CR3
  doi: 10.1007/978-3-642-29038-1_18
– ident: 519_CR19
  doi: 10.1109/ICDM.2013.33
– ident: 519_CR32
  doi: 10.1137/1.9781611972795.41
– ident: 519_CR35
  doi: 10.1109/ICDM.2010.56
– ident: 519_CR10
– ident: 519_CR42
  doi: 10.1145/1516360.1516397
– ident: 519_CR37
– volume: 110
  start-page: 791
  year: 2013
  ident: 519_CR8
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1211447110
– ident: 519_CR36
  doi: 10.1145/1557019.1557159
– volume: 463
  start-page: 536
  year: 2010
  ident: 519_CR21
  publication-title: Nature
  doi: 10.1038/nature08700
– ident: 519_CR27
  doi: 10.1109/EPEC.2013.6802949
– ident: 519_CR48
  doi: 10.1145/1007568.1007586
– ident: 519_CR1
  doi: 10.1007/3-540-57301-1_5
– volume: 1
  start-page: e1501057
  issue: 11
  year: 2015
  ident: 519_CR54
  publication-title: Sci Adv
  doi: 10.1126/sciadv.1501057
– ident: 519_CR4
  doi: 10.1145/1242572.1242591
– ident: 519_CR43
  doi: 10.1609/aaai.v27i1.8485
– ident: 519_CR18
  doi: 10.1145/2213977.2214029
– volume: 10
  start-page: 21
  issue: 2014
  year: 2014
  ident: 519_CR29
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2013.12.003
– ident: 519_CR5
  doi: 10.14778/2735471.2735476
– ident: 519_CR55
  doi: 10.1109/AFGR.2008.4813468
– ident: 519_CR51
  doi: 10.1145/1557019.1557122
– ident: 519_CR11
– volume: 56
  start-page: 659
  issue: 1/4
  year: 1934
  ident: 519_CR50
  publication-title: Am J Math
  doi: 10.2307/2370961
– ident: 519_CR22
  doi: 10.14778/1978665.1978666
– volume: 28
  start-page: 166
  issue: 1
  year: 2016
  ident: 519_CR26
  publication-title: Concurr Comput
  doi: 10.1002/cpe.3663
– ident: 519_CR41
  doi: 10.1109/ICSMC.2011.6083640
– volume: 54
  start-page: 245
  year: 2010
  ident: 519_CR7
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2009.08.016
– ident: 519_CR25
  doi: 10.1109/MDM.2012.25
– ident: 519_CR47
  doi: 10.1109/ICDM.2006.21
– ident: 519_CR53
  doi: 10.1109/ICDM.2016.0179
– ident: 519_CR12
– ident: 519_CR56
  doi: 10.1109/ICDM.2016.0085
– ident: 519_CR52
  doi: 10.1109/ICDM.2016.0069
– ident: 519_CR38
  doi: 10.1145/2339530.2339576
– ident: 519_CR20
  doi: 10.1007/978-3-319-31750-2_19
– ident: 519_CR40
  doi: 10.1137/1.9781611972832.74
– ident: 519_CR30
  doi: 10.1109/ICDM.2014.52
– ident: 519_CR24
  doi: 10.1145/1645953.1646062
– ident: 519_CR9
– volume: 7
  start-page: 821
  year: 1980
  ident: 519_CR15
  publication-title: Geophys Res Lett
  doi: 10.1029/GL007i010p00821
– volume: 10
  start-page: 356
  issue: 4
  year: 2015
  ident: 519_CR45
  publication-title: Int J Bus Intell Data Min
  doi: 10.1504/IJBIDM.2015.072212
– ident: 519_CR23
  doi: 10.1109/ICDE.2015.7113316
– ident: 519_CR49
  doi: 10.1145/1099554.1099580
– ident: 519_CR44
– ident: 519_CR2
– volume: 2
  start-page: 208
  year: 2011
  ident: 519_CR16
  publication-title: Front Microbiol
  doi: 10.3389/fmicb.2011.00208
– volume: 11
  start-page: 71
  year: 2012
  ident: 519_CR17
  publication-title: Inf Vis
  doi: 10.1177/1473871611430769
– ident: 519_CR6
– ident: 519_CR34
– ident: 519_CR31
  doi: 10.1145/2020408.2020587
– ident: 519_CR28
– volume: 7
  start-page: 10
  issue: 3
  year: 2013
  ident: 519_CR39
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/2513092.2500489
– ident: #cr-split#-519_CR33.2
– ident: #cr-split#-519_CR33.1
  doi: 10.1145/1807167.1807188
– ident: 519_CR57
  doi: 10.1007/978-0-585-26870-5_4
SSID ssj0005230
Score 2.486697
Snippet The last decade has seen a flurry of research on all-pairs-similarity-search (or similarity joins ) for text, DNA and a handful of other datatypes, and these...
The last decade has seen a flurry of research on all-pairs-similarity-search (or similarity joins) for text, DNA and a handful of other datatypes, and these...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 83
SubjectTerms Algorithms
Artificial Intelligence
Bioinformatics
Chemistry and Earth Sciences
Computer Science
Data mining
Data Mining and Knowledge Discovery
Datasets
Deoxyribonucleic acid
DNA
Information Storage and Retrieval
Monitoring
Physics
Pruning
Seismology
Similarity
Statistics for Engineering
Time series
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEA26InjxY1Vcv8jBkxrYpkmaehNRFkFPLuytNMkUV7Qrpgv-fDPddl1FBU-lNM1hJmnedN68IeQEtDVccsk41KLaSjLjbMpyHsAD1xKKWkvv7l4NhuJ2JEdNHbdv2e5tSrL-Ui8Uu6kIiVcJQ9jB0mWyIkPojjyuIb9c4HXEs9JgLZjU0TyV-dMUXw-jT4T5LSlanzU3m2S9AYn0cubVLbIEZZdstA0YaLMfu2S15m9av00slnJQXE7g6dNkXPpzijS7Ilyx8DaEmJ7mpaP-EQlPUPkLmtNpOa7LnCjmB2j1mFcUkJM3rny4A_qC-v3vtOnrvUOGN9cPVwPW9E9gNo5UxZzhwkV5ItMiAQdxkco4F6CliqOAwxIXW0wLFonpg4DEAcjIOaf6oAJoKGy8SzrlpIQ9Qo3iAVcpp2LgQjttUm50iKq1EEIaW_RIvzVkZhtxcexx8Zx9yiKj7bNg-wxtn6U9cjp_5XWmrPHX4MPWO1mzyXyGzNkE5fqjHjlrPbbw-LfJ9v81-oCsBZCkZ79dDkmnepvCUQAilTmuF94HmBTTeA
  priority: 102
  providerName: Springer Nature
Title Time series joins, motifs, discords and shapelets: a unifying view that exploits the matrix profile
URI https://link.springer.com/article/10.1007/s10618-017-0519-9
https://www.proquest.com/docview/1992787451
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB6V3Usv0AcVW-jKh54Aqxsndpxeqm21CyoCVYiV6CmK7YlYRLNAgtSfX0_isLRSOUV5WcqMH18833wD8BG1NUIKyQW2otpKcuNsxgvhwYPQEstWS-_0TB0vku-X8jJsuNWBVtnPie1E7VaW9sg_EU0yJW326MvtHaeqURRdDSU0NmDop2CtBzD8Ojv7cf6E5BF3ecI64VJHj3HNLnlORUTkSjnBGJ79vTKt4eY_EdJ24Zm_gs2AGNm0c_FreIHVG9jqqzGwMDjfgqVsDkY9Cmt2vVpW9SEjpl3pj5R76_8ya1ZUjtVXxHnCpv7MCvZQLdtMJ0afz5qromFItLxlU_szZL9Iwv83C6W9t2Exn118O-ahhAK3caQa7oxIXFSkMitTdBiXmYyLBLVUceShWOpiS5HBMjUTTDB1iDJyzqkJKo8bShu_g0G1qnAHmFHCQyvlVIwi0U6bTBjvD7-8JYk0thzBpDdfboO-OJW5uMnXyshk8dxbPCeL59kI9h9fue3ENZ57eK_3SR7GWZ2ve8UIDno_Pbn9v8beP9_YLrz0wEh3Wy17MGjuH_CDBx-NGcOGnh-NYTg9-nkyG4f-5q8uxPQPZsfYyw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLbacqAXHqVVFwrMob2UjrqZVxIkhBCw3T5PrdRbmplxtIsgW0gq4E_xGxnn0S2V6K2nKEoyh8_O-EvszwbYxMRZoYXmApum2kZz613KcxHIg0g0Fk0vveMTMz5TB-f6fAH-9FoYKqvs98Rmo_YzR__Id6lMMqbe7NH7y--cpkZRdrUfodG6xSH-_hk-2ap3-5-CfbeEGH0-_Tjm3VQB7mRkau6tUD7KY50WMXqURaplrjDRRkaBncReOkqWFbEdosLYI-rIe2-GaEIoLZwM6y7CAyVDJCdl-mjvRkmJbFXJieI6ia6zqK1Uz0RUNhZzIk08_TcOzsntrXxsE-ZGT-BRx0_Zh9ahnsIClivwuJ_9wLqt4Bk40o4w8l-s2JfZtKx2GNX1FeFISl8CiOWlZ9WEKqywrt6ynF2V00ZXxQhsVk_ymiEVAU7rKpwh-0YDA36xbpD4KpzdC7RrsFTOSlwHZo0IRM54I1GoxCc2FTZYPwRTpbR1xQCGPXyZ67qZ01CNr9m8DzMhngXEM0I8Swewff3IZdvK466bN3qbZN1bXWVzHxzAm95ONy7_b7Hndy_2Gh6OT4-PsqP9k8MXsBwoWdL-5NmApfrHFb4MtKe2rxpfY3Bx3879F8P9EZs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BIlVcCm2puny0PtBLi8XGiZ2kUlW1hRV029WqKhK3ENsTsQiyQIKgf62_rp58sNtK7I1TFCXxYfziefa8mQHYxshoIYXkAqui2kpybU3MU-HIg4gkZlUtvR9DdXAUfDuWxwvwp82FIVlluyZWC7WdGDoj3yWZZEi12b3drJFFjPb6ny6vOHWQokhr206jhsgAf9-67Vvx8XDPzfVbIfr7v74e8KbDADe-p0putQisl4YyzkK06Gex9NMAI6l8zzGV0PqGAmdZqHsYYGgRpWetVT1Uzq1mxnfjLsJSSLuiDix92R-Ofs4ITPw6RzkKuIy8-5hqnbinPBKRhZwoFI__9YpTqvtfdLZyev1VeNqwVfa5htczWMD8Oay0nSBYszC8AEOZJIzQjAU7m4zzYoeRyi9zV8r7JROxNLesOCW9FZbFB5aym3xcZVkxMj0rT9OSIUkCx2Xh7pBdUPuAO9a0FV-Do0cx7kvo5JMcXwHTSjhap6zyUQSRjXQstMOCc61BILXJutBrzZeYprY5tdg4T6ZVmcniibN4QhZP4i68u__ksi7sMe_lzXZOkuYfL5IpIrvwvp2nmccPDbY-f7A38MQBO_l-OBxswLLjZ1F94rMJnfL6BrccByr16wZsDE4eG99_AR9mFy0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Time+series+joins%2C+motifs%2C+discords+and+shapelets%3A+a+unifying+view+that+exploits+the+matrix+profile&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Yeh%2C+Chin-Chia+Michael&rft.au=Zhu%2C+Yan&rft.au=Ulanova%2C+Liudmila&rft.au=Begum%2C+Nurjahan&rft.date=2018-01-01&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=32&rft.issue=1&rft.spage=83&rft.epage=123&rft_id=info:doi/10.1007%2Fs10618-017-0519-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10618_017_0519_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon