A Fractional Order Collocation Method for Second Kind Volterra Integral Equations with Weakly Singular Kernels
In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It is well known that the original solution of second kind Volterra integral equations with weakly singular kernels usually can be split into two...
Saved in:
Published in | Journal of scientific computing Vol. 75; no. 2; pp. 970 - 992 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It is well known that the original solution of second kind Volterra integral equations with weakly singular kernels usually can be split into two parts, the first is the singular part and the second is the smooth part with the assumption that the integer
m
being its smooth order. On the basis of this characteristic of the solution, we first choose the fractional order Lagrange interpolation function of Chebyshev type as the basis of the approximate space in the collocation method, and then construct a simple quadrature rule to obtain a fully discrete linear system. Consequently, with the help of the Lagrange interpolation approximate theory we establish that the fully discrete approximate equation has a unique solution for sufficiently large
n
, where
n
+
1
denotes the dimension of the approximate space. Moreover, we prove that the approximate solution arrives at an optimal convergence order
O
(
n
-
m
log
n
)
in the infinite norm and
O
(
n
-
m
)
in the weighted square norm. In addition, we prove that for sufficiently large
n
, the infinity-norm condition number of the coefficient matrix corresponding to the linear system is
O
(
log
2
n
)
and its spectral condition number is
O
(
1
)
. Numerical examples are presented to demonstrate the effectiveness of the proposed method. |
---|---|
AbstractList | In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It is well known that the original solution of second kind Volterra integral equations with weakly singular kernels usually can be split into two parts, the first is the singular part and the second is the smooth part with the assumption that the integer m being its smooth order. On the basis of this characteristic of the solution, we first choose the fractional order Lagrange interpolation function of Chebyshev type as the basis of the approximate space in the collocation method, and then construct a simple quadrature rule to obtain a fully discrete linear system. Consequently, with the help of the Lagrange interpolation approximate theory we establish that the fully discrete approximate equation has a unique solution for sufficiently large n, where n+1 denotes the dimension of the approximate space. Moreover, we prove that the approximate solution arrives at an optimal convergence order O(n-mlogn) in the infinite norm and O(n-m) in the weighted square norm. In addition, we prove that for sufficiently large n, the infinity-norm condition number of the coefficient matrix corresponding to the linear system is O(log2n) and its spectral condition number is O(1). Numerical examples are presented to demonstrate the effectiveness of the proposed method. In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It is well known that the original solution of second kind Volterra integral equations with weakly singular kernels usually can be split into two parts, the first is the singular part and the second is the smooth part with the assumption that the integer m being its smooth order. On the basis of this characteristic of the solution, we first choose the fractional order Lagrange interpolation function of Chebyshev type as the basis of the approximate space in the collocation method, and then construct a simple quadrature rule to obtain a fully discrete linear system. Consequently, with the help of the Lagrange interpolation approximate theory we establish that the fully discrete approximate equation has a unique solution for sufficiently large n , where n + 1 denotes the dimension of the approximate space. Moreover, we prove that the approximate solution arrives at an optimal convergence order O ( n - m log n ) in the infinite norm and O ( n - m ) in the weighted square norm. In addition, we prove that for sufficiently large n , the infinity-norm condition number of the coefficient matrix corresponding to the linear system is O ( log 2 n ) and its spectral condition number is O ( 1 ) . Numerical examples are presented to demonstrate the effectiveness of the proposed method. |
Author | Cai, Haotao Chen, Yanping |
Author_xml | – sequence: 1 givenname: Haotao surname: Cai fullname: Cai, Haotao organization: School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, School of Mathematics and Computational Science, Xiangtan University – sequence: 2 givenname: Yanping surname: Chen fullname: Chen, Yanping email: yanpingchen@scnu.edu.cn organization: School of Mathematical Sciences, South China Normal University |
BookMark | eNp1kE1LAzEQhoMoWKs_wFvA82pmP5LssZSqpZUe6scxpJtJu3VNarKL9N-7tYInLzMw8z4D81yQU-cdEnIN7BYYE3cRWAlFwkAkrOAyESdkAIXIEsFLOCUDJmWRiFzk5-Qixi1jrJRlOiBuRO-DrtraO93QRTAY6Ng3ja_0YUafsN14Q60PdImVd4bO6r68-qbFEDSduhbXoUcnn90PEelX3W7oG-r3Zk-XtVt3jQ50hsFhEy_JmdVNxKvfPiQv95Pn8WMyXzxMx6N5UmXA28ToVcmltcakMtPWSNCFzCsQyKCytgLDmUXUaHgmea5zzmWJK93v0lTzMhuSm-PdXfCfHcZWbX0X-hejSkuQGWQgWJ-CY6oKPsaAVu1C_aHDXgFTB63qqFX1WtVBqxI9kx6Z2GfdGsPf5f-hb7_Tfmo |
CitedBy_id | crossref_primary_10_1016_j_apnum_2023_12_002 crossref_primary_10_1007_s10915_023_02180_y crossref_primary_10_1007_s40314_024_02818_z crossref_primary_10_1007_s40819_020_00891_6 crossref_primary_10_3390_axioms11100530 crossref_primary_10_3390_sym15010060 crossref_primary_10_1016_j_apnum_2024_02_016 crossref_primary_10_1216_jie_2023_35_119 crossref_primary_10_3390_math10173065 crossref_primary_10_3390_sym14061091 crossref_primary_10_1016_j_cam_2021_113902 crossref_primary_10_1016_j_cam_2019_01_046 crossref_primary_10_1007_s10915_020_01167_3 crossref_primary_10_1007_s11075_023_01629_3 crossref_primary_10_1007_s10915_020_01187_z crossref_primary_10_1007_s11075_019_00777_9 crossref_primary_10_1016_j_apnum_2022_04_019 crossref_primary_10_1007_s10915_019_00987_2 crossref_primary_10_1016_j_matcom_2024_04_016 crossref_primary_10_1016_j_apnum_2021_01_006 crossref_primary_10_1007_s10092_023_00545_1 crossref_primary_10_1016_j_cam_2020_113339 crossref_primary_10_1007_s11075_022_01270_6 crossref_primary_10_1016_j_apnum_2021_05_006 crossref_primary_10_1002_num_22953 |
Cites_doi | 10.1137/S0036142999336145 10.1137/120876241 10.1137/080718942 10.1016/j.cam.2009.08.057 10.1007/978-3-642-14574-2 10.4208/aamm.10-m1055 10.1090/mcom3035 10.1137/16M1059278 10.4208/jcm.1208-m3497 10.1093/imanum/13.1.93 10.1137/15M1006489 10.1093/imanum/6.2.221 10.1016/j.apnum.2006.07.007 10.1007/978-3-540-71041-7 10.1016/j.apnum.2014.02.012 10.1216/jiea/1181075366 10.1216/JIE-2012-24-2-213 10.1137/0720080 10.1137/S0036142901385593 10.1007/s10444-016-9451-6 10.1016/j.apnum.2016.04.002 10.1137/130915200 10.4208/jcm.1110-m11si06 10.1007/s11464-009-0010-z 10.1090/S0002-9947-1970-0410210-0 10.1007/s11464-012-0170-0 10.1007/978-3-642-61631-0 10.1007/s11425-014-4806-2 10.1007/s10915-015-0069-5 10.1007/s10915-012-9577-8 10.1137/130933216 10.1017/CBO9780511626340 10.1216/jiea/1181075816 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC 2017 Springer Science+Business Media, LLC 2017. |
Copyright_xml | – notice: Springer Science+Business Media, LLC 2017 – notice: Springer Science+Business Media, LLC 2017. |
DBID | AAYXX CITATION 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PQEST PQQKQ PQUKI PRINS |
DOI | 10.1007/s10915-017-0568-7 |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials AUTh Library subscriptions: ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China |
DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Academic |
DatabaseTitleList | Advanced Technologies & Aerospace Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1573-7691 |
EndPage | 992 |
ExternalDocumentID | 10_1007_s10915_017_0568_7 |
GrantInformation_xml | – fundername: National Science Foundation of Shandong Province grantid: ZR2014JL003 – fundername: National Natural Science Foundation of China grantid: 91430104 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (CN) grantid: 11671157 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPOP AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFEXP AFFNX AFGCZ AFLOW AFMKY AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGPAZ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9R PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z5O Z7R Z7S Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z92 ZMTXR ZWQNP ~A9 ~EX AACDK AAEOY AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEARS AEFQL AEMSY AFBBN AFKRA AGQEE AGRTI AIGIU ARAPS BENPR BGLVJ CCPQU CITATION H13 HCIFZ K7- 8FE 8FG AAYZH AZQEC DWQXO GNUQQ JQ2 P62 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c316t-dab968ffdd283afd81a584c17e01cffc1d60feeaed63864a46689ebacff22a693 |
IEDL.DBID | AGYKE |
ISSN | 0885-7474 |
IngestDate | Sat Oct 19 04:28:32 EDT 2024 Thu Sep 12 18:48:40 EDT 2024 Sat Dec 16 12:10:40 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Second kind Volterra integral equations with weakly singular kernels 65R20 Condition number A fractional order collocations spectral method Stability analysis 45E05 Convergence analysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-dab968ffdd283afd81a584c17e01cffc1d60feeaed63864a46689ebacff22a693 |
PQID | 2918313170 |
PQPubID | 2043771 |
PageCount | 23 |
ParticipantIDs | proquest_journals_2918313170 crossref_primary_10_1007_s10915_017_0568_7 springer_journals_10_1007_s10915_017_0568_7 |
PublicationCentury | 2000 |
PublicationDate | 2018-05-01 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of scientific computing |
PublicationTitleAbbrev | J Sci Comput |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | TangTYuanWThe numerical solution of second-order weakly singular Volterra integro-differential equationsJ. Comput. Math.1990830732011497130716.65124 RagozinDPolynomial approximation on compact manifolds and homogeneous spacesTrans. Am. Math. Soc.1979150415341021010.1090/S0002-9947-1970-0410210-00208.14701 YiLGuoBAn h–p version of the continuous Petrov–Galerkin finite element method for Volterra integro-differential equations with smooth and nonsmooth kernelsSIAM J Numer. Anal.20155326772704343285210.1137/15M10064891330.65206 ChenSShenJWangLGeneralized Jacobi functions and their applications to fractional differrential equationsMath. Comput.2016851603163810.1090/mcom30351335.65066 LinTLinYRaoMZhangSPetrov–Galerkin methods for linear Volterra integro-differential equationsSIAM J. Numer. Anal.200638937963178121010.1137/S00361429993361450983.65138 MikhlinSProssdorfSSingular Integral Operators1986BerlinSpringer10.1007/978-3-642-61631-00612.47024 CaiHA Jacobi-collocation method for solving second kind Fredholm integral equations with weakly singular kernelsSci. China Math.20145721632178324754110.1007/s11425-014-4806-21302.35381 DiethelmKThe Analysis of Fractional Differential Equations2010BerlinSpringer10.1007/978-3-642-14574-21215.34001 AliIBrunnerHTangTSpectral methods for pantograph-type differential and integral equations with multiple delaysFront. Math. China200944961248159610.1007/s11464-009-0010-z05567165 WeiYChenYConvergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutionsAdv. Appl. Math. Mech.2012121120287664810.4208/aamm.10-m10551262.45005 LiXTangTXuCParallel in time algorithm with spectral-subdomain enhancement for volterra integral equationsSIAM J. Numer. Anal.20135117351756306680510.1137/1208762411291.65382 ChenSShenJMaoZEfficient and accurate spectral methods using general Jacobi functions for solving Riesz fractional differential equationsAppl. Numer. Math.2016106165181349996410.1016/j.apnum.2016.04.00206581919 LiXTangTConvergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kindFront. Math. China.201276984287689910.1007/s11464-012-0170-01260.65111 ChenJChenZZhangYFast singularity preserving methods for integral equations with non-smooth solutionsJ. Int. Equ. Appl.201224213240294580310.1216/JIE-2012-24-2-2131256.65104 CaoYXuYSingularity preserving Galerkin methods for weakly singular Fredholm integral equationsJ. Int. Equ. Appl.19946303334131251910.1216/jiea/11810758160819.65139 WeiYChenYLegendre spectral collocation method for neutral and high-order Volterra integro-differential equationAppl. Numer. Math.2014811529321217210.1016/j.apnum.2014.02.0121291.65390 ZayernouriMKarniadakisGFractional Sturm–Liouville eigen-problems: theory and numerical approximationsJ. Comput. Phys.2013472108213131015191349.34095 LiXTangTXuCNumerical solutions for weakly singular Volterra integral equations using Chebyshev and Legendre pseudo-spectral Galerkin methodsJ. Sci. Comput.2016674364347369210.1007/s10915-015-0069-51346.65078 ShenJTangTWangLSpectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics2011New YorkSpringer10.1007/978-3-540-71041-7 BrunnerHNonpolynomial spline collocation for Volterra equations with weakly singular kernelsSIAM J. Numer. Anal.1983201106111972382710.1137/07200800533.65087 ShengCWangZGuoBMultistep Legendre–Gauss spectral collocation method for nonlinear Volterra integra equationsSIAM J. Numer. Anal.20145219531980324690110.1137/1309152001305.65246 HuangMXuYSuperconvergence of the iterated hybrid collocation method for weakly singular Volterra integral equationsJ. Integral Equ. Appl.20061883116226427010.1216/jiea/11810753661141.65091 LinTLinYLuoPZhangSPetrov–Galerkin methods for nonlinear Volterra integro-differential equationsDyn. Contin. Discrete Impuls. Syst. Ser. B2009840542618540770998.65135 HuangCTangTZhangZSupergeometric convergence of spectral collocation methods for weakly singular Volterra and Fredholm integral equations with smooth solutionsJ. Comput. Math.201129698719286942810.4208/jcm.1110-m11si061265.65269 CaoYHerdmanTXuYA hybrid collocation method for Volterra integral equations with weakly singular kernelsSIAM J. Numer. Anal.200341364381197450610.1137/S00361429013855931042.65106 AtkinsonKEThe Numerical Solution of Integral Equations of Second Kind1997CambridgeCambridge University Press10.1017/CBO97805116263400899.65077 BrunnerHCollocation Methods for Volterra Integral and Related Functional Equations Methods2004CambridgeCambridge University Press1059.65122 ChenYTangTSpectral methods for weakly singular Volterra integral equations with smooth solutionsJ. Comput. Appl. Math.2009233938950255728610.1016/j.cam.2009.08.0571186.65161 TangTA note on collocation methods for Volterra integro-differential equations with weakly singular kernelsIMA J. Numer. Anal.1993139399119903110.1093/imanum/13.1.930765.65126 ZayernouriMKarniadakisGFractional spectral collocation methodSIAM J. Sci. Comput.2014364062315017710.1137/1309332161294.65097 HuangCJiaoYWangLZhangZOptimal fractional integration preconditioning and error analysis of fractional collocation method using nodal generalized Jacobi functionsSIAM J. Numer. Anal.20165433573387357458910.1137/16M10592781353.65086 XieZLiXTangTConvergence analysis of spectral Galerkin methods for Volterra type integral equationsJ. Sci. Comput.201253414434298310010.1007/s10915-012-9577-81273.65200 CaoYHuangMLiuLXuYHybrid collocation methods for Fredholm integral equations with weakly singular kernelsAppl. Numer. Math.200757549561232243010.1016/j.apnum.2006.07.0071119.65122 ChenYLiXTangTA note on Jacobi-collocation method for weakly singular Volterra integral equationsJ Comput. Math.20131475610.4208/jcm.1208-m34971289.65284 HuangCStyneszMSpectral Galerkin methods for a weakly singular Volterra integral equation of the second kindIMA J. Numer. Anal.20177141114363671500 BrunnerHPolynomial spline collocation methods for Volterra integrodifferential equations with weakly singular kernelsIMA J. Numer. Anal.1986622123996766410.1093/imanum/6.2.2210634.65142 HuangCStyneszMA spectral collocation method for a weakly singular Volterra integral equation of the second kindAdv. Comput.20164210151030355436210.1007/s10444-016-9451-61361.65102 KressRLinear Integral Equations2001BerlinSpringer0920.45001 RagozinDConstructive polynomial approximation on spheres and projective spacesTrans. Am. Math. Soc.19711621571702884680234.41011 TangTXuXChenJOn spectral methods for Volterra type integral equations and the convergence analysisJ. Comput. Math.20082682583724647381174.65058 LiXXuCA space-time spectral method for the time fractional diffusion equatioSIAM J. Numer. Anal.20094721082131251959610.1137/0807189421193.35243 WeiYChenYConvergence analysis of the Legendre spectral collocation methods for second order Volterra integro-differential equationsNumer. Math. Theor. Methods Appl.20115041943828631031265.65278 S Chen (568_CR11) 2016; 85 T Tang (568_CR33) 1993; 13 Y Wei (568_CR38) 2014; 81 H Brunner (568_CR4) 1983; 20 T Lin (568_CR24) 2009; 8 H Cai (568_CR6) 2014; 57 Z Xie (568_CR39) 2012; 53 C Huang (568_CR18) 2017; 7 X Li (568_CR27) 2016; 67 M Zayernouri (568_CR41) 2014; 36 H Brunner (568_CR5) 1986; 6 C Huang (568_CR17) 2016; 42 Y Cao (568_CR9) 2003; 41 X Li (568_CR26) 2013; 51 S Mikhlin (568_CR28) 1986 Y Wei (568_CR36) 2012; 121 Y Wei (568_CR37) 2011; 50 M Huang (568_CR20) 2006; 18 M Zayernouri (568_CR42) 2013; 47 S Chen (568_CR12) 2016; 106 C Huang (568_CR19) 2011; 29 Y Cao (568_CR8) 2007; 57 D Ragozin (568_CR29) 1971; 162 KE Atkinson (568_CR1) 1997 T Lin (568_CR23) 2006; 38 J Chen (568_CR7) 2012; 24 X Li (568_CR22) 2009; 47 T Tang (568_CR35) 2008; 26 L Yi (568_CR40) 2015; 53 H Brunner (568_CR3) 2004 X Li (568_CR25) 2012; 7 Y Chen (568_CR13) 2009; 233 C Huang (568_CR16) 2016; 54 C Sheng (568_CR32) 2014; 52 Y Cao (568_CR10) 1994; 6 T Tang (568_CR34) 1990; 8 Y Chen (568_CR14) 2013; 1 I Ali (568_CR2) 2009; 4 J Shen (568_CR31) 2011 D Ragozin (568_CR30) 1979; 150 K Diethelm (568_CR15) 2010 R Kress (568_CR21) 2001 |
References_xml | – volume: 8 start-page: 405 year: 2009 ident: 568_CR24 publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. B contributor: fullname: T Lin – volume: 38 start-page: 937 year: 2006 ident: 568_CR23 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142999336145 contributor: fullname: T Lin – volume: 51 start-page: 1735 year: 2013 ident: 568_CR26 publication-title: SIAM J. Numer. Anal. doi: 10.1137/120876241 contributor: fullname: X Li – volume: 47 start-page: 2108 year: 2009 ident: 568_CR22 publication-title: SIAM J. Numer. Anal. doi: 10.1137/080718942 contributor: fullname: X Li – volume: 233 start-page: 938 year: 2009 ident: 568_CR13 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.08.057 contributor: fullname: Y Chen – volume-title: The Analysis of Fractional Differential Equations year: 2010 ident: 568_CR15 doi: 10.1007/978-3-642-14574-2 contributor: fullname: K Diethelm – volume: 121 start-page: 1 year: 2012 ident: 568_CR36 publication-title: Adv. Appl. Math. Mech. doi: 10.4208/aamm.10-m1055 contributor: fullname: Y Wei – volume: 85 start-page: 1603 year: 2016 ident: 568_CR11 publication-title: Math. Comput. doi: 10.1090/mcom3035 contributor: fullname: S Chen – volume: 54 start-page: 3357 year: 2016 ident: 568_CR16 publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1059278 contributor: fullname: C Huang – volume: 1 start-page: 47 year: 2013 ident: 568_CR14 publication-title: J Comput. Math. doi: 10.4208/jcm.1208-m3497 contributor: fullname: Y Chen – volume: 13 start-page: 93 year: 1993 ident: 568_CR33 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/13.1.93 contributor: fullname: T Tang – volume: 53 start-page: 2677 year: 2015 ident: 568_CR40 publication-title: SIAM J Numer. Anal. doi: 10.1137/15M1006489 contributor: fullname: L Yi – volume: 6 start-page: 221 year: 1986 ident: 568_CR5 publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/6.2.221 contributor: fullname: H Brunner – volume: 57 start-page: 549 year: 2007 ident: 568_CR8 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2006.07.007 contributor: fullname: Y Cao – volume-title: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics year: 2011 ident: 568_CR31 doi: 10.1007/978-3-540-71041-7 contributor: fullname: J Shen – volume: 81 start-page: 15 year: 2014 ident: 568_CR38 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2014.02.012 contributor: fullname: Y Wei – volume: 18 start-page: 83 year: 2006 ident: 568_CR20 publication-title: J. Integral Equ. Appl. doi: 10.1216/jiea/1181075366 contributor: fullname: M Huang – volume-title: Linear Integral Equations year: 2001 ident: 568_CR21 contributor: fullname: R Kress – volume: 24 start-page: 213 year: 2012 ident: 568_CR7 publication-title: J. Int. Equ. Appl. doi: 10.1216/JIE-2012-24-2-213 contributor: fullname: J Chen – volume: 50 start-page: 419 year: 2011 ident: 568_CR37 publication-title: Numer. Math. Theor. Methods Appl. contributor: fullname: Y Wei – volume: 20 start-page: 1106 year: 1983 ident: 568_CR4 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0720080 contributor: fullname: H Brunner – volume: 41 start-page: 364 year: 2003 ident: 568_CR9 publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142901385593 contributor: fullname: Y Cao – volume: 42 start-page: 1015 year: 2016 ident: 568_CR17 publication-title: Adv. Comput. doi: 10.1007/s10444-016-9451-6 contributor: fullname: C Huang – volume: 162 start-page: 157 year: 1971 ident: 568_CR29 publication-title: Trans. Am. Math. Soc. contributor: fullname: D Ragozin – volume: 106 start-page: 165 year: 2016 ident: 568_CR12 publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2016.04.002 contributor: fullname: S Chen – volume: 52 start-page: 1953 year: 2014 ident: 568_CR32 publication-title: SIAM J. Numer. Anal. doi: 10.1137/130915200 contributor: fullname: C Sheng – volume: 29 start-page: 698 year: 2011 ident: 568_CR19 publication-title: J. Comput. Math. doi: 10.4208/jcm.1110-m11si06 contributor: fullname: C Huang – volume: 4 start-page: 49 year: 2009 ident: 568_CR2 publication-title: Front. Math. China doi: 10.1007/s11464-009-0010-z contributor: fullname: I Ali – volume-title: Collocation Methods for Volterra Integral and Related Functional Equations Methods year: 2004 ident: 568_CR3 contributor: fullname: H Brunner – volume: 150 start-page: 41 year: 1979 ident: 568_CR30 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1970-0410210-0 contributor: fullname: D Ragozin – volume: 7 start-page: 69 year: 2012 ident: 568_CR25 publication-title: Front. Math. China. doi: 10.1007/s11464-012-0170-0 contributor: fullname: X Li – volume: 47 start-page: 2108 year: 2013 ident: 568_CR42 publication-title: J. Comput. Phys. contributor: fullname: M Zayernouri – volume: 8 start-page: 307 year: 1990 ident: 568_CR34 publication-title: J. Comput. Math. contributor: fullname: T Tang – volume-title: Singular Integral Operators year: 1986 ident: 568_CR28 doi: 10.1007/978-3-642-61631-0 contributor: fullname: S Mikhlin – volume: 57 start-page: 2163 year: 2014 ident: 568_CR6 publication-title: Sci. China Math. doi: 10.1007/s11425-014-4806-2 contributor: fullname: H Cai – volume: 67 start-page: 43 year: 2016 ident: 568_CR27 publication-title: J. Sci. Comput. doi: 10.1007/s10915-015-0069-5 contributor: fullname: X Li – volume: 26 start-page: 825 year: 2008 ident: 568_CR35 publication-title: J. Comput. Math. contributor: fullname: T Tang – volume: 53 start-page: 414 year: 2012 ident: 568_CR39 publication-title: J. Sci. Comput. doi: 10.1007/s10915-012-9577-8 contributor: fullname: Z Xie – volume: 36 start-page: 40 year: 2014 ident: 568_CR41 publication-title: SIAM J. Sci. Comput. doi: 10.1137/130933216 contributor: fullname: M Zayernouri – volume-title: The Numerical Solution of Integral Equations of Second Kind year: 1997 ident: 568_CR1 doi: 10.1017/CBO9780511626340 contributor: fullname: KE Atkinson – volume: 6 start-page: 303 year: 1994 ident: 568_CR10 publication-title: J. Int. Equ. Appl. doi: 10.1216/jiea/1181075816 contributor: fullname: Y Cao – volume: 7 start-page: 1411 year: 2017 ident: 568_CR18 publication-title: IMA J. Numer. Anal. contributor: fullname: C Huang |
SSID | ssj0009892 |
Score | 2.3521838 |
Snippet | In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 970 |
SubjectTerms | Accuracy Algorithms Chebyshev approximation Collocation methods Computational Mathematics and Numerical Analysis Integral equations Interpolation Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematics Mathematics and Statistics Methods Numerical analysis Quadratures Theoretical Volterra integral equations |
SummonAdditionalLinks | – databaseName: AUTh Library subscriptions: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyI8wOnU3Lw4AfBJmvT9iRTNqZjU5xTbyVrkouj3dp58L_3pU0pCnorhIbwkpf3ex_5PYTOQGW4ZoqSAMAtcamrTJsXh8yl4NyRnh8y8955POHDmfvw7r3bgFtuyyqrO7G4qGUamxj5NQvh8FGwds7NckVM1yiTXbUtNDZRk4Gn4DRQ87Y_eXquaXeDoi0yqJJHADi7VV6zfDwXUlO45hMAAQHxf1qmGm7-ypAWhmewg7YtYsS9cotbaEMlu6hldTLH55Y4-mIPJT08yMqHCvDDoyHVxCYwkJZhOTwuukVjgKl4avxgiUfgkePX1GTMM4HvS-qIBe6vSgLwHJswLX5T4mPxhaewPFO0ikcqS8Ck7qPZoP9yNyS2nwKJu5SviRTzkAdaSwmYQmgZUAHwI6a-cmisdUwld7RSQklQSu4Kl_MgVHMBY4wJHnYPUCNJE3WIMNfakWE3DDxtCPSkYBqQF3PgG1wy4bbRZSXLaFnSZkQ1QbIRfASCj4zgI7-NOpW0I6tBeVTvdxtdVTtQD_852dH_kx2jLYA8QVmy2EGNdfapTgBWrOen9ux8A1cNykI priority: 102 providerName: ProQuest |
Title | A Fractional Order Collocation Method for Second Kind Volterra Integral Equations with Weakly Singular Kernels |
URI | https://link.springer.com/article/10.1007/s10915-017-0568-7 https://www.proquest.com/docview/2918313170 |
Volume | 75 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LU9swEN7hcaGHUqCdBmhGBw5ARxlLcWT5mHRiHpkEBkhLTx7Zki5hHIjDAX49Kz9IefTAyZ6RrbElrfbTPr4F2EOREZYbRiWCW-oz37gyLx5NtBLC050g5C7feTgSx2P_9LpzvQT82XSRTVq1R7LYqP_JdQuZizMLKOpsSYNlWK3yTle7R38H_QXVrixKIaP4dCiCZb_2Zb7XyUtttICYr7yihbKJ1ssEwLzgKHQxJpPW_TxppY9vGRw_8B9f4HOFPUm3XCwbsGSyTfg0fCZuzTdho5L1nOxXhNQHW5B1STQrEyDw9TNH1kmcwWFamvvIsKhCTRD-kkt3vtZkgCd98nvqPPEzRU5KSoob0r8ricVz4sy_5I9Rk5sHcomf74JhycDMMlTVX2Ec9a9-HdOqTgNN20zMqVZJKKS1WiNWUVZLphDWpCwwHkutTZkWnjVGGY3CLnzlCyFDkyhs41yJsP0NVrJpZr4DEdZ6OmyHsmMdMZ9W3CKi4x7e41FP-Q04rOcrvi3pOOIF8bIb2RhHNnYjGwcN2K1nNK4kM495iJsYQ9TkNeBnPUOL5v92tv2hp3dgDZGVLCMjd2FlPrs3PxC9zJMmLMvoqImLNur1Rs1q8eK11x-dX2DrmHefAEJF6tw |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFLagDLAgyiEKBTwwcMgizuEkE6pQQ0sPhrbQLXJje6FK2qQM_HuecygCCbZIVizr2c_v8zu-h9A1qAxTpqTEA3BLbGpL3ebFIAvBGTOE4_qmrncejVlvZr_MnXnpcMvKtMrqTswvapFE2kf-YPpw-ChYO-NxtSa6a5SOrpYtNLbRjm2BrdaV4sFzTbrr5U2RQZEcArDZrqKaRemcT3XamksAAnjE_WmXarD5Kz6am53gAO2XeBF3ig1uoi0ZH6JmqZEZvilpo2-PUNzBQVqUKcAPr5pSE2u3QFI45fAo7xWNAaTiiX4FCzyA9zh-S3S8POW4XxBHLHF3XdB_Z1g7afG75B_LLzyB5emUVTyQaQwG9RjNgu70qUfKbgoksijbEMEXPvOUEgIQBVfCoxzAR0RdadBIqYgKZigpuRSgkszmNmOeLxccxkyTM986QY04ieUpwkwpQ_iW7zlK0-cJbirAXaYB3_Ag43YL3VWyDFcFaUZY0yNrwYcg-FALPnRbqF1JOyz1Jwvr3W6h-2oH6uE_Jzv7f7IrtNubjobhsD8enKM9AD9ekbzYRo1N-ikvAGBsFpf5KfoGiJfLzQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oJkYPRlAjiroHDz6yoVvKtj0ShYgImiDKrdmyuxdJQVoP_ntn-xA1evDWZNtNs9PpfPP6BuAUVYZrWzHqIbilDnOUGfNi0VAKzi3ZdH3b9Dv3B_xm5NyOm-N8zmlcVLsXKcmsp8GwNEVJfS51_Uvjm89M0ZlL0YB71F2FNbREDVPTN7JbS9ZdL52KjJrUpIibnSKt-dsW3w3TEm3-SJCmdqezDVs5YCStTMJlWFFRBTb7n2yrcQXKuYLG5CxnkT7fgahFOousawEfvzcMm8RECWZZjI7009HRBDErGRqnWJIeuufkaWbS5wtBuhmPxJS0XzM28JiYmC15VuJl-k6G-LKmgpX01CJC-7oLo0778eqG5sMV6KTBeEKlCH3uaS0lAgyhpccEYpEJc5XFJlpPmOSWVkooiRrKHeFw7vkqFLhm24L7jT0oRbNI7QPhWlvSb_heUxs2PSlsjTDMtvAa_TPhVOGiONlgnnFoBEu2ZCOGAMUQGDEEbhVqxdkHuTrFge3jn4ch1LGqcFnIY7n852YH_7r7BNYfrjvBXXfQO4QNREZeVtlYg1KyeFNHiD6S8Dj9wj4AUzrRRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fractional+Order+Collocation+Method+for+Second+Kind+Volterra+Integral+Equations+with+Weakly+Singular+Kernels&rft.jtitle=Journal+of+scientific+computing&rft.au=Cai%2C+Haotao&rft.au=Chen%2C+Yanping&rft.date=2018-05-01&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=75&rft.issue=2&rft.spage=970&rft.epage=992&rft_id=info:doi/10.1007%2Fs10915-017-0568-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10915_017_0568_7 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon |