A Fractional Order Collocation Method for Second Kind Volterra Integral Equations with Weakly Singular Kernels

In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It is well known that the original solution of second kind Volterra integral equations with weakly singular kernels usually can be split into two...

Full description

Saved in:
Bibliographic Details
Published inJournal of scientific computing Vol. 75; no. 2; pp. 970 - 992
Main Authors Cai, Haotao, Chen, Yanping
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It is well known that the original solution of second kind Volterra integral equations with weakly singular kernels usually can be split into two parts, the first is the singular part and the second is the smooth part with the assumption that the integer m being its smooth order. On the basis of this characteristic of the solution, we first choose the fractional order Lagrange interpolation function of Chebyshev type as the basis of the approximate space in the collocation method, and then construct a simple quadrature rule to obtain a fully discrete linear system. Consequently, with the help of the Lagrange interpolation approximate theory we establish that the fully discrete approximate equation has a unique solution for sufficiently large n , where n + 1 denotes the dimension of the approximate space. Moreover, we prove that the approximate solution arrives at an optimal convergence order O ( n - m log n ) in the infinite norm and O ( n - m ) in the weighted square norm. In addition, we prove that for sufficiently large n , the infinity-norm condition number of the coefficient matrix corresponding to the linear system is O ( log 2 n ) and its spectral condition number is O ( 1 ) . Numerical examples are presented to demonstrate the effectiveness of the proposed method.
AbstractList In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It is well known that the original solution of second kind Volterra integral equations with weakly singular kernels usually can be split into two parts, the first is the singular part and the second is the smooth part with the assumption that the integer m being its smooth order. On the basis of this characteristic of the solution, we first choose the fractional order Lagrange interpolation function of Chebyshev type as the basis of the approximate space in the collocation method, and then construct a simple quadrature rule to obtain a fully discrete linear system. Consequently, with the help of the Lagrange interpolation approximate theory we establish that the fully discrete approximate equation has a unique solution for sufficiently large n, where n+1 denotes the dimension of the approximate space. Moreover, we prove that the approximate solution arrives at an optimal convergence order O(n-mlogn) in the infinite norm and O(n-m) in the weighted square norm. In addition, we prove that for sufficiently large n, the infinity-norm condition number of the coefficient matrix corresponding to the linear system is O(log2n) and its spectral condition number is O(1). Numerical examples are presented to demonstrate the effectiveness of the proposed method.
In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It is well known that the original solution of second kind Volterra integral equations with weakly singular kernels usually can be split into two parts, the first is the singular part and the second is the smooth part with the assumption that the integer m being its smooth order. On the basis of this characteristic of the solution, we first choose the fractional order Lagrange interpolation function of Chebyshev type as the basis of the approximate space in the collocation method, and then construct a simple quadrature rule to obtain a fully discrete linear system. Consequently, with the help of the Lagrange interpolation approximate theory we establish that the fully discrete approximate equation has a unique solution for sufficiently large n , where n + 1 denotes the dimension of the approximate space. Moreover, we prove that the approximate solution arrives at an optimal convergence order O ( n - m log n ) in the infinite norm and O ( n - m ) in the weighted square norm. In addition, we prove that for sufficiently large n , the infinity-norm condition number of the coefficient matrix corresponding to the linear system is O ( log 2 n ) and its spectral condition number is O ( 1 ) . Numerical examples are presented to demonstrate the effectiveness of the proposed method.
Author Cai, Haotao
Chen, Yanping
Author_xml – sequence: 1
  givenname: Haotao
  surname: Cai
  fullname: Cai, Haotao
  organization: School of Mathematics and Quantitative Economics, Shandong University of Finance and Economics, School of Mathematics and Computational Science, Xiangtan University
– sequence: 2
  givenname: Yanping
  surname: Chen
  fullname: Chen, Yanping
  email: yanpingchen@scnu.edu.cn
  organization: School of Mathematical Sciences, South China Normal University
BookMark eNp1kE1LAzEQhoMoWKs_wFvA82pmP5LssZSqpZUe6scxpJtJu3VNarKL9N-7tYInLzMw8z4D81yQU-cdEnIN7BYYE3cRWAlFwkAkrOAyESdkAIXIEsFLOCUDJmWRiFzk5-Qixi1jrJRlOiBuRO-DrtraO93QRTAY6Ng3ja_0YUafsN14Q60PdImVd4bO6r68-qbFEDSduhbXoUcnn90PEelX3W7oG-r3Zk-XtVt3jQ50hsFhEy_JmdVNxKvfPiQv95Pn8WMyXzxMx6N5UmXA28ToVcmltcakMtPWSNCFzCsQyKCytgLDmUXUaHgmea5zzmWJK93v0lTzMhuSm-PdXfCfHcZWbX0X-hejSkuQGWQgWJ-CY6oKPsaAVu1C_aHDXgFTB63qqFX1WtVBqxI9kx6Z2GfdGsPf5f-hb7_Tfmo
CitedBy_id crossref_primary_10_1016_j_apnum_2023_12_002
crossref_primary_10_1007_s10915_023_02180_y
crossref_primary_10_1007_s40314_024_02818_z
crossref_primary_10_1007_s40819_020_00891_6
crossref_primary_10_3390_axioms11100530
crossref_primary_10_3390_sym15010060
crossref_primary_10_1016_j_apnum_2024_02_016
crossref_primary_10_1216_jie_2023_35_119
crossref_primary_10_3390_math10173065
crossref_primary_10_3390_sym14061091
crossref_primary_10_1016_j_cam_2021_113902
crossref_primary_10_1016_j_cam_2019_01_046
crossref_primary_10_1007_s10915_020_01167_3
crossref_primary_10_1007_s11075_023_01629_3
crossref_primary_10_1007_s10915_020_01187_z
crossref_primary_10_1007_s11075_019_00777_9
crossref_primary_10_1016_j_apnum_2022_04_019
crossref_primary_10_1007_s10915_019_00987_2
crossref_primary_10_1016_j_matcom_2024_04_016
crossref_primary_10_1016_j_apnum_2021_01_006
crossref_primary_10_1007_s10092_023_00545_1
crossref_primary_10_1016_j_cam_2020_113339
crossref_primary_10_1007_s11075_022_01270_6
crossref_primary_10_1016_j_apnum_2021_05_006
crossref_primary_10_1002_num_22953
Cites_doi 10.1137/S0036142999336145
10.1137/120876241
10.1137/080718942
10.1016/j.cam.2009.08.057
10.1007/978-3-642-14574-2
10.4208/aamm.10-m1055
10.1090/mcom3035
10.1137/16M1059278
10.4208/jcm.1208-m3497
10.1093/imanum/13.1.93
10.1137/15M1006489
10.1093/imanum/6.2.221
10.1016/j.apnum.2006.07.007
10.1007/978-3-540-71041-7
10.1016/j.apnum.2014.02.012
10.1216/jiea/1181075366
10.1216/JIE-2012-24-2-213
10.1137/0720080
10.1137/S0036142901385593
10.1007/s10444-016-9451-6
10.1016/j.apnum.2016.04.002
10.1137/130915200
10.4208/jcm.1110-m11si06
10.1007/s11464-009-0010-z
10.1090/S0002-9947-1970-0410210-0
10.1007/s11464-012-0170-0
10.1007/978-3-642-61631-0
10.1007/s11425-014-4806-2
10.1007/s10915-015-0069-5
10.1007/s10915-012-9577-8
10.1137/130933216
10.1017/CBO9780511626340
10.1216/jiea/1181075816
ContentType Journal Article
Copyright Springer Science+Business Media, LLC 2017
Springer Science+Business Media, LLC 2017.
Copyright_xml – notice: Springer Science+Business Media, LLC 2017
– notice: Springer Science+Business Media, LLC 2017.
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1007/s10915-017-0568-7
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
Advanced Technologies & Aerospace Database‎ (1962 - current)
ProQuest Central Essentials
AUTh Library subscriptions: ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection (Proquest) (PQ_SDU_P3)
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Academic
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1573-7691
EndPage 992
ExternalDocumentID 10_1007_s10915_017_0568_7
GrantInformation_xml – fundername: National Science Foundation of Shandong Province
  grantid: ZR2014JL003
– fundername: National Natural Science Foundation of China
  grantid: 91430104
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (CN)
  grantid: 11671157
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFFNX
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9R
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z92
ZMTXR
ZWQNP
~A9
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AFBBN
AFKRA
AGQEE
AGRTI
AIGIU
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
H13
HCIFZ
K7-
8FE
8FG
AAYZH
AZQEC
DWQXO
GNUQQ
JQ2
P62
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-dab968ffdd283afd81a584c17e01cffc1d60feeaed63864a46689ebacff22a693
IEDL.DBID AGYKE
ISSN 0885-7474
IngestDate Sat Oct 19 04:28:32 EDT 2024
Thu Sep 12 18:48:40 EDT 2024
Sat Dec 16 12:10:40 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Second kind Volterra integral equations with weakly singular kernels
65R20
Condition number
A fractional order collocations spectral method
Stability analysis
45E05
Convergence analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-dab968ffdd283afd81a584c17e01cffc1d60feeaed63864a46689ebacff22a693
PQID 2918313170
PQPubID 2043771
PageCount 23
ParticipantIDs proquest_journals_2918313170
crossref_primary_10_1007_s10915_017_0568_7
springer_journals_10_1007_s10915_017_0568_7
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Journal of scientific computing
PublicationTitleAbbrev J Sci Comput
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References TangTYuanWThe numerical solution of second-order weakly singular Volterra integro-differential equationsJ. Comput. Math.1990830732011497130716.65124
RagozinDPolynomial approximation on compact manifolds and homogeneous spacesTrans. Am. Math. Soc.1979150415341021010.1090/S0002-9947-1970-0410210-00208.14701
YiLGuoBAn h–p version of the continuous Petrov–Galerkin finite element method for Volterra integro-differential equations with smooth and nonsmooth kernelsSIAM J Numer. Anal.20155326772704343285210.1137/15M10064891330.65206
ChenSShenJWangLGeneralized Jacobi functions and their applications to fractional differrential equationsMath. Comput.2016851603163810.1090/mcom30351335.65066
LinTLinYRaoMZhangSPetrov–Galerkin methods for linear Volterra integro-differential equationsSIAM J. Numer. Anal.200638937963178121010.1137/S00361429993361450983.65138
MikhlinSProssdorfSSingular Integral Operators1986BerlinSpringer10.1007/978-3-642-61631-00612.47024
CaiHA Jacobi-collocation method for solving second kind Fredholm integral equations with weakly singular kernelsSci. China Math.20145721632178324754110.1007/s11425-014-4806-21302.35381
DiethelmKThe Analysis of Fractional Differential Equations2010BerlinSpringer10.1007/978-3-642-14574-21215.34001
AliIBrunnerHTangTSpectral methods for pantograph-type differential and integral equations with multiple delaysFront. Math. China200944961248159610.1007/s11464-009-0010-z05567165
WeiYChenYConvergence analysis of the spectral methods for weakly singular Volterra integro-differential equations with smooth solutionsAdv. Appl. Math. Mech.2012121120287664810.4208/aamm.10-m10551262.45005
LiXTangTXuCParallel in time algorithm with spectral-subdomain enhancement for volterra integral equationsSIAM J. Numer. Anal.20135117351756306680510.1137/1208762411291.65382
ChenSShenJMaoZEfficient and accurate spectral methods using general Jacobi functions for solving Riesz fractional differential equationsAppl. Numer. Math.2016106165181349996410.1016/j.apnum.2016.04.00206581919
LiXTangTConvergence analysis of Jacobi spectral collocation methods for Abel-Volterra integral equations of second kindFront. Math. China.201276984287689910.1007/s11464-012-0170-01260.65111
ChenJChenZZhangYFast singularity preserving methods for integral equations with non-smooth solutionsJ. Int. Equ. Appl.201224213240294580310.1216/JIE-2012-24-2-2131256.65104
CaoYXuYSingularity preserving Galerkin methods for weakly singular Fredholm integral equationsJ. Int. Equ. Appl.19946303334131251910.1216/jiea/11810758160819.65139
WeiYChenYLegendre spectral collocation method for neutral and high-order Volterra integro-differential equationAppl. Numer. Math.2014811529321217210.1016/j.apnum.2014.02.0121291.65390
ZayernouriMKarniadakisGFractional Sturm–Liouville eigen-problems: theory and numerical approximationsJ. Comput. Phys.2013472108213131015191349.34095
LiXTangTXuCNumerical solutions for weakly singular Volterra integral equations using Chebyshev and Legendre pseudo-spectral Galerkin methodsJ. Sci. Comput.2016674364347369210.1007/s10915-015-0069-51346.65078
ShenJTangTWangLSpectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics2011New YorkSpringer10.1007/978-3-540-71041-7
BrunnerHNonpolynomial spline collocation for Volterra equations with weakly singular kernelsSIAM J. Numer. Anal.1983201106111972382710.1137/07200800533.65087
ShengCWangZGuoBMultistep Legendre–Gauss spectral collocation method for nonlinear Volterra integra equationsSIAM J. Numer. Anal.20145219531980324690110.1137/1309152001305.65246
HuangMXuYSuperconvergence of the iterated hybrid collocation method for weakly singular Volterra integral equationsJ. Integral Equ. Appl.20061883116226427010.1216/jiea/11810753661141.65091
LinTLinYLuoPZhangSPetrov–Galerkin methods for nonlinear Volterra integro-differential equationsDyn. Contin. Discrete Impuls. Syst. Ser. B2009840542618540770998.65135
HuangCTangTZhangZSupergeometric convergence of spectral collocation methods for weakly singular Volterra and Fredholm integral equations with smooth solutionsJ. Comput. Math.201129698719286942810.4208/jcm.1110-m11si061265.65269
CaoYHerdmanTXuYA hybrid collocation method for Volterra integral equations with weakly singular kernelsSIAM J. Numer. Anal.200341364381197450610.1137/S00361429013855931042.65106
AtkinsonKEThe Numerical Solution of Integral Equations of Second Kind1997CambridgeCambridge University Press10.1017/CBO97805116263400899.65077
BrunnerHCollocation Methods for Volterra Integral and Related Functional Equations Methods2004CambridgeCambridge University Press1059.65122
ChenYTangTSpectral methods for weakly singular Volterra integral equations with smooth solutionsJ. Comput. Appl. Math.2009233938950255728610.1016/j.cam.2009.08.0571186.65161
TangTA note on collocation methods for Volterra integro-differential equations with weakly singular kernelsIMA J. Numer. Anal.1993139399119903110.1093/imanum/13.1.930765.65126
ZayernouriMKarniadakisGFractional spectral collocation methodSIAM J. Sci. Comput.2014364062315017710.1137/1309332161294.65097
HuangCJiaoYWangLZhangZOptimal fractional integration preconditioning and error analysis of fractional collocation method using nodal generalized Jacobi functionsSIAM J. Numer. Anal.20165433573387357458910.1137/16M10592781353.65086
XieZLiXTangTConvergence analysis of spectral Galerkin methods for Volterra type integral equationsJ. Sci. Comput.201253414434298310010.1007/s10915-012-9577-81273.65200
CaoYHuangMLiuLXuYHybrid collocation methods for Fredholm integral equations with weakly singular kernelsAppl. Numer. Math.200757549561232243010.1016/j.apnum.2006.07.0071119.65122
ChenYLiXTangTA note on Jacobi-collocation method for weakly singular Volterra integral equationsJ Comput. Math.20131475610.4208/jcm.1208-m34971289.65284
HuangCStyneszMSpectral Galerkin methods for a weakly singular Volterra integral equation of the second kindIMA J. Numer. Anal.20177141114363671500
BrunnerHPolynomial spline collocation methods for Volterra integrodifferential equations with weakly singular kernelsIMA J. Numer. Anal.1986622123996766410.1093/imanum/6.2.2210634.65142
HuangCStyneszMA spectral collocation method for a weakly singular Volterra integral equation of the second kindAdv. Comput.20164210151030355436210.1007/s10444-016-9451-61361.65102
KressRLinear Integral Equations2001BerlinSpringer0920.45001
RagozinDConstructive polynomial approximation on spheres and projective spacesTrans. Am. Math. Soc.19711621571702884680234.41011
TangTXuXChenJOn spectral methods for Volterra type integral equations and the convergence analysisJ. Comput. Math.20082682583724647381174.65058
LiXXuCA space-time spectral method for the time fractional diffusion equatioSIAM J. Numer. Anal.20094721082131251959610.1137/0807189421193.35243
WeiYChenYConvergence analysis of the Legendre spectral collocation methods for second order Volterra integro-differential equationsNumer. Math. Theor. Methods Appl.20115041943828631031265.65278
S Chen (568_CR11) 2016; 85
T Tang (568_CR33) 1993; 13
Y Wei (568_CR38) 2014; 81
H Brunner (568_CR4) 1983; 20
T Lin (568_CR24) 2009; 8
H Cai (568_CR6) 2014; 57
Z Xie (568_CR39) 2012; 53
C Huang (568_CR18) 2017; 7
X Li (568_CR27) 2016; 67
M Zayernouri (568_CR41) 2014; 36
H Brunner (568_CR5) 1986; 6
C Huang (568_CR17) 2016; 42
Y Cao (568_CR9) 2003; 41
X Li (568_CR26) 2013; 51
S Mikhlin (568_CR28) 1986
Y Wei (568_CR36) 2012; 121
Y Wei (568_CR37) 2011; 50
M Huang (568_CR20) 2006; 18
M Zayernouri (568_CR42) 2013; 47
S Chen (568_CR12) 2016; 106
C Huang (568_CR19) 2011; 29
Y Cao (568_CR8) 2007; 57
D Ragozin (568_CR29) 1971; 162
KE Atkinson (568_CR1) 1997
T Lin (568_CR23) 2006; 38
J Chen (568_CR7) 2012; 24
X Li (568_CR22) 2009; 47
T Tang (568_CR35) 2008; 26
L Yi (568_CR40) 2015; 53
H Brunner (568_CR3) 2004
X Li (568_CR25) 2012; 7
Y Chen (568_CR13) 2009; 233
C Huang (568_CR16) 2016; 54
C Sheng (568_CR32) 2014; 52
Y Cao (568_CR10) 1994; 6
T Tang (568_CR34) 1990; 8
Y Chen (568_CR14) 2013; 1
I Ali (568_CR2) 2009; 4
J Shen (568_CR31) 2011
D Ragozin (568_CR30) 1979; 150
K Diethelm (568_CR15) 2010
R Kress (568_CR21) 2001
References_xml – volume: 8
  start-page: 405
  year: 2009
  ident: 568_CR24
  publication-title: Dyn. Contin. Discrete Impuls. Syst. Ser. B
  contributor:
    fullname: T Lin
– volume: 38
  start-page: 937
  year: 2006
  ident: 568_CR23
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142999336145
  contributor:
    fullname: T Lin
– volume: 51
  start-page: 1735
  year: 2013
  ident: 568_CR26
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120876241
  contributor:
    fullname: X Li
– volume: 47
  start-page: 2108
  year: 2009
  ident: 568_CR22
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080718942
  contributor:
    fullname: X Li
– volume: 233
  start-page: 938
  year: 2009
  ident: 568_CR13
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.08.057
  contributor:
    fullname: Y Chen
– volume-title: The Analysis of Fractional Differential Equations
  year: 2010
  ident: 568_CR15
  doi: 10.1007/978-3-642-14574-2
  contributor:
    fullname: K Diethelm
– volume: 121
  start-page: 1
  year: 2012
  ident: 568_CR36
  publication-title: Adv. Appl. Math. Mech.
  doi: 10.4208/aamm.10-m1055
  contributor:
    fullname: Y Wei
– volume: 85
  start-page: 1603
  year: 2016
  ident: 568_CR11
  publication-title: Math. Comput.
  doi: 10.1090/mcom3035
  contributor:
    fullname: S Chen
– volume: 54
  start-page: 3357
  year: 2016
  ident: 568_CR16
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1059278
  contributor:
    fullname: C Huang
– volume: 1
  start-page: 47
  year: 2013
  ident: 568_CR14
  publication-title: J Comput. Math.
  doi: 10.4208/jcm.1208-m3497
  contributor:
    fullname: Y Chen
– volume: 13
  start-page: 93
  year: 1993
  ident: 568_CR33
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/13.1.93
  contributor:
    fullname: T Tang
– volume: 53
  start-page: 2677
  year: 2015
  ident: 568_CR40
  publication-title: SIAM J Numer. Anal.
  doi: 10.1137/15M1006489
  contributor:
    fullname: L Yi
– volume: 6
  start-page: 221
  year: 1986
  ident: 568_CR5
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/6.2.221
  contributor:
    fullname: H Brunner
– volume: 57
  start-page: 549
  year: 2007
  ident: 568_CR8
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2006.07.007
  contributor:
    fullname: Y Cao
– volume-title: Spectral Methods: Algorithms, Analysis and Applications. Springer Series in Computational Mathematics
  year: 2011
  ident: 568_CR31
  doi: 10.1007/978-3-540-71041-7
  contributor:
    fullname: J Shen
– volume: 81
  start-page: 15
  year: 2014
  ident: 568_CR38
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2014.02.012
  contributor:
    fullname: Y Wei
– volume: 18
  start-page: 83
  year: 2006
  ident: 568_CR20
  publication-title: J. Integral Equ. Appl.
  doi: 10.1216/jiea/1181075366
  contributor:
    fullname: M Huang
– volume-title: Linear Integral Equations
  year: 2001
  ident: 568_CR21
  contributor:
    fullname: R Kress
– volume: 24
  start-page: 213
  year: 2012
  ident: 568_CR7
  publication-title: J. Int. Equ. Appl.
  doi: 10.1216/JIE-2012-24-2-213
  contributor:
    fullname: J Chen
– volume: 50
  start-page: 419
  year: 2011
  ident: 568_CR37
  publication-title: Numer. Math. Theor. Methods Appl.
  contributor:
    fullname: Y Wei
– volume: 20
  start-page: 1106
  year: 1983
  ident: 568_CR4
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0720080
  contributor:
    fullname: H Brunner
– volume: 41
  start-page: 364
  year: 2003
  ident: 568_CR9
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142901385593
  contributor:
    fullname: Y Cao
– volume: 42
  start-page: 1015
  year: 2016
  ident: 568_CR17
  publication-title: Adv. Comput.
  doi: 10.1007/s10444-016-9451-6
  contributor:
    fullname: C Huang
– volume: 162
  start-page: 157
  year: 1971
  ident: 568_CR29
  publication-title: Trans. Am. Math. Soc.
  contributor:
    fullname: D Ragozin
– volume: 106
  start-page: 165
  year: 2016
  ident: 568_CR12
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2016.04.002
  contributor:
    fullname: S Chen
– volume: 52
  start-page: 1953
  year: 2014
  ident: 568_CR32
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130915200
  contributor:
    fullname: C Sheng
– volume: 29
  start-page: 698
  year: 2011
  ident: 568_CR19
  publication-title: J. Comput. Math.
  doi: 10.4208/jcm.1110-m11si06
  contributor:
    fullname: C Huang
– volume: 4
  start-page: 49
  year: 2009
  ident: 568_CR2
  publication-title: Front. Math. China
  doi: 10.1007/s11464-009-0010-z
  contributor:
    fullname: I Ali
– volume-title: Collocation Methods for Volterra Integral and Related Functional Equations Methods
  year: 2004
  ident: 568_CR3
  contributor:
    fullname: H Brunner
– volume: 150
  start-page: 41
  year: 1979
  ident: 568_CR30
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-1970-0410210-0
  contributor:
    fullname: D Ragozin
– volume: 7
  start-page: 69
  year: 2012
  ident: 568_CR25
  publication-title: Front. Math. China.
  doi: 10.1007/s11464-012-0170-0
  contributor:
    fullname: X Li
– volume: 47
  start-page: 2108
  year: 2013
  ident: 568_CR42
  publication-title: J. Comput. Phys.
  contributor:
    fullname: M Zayernouri
– volume: 8
  start-page: 307
  year: 1990
  ident: 568_CR34
  publication-title: J. Comput. Math.
  contributor:
    fullname: T Tang
– volume-title: Singular Integral Operators
  year: 1986
  ident: 568_CR28
  doi: 10.1007/978-3-642-61631-0
  contributor:
    fullname: S Mikhlin
– volume: 57
  start-page: 2163
  year: 2014
  ident: 568_CR6
  publication-title: Sci. China Math.
  doi: 10.1007/s11425-014-4806-2
  contributor:
    fullname: H Cai
– volume: 67
  start-page: 43
  year: 2016
  ident: 568_CR27
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-015-0069-5
  contributor:
    fullname: X Li
– volume: 26
  start-page: 825
  year: 2008
  ident: 568_CR35
  publication-title: J. Comput. Math.
  contributor:
    fullname: T Tang
– volume: 53
  start-page: 414
  year: 2012
  ident: 568_CR39
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-012-9577-8
  contributor:
    fullname: Z Xie
– volume: 36
  start-page: 40
  year: 2014
  ident: 568_CR41
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130933216
  contributor:
    fullname: M Zayernouri
– volume-title: The Numerical Solution of Integral Equations of Second Kind
  year: 1997
  ident: 568_CR1
  doi: 10.1017/CBO9780511626340
  contributor:
    fullname: KE Atkinson
– volume: 6
  start-page: 303
  year: 1994
  ident: 568_CR10
  publication-title: J. Int. Equ. Appl.
  doi: 10.1216/jiea/1181075816
  contributor:
    fullname: Y Cao
– volume: 7
  start-page: 1411
  year: 2017
  ident: 568_CR18
  publication-title: IMA J. Numer. Anal.
  contributor:
    fullname: C Huang
SSID ssj0009892
Score 2.3521838
Snippet In this paper, we develop a fractional order spectral collocation method for solving second kind Volterra integral equations with weakly singular kernels. It...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 970
SubjectTerms Accuracy
Algorithms
Chebyshev approximation
Collocation methods
Computational Mathematics and Numerical Analysis
Integral equations
Interpolation
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Methods
Numerical analysis
Quadratures
Theoretical
Volterra integral equations
SummonAdditionalLinks – databaseName: AUTh Library subscriptions: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA-6XbyI8wOnU3Lw4AfBJmvT9iRTNqZjU5xTbyVrkouj3dp58L_3pU0pCnorhIbwkpf3ex_5PYTOQGW4ZoqSAMAtcamrTJsXh8yl4NyRnh8y8955POHDmfvw7r3bgFtuyyqrO7G4qGUamxj5NQvh8FGwds7NckVM1yiTXbUtNDZRk4Gn4DRQ87Y_eXquaXeDoi0yqJJHADi7VV6zfDwXUlO45hMAAQHxf1qmGm7-ypAWhmewg7YtYsS9cotbaEMlu6hldTLH55Y4-mIPJT08yMqHCvDDoyHVxCYwkJZhOTwuukVjgKl4avxgiUfgkePX1GTMM4HvS-qIBe6vSgLwHJswLX5T4mPxhaewPFO0ikcqS8Ck7qPZoP9yNyS2nwKJu5SviRTzkAdaSwmYQmgZUAHwI6a-cmisdUwld7RSQklQSu4Kl_MgVHMBY4wJHnYPUCNJE3WIMNfakWE3DDxtCPSkYBqQF3PgG1wy4bbRZSXLaFnSZkQ1QbIRfASCj4zgI7-NOpW0I6tBeVTvdxtdVTtQD_852dH_kx2jLYA8QVmy2EGNdfapTgBWrOen9ux8A1cNykI
  priority: 102
  providerName: ProQuest
Title A Fractional Order Collocation Method for Second Kind Volterra Integral Equations with Weakly Singular Kernels
URI https://link.springer.com/article/10.1007/s10915-017-0568-7
https://www.proquest.com/docview/2918313170
Volume 75
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LU9swEN7hcaGHUqCdBmhGBw5ARxlLcWT5mHRiHpkEBkhLTx7Zki5hHIjDAX49Kz9IefTAyZ6RrbElrfbTPr4F2EOREZYbRiWCW-oz37gyLx5NtBLC050g5C7feTgSx2P_9LpzvQT82XSRTVq1R7LYqP_JdQuZizMLKOpsSYNlWK3yTle7R38H_QXVrixKIaP4dCiCZb_2Zb7XyUtttICYr7yihbKJ1ssEwLzgKHQxJpPW_TxppY9vGRw_8B9f4HOFPUm3XCwbsGSyTfg0fCZuzTdho5L1nOxXhNQHW5B1STQrEyDw9TNH1kmcwWFamvvIsKhCTRD-kkt3vtZkgCd98nvqPPEzRU5KSoob0r8ricVz4sy_5I9Rk5sHcomf74JhycDMMlTVX2Ec9a9-HdOqTgNN20zMqVZJKKS1WiNWUVZLphDWpCwwHkutTZkWnjVGGY3CLnzlCyFDkyhs41yJsP0NVrJpZr4DEdZ6OmyHsmMdMZ9W3CKi4x7e41FP-Q04rOcrvi3pOOIF8bIb2RhHNnYjGwcN2K1nNK4kM495iJsYQ9TkNeBnPUOL5v92tv2hp3dgDZGVLCMjd2FlPrs3PxC9zJMmLMvoqImLNur1Rs1q8eK11x-dX2DrmHefAEJF6tw
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV05T8MwFLagDLAgyiEKBTwwcMgizuEkE6pQQ0sPhrbQLXJje6FK2qQM_HuecygCCbZIVizr2c_v8zu-h9A1qAxTpqTEA3BLbGpL3ebFIAvBGTOE4_qmrncejVlvZr_MnXnpcMvKtMrqTswvapFE2kf-YPpw-ChYO-NxtSa6a5SOrpYtNLbRjm2BrdaV4sFzTbrr5U2RQZEcArDZrqKaRemcT3XamksAAnjE_WmXarD5Kz6am53gAO2XeBF3ig1uoi0ZH6JmqZEZvilpo2-PUNzBQVqUKcAPr5pSE2u3QFI45fAo7xWNAaTiiX4FCzyA9zh-S3S8POW4XxBHLHF3XdB_Z1g7afG75B_LLzyB5emUVTyQaQwG9RjNgu70qUfKbgoksijbEMEXPvOUEgIQBVfCoxzAR0RdadBIqYgKZigpuRSgkszmNmOeLxccxkyTM986QY04ieUpwkwpQ_iW7zlK0-cJbirAXaYB3_Ag43YL3VWyDFcFaUZY0yNrwYcg-FALPnRbqF1JOyz1Jwvr3W6h-2oH6uE_Jzv7f7IrtNubjobhsD8enKM9AD9ekbzYRo1N-ikvAGBsFpf5KfoGiJfLzQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oJkYPRlAjiroHDz6yoVvKtj0ShYgImiDKrdmyuxdJQVoP_ntn-xA1evDWZNtNs9PpfPP6BuAUVYZrWzHqIbilDnOUGfNi0VAKzi3ZdH3b9Dv3B_xm5NyOm-N8zmlcVLsXKcmsp8GwNEVJfS51_Uvjm89M0ZlL0YB71F2FNbREDVPTN7JbS9ZdL52KjJrUpIibnSKt-dsW3w3TEm3-SJCmdqezDVs5YCStTMJlWFFRBTb7n2yrcQXKuYLG5CxnkT7fgahFOousawEfvzcMm8RECWZZjI7009HRBDErGRqnWJIeuufkaWbS5wtBuhmPxJS0XzM28JiYmC15VuJl-k6G-LKmgpX01CJC-7oLo0778eqG5sMV6KTBeEKlCH3uaS0lAgyhpccEYpEJc5XFJlpPmOSWVkooiRrKHeFw7vkqFLhm24L7jT0oRbNI7QPhWlvSb_heUxs2PSlsjTDMtvAa_TPhVOGiONlgnnFoBEu2ZCOGAMUQGDEEbhVqxdkHuTrFge3jn4ch1LGqcFnIY7n852YH_7r7BNYfrjvBXXfQO4QNREZeVtlYg1KyeFNHiD6S8Dj9wj4AUzrRRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fractional+Order+Collocation+Method+for+Second+Kind+Volterra+Integral+Equations+with+Weakly+Singular+Kernels&rft.jtitle=Journal+of+scientific+computing&rft.au=Cai%2C+Haotao&rft.au=Chen%2C+Yanping&rft.date=2018-05-01&rft.issn=0885-7474&rft.eissn=1573-7691&rft.volume=75&rft.issue=2&rft.spage=970&rft.epage=992&rft_id=info:doi/10.1007%2Fs10915-017-0568-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10915_017_0568_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7474&client=summon