Efficiency of Chitosan Depolymerization by Microbial Chitinases and Chitosanases with Respect to the Antimicrobial Activity of Generated Chitooligomers

Specific features of the enzymatic degradation of chitosan with depolymerization degrees (DD) of 85 and 50% by microbial chitinases and chitosanases were studied in terms of the conversion degree, molecular-weight distribution (MWD), and antimicrobial activity of the generated reaction products. The...

Full description

Saved in:
Bibliographic Details
Published inApplied biochemistry and microbiology Vol. 57; no. 5; pp. 626 - 635
Main Authors Safina, V. R., Melentiev, A. I., Galimzianova, N. F., Gilvanova, E. A., Kuzmina, L. Yu, Lopatin, S. A., Varlamov, V. P., Baymiev, A. H., Aktuganov, G. E.
Format Journal Article
LanguageEnglish
Published Moscow Pleiades Publishing 01.09.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Specific features of the enzymatic degradation of chitosan with depolymerization degrees (DD) of 85 and 50% by microbial chitinases and chitosanases were studied in terms of the conversion degree, molecular-weight distribution (MWD), and antimicrobial activity of the generated reaction products. The enzyme complex produced by the strain B. thuringiensis B-387, which is characterized by high chitosanase production (>4.5 U mL –1 ), degraded the polymer to soluble, low molecular weight chitooligosaccharides (CHOs, M w ≤ 2 kDa), along with a minor yield (~5%) of alkali-precipitated oligochitosans (M w 2–16 kDa). The hydrolytic complexes produced by B. atrophaeus IB-33-1 and Cohnella sp. IB-P192, which mainly comprise chitinases (0.3–0.5 U mL –1 ), demonstrated the lowest rate and degree of chitosan (DD 85%) hydrolysis. The selection of an enzyme : substrate ratio in the range of 2–5 units/g (based on chitosanase) made it possible to reduce the hydrolysis depth of the initial polymer and to increase the yield of oligochitosans with a M w of ~15–17 kDa to 30% for chitosan (DD 85%) depolymerization by the enzyme complex from B. thuringiensis B-387. The decrease in the bactericidal and fungicidal effect of the oligomers that formed during the destruction of chitosan with varying deacetylation degrees (DD 85% and 50%) by enzyme complexes displaying high chitosanase activity was, as a rule, more distinct than that achieved with the use of chitinases. However, in some cases, there were both nonspecific and specific enhancements of the antimicrobial action of hydrolytic products in comparison with the initial polymer, which was determined by individual sensitivity of bacterial and micromycetes strains.
AbstractList Specific features of the enzymatic degradation of chitosan with depolymerization degrees (DD) of 85 and 50% by microbial chitinases and chitosanases were studied in terms of the conversion degree, molecular-weight distribution (MWD), and antimicrobial activity of the generated reaction products. The enzyme complex produced by the strain B. thuringiensis B-387, which is characterized by high chitosanase production (>4.5 U mL–1), degraded the polymer to soluble, low molecular weight chitooligosaccharides (CHOs, Mw ≤ 2 kDa), along with a minor yield (~5%) of alkali-precipitated oligochitosans (Mw 2–16 kDa). The hydrolytic complexes produced by B. atrophaeus IB-33-1 and Cohnella sp. IB-P192, which mainly comprise chitinases (0.3–0.5 U mL–1), demonstrated the lowest rate and degree of chitosan (DD 85%) hydrolysis. The selection of an enzyme : substrate ratio in the range of 2–5 units/g (based on chitosanase) made it possible to reduce the hydrolysis depth of the initial polymer and to increase the yield of oligochitosans with a Mw of ~15–17 kDa to 30% for chitosan (DD 85%) depolymerization by the enzyme complex from B. thuringiensis B-387. The decrease in the bactericidal and fungicidal effect of the oligomers that formed during the destruction of chitosan with varying deacetylation degrees (DD 85% and 50%) by enzyme complexes displaying high chitosanase activity was, as a rule, more distinct than that achieved with the use of chitinases. However, in some cases, there were both nonspecific and specific enhancements of the antimicrobial action of hydrolytic products in comparison with the initial polymer, which was determined by individual sensitivity of bacterial and micromycetes strains.
Specific features of the enzymatic degradation of chitosan with depolymerization degrees (DD) of 85 and 50% by microbial chitinases and chitosanases were studied in terms of the conversion degree, molecular-weight distribution (MWD), and antimicrobial activity of the generated reaction products. The enzyme complex produced by the strain B. thuringiensis B-387, which is characterized by high chitosanase production (>4.5 U mL –1 ), degraded the polymer to soluble, low molecular weight chitooligosaccharides (CHOs, M w ≤ 2 kDa), along with a minor yield (~5%) of alkali-precipitated oligochitosans (M w 2–16 kDa). The hydrolytic complexes produced by B. atrophaeus IB-33-1 and Cohnella sp. IB-P192, which mainly comprise chitinases (0.3–0.5 U mL –1 ), demonstrated the lowest rate and degree of chitosan (DD 85%) hydrolysis. The selection of an enzyme : substrate ratio in the range of 2–5 units/g (based on chitosanase) made it possible to reduce the hydrolysis depth of the initial polymer and to increase the yield of oligochitosans with a M w of ~15–17 kDa to 30% for chitosan (DD 85%) depolymerization by the enzyme complex from B. thuringiensis B-387. The decrease in the bactericidal and fungicidal effect of the oligomers that formed during the destruction of chitosan with varying deacetylation degrees (DD 85% and 50%) by enzyme complexes displaying high chitosanase activity was, as a rule, more distinct than that achieved with the use of chitinases. However, in some cases, there were both nonspecific and specific enhancements of the antimicrobial action of hydrolytic products in comparison with the initial polymer, which was determined by individual sensitivity of bacterial and micromycetes strains.
Author Galimzianova, N. F.
Baymiev, A. H.
Varlamov, V. P.
Melentiev, A. I.
Kuzmina, L. Yu
Safina, V. R.
Gilvanova, E. A.
Lopatin, S. A.
Aktuganov, G. E.
Author_xml – sequence: 1
  givenname: V. R.
  surname: Safina
  fullname: Safina, V. R.
  organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences
– sequence: 2
  givenname: A. I.
  surname: Melentiev
  fullname: Melentiev, A. I.
  organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences
– sequence: 3
  givenname: N. F.
  surname: Galimzianova
  fullname: Galimzianova, N. F.
  organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences
– sequence: 4
  givenname: E. A.
  surname: Gilvanova
  fullname: Gilvanova, E. A.
  organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences
– sequence: 5
  givenname: L. Yu
  surname: Kuzmina
  fullname: Kuzmina, L. Yu
  organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences
– sequence: 6
  givenname: S. A.
  surname: Lopatin
  fullname: Lopatin, S. A.
  organization: Institute of Bioengineering, Fundamentals Principles of Biotechnology Federal Research Center, Russian Academy of Sciences
– sequence: 7
  givenname: V. P.
  surname: Varlamov
  fullname: Varlamov, V. P.
  organization: Institute of Bioengineering, Fundamentals Principles of Biotechnology Federal Research Center, Russian Academy of Sciences
– sequence: 8
  givenname: A. H.
  surname: Baymiev
  fullname: Baymiev, A. H.
  organization: Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences
– sequence: 9
  givenname: G. E.
  surname: Aktuganov
  fullname: Aktuganov, G. E.
  email: gleakt@anrb.ru
  organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences
BookMark eNp1kEtLAzEUhYNUsK3-AHcB16O5k3kuS61VqAg-1sMkk7Qp06QmqTL-Ef-u6YO6EFeX3HO-c8gdoJ42WiB0CeQagCY3L4QQmhW0iIGkBOLkBPUhI0VESZz0UH8rR1v9DA2cW4ZnmRVlH31PpFRcCc07bCQeL5Q3rtb4VqxN262EVV-1V0Zj1uFHxa1hqm53NqVrJxyudXOkdotP5Rf4Wbi14B57g_1C4JH2anWkR9yrD-V3hVOhha29OISYVs1NaHXn6FTWrRMXhzlEb3eT1_F9NHuaPoxHs4hTyHzUlJJzWeZUFHnDgEpKUgYxsCAkQQHeAMvKRuYp0DwGCkWZEc4pY0WWlA0doqt97tqa941wvlqajdWhsorTPKNJmkIcXLB3hS84Z4Ws1latattVQKrt_as_9w9MvGdc8Oq5sL_J_0M_zP-MIg
CitedBy_id crossref_primary_10_1080_25740881_2023_2249979
crossref_primary_10_1134_S0003683822020077
crossref_primary_10_1007_s13233_023_00143_8
Cites_doi 10.1002/masy.19971200103
10.1016/j.foodchem.2009.02.002
10.1023/A:1002867412442
10.1016/j.carbpol.2017.12.067
10.3390/ijms19082197
10.3390/md8051482
10.1134/S0026261718050028
10.1016/j.reactfunctpolym.2020.104488
10.1023/B:ABIM.0000025947.84650.b4
10.1016/j.ijbiomac.2016.01.022
10.1016/j.tifs.2015.11.007
10.3390/md13116566
10.1016/S0032-9592(99)00104-1
10.1007/978-981-15-0263-7_15
10.1007/s11274-019-2590-4
10.1016/j.carbpol.2016.09.055
10.3390/md12115328
10.1590/S1516-89132010000600023
10.7868/S0555109916050020
10.1016/j.ijbiomac.2017.01.112
10.1094/mpmi-7-0531
ContentType Journal Article
Copyright Pleiades Publishing, Inc. 2021. ISSN 0003-6838, Applied Biochemistry and Microbiology, 2021, Vol. 57, No. 5, pp. 626–635. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2021, Vol. 57, No. 5, pp. 485–495.
Copyright_xml – notice: Pleiades Publishing, Inc. 2021. ISSN 0003-6838, Applied Biochemistry and Microbiology, 2021, Vol. 57, No. 5, pp. 626–635. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2021, Vol. 57, No. 5, pp. 485–495.
DBID AAYXX
CITATION
7QL
7T7
8FD
C1K
FR3
K9.
M7N
P64
DOI 10.1134/S0003683821050124
DatabaseName CrossRef
Bacteriology Abstracts (Microbiology B)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Technology Research Database
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
ProQuest Health & Medical Complete (Alumni)
Engineering Research Database
Industrial and Applied Microbiology Abstracts (Microbiology A)
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1608-3024
EndPage 635
ExternalDocumentID 10_1134_S0003683821050124
GroupedDBID -56
-5G
-BR
-EM
-Y2
-~C
.86
.GJ
.VR
06C
06D
0R~
0VY
23M
29~
2J2
2JN
2JY
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
408
409
40D
40E
53G
5GY
5VS
67N
67Z
6NX
78A
7X7
88A
88I
8AO
8CJ
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
A8Z
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANXM
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPRK
ACSNA
ACTTH
ACVWB
ACWMK
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AI.
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EBD
EBLON
EBS
EIOEI
EJD
EMK
EN4
EPL
ESBYG
ESTFP
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
M0L
M2P
M4Y
M7P
MA-
MM.
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
OVD
P2P
PF0
PQQKQ
PROAC
PT4
Q2X
QF4
QM4
QN7
QO4
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
TWZ
U2A
U9L
UG4
UKHRP
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WIP
WJK
WK8
XU3
YLTOR
Z7U
Z7V
Z7W
ZGI
ZMTXR
ZOVNA
~8M
~A9
AACDK
AAHBH
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGRTI
AIGIU
ALIPV
CITATION
H13
7QL
7T7
8FD
AAYZH
C1K
FR3
K9.
M7N
P64
ID FETCH-LOGICAL-c316t-d9fccf973e87db13f305b121bd9f4ccf1cd1b69df7513721318960cc3bb8649d3
IEDL.DBID AGYKE
ISSN 0003-6838
IngestDate Tue Nov 12 03:50:53 EST 2024
Thu Sep 12 18:04:31 EDT 2024
Sat Dec 16 12:09:18 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords enzymatic depolymerization of chitosan
antimicrobial activity
chitinolytic enzymes
bioactive chitooligosaccharides
chitosanase
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-d9fccf973e87db13f305b121bd9f4ccf1cd1b69df7513721318960cc3bb8649d3
PQID 2576345512
PQPubID 54030
PageCount 10
ParticipantIDs proquest_journals_2576345512
crossref_primary_10_1134_S0003683821050124
springer_journals_10_1134_S0003683821050124
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Moscow
PublicationPlace_xml – name: Moscow
– name: Dordrecht
PublicationTitle Applied biochemistry and microbiology
PublicationTitleAbbrev Appl Biochem Microbiol
PublicationYear 2021
Publisher Pleiades Publishing
Springer Nature B.V
Publisher_xml – name: Pleiades Publishing
– name: Springer Nature B.V
References ParkY.KimM.H.ParkS.C.CheongH.JangM.K.NahJ.W.HahmK.S.J. Microbiol. Biotechnol200818172917341:CAS:528:DC%2BD1MXotFSrsrk%3D18955827
JungW.-J.ParkR.-D.Mar. Drugs201412532853561:CAS:528:DC%2BC2MXisFShtrc%3D10.3390/md12115328253532534245534
AktuganovG.E.GalimzianovaN.F.GilvanovaE.A.PudovaE.A.KuzminaL.Yu.MelentievA.I.SafinaV.R.J. Microbiol. Biotechnol2019351131:CAS:528:DC%2BC1MXhtFalsbrN10.1007/s11274-019-2590-4
AktuganovG.E.SafinaV.R.GalimzyanovaN.F.Kuz’minaL.Yu.Gil’vanovaE.A.BoikoT.F.Melent’evA.I.Microbiology2018877167241:CAS:528:DC%2BC1cXhvVGisLjN10.1134/S0026261718050028
Yilmaz Atay, H.Y., Functional Chitosan, Jana, S. and Subrata, J., Eds., Syngapore: Springer Nature, 2019, pp. 457–489. https://doi.org/10.1007/978-981-15-0263-7_15
VarlamovV.P.Il’inaAV.ShagdarovaB.Ts.Lun’kovA.P.MysyakinaI.SUsp. Biol. Khim202060317368
HadwigerL.A.OgawaT.KuyamaH.MPMI199475315331:CAS:528:DyaK2cXmslKrur4%3D10.1094/mpmi-7-05318075425
Kulikov, S.N., Tyurin, Yu.A., Fassakhov, R.S., and Varlamov, V.P., ZhMEI, 2009, no. 5, pp. 91–97.
SánchezÁ.MengíbarM.Rivera-RodríguezG.MoerchbacherB.AcostaN.HerasA.Carbohydr. Res201715725125710.1016/j.carbpol.2016.09.055
HamedI.OzogulF.RegensteinJ.M.Trends Food Sci. Technol20164840501:CAS:528:DC%2BC2MXitVGrt7nE10.1016/j.tifs.2015.11.007
AktuganovG.E.GalimzyanovaN.F.TeregulovaG.A.Melent’evA.I.Appl. Biochem. Microbiol2016525315361:CAS:528:DC%2BC28XhsV2ku7rP10.7868/S0555109916050020
GhormadeM.PathanE.K.DeshpandeM.V.Int. J. Biol. Macromol. B2017104141514211:CAS:528:DC%2BC2sXit1Sktrc%3D10.1016/j.ijbiomac.2017.01.112
LiaqatF.EltemR.Carbohydr. Res20181842432591:CAS:528:DC%2BC1cXlt1ChsA%3D%3D10.1016/j.carbpol.2017.12.067
HosseinejadM.JafariS.M.Int. J. Biol. Macromol2016854674751:CAS:528:DC%2BC28XhtVejsrw%3D10.1016/j.ijbiomac.2016.01.022
ViensP.Lacombe-HarveyM.-E.BrzezinskiR.Mar. Drugs201513656665871:CAS:528:DC%2BC28XntVSktLs%3D10.3390/md13116566265168684663542
IlyinaA.V.TikhonovV.E.AlbulovA.I.VarlamovV.P.Process Biochem2000355635681:CAS:528:DyaK1MXnvFyqsb0%3D10.1016/S0032-9592(99)00104-1
AamB.HeggsetE.NorbergA.SǿrlieM.VarumK.EjsinkV.Mar. Drugs20108148215171:CAS:528:DC%2BC3cXlvVChsLk%3D10.3390/md8051482205594852885077
Tokura, S., Ueno, K., Miyazaki, S., and Nishi, N., Macromol. Symp., vol. 120, no. 1, pp. 1–9. https://doi.org/10.1002/masy.19971200103
Il'inaA.V.VarlamovV.P.Melent’evA.I.AktuganovG.E.Appl. Biochem. Microbiol2001371421441:CAS:528:DC%2BD3MXjslCksrs%3D10.1023/A:1002867412442
GerasimenkoD.V.AvdienkoI.D.BannikovaG.E.ZuevaO.Yu.VarlamovV.P.Appl. Biochem. Microbiol2004402532571:CAS:528:DC%2BD2cXjsFSlsLY%3D10.1023/B:ABIM.0000025947.84650.b4
LiangS.SunY.DaiX.Int. J. Mol. Sci2018191191:CAS:528:DC%2BC1MXns1Squrc%3D10.3390/ijms19082197
SørlieM.HornS.J.Vaaje-KolstadG.EijsinkV.G.H.React. Funct. Polym20201481044881:CAS:528:DC%2BB3cXisFOhtrs%3D10.1016/j.reactfunctpolym.2020.104488
LinS-B.LinY-C.ChenH-H.Food Chem.200911647531:CAS:528:DC%2BD1MXks12ns70%3D10.1016/j.foodchem.2009.02.002
PagnocelliM.G.B.De AraujoN.K.Da SilvaN.M.P.De AssisC.F.RodriguesS.De MacedoG.R.Bras. Arch. Biol. Technol201053146114681:CAS:528:DC%2BC3MXlvFWltLY%3D10.1590/S1516-89132010000600023
8351_CR11
G.E. Aktuganov (8351_CR17) 2018; 87
F. Liaqat (8351_CR9) 2018; 184
B. Aam (8351_CR16) 2010; 8
M. Ghormade (8351_CR3) 2017; 104
G.E. Aktuganov (8351_CR20) 2019; 35
S-B. Lin (8351_CR13) 2009; 116
P. Viens (8351_CR21) 2015; 13
M.G.B. Pagnocelli (8351_CR23) 2010; 53
D.V. Gerasimenko (8351_CR6) 2004; 40
W.-J. Jung (8351_CR15) 2014; 12
G.E. Aktuganov (8351_CR18) 2016; 52
M. Sørlie (8351_CR19) 2020; 148
8351_CR5
8351_CR4
S. Liang (8351_CR10) 2018; 19
A.V. Ilyina (8351_CR8) 2000; 35
A.V. Il'ina (8351_CR22) 2001; 37
M. Hosseinejad (8351_CR7) 2016; 85
Y. Park (8351_CR12) 2008; 18
L.A. Hadwiger (8351_CR24) 1994; 7
V.P. Varlamov (8351_CR1) 2020; 60
I. Hamed (8351_CR2) 2016; 48
Á. Sánchez (8351_CR14) 2017; 157
References_xml – ident: 8351_CR11
  doi: 10.1002/masy.19971200103
– volume: 116
  start-page: 47
  year: 2009
  ident: 8351_CR13
  publication-title: Food Chem.
  doi: 10.1016/j.foodchem.2009.02.002
  contributor:
    fullname: S-B. Lin
– volume: 37
  start-page: 142
  year: 2001
  ident: 8351_CR22
  publication-title: Appl. Biochem. Microbiol
  doi: 10.1023/A:1002867412442
  contributor:
    fullname: A.V. Il'ina
– ident: 8351_CR4
– volume: 184
  start-page: 243
  year: 2018
  ident: 8351_CR9
  publication-title: Carbohydr. Res
  doi: 10.1016/j.carbpol.2017.12.067
  contributor:
    fullname: F. Liaqat
– volume: 19
  start-page: 1
  year: 2018
  ident: 8351_CR10
  publication-title: Int. J. Mol. Sci
  doi: 10.3390/ijms19082197
  contributor:
    fullname: S. Liang
– volume: 18
  start-page: 1729
  year: 2008
  ident: 8351_CR12
  publication-title: J. Microbiol. Biotechnol
  contributor:
    fullname: Y. Park
– volume: 8
  start-page: 1482
  year: 2010
  ident: 8351_CR16
  publication-title: Mar. Drugs
  doi: 10.3390/md8051482
  contributor:
    fullname: B. Aam
– volume: 87
  start-page: 716
  year: 2018
  ident: 8351_CR17
  publication-title: Microbiology
  doi: 10.1134/S0026261718050028
  contributor:
    fullname: G.E. Aktuganov
– volume: 148
  start-page: 104488
  year: 2020
  ident: 8351_CR19
  publication-title: React. Funct. Polym
  doi: 10.1016/j.reactfunctpolym.2020.104488
  contributor:
    fullname: M. Sørlie
– volume: 40
  start-page: 253
  year: 2004
  ident: 8351_CR6
  publication-title: Appl. Biochem. Microbiol
  doi: 10.1023/B:ABIM.0000025947.84650.b4
  contributor:
    fullname: D.V. Gerasimenko
– volume: 85
  start-page: 467
  year: 2016
  ident: 8351_CR7
  publication-title: Int. J. Biol. Macromol
  doi: 10.1016/j.ijbiomac.2016.01.022
  contributor:
    fullname: M. Hosseinejad
– volume: 48
  start-page: 40
  year: 2016
  ident: 8351_CR2
  publication-title: Trends Food Sci. Technol
  doi: 10.1016/j.tifs.2015.11.007
  contributor:
    fullname: I. Hamed
– volume: 13
  start-page: 6566
  year: 2015
  ident: 8351_CR21
  publication-title: Mar. Drugs
  doi: 10.3390/md13116566
  contributor:
    fullname: P. Viens
– volume: 35
  start-page: 563
  year: 2000
  ident: 8351_CR8
  publication-title: Process Biochem
  doi: 10.1016/S0032-9592(99)00104-1
  contributor:
    fullname: A.V. Ilyina
– ident: 8351_CR5
  doi: 10.1007/978-981-15-0263-7_15
– volume: 35
  start-page: 1
  year: 2019
  ident: 8351_CR20
  publication-title: J. Microbiol. Biotechnol
  doi: 10.1007/s11274-019-2590-4
  contributor:
    fullname: G.E. Aktuganov
– volume: 157
  start-page: 251
  year: 2017
  ident: 8351_CR14
  publication-title: Carbohydr. Res
  doi: 10.1016/j.carbpol.2016.09.055
  contributor:
    fullname: Á. Sánchez
– volume: 12
  start-page: 5328
  year: 2014
  ident: 8351_CR15
  publication-title: Mar. Drugs
  doi: 10.3390/md12115328
  contributor:
    fullname: W.-J. Jung
– volume: 53
  start-page: 1461
  year: 2010
  ident: 8351_CR23
  publication-title: Bras. Arch. Biol. Technol
  doi: 10.1590/S1516-89132010000600023
  contributor:
    fullname: M.G.B. Pagnocelli
– volume: 52
  start-page: 531
  year: 2016
  ident: 8351_CR18
  publication-title: Appl. Biochem. Microbiol
  doi: 10.7868/S0555109916050020
  contributor:
    fullname: G.E. Aktuganov
– volume: 60
  start-page: 317
  year: 2020
  ident: 8351_CR1
  publication-title: Usp. Biol. Khim
  contributor:
    fullname: V.P. Varlamov
– volume: 104
  start-page: 1415
  year: 2017
  ident: 8351_CR3
  publication-title: Int. J. Biol. Macromol. B
  doi: 10.1016/j.ijbiomac.2017.01.112
  contributor:
    fullname: M. Ghormade
– volume: 7
  start-page: 531
  year: 1994
  ident: 8351_CR24
  publication-title: MPMI
  doi: 10.1094/mpmi-7-0531
  contributor:
    fullname: L.A. Hadwiger
SSID ssj0009689
Score 2.295369
Snippet Specific features of the enzymatic degradation of chitosan with depolymerization degrees (DD) of 85 and 50% by microbial chitinases and chitosanases were...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 626
SubjectTerms Antiinfectives and antibacterials
Antimicrobial activity
Antimicrobial agents
Biochemistry
Biodegradation
Biomedical and Life Sciences
Chitinase
Chitosan
Chitosanase
Deacetylation
Depolymerization
Enzymes
Fungicides
Hydrolysis
Life Sciences
Low molecular weights
Medical Microbiology
Microbiology
Microorganisms
Molecular weight
Molecular weight distribution
Oligomers
Polymers
Reaction products
Substrates
Title Efficiency of Chitosan Depolymerization by Microbial Chitinases and Chitosanases with Respect to the Antimicrobial Activity of Generated Chitooligomers
URI https://link.springer.com/article/10.1134/S0003683821050124
https://www.proquest.com/docview/2576345512
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xEFouwLKLKI_KB06gVIntOMkxlBYEgsOKSuwpip1ktwISRMOh_BH-LmM7acXrwDX2TJTYHn_j8TcDcMB9Ny0KxR2quHB4SDO0gxKdFcF4wAqRClezkS-vxNmIn9_4NwtAZ0cX5W2vjUgaQ23LjnBN6UVjG7IQfRQfrSpfhOWGd7ocn_69GMxT7YowauvkaYEmlvmpkre70RxivouKms1muG4JgBOTo1DfMbntPdWyp54_ZnD8xndswFqDPUlsJ8tPWMjLTVix1Sinm_Cj3xZ_-wUvA5NaQvMySVWQ_n9c-JO0JCeI1--mOspj6ZtETsnl2CRzQs2627jEfXFC0jKbSZkH-sCX_MkNs5PUFUHgSeKyHt_PpGNlK1noF9ps2IiGrZLqbvyv0ifsv2E0HFz3z5ymhoOjmCdqJ4sKpYooYHkYZNJjBdoX6VFPYgPHFk9lnhRRVgS-x9AbRRODPpVSTMpQ8ChjW7BUVmW-DURRieDLTSPflSgqo5RKTeylqUIlbtCBw3YskwebqiMxLg7jyYe_3oG9drSTZtVOEu18MY4YknbgqB29efOXyna-1XsXVqm-GGMuqu3BUv34lO8jsqllF6fy8Pj4qttM6S4sjmj8CqWY8WQ
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4CMEFwQAxnjlwAlVqkzRtj9PYNB7bAW3SblWTtlBptIiVw34JfxcnbZl4Hbg2iSvVjfM59mcDXHDXjtJUcYsqLizu0xjtoERnRTDusVREwtZs5OFIDCb8dupOax73vMl2b0KSxlJXfUe45vSitfWZj06Ki2aVr8K6Lq-uC-ZPaGdZaVf4QdMmT0-vQ5m_ivh6GC0R5regqDlr-juwXYNE0qm0ugsrSd6Cjapt5KIFm92mS9sevPdMDQhNoCRFSrpPuEPnUU6uEVjPFjocU_EsiVyQYWaqLqFkPS3L8QCbkyiPP1eZB_pmljwkhoJJyoIgQiSdvMyeP1d3VNVyQr-wKluNsLUSUsyyx0Jfhe_DpN8bdwdW3WzBUswRpRUHqVJp4LHE92LpsBQNgXSoI3GA44ijYkeKIE4912HoNqItQOdHKSalL3gQswNYy4s8OQSiqESUZEeBa0tcKoOISs3ApZFCIbbXhsvmq4cvVU2N0PgijIc_VNSGk0YvYb295qH2khhHsEfbcNXoajn8p7Cjf80-h83BeHgf3t-M7o5hi-psFpNddgJr5etbcopwpJRn5vf7ALhL1ic
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BEcsFsYpCAR84gSIS23GSY9VSsRUhRCVuUezEUKkkFQ2Hfgm_yzhLK7YD19gzkTLxzBvPBnDCXTvSWnGLKi4s7tMY9aBEZ0Uw7jEtImGbauT-nbgc8Osn96maczqps93rkGRZ02C6NKX5-TjW1QwSbup7UfP6zEeHxUUVyxdhCS0RMzl9A9qed90VflCPzDPbq7Dmryy-GqY52vwWIC3sTm8D1ivASNqlhDdhIUm3YLkcITndgtVOPbFtGz4uin4QppiSZJp0XvC0TqKUdBFkj6YmNFPWXBI5Jf1h0YEJOZttwxSN2YREaTyjKh6YW1rykBTlmCTPCKJF0k7z4euMuq3K8RPmhWULa4SwJZNsNHzOzLX4Dgx6F4-dS6savGAp5ojcigOtlA48lvheLB2mUSlIhzoSFziuOCp2pAhi7bkOQxcS9QI6QkoxKX3Bg5jtQiPN0mQPiKISEZMdBa4tkVQGEZWmGpdGCpnYXhNO668ejsv-GmHhlzAe_hBRE1q1XMLqqE1C4zExjsCPNuGsltV8-U9m-__afQwr991eeHt1d3MAa9QkthSJZi1o5G_vySEik1weFX_fJ0Ob2mw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+of+Chitosan+Depolymerization+by+Microbial+Chitinases+and+Chitosanases+with+Respect+to+the+Antimicrobial+Activity+of+Generated+Chitooligomers&rft.jtitle=Applied+biochemistry+and+microbiology&rft.au=Safina%2C+V.+R.&rft.au=Melentiev%2C+A.+I.&rft.au=Galimzianova%2C+N.+F.&rft.au=Gilvanova%2C+E.+A.&rft.date=2021-09-01&rft.pub=Pleiades+Publishing&rft.issn=0003-6838&rft.eissn=1608-3024&rft.volume=57&rft.issue=5&rft.spage=626&rft.epage=635&rft_id=info:doi/10.1134%2FS0003683821050124&rft.externalDocID=10_1134_S0003683821050124
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6838&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6838&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6838&client=summon