Efficiency of Chitosan Depolymerization by Microbial Chitinases and Chitosanases with Respect to the Antimicrobial Activity of Generated Chitooligomers
Specific features of the enzymatic degradation of chitosan with depolymerization degrees (DD) of 85 and 50% by microbial chitinases and chitosanases were studied in terms of the conversion degree, molecular-weight distribution (MWD), and antimicrobial activity of the generated reaction products. The...
Saved in:
Published in | Applied biochemistry and microbiology Vol. 57; no. 5; pp. 626 - 635 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Moscow
Pleiades Publishing
01.09.2021
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Specific features of the enzymatic degradation of chitosan with depolymerization degrees (DD) of 85 and 50% by microbial chitinases and chitosanases were studied in terms of the conversion degree, molecular-weight distribution (MWD), and antimicrobial activity of the generated reaction products. The enzyme complex produced by the strain
B. thuringiensis
B-387, which is characterized by high chitosanase production (>4.5 U mL
–1
), degraded the polymer to soluble, low molecular weight chitooligosaccharides (CHOs, M
w
≤ 2 kDa), along with a minor yield (~5%) of alkali-precipitated oligochitosans (M
w
2–16 kDa). The hydrolytic complexes produced by
B. atrophaeus
IB-33-1 and
Cohnella
sp. IB-P192, which mainly comprise chitinases (0.3–0.5 U mL
–1
), demonstrated the lowest rate and degree of chitosan (DD 85%) hydrolysis. The selection of an enzyme : substrate ratio in the range of 2–5 units/g (based on chitosanase) made it possible to reduce the hydrolysis depth of the initial polymer and to increase the yield of oligochitosans with a M
w
of ~15–17 kDa to 30% for chitosan (DD 85%) depolymerization by the enzyme complex from
B. thuringiensis
B-387. The decrease in the bactericidal and fungicidal effect of the oligomers that formed during the destruction of chitosan with varying deacetylation degrees (DD 85% and 50%) by enzyme complexes displaying high chitosanase activity was, as a rule, more distinct than that achieved with the use of chitinases. However, in some cases, there were both nonspecific and specific enhancements of the antimicrobial action of hydrolytic products in comparison with the initial polymer, which was determined by individual sensitivity of bacterial and micromycetes strains. |
---|---|
AbstractList | Specific features of the enzymatic degradation of chitosan with depolymerization degrees (DD) of 85 and 50% by microbial chitinases and chitosanases were studied in terms of the conversion degree, molecular-weight distribution (MWD), and antimicrobial activity of the generated reaction products. The enzyme complex produced by the strain B. thuringiensis B-387, which is characterized by high chitosanase production (>4.5 U mL–1), degraded the polymer to soluble, low molecular weight chitooligosaccharides (CHOs, Mw ≤ 2 kDa), along with a minor yield (~5%) of alkali-precipitated oligochitosans (Mw 2–16 kDa). The hydrolytic complexes produced by B. atrophaeus IB-33-1 and Cohnella sp. IB-P192, which mainly comprise chitinases (0.3–0.5 U mL–1), demonstrated the lowest rate and degree of chitosan (DD 85%) hydrolysis. The selection of an enzyme : substrate ratio in the range of 2–5 units/g (based on chitosanase) made it possible to reduce the hydrolysis depth of the initial polymer and to increase the yield of oligochitosans with a Mw of ~15–17 kDa to 30% for chitosan (DD 85%) depolymerization by the enzyme complex from B. thuringiensis B-387. The decrease in the bactericidal and fungicidal effect of the oligomers that formed during the destruction of chitosan with varying deacetylation degrees (DD 85% and 50%) by enzyme complexes displaying high chitosanase activity was, as a rule, more distinct than that achieved with the use of chitinases. However, in some cases, there were both nonspecific and specific enhancements of the antimicrobial action of hydrolytic products in comparison with the initial polymer, which was determined by individual sensitivity of bacterial and micromycetes strains. Specific features of the enzymatic degradation of chitosan with depolymerization degrees (DD) of 85 and 50% by microbial chitinases and chitosanases were studied in terms of the conversion degree, molecular-weight distribution (MWD), and antimicrobial activity of the generated reaction products. The enzyme complex produced by the strain B. thuringiensis B-387, which is characterized by high chitosanase production (>4.5 U mL –1 ), degraded the polymer to soluble, low molecular weight chitooligosaccharides (CHOs, M w ≤ 2 kDa), along with a minor yield (~5%) of alkali-precipitated oligochitosans (M w 2–16 kDa). The hydrolytic complexes produced by B. atrophaeus IB-33-1 and Cohnella sp. IB-P192, which mainly comprise chitinases (0.3–0.5 U mL –1 ), demonstrated the lowest rate and degree of chitosan (DD 85%) hydrolysis. The selection of an enzyme : substrate ratio in the range of 2–5 units/g (based on chitosanase) made it possible to reduce the hydrolysis depth of the initial polymer and to increase the yield of oligochitosans with a M w of ~15–17 kDa to 30% for chitosan (DD 85%) depolymerization by the enzyme complex from B. thuringiensis B-387. The decrease in the bactericidal and fungicidal effect of the oligomers that formed during the destruction of chitosan with varying deacetylation degrees (DD 85% and 50%) by enzyme complexes displaying high chitosanase activity was, as a rule, more distinct than that achieved with the use of chitinases. However, in some cases, there were both nonspecific and specific enhancements of the antimicrobial action of hydrolytic products in comparison with the initial polymer, which was determined by individual sensitivity of bacterial and micromycetes strains. |
Author | Galimzianova, N. F. Baymiev, A. H. Varlamov, V. P. Melentiev, A. I. Kuzmina, L. Yu Safina, V. R. Gilvanova, E. A. Lopatin, S. A. Aktuganov, G. E. |
Author_xml | – sequence: 1 givenname: V. R. surname: Safina fullname: Safina, V. R. organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences – sequence: 2 givenname: A. I. surname: Melentiev fullname: Melentiev, A. I. organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences – sequence: 3 givenname: N. F. surname: Galimzianova fullname: Galimzianova, N. F. organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences – sequence: 4 givenname: E. A. surname: Gilvanova fullname: Gilvanova, E. A. organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences – sequence: 5 givenname: L. Yu surname: Kuzmina fullname: Kuzmina, L. Yu organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences – sequence: 6 givenname: S. A. surname: Lopatin fullname: Lopatin, S. A. organization: Institute of Bioengineering, Fundamentals Principles of Biotechnology Federal Research Center, Russian Academy of Sciences – sequence: 7 givenname: V. P. surname: Varlamov fullname: Varlamov, V. P. organization: Institute of Bioengineering, Fundamentals Principles of Biotechnology Federal Research Center, Russian Academy of Sciences – sequence: 8 givenname: A. H. surname: Baymiev fullname: Baymiev, A. H. organization: Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences – sequence: 9 givenname: G. E. surname: Aktuganov fullname: Aktuganov, G. E. email: gleakt@anrb.ru organization: Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences |
BookMark | eNp1kEtLAzEUhYNUsK3-AHcB16O5k3kuS61VqAg-1sMkk7Qp06QmqTL-Ef-u6YO6EFeX3HO-c8gdoJ42WiB0CeQagCY3L4QQmhW0iIGkBOLkBPUhI0VESZz0UH8rR1v9DA2cW4ZnmRVlH31PpFRcCc07bCQeL5Q3rtb4VqxN262EVV-1V0Zj1uFHxa1hqm53NqVrJxyudXOkdotP5Rf4Wbi14B57g_1C4JH2anWkR9yrD-V3hVOhha29OISYVs1NaHXn6FTWrRMXhzlEb3eT1_F9NHuaPoxHs4hTyHzUlJJzWeZUFHnDgEpKUgYxsCAkQQHeAMvKRuYp0DwGCkWZEc4pY0WWlA0doqt97tqa941wvlqajdWhsorTPKNJmkIcXLB3hS84Z4Ws1latattVQKrt_as_9w9MvGdc8Oq5sL_J_0M_zP-MIg |
CitedBy_id | crossref_primary_10_1080_25740881_2023_2249979 crossref_primary_10_1134_S0003683822020077 crossref_primary_10_1007_s13233_023_00143_8 |
Cites_doi | 10.1002/masy.19971200103 10.1016/j.foodchem.2009.02.002 10.1023/A:1002867412442 10.1016/j.carbpol.2017.12.067 10.3390/ijms19082197 10.3390/md8051482 10.1134/S0026261718050028 10.1016/j.reactfunctpolym.2020.104488 10.1023/B:ABIM.0000025947.84650.b4 10.1016/j.ijbiomac.2016.01.022 10.1016/j.tifs.2015.11.007 10.3390/md13116566 10.1016/S0032-9592(99)00104-1 10.1007/978-981-15-0263-7_15 10.1007/s11274-019-2590-4 10.1016/j.carbpol.2016.09.055 10.3390/md12115328 10.1590/S1516-89132010000600023 10.7868/S0555109916050020 10.1016/j.ijbiomac.2017.01.112 10.1094/mpmi-7-0531 |
ContentType | Journal Article |
Copyright | Pleiades Publishing, Inc. 2021. ISSN 0003-6838, Applied Biochemistry and Microbiology, 2021, Vol. 57, No. 5, pp. 626–635. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2021, Vol. 57, No. 5, pp. 485–495. |
Copyright_xml | – notice: Pleiades Publishing, Inc. 2021. ISSN 0003-6838, Applied Biochemistry and Microbiology, 2021, Vol. 57, No. 5, pp. 626–635. © Pleiades Publishing, Inc., 2021. Russian Text © The Author(s), 2021, published in Prikladnaya Biokhimiya i Mikrobiologiya, 2021, Vol. 57, No. 5, pp. 485–495. |
DBID | AAYXX CITATION 7QL 7T7 8FD C1K FR3 K9. M7N P64 |
DOI | 10.1134/S0003683821050124 |
DatabaseName | CrossRef Bacteriology Abstracts (Microbiology B) Industrial and Applied Microbiology Abstracts (Microbiology A) Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database ProQuest Health & Medical Complete (Alumni) Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Technology Research Database Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) ProQuest Health & Medical Complete (Alumni) Engineering Research Database Industrial and Applied Microbiology Abstracts (Microbiology A) Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1608-3024 |
EndPage | 635 |
ExternalDocumentID | 10_1134_S0003683821050124 |
GroupedDBID | -56 -5G -BR -EM -Y2 -~C .86 .GJ .VR 06C 06D 0R~ 0VY 23M 29~ 2J2 2JN 2JY 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 408 409 40D 40E 53G 5GY 5VS 67N 67Z 6NX 78A 7X7 88A 88I 8AO 8CJ 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X A8Z AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANXM AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDBF ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACGOD ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACPRK ACSNA ACTTH ACVWB ACWMK ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AI. AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BVXVI CAG CCPQU COF CS3 CSCUP D1J DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EBD EBLON EBS EIOEI EJD EMK EN4 EPL ESBYG ESTFP ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ KDC KOV KPH LAK LK8 LLZTM M0L M2P M4Y M7P MA- MM. N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM OVD P2P PF0 PQQKQ PROAC PT4 Q2X QF4 QM4 QN7 QO4 QOR QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS TWZ U2A U9L UG4 UKHRP UNUBA UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WIP WJK WK8 XU3 YLTOR Z7U Z7V Z7W ZGI ZMTXR ZOVNA ~8M ~A9 AACDK AAHBH AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGRTI AIGIU ALIPV CITATION H13 7QL 7T7 8FD AAYZH C1K FR3 K9. M7N P64 |
ID | FETCH-LOGICAL-c316t-d9fccf973e87db13f305b121bd9f4ccf1cd1b69df7513721318960cc3bb8649d3 |
IEDL.DBID | AGYKE |
ISSN | 0003-6838 |
IngestDate | Tue Nov 12 03:50:53 EST 2024 Thu Sep 12 18:04:31 EDT 2024 Sat Dec 16 12:09:18 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | enzymatic depolymerization of chitosan antimicrobial activity chitinolytic enzymes bioactive chitooligosaccharides chitosanase |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-d9fccf973e87db13f305b121bd9f4ccf1cd1b69df7513721318960cc3bb8649d3 |
PQID | 2576345512 |
PQPubID | 54030 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2576345512 crossref_primary_10_1134_S0003683821050124 springer_journals_10_1134_S0003683821050124 |
PublicationCentury | 2000 |
PublicationDate | 2021-09-01 |
PublicationDateYYYYMMDD | 2021-09-01 |
PublicationDate_xml | – month: 09 year: 2021 text: 2021-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Moscow |
PublicationPlace_xml | – name: Moscow – name: Dordrecht |
PublicationTitle | Applied biochemistry and microbiology |
PublicationTitleAbbrev | Appl Biochem Microbiol |
PublicationYear | 2021 |
Publisher | Pleiades Publishing Springer Nature B.V |
Publisher_xml | – name: Pleiades Publishing – name: Springer Nature B.V |
References | ParkY.KimM.H.ParkS.C.CheongH.JangM.K.NahJ.W.HahmK.S.J. Microbiol. Biotechnol200818172917341:CAS:528:DC%2BD1MXotFSrsrk%3D18955827 JungW.-J.ParkR.-D.Mar. Drugs201412532853561:CAS:528:DC%2BC2MXisFShtrc%3D10.3390/md12115328253532534245534 AktuganovG.E.GalimzianovaN.F.GilvanovaE.A.PudovaE.A.KuzminaL.Yu.MelentievA.I.SafinaV.R.J. Microbiol. Biotechnol2019351131:CAS:528:DC%2BC1MXhtFalsbrN10.1007/s11274-019-2590-4 AktuganovG.E.SafinaV.R.GalimzyanovaN.F.Kuz’minaL.Yu.Gil’vanovaE.A.BoikoT.F.Melent’evA.I.Microbiology2018877167241:CAS:528:DC%2BC1cXhvVGisLjN10.1134/S0026261718050028 Yilmaz Atay, H.Y., Functional Chitosan, Jana, S. and Subrata, J., Eds., Syngapore: Springer Nature, 2019, pp. 457–489. https://doi.org/10.1007/978-981-15-0263-7_15 VarlamovV.P.Il’inaAV.ShagdarovaB.Ts.Lun’kovA.P.MysyakinaI.SUsp. Biol. Khim202060317368 HadwigerL.A.OgawaT.KuyamaH.MPMI199475315331:CAS:528:DyaK2cXmslKrur4%3D10.1094/mpmi-7-05318075425 Kulikov, S.N., Tyurin, Yu.A., Fassakhov, R.S., and Varlamov, V.P., ZhMEI, 2009, no. 5, pp. 91–97. SánchezÁ.MengíbarM.Rivera-RodríguezG.MoerchbacherB.AcostaN.HerasA.Carbohydr. Res201715725125710.1016/j.carbpol.2016.09.055 HamedI.OzogulF.RegensteinJ.M.Trends Food Sci. Technol20164840501:CAS:528:DC%2BC2MXitVGrt7nE10.1016/j.tifs.2015.11.007 AktuganovG.E.GalimzyanovaN.F.TeregulovaG.A.Melent’evA.I.Appl. Biochem. Microbiol2016525315361:CAS:528:DC%2BC28XhsV2ku7rP10.7868/S0555109916050020 GhormadeM.PathanE.K.DeshpandeM.V.Int. J. Biol. Macromol. B2017104141514211:CAS:528:DC%2BC2sXit1Sktrc%3D10.1016/j.ijbiomac.2017.01.112 LiaqatF.EltemR.Carbohydr. Res20181842432591:CAS:528:DC%2BC1cXlt1ChsA%3D%3D10.1016/j.carbpol.2017.12.067 HosseinejadM.JafariS.M.Int. J. Biol. Macromol2016854674751:CAS:528:DC%2BC28XhtVejsrw%3D10.1016/j.ijbiomac.2016.01.022 ViensP.Lacombe-HarveyM.-E.BrzezinskiR.Mar. Drugs201513656665871:CAS:528:DC%2BC28XntVSktLs%3D10.3390/md13116566265168684663542 IlyinaA.V.TikhonovV.E.AlbulovA.I.VarlamovV.P.Process Biochem2000355635681:CAS:528:DyaK1MXnvFyqsb0%3D10.1016/S0032-9592(99)00104-1 AamB.HeggsetE.NorbergA.SǿrlieM.VarumK.EjsinkV.Mar. Drugs20108148215171:CAS:528:DC%2BC3cXlvVChsLk%3D10.3390/md8051482205594852885077 Tokura, S., Ueno, K., Miyazaki, S., and Nishi, N., Macromol. Symp., vol. 120, no. 1, pp. 1–9. https://doi.org/10.1002/masy.19971200103 Il'inaA.V.VarlamovV.P.Melent’evA.I.AktuganovG.E.Appl. Biochem. Microbiol2001371421441:CAS:528:DC%2BD3MXjslCksrs%3D10.1023/A:1002867412442 GerasimenkoD.V.AvdienkoI.D.BannikovaG.E.ZuevaO.Yu.VarlamovV.P.Appl. Biochem. Microbiol2004402532571:CAS:528:DC%2BD2cXjsFSlsLY%3D10.1023/B:ABIM.0000025947.84650.b4 LiangS.SunY.DaiX.Int. J. Mol. Sci2018191191:CAS:528:DC%2BC1MXns1Squrc%3D10.3390/ijms19082197 SørlieM.HornS.J.Vaaje-KolstadG.EijsinkV.G.H.React. Funct. Polym20201481044881:CAS:528:DC%2BB3cXisFOhtrs%3D10.1016/j.reactfunctpolym.2020.104488 LinS-B.LinY-C.ChenH-H.Food Chem.200911647531:CAS:528:DC%2BD1MXks12ns70%3D10.1016/j.foodchem.2009.02.002 PagnocelliM.G.B.De AraujoN.K.Da SilvaN.M.P.De AssisC.F.RodriguesS.De MacedoG.R.Bras. Arch. Biol. Technol201053146114681:CAS:528:DC%2BC3MXlvFWltLY%3D10.1590/S1516-89132010000600023 8351_CR11 G.E. Aktuganov (8351_CR17) 2018; 87 F. Liaqat (8351_CR9) 2018; 184 B. Aam (8351_CR16) 2010; 8 M. Ghormade (8351_CR3) 2017; 104 G.E. Aktuganov (8351_CR20) 2019; 35 S-B. Lin (8351_CR13) 2009; 116 P. Viens (8351_CR21) 2015; 13 M.G.B. Pagnocelli (8351_CR23) 2010; 53 D.V. Gerasimenko (8351_CR6) 2004; 40 W.-J. Jung (8351_CR15) 2014; 12 G.E. Aktuganov (8351_CR18) 2016; 52 M. Sørlie (8351_CR19) 2020; 148 8351_CR5 8351_CR4 S. Liang (8351_CR10) 2018; 19 A.V. Ilyina (8351_CR8) 2000; 35 A.V. Il'ina (8351_CR22) 2001; 37 M. Hosseinejad (8351_CR7) 2016; 85 Y. Park (8351_CR12) 2008; 18 L.A. Hadwiger (8351_CR24) 1994; 7 V.P. Varlamov (8351_CR1) 2020; 60 I. Hamed (8351_CR2) 2016; 48 Á. Sánchez (8351_CR14) 2017; 157 |
References_xml | – ident: 8351_CR11 doi: 10.1002/masy.19971200103 – volume: 116 start-page: 47 year: 2009 ident: 8351_CR13 publication-title: Food Chem. doi: 10.1016/j.foodchem.2009.02.002 contributor: fullname: S-B. Lin – volume: 37 start-page: 142 year: 2001 ident: 8351_CR22 publication-title: Appl. Biochem. Microbiol doi: 10.1023/A:1002867412442 contributor: fullname: A.V. Il'ina – ident: 8351_CR4 – volume: 184 start-page: 243 year: 2018 ident: 8351_CR9 publication-title: Carbohydr. Res doi: 10.1016/j.carbpol.2017.12.067 contributor: fullname: F. Liaqat – volume: 19 start-page: 1 year: 2018 ident: 8351_CR10 publication-title: Int. J. Mol. Sci doi: 10.3390/ijms19082197 contributor: fullname: S. Liang – volume: 18 start-page: 1729 year: 2008 ident: 8351_CR12 publication-title: J. Microbiol. Biotechnol contributor: fullname: Y. Park – volume: 8 start-page: 1482 year: 2010 ident: 8351_CR16 publication-title: Mar. Drugs doi: 10.3390/md8051482 contributor: fullname: B. Aam – volume: 87 start-page: 716 year: 2018 ident: 8351_CR17 publication-title: Microbiology doi: 10.1134/S0026261718050028 contributor: fullname: G.E. Aktuganov – volume: 148 start-page: 104488 year: 2020 ident: 8351_CR19 publication-title: React. Funct. Polym doi: 10.1016/j.reactfunctpolym.2020.104488 contributor: fullname: M. Sørlie – volume: 40 start-page: 253 year: 2004 ident: 8351_CR6 publication-title: Appl. Biochem. Microbiol doi: 10.1023/B:ABIM.0000025947.84650.b4 contributor: fullname: D.V. Gerasimenko – volume: 85 start-page: 467 year: 2016 ident: 8351_CR7 publication-title: Int. J. Biol. Macromol doi: 10.1016/j.ijbiomac.2016.01.022 contributor: fullname: M. Hosseinejad – volume: 48 start-page: 40 year: 2016 ident: 8351_CR2 publication-title: Trends Food Sci. Technol doi: 10.1016/j.tifs.2015.11.007 contributor: fullname: I. Hamed – volume: 13 start-page: 6566 year: 2015 ident: 8351_CR21 publication-title: Mar. Drugs doi: 10.3390/md13116566 contributor: fullname: P. Viens – volume: 35 start-page: 563 year: 2000 ident: 8351_CR8 publication-title: Process Biochem doi: 10.1016/S0032-9592(99)00104-1 contributor: fullname: A.V. Ilyina – ident: 8351_CR5 doi: 10.1007/978-981-15-0263-7_15 – volume: 35 start-page: 1 year: 2019 ident: 8351_CR20 publication-title: J. Microbiol. Biotechnol doi: 10.1007/s11274-019-2590-4 contributor: fullname: G.E. Aktuganov – volume: 157 start-page: 251 year: 2017 ident: 8351_CR14 publication-title: Carbohydr. Res doi: 10.1016/j.carbpol.2016.09.055 contributor: fullname: Á. Sánchez – volume: 12 start-page: 5328 year: 2014 ident: 8351_CR15 publication-title: Mar. Drugs doi: 10.3390/md12115328 contributor: fullname: W.-J. Jung – volume: 53 start-page: 1461 year: 2010 ident: 8351_CR23 publication-title: Bras. Arch. Biol. Technol doi: 10.1590/S1516-89132010000600023 contributor: fullname: M.G.B. Pagnocelli – volume: 52 start-page: 531 year: 2016 ident: 8351_CR18 publication-title: Appl. Biochem. Microbiol doi: 10.7868/S0555109916050020 contributor: fullname: G.E. Aktuganov – volume: 60 start-page: 317 year: 2020 ident: 8351_CR1 publication-title: Usp. Biol. Khim contributor: fullname: V.P. Varlamov – volume: 104 start-page: 1415 year: 2017 ident: 8351_CR3 publication-title: Int. J. Biol. Macromol. B doi: 10.1016/j.ijbiomac.2017.01.112 contributor: fullname: M. Ghormade – volume: 7 start-page: 531 year: 1994 ident: 8351_CR24 publication-title: MPMI doi: 10.1094/mpmi-7-0531 contributor: fullname: L.A. Hadwiger |
SSID | ssj0009689 |
Score | 2.295369 |
Snippet | Specific features of the enzymatic degradation of chitosan with depolymerization degrees (DD) of 85 and 50% by microbial chitinases and chitosanases were... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 626 |
SubjectTerms | Antiinfectives and antibacterials Antimicrobial activity Antimicrobial agents Biochemistry Biodegradation Biomedical and Life Sciences Chitinase Chitosan Chitosanase Deacetylation Depolymerization Enzymes Fungicides Hydrolysis Life Sciences Low molecular weights Medical Microbiology Microbiology Microorganisms Molecular weight Molecular weight distribution Oligomers Polymers Reaction products Substrates |
Title | Efficiency of Chitosan Depolymerization by Microbial Chitinases and Chitosanases with Respect to the Antimicrobial Activity of Generated Chitooligomers |
URI | https://link.springer.com/article/10.1134/S0003683821050124 https://www.proquest.com/docview/2576345512 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB7xEFouwLKLKI_KB06gVIntOMkxlBYEgsOKSuwpip1ktwISRMOh_BH-LmM7acXrwDX2TJTYHn_j8TcDcMB9Ny0KxR2quHB4SDO0gxKdFcF4wAqRClezkS-vxNmIn9_4NwtAZ0cX5W2vjUgaQ23LjnBN6UVjG7IQfRQfrSpfhOWGd7ocn_69GMxT7YowauvkaYEmlvmpkre70RxivouKms1muG4JgBOTo1DfMbntPdWyp54_ZnD8xndswFqDPUlsJ8tPWMjLTVix1Sinm_Cj3xZ_-wUvA5NaQvMySVWQ_n9c-JO0JCeI1--mOspj6ZtETsnl2CRzQs2627jEfXFC0jKbSZkH-sCX_MkNs5PUFUHgSeKyHt_PpGNlK1noF9ps2IiGrZLqbvyv0ifsv2E0HFz3z5ymhoOjmCdqJ4sKpYooYHkYZNJjBdoX6VFPYgPHFk9lnhRRVgS-x9AbRRODPpVSTMpQ8ChjW7BUVmW-DURRieDLTSPflSgqo5RKTeylqUIlbtCBw3YskwebqiMxLg7jyYe_3oG9drSTZtVOEu18MY4YknbgqB29efOXyna-1XsXVqm-GGMuqu3BUv34lO8jsqllF6fy8Pj4qttM6S4sjmj8CqWY8WQ |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLZ4CMEFwQAxnjlwAlVqkzRtj9PYNB7bAW3SblWTtlBptIiVw34JfxcnbZl4Hbg2iSvVjfM59mcDXHDXjtJUcYsqLizu0xjtoERnRTDusVREwtZs5OFIDCb8dupOax73vMl2b0KSxlJXfUe45vSitfWZj06Ki2aVr8K6Lq-uC-ZPaGdZaVf4QdMmT0-vQ5m_ivh6GC0R5regqDlr-juwXYNE0qm0ugsrSd6Cjapt5KIFm92mS9sevPdMDQhNoCRFSrpPuEPnUU6uEVjPFjocU_EsiVyQYWaqLqFkPS3L8QCbkyiPP1eZB_pmljwkhoJJyoIgQiSdvMyeP1d3VNVyQr-wKluNsLUSUsyyx0Jfhe_DpN8bdwdW3WzBUswRpRUHqVJp4LHE92LpsBQNgXSoI3GA44ijYkeKIE4912HoNqItQOdHKSalL3gQswNYy4s8OQSiqESUZEeBa0tcKoOISs3ApZFCIbbXhsvmq4cvVU2N0PgijIc_VNSGk0YvYb295qH2khhHsEfbcNXoajn8p7Cjf80-h83BeHgf3t-M7o5hi-psFpNddgJr5etbcopwpJRn5vf7ALhL1ic |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB1BEcsFsYpCAR84gSIS23GSY9VSsRUhRCVuUezEUKkkFQ2Hfgm_yzhLK7YD19gzkTLxzBvPBnDCXTvSWnGLKi4s7tMY9aBEZ0Uw7jEtImGbauT-nbgc8Osn96maczqps93rkGRZ02C6NKX5-TjW1QwSbup7UfP6zEeHxUUVyxdhCS0RMzl9A9qed90VflCPzDPbq7Dmryy-GqY52vwWIC3sTm8D1ivASNqlhDdhIUm3YLkcITndgtVOPbFtGz4uin4QppiSZJp0XvC0TqKUdBFkj6YmNFPWXBI5Jf1h0YEJOZttwxSN2YREaTyjKh6YW1rykBTlmCTPCKJF0k7z4euMuq3K8RPmhWULa4SwJZNsNHzOzLX4Dgx6F4-dS6savGAp5ojcigOtlA48lvheLB2mUSlIhzoSFziuOCp2pAhi7bkOQxcS9QI6QkoxKX3Bg5jtQiPN0mQPiKISEZMdBa4tkVQGEZWmGpdGCpnYXhNO668ejsv-GmHhlzAe_hBRE1q1XMLqqE1C4zExjsCPNuGsltV8-U9m-__afQwr991eeHt1d3MAa9QkthSJZi1o5G_vySEik1weFX_fJ0Ob2mw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+of+Chitosan+Depolymerization+by+Microbial+Chitinases+and+Chitosanases+with+Respect+to+the+Antimicrobial+Activity+of+Generated+Chitooligomers&rft.jtitle=Applied+biochemistry+and+microbiology&rft.au=Safina%2C+V.+R.&rft.au=Melentiev%2C+A.+I.&rft.au=Galimzianova%2C+N.+F.&rft.au=Gilvanova%2C+E.+A.&rft.date=2021-09-01&rft.pub=Pleiades+Publishing&rft.issn=0003-6838&rft.eissn=1608-3024&rft.volume=57&rft.issue=5&rft.spage=626&rft.epage=635&rft_id=info:doi/10.1134%2FS0003683821050124&rft.externalDocID=10_1134_S0003683821050124 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6838&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6838&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6838&client=summon |