Distributed Kernel-Based Gradient Descent Algorithms

We study the generalization ability of distributed learning equipped with a divide-and-conquer approach and gradient descent algorithm in a reproducing kernel Hilbert space (RKHS). Using special spectral features of the gradient descent algorithms and a novel integral operator approach, we provide o...

Full description

Saved in:
Bibliographic Details
Published inConstructive approximation Vol. 47; no. 2; pp. 249 - 276
Main Authors Lin, Shao-Bo, Zhou, Ding-Xuan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.04.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0176-4276
1432-0940
DOI10.1007/s00365-017-9379-1

Cover

Loading…
Abstract We study the generalization ability of distributed learning equipped with a divide-and-conquer approach and gradient descent algorithm in a reproducing kernel Hilbert space (RKHS). Using special spectral features of the gradient descent algorithms and a novel integral operator approach, we provide optimal learning rates of distributed gradient descent algorithms in probability and partly conquer the saturation phenomenon in the literature in the sense that the maximum number of local machines to guarantee the optimal learning rates does not vary if the regularity of the regression function goes beyond a certain quantity. We also find that additional unlabeled data can help relax the restriction on the number of local machines in distributed learning.
AbstractList We study the generalization ability of distributed learning equipped with a divide-and-conquer approach and gradient descent algorithm in a reproducing kernel Hilbert space (RKHS). Using special spectral features of the gradient descent algorithms and a novel integral operator approach, we provide optimal learning rates of distributed gradient descent algorithms in probability and partly conquer the saturation phenomenon in the literature in the sense that the maximum number of local machines to guarantee the optimal learning rates does not vary if the regularity of the regression function goes beyond a certain quantity. We also find that additional unlabeled data can help relax the restriction on the number of local machines in distributed learning.
We study the generalization ability of distributed learning equipped with a divide-and-conquer approach and gradient descent algorithm in a reproducing kernel Hilbert space (RKHS). Using special spectral features of the gradient descent algorithms and a novel integral operator approach, we provide optimal learning rates of distributed gradient descent algorithms in probability and partly conquer the saturation phenomenon in the literature in the sense that the maximum number of local machines to guarantee the optimal learning rates does not vary if the regularity of the regression function goes beyond a certain quantity. We also find that additional unlabeled data can help relax the restriction on the number of local machines in distributed learning.
Author Zhou, Ding-Xuan
Lin, Shao-Bo
Author_xml – sequence: 1
  givenname: Shao-Bo
  surname: Lin
  fullname: Lin, Shao-Bo
  email: sblin1983@gmail.com
  organization: College of Mathematics and Information Science, Wenzhou University
– sequence: 2
  givenname: Ding-Xuan
  surname: Zhou
  fullname: Zhou, Ding-Xuan
  organization: Department of Mathematics, City University of Hong Kong
BookMark eNp9kEtLAzEUhYNUsK3-AHcF19G8mseytr6w4EbXITNzp6ZMMzVJF_57U0YQBF0dLvd89x7OBI1CHwChS0quKSHqJhHC5RwTqrDhymB6gsZUcIaJEWSExmUhsWBKnqFJSltC6FxzNUZi5VOOvjpkaGbPEAN0-NalMjxE13gIebaCVB910W366PP7Lp2j09Z1CS6-dYre7u9el494_fLwtFyscc2pzLjRrHJOGcaFakQtYK5aZaiT0DKnK6eZ5m1JAqatKgDjgGvuGEgppKuqhk_R1XB3H_uPA6Rst_0hhvLSMkK0YUJpU1xqcNWxTylCa2ufXfZ9yNH5zlJijxXZoSJbmrDHiiwtJP1F7qPfufj5L8MGJhVv2ED8yfQ39AXZsXpI
CitedBy_id crossref_primary_10_3390_math10203734
crossref_primary_10_1080_24754269_2021_1974158
crossref_primary_10_1109_TNNLS_2020_2979228
crossref_primary_10_1142_S0219530519500258
crossref_primary_10_1016_j_sigpro_2024_109512
crossref_primary_10_1109_TCYB_2017_2771463
crossref_primary_10_1109_TNNLS_2020_3027613
crossref_primary_10_1109_TIT_2024_3428325
crossref_primary_10_1007_s10208_021_09529_5
crossref_primary_10_1016_j_jco_2018_09_003
crossref_primary_10_1016_j_neunet_2020_07_029
crossref_primary_10_1016_j_neunet_2022_06_007
crossref_primary_10_1016_j_neucom_2019_06_071
crossref_primary_10_1109_TCYB_2018_2850819
crossref_primary_10_1016_j_neunet_2021_12_016
crossref_primary_10_3390_e20120968
crossref_primary_10_1016_j_acha_2021_03_008
crossref_primary_10_1007_s00025_021_01601_4
crossref_primary_10_2139_ssrn_4128032
crossref_primary_10_3390_math10030304
crossref_primary_10_1142_S0219530523500355
crossref_primary_10_1109_TPAMI_2020_3032422
crossref_primary_10_1109_TNNLS_2019_2952219
crossref_primary_10_1137_19M1281095
crossref_primary_10_1016_j_neunet_2020_01_018
crossref_primary_10_1145_3522591
crossref_primary_10_3389_fams_2018_00014
crossref_primary_10_1109_TNNLS_2018_2844242
crossref_primary_10_1287_ijoc_2022_1224
crossref_primary_10_1137_22M1519948
crossref_primary_10_1109_TCYB_2018_2885029
crossref_primary_10_1088_1361_6420_ac4153
crossref_primary_10_1007_s11432_020_3113_4
crossref_primary_10_1016_j_inffus_2023_102087
crossref_primary_10_1109_TIT_2023_3341704
crossref_primary_10_1093_jrsssb_qkad059
crossref_primary_10_1142_S0219530519400037
crossref_primary_10_1016_j_acha_2019_01_002
crossref_primary_10_1080_24754269_2024_2343151
crossref_primary_10_1109_TIT_2023_3344656
crossref_primary_10_1109_TNNLS_2018_2868980
crossref_primary_10_1142_S0219530519400074
crossref_primary_10_1109_TIT_2022_3175761
crossref_primary_10_1109_TIT_2025_3531048
crossref_primary_10_1016_j_jco_2023_101783
crossref_primary_10_1142_S0219530520500098
crossref_primary_10_1142_S021953052350032X
crossref_primary_10_1016_j_acha_2023_06_005
crossref_primary_10_1016_j_neunet_2021_09_027
crossref_primary_10_1007_s00365_023_09649_x
crossref_primary_10_1016_j_neunet_2023_07_036
crossref_primary_10_1007_s11766_023_4309_4
Cites_doi 10.1145/1327452.1327492
10.1007/978-94-009-1740-8
10.1214/17-EJS1258
10.1109/MCI.2014.2350953
10.1016/j.jco.2006.07.001
10.1007/s00365-006-0663-2
10.1109/ALLERTON.2014.7028543
10.1016/j.camwa.2008.09.014
10.1142/S0219530514500110
10.1109/TIT.2003.813564
10.1007/s10208-006-0196-8
10.1088/1361-6420/aa72b2
10.1007/s00365-006-0659-y
10.1142/S0219530510001564
10.1162/neco.2008.05-07-517
10.1109/TKDE.2013.109
10.1007/978-1-4757-2545-2
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00365-017-9379-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1432-0940
EndPage 276
ExternalDocumentID 10_1007_s00365_017_9379_1
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
MK~
ML~
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z8M
ZMTXR
ZWQNP
ZY4
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-d82baa792347d4c4e57f791a6ef2a8ba8283f001e9fbbee9ae383a2e6646abbd3
IEDL.DBID U2A
ISSN 0176-4276
IngestDate Fri Jul 25 11:11:54 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Tue Jul 01 03:09:31 EDT 2025
Fri Feb 21 02:34:45 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Integral operator
41A35
Distributed learning
68T05
Gradient descent algorithm
Learning theory
94A20
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-d82baa792347d4c4e57f791a6ef2a8ba8283f001e9fbbee9ae383a2e6646abbd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2008924789
PQPubID 2043922
PageCount 28
ParticipantIDs proquest_journals_2008924789
crossref_citationtrail_10_1007_s00365_017_9379_1
crossref_primary_10_1007_s00365_017_9379_1
springer_journals_10_1007_s00365_017_9379_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-04-01
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: 2018-04-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Constructive approximation
PublicationTitleAbbrev Constr Approx
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chang, X., Lin, S.B., Zhou, D.X.: Distributed semi-supervised learning with kernel ridge regression. J. Mach. Learn. Res. (to appear)
Lo GerfoLRosascoLOdoneFDe VitoEVerriASpectral algorithms for supervised learningNeural Comput.20082018731897241710910.1162/neco.2008.05-07-5171147.68643
ZhouDXCapacity of reproducing kernel spaces in learning theoryIEEE Trans. Inf. Theory20034917431752198557510.1109/TIT.2003.8135641290.62033
DeanJGhemawatSMapReduce: simplified data processing on large clustersCommun. ACM20085110711310.1145/1327452.1327492
YaoYRosascoLCaponnettoAOn early stopping in gradient descent learningConstr. Approx.200726289315232760110.1007/s00365-006-0663-21125.62035
Blanchard, G., Krämer, N.: Optimal learning rates for kernel conjugate gradient regression. In: NIPS, pp. 226–234 (2010)
CaponnettoADeVitoEOptimal rates for the regularized least squares algorithmFound. Comput. Math.20077331368233524910.1007/s10208-006-0196-81129.68058
SmaleSZhouDXLearning theory estimates via integral operators and their approximationsConstr. Approx.200726153172232759710.1007/s00365-006-0659-y1127.68088
Lin, S.B., Guo, X., Zhou, D.X.: Distributed learning with regularized least squares. J. Mach. Learn. Res. arXiv:1608.03339v2 (2016) (revision under review)
WuXZhuXWuGQDingWData mining with big dataIEEE Trans. Knowl. Data Eng.2014269710710.1109/TKDE.2013.2297923
Dicker, L.H., Foster, D.P., Hsu, D.: Kernel ridge vs. principal component regression: minimax bounds and adaptability of regularization operators, arXiv preprint arXiv:1605.08839 (2016)
van der VaartAWWellnerJAWeak Convergence and Empirical Process: with Applications to Statistics1996New YorkSpringer Series in Statistics. Springer10.1007/978-1-4757-2545-20862.60002
CaponnettoAYaoYCross-validation based adaptation for regularization operators in learning theoryAnal. Appl.20108161183264690910.1142/S02195305100015641209.68405
ZhangYDuchiJWainwrightMDivide and conquer kernel ridge regression: a distributed algorithm with minimax optimal ratesJ. Mach. Learn. Res.2015163299334034505401351.62142
DudleyRMReal Analysis and Probability, Cambridge Studies in Advanced Mathematics 742002CambridgeCambridge University Press
BauerFPereverzevSRosascoLOn regularization algorithms in learning theoryJ. Complex.2007235272229701510.1016/j.jco.2006.07.0011109.68088
EnglHWHankeMNeubauerARegularization of Inverse Problems, Mathematics and Its Applications 3751996DordrechtKluwer Academic Publishers Group10.1007/978-94-009-1740-80859.65054
RaskuttiGWainwrightMYuBEarly stopping and non-parametric regression: an optimal data-dependent stopping ruleJ. Mach. Learn. Res.20141533536631908431318.62136
Balcan, M., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communication complexity, and privacy. In: COLT, vol. 23 (2012)
Guo, Z.-C., Lin, S.-B., Zhou, D.-X.: Learning theory of distributed spectral algorithms. Inverse Probl. (2017). doi:10.1088/1361-6420/aa72b2
ZhouZHChawlaNVJinYWilliamsGJBig data opportunities and challenges: discussions from data analytics perspectivesIEEE Comput. Intell. Mag.20149627410.1109/MCI.2014.2350953
LinJZhouDXLearning theory of randomized Kaczmarz algorithmJ. Mach. Learn. Res.2015163341336534505411351.62133
Gillick, D., Faria, A., DeNero, J.: MapReduce: distributed computing for machine learning, Berkley (2006)
WuQZhouDXLearning with sample dependent hypothesis spaceComput. Math. Appl.20085628962907246767810.1016/j.camwa.2008.09.0141165.68388
Mann, G., McDonald, R., Mohri, M., Silberman, N., Walker, D.: Efficient large-scale distributed training of conditional maximum entropy models. In: NIPS, pp. 1231–1239 (2009)
HuTFanJWuQZhouDXRegularization schemes for minimum error entropy principleAnal. Appl.201513437455334067010.1142/S02195305145001101329.68216
Ameet, T.: Spark Meetup: MLbase, Distributed Machine Learning with Spark, Slideshare. net. Spark User Meetup, San Francisco, California (2013)
ZhangYDuchiJWainwrightMCommunication-efficient algorithms for statistical optimizationJ. Mach. Learn. Res.2013143321336331444641318.62016
Blanchard, G., Mücke, N.: Parallelizing spectral algorithms for kernel learning, arXiv preprint arXiv:1610.07487 (2016)
Shamir, O., Srebro, N.: Distributed stochastic optimization and learning. In: 52nd Annual Allerton Conference on Communication, Control and Computing (2014)
HW Engl (9379_CR12) 1996
A Caponnetto (9379_CR6) 2007; 7
ZH Zhou (9379_CR30) 2014; 9
J Dean (9379_CR9) 2008; 51
9379_CR4
9379_CR5
G Raskutti (9379_CR20) 2014; 15
9379_CR2
9379_CR8
F Bauer (9379_CR3) 2007; 23
9379_CR19
A Caponnetto (9379_CR7) 2010; 8
9379_CR17
T Hu (9379_CR15) 2015; 13
RM Dudley (9379_CR11) 2002
S Smale (9379_CR22) 2007; 26
9379_CR13
9379_CR14
J Lin (9379_CR16) 2015; 16
9379_CR10
Y Yao (9379_CR26) 2007; 26
Y Zhang (9379_CR28) 2015; 16
Y Zhang (9379_CR27) 2013; 14
L Lo Gerfo (9379_CR18) 2008; 20
X Wu (9379_CR25) 2014; 26
AW Vaart van der (9379_CR23) 1996
DX Zhou (9379_CR29) 2003; 49
9379_CR1
Q Wu (9379_CR24) 2008; 56
9379_CR21
References_xml – reference: WuXZhuXWuGQDingWData mining with big dataIEEE Trans. Knowl. Data Eng.2014269710710.1109/TKDE.2013.2297923
– reference: Gillick, D., Faria, A., DeNero, J.: MapReduce: distributed computing for machine learning, Berkley (2006)
– reference: CaponnettoAYaoYCross-validation based adaptation for regularization operators in learning theoryAnal. Appl.20108161183264690910.1142/S02195305100015641209.68405
– reference: Shamir, O., Srebro, N.: Distributed stochastic optimization and learning. In: 52nd Annual Allerton Conference on Communication, Control and Computing (2014)
– reference: ZhouDXCapacity of reproducing kernel spaces in learning theoryIEEE Trans. Inf. Theory20034917431752198557510.1109/TIT.2003.8135641290.62033
– reference: Ameet, T.: Spark Meetup: MLbase, Distributed Machine Learning with Spark, Slideshare. net. Spark User Meetup, San Francisco, California (2013)
– reference: Chang, X., Lin, S.B., Zhou, D.X.: Distributed semi-supervised learning with kernel ridge regression. J. Mach. Learn. Res. (to appear)
– reference: Guo, Z.-C., Lin, S.-B., Zhou, D.-X.: Learning theory of distributed spectral algorithms. Inverse Probl. (2017). doi:10.1088/1361-6420/aa72b2
– reference: DudleyRMReal Analysis and Probability, Cambridge Studies in Advanced Mathematics 742002CambridgeCambridge University Press
– reference: Dicker, L.H., Foster, D.P., Hsu, D.: Kernel ridge vs. principal component regression: minimax bounds and adaptability of regularization operators, arXiv preprint arXiv:1605.08839 (2016)
– reference: LinJZhouDXLearning theory of randomized Kaczmarz algorithmJ. Mach. Learn. Res.2015163341336534505411351.62133
– reference: Lin, S.B., Guo, X., Zhou, D.X.: Distributed learning with regularized least squares. J. Mach. Learn. Res. arXiv:1608.03339v2 (2016) (revision under review)
– reference: HuTFanJWuQZhouDXRegularization schemes for minimum error entropy principleAnal. Appl.201513437455334067010.1142/S02195305145001101329.68216
– reference: Balcan, M., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communication complexity, and privacy. In: COLT, vol. 23 (2012)
– reference: ZhangYDuchiJWainwrightMCommunication-efficient algorithms for statistical optimizationJ. Mach. Learn. Res.2013143321336331444641318.62016
– reference: ZhouZHChawlaNVJinYWilliamsGJBig data opportunities and challenges: discussions from data analytics perspectivesIEEE Comput. Intell. Mag.20149627410.1109/MCI.2014.2350953
– reference: ZhangYDuchiJWainwrightMDivide and conquer kernel ridge regression: a distributed algorithm with minimax optimal ratesJ. Mach. Learn. Res.2015163299334034505401351.62142
– reference: Lo GerfoLRosascoLOdoneFDe VitoEVerriASpectral algorithms for supervised learningNeural Comput.20082018731897241710910.1162/neco.2008.05-07-5171147.68643
– reference: van der VaartAWWellnerJAWeak Convergence and Empirical Process: with Applications to Statistics1996New YorkSpringer Series in Statistics. Springer10.1007/978-1-4757-2545-20862.60002
– reference: WuQZhouDXLearning with sample dependent hypothesis spaceComput. Math. Appl.20085628962907246767810.1016/j.camwa.2008.09.0141165.68388
– reference: Blanchard, G., Mücke, N.: Parallelizing spectral algorithms for kernel learning, arXiv preprint arXiv:1610.07487 (2016)
– reference: DeanJGhemawatSMapReduce: simplified data processing on large clustersCommun. ACM20085110711310.1145/1327452.1327492
– reference: BauerFPereverzevSRosascoLOn regularization algorithms in learning theoryJ. Complex.2007235272229701510.1016/j.jco.2006.07.0011109.68088
– reference: Mann, G., McDonald, R., Mohri, M., Silberman, N., Walker, D.: Efficient large-scale distributed training of conditional maximum entropy models. In: NIPS, pp. 1231–1239 (2009)
– reference: RaskuttiGWainwrightMYuBEarly stopping and non-parametric regression: an optimal data-dependent stopping ruleJ. Mach. Learn. Res.20141533536631908431318.62136
– reference: SmaleSZhouDXLearning theory estimates via integral operators and their approximationsConstr. Approx.200726153172232759710.1007/s00365-006-0659-y1127.68088
– reference: Blanchard, G., Krämer, N.: Optimal learning rates for kernel conjugate gradient regression. In: NIPS, pp. 226–234 (2010)
– reference: CaponnettoADeVitoEOptimal rates for the regularized least squares algorithmFound. Comput. Math.20077331368233524910.1007/s10208-006-0196-81129.68058
– reference: YaoYRosascoLCaponnettoAOn early stopping in gradient descent learningConstr. Approx.200726289315232760110.1007/s00365-006-0663-21125.62035
– reference: EnglHWHankeMNeubauerARegularization of Inverse Problems, Mathematics and Its Applications 3751996DordrechtKluwer Academic Publishers Group10.1007/978-94-009-1740-80859.65054
– volume: 51
  start-page: 107
  year: 2008
  ident: 9379_CR9
  publication-title: Commun. ACM
  doi: 10.1145/1327452.1327492
– volume: 15
  start-page: 335
  year: 2014
  ident: 9379_CR20
  publication-title: J. Mach. Learn. Res.
– ident: 9379_CR2
– volume: 14
  start-page: 3321
  year: 2013
  ident: 9379_CR27
  publication-title: J. Mach. Learn. Res.
– ident: 9379_CR4
– volume-title: Regularization of Inverse Problems, Mathematics and Its Applications 375
  year: 1996
  ident: 9379_CR12
  doi: 10.1007/978-94-009-1740-8
– volume: 16
  start-page: 3341
  year: 2015
  ident: 9379_CR16
  publication-title: J. Mach. Learn. Res.
– ident: 9379_CR19
– ident: 9379_CR17
– ident: 9379_CR10
  doi: 10.1214/17-EJS1258
– volume: 16
  start-page: 3299
  year: 2015
  ident: 9379_CR28
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 62
  year: 2014
  ident: 9379_CR30
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2014.2350953
– volume: 23
  start-page: 52
  year: 2007
  ident: 9379_CR3
  publication-title: J. Complex.
  doi: 10.1016/j.jco.2006.07.001
– ident: 9379_CR8
– volume-title: Real Analysis and Probability, Cambridge Studies in Advanced Mathematics 74
  year: 2002
  ident: 9379_CR11
– ident: 9379_CR1
– volume: 26
  start-page: 289
  year: 2007
  ident: 9379_CR26
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-006-0663-2
– ident: 9379_CR21
  doi: 10.1109/ALLERTON.2014.7028543
– ident: 9379_CR5
– volume: 56
  start-page: 2896
  year: 2008
  ident: 9379_CR24
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2008.09.014
– volume: 13
  start-page: 437
  year: 2015
  ident: 9379_CR15
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530514500110
– volume: 49
  start-page: 1743
  year: 2003
  ident: 9379_CR29
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2003.813564
– volume: 7
  start-page: 331
  year: 2007
  ident: 9379_CR6
  publication-title: Found. Comput. Math.
  doi: 10.1007/s10208-006-0196-8
– ident: 9379_CR14
  doi: 10.1088/1361-6420/aa72b2
– volume: 26
  start-page: 153
  year: 2007
  ident: 9379_CR22
  publication-title: Constr. Approx.
  doi: 10.1007/s00365-006-0659-y
– ident: 9379_CR13
– volume: 8
  start-page: 161
  year: 2010
  ident: 9379_CR7
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530510001564
– volume: 20
  start-page: 1873
  year: 2008
  ident: 9379_CR18
  publication-title: Neural Comput.
  doi: 10.1162/neco.2008.05-07-517
– volume: 26
  start-page: 97
  year: 2014
  ident: 9379_CR25
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.109
– volume-title: Weak Convergence and Empirical Process: with Applications to Statistics
  year: 1996
  ident: 9379_CR23
  doi: 10.1007/978-1-4757-2545-2
SSID ssj0015837
Score 2.4161198
Snippet We study the generalization ability of distributed learning equipped with a divide-and-conquer approach and gradient descent algorithm in a reproducing kernel...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 249
SubjectTerms Algorithms
Analysis
Hilbert space
Machine learning
Mathematics
Mathematics and Statistics
Numerical Analysis
Operators (mathematics)
Statistical analysis
Title Distributed Kernel-Based Gradient Descent Algorithms
URI https://link.springer.com/article/10.1007/s00365-017-9379-1
https://www.proquest.com/docview/2008924789
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA2yveiD-InTOfrgkxJY2jRpHqv7wjGfHMynkqQ3KsxO2vr_TT-HooLPTQM5SXvv4d6cg9CVUpQLyRUegscx1UZi6SmCQZPYJxwYL60TFg9stqT3K39V3-POmm73piRZ_qnby26FdErRaMaxDakCW8rT9Qvqbg_x0g3b0oEfVEKZhDNMXc6aUuZPU3wNRtsM81tRtIw1kwO0XyeJTljt6iHageQI7S1ahdXsGNFRoXhbmFVB7MwhTWCNb21Eip1pWnZx5c6oUmpywvXzJn3NX96yE7ScjB_vZrh2QMDaIyzHceAqKQuJP8pjqin43HBBJAPjykBJS5c8Y9cMwigFICRYwildYIwyqVTsnaJOskngDDnMhnLNjSZcKyq0lEQLajwjpJLagtNDwwaKSNfy4IVLxTpqhY1L9CKLXlSgF5Eeum5fea-0Mf4a3G_wjerPJCs9MC0B5IHooZsG8-3jXyc7_9foC7Rr05yg6rfpo06efsClTSVyNUDdcPo0Hw_KI_QJwyHBBQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwELRQOQAHxFMUCuTACWSpThw7PhZKKfRxaqXeItvZAFJJURL-HzuvCgRInONY8tjJ7GrXMwhdKUW5kFzhLngcUx1LLD1FMGgS-YQD44V1wmTKhnP6tPAX1T3urO52r0uSxZ-6uexmpVNsoxnHhlIFNinPpokFAtvHNXd7TenAD0qhTMIZpi5ndSnzpym-ktE6wvxWFC24ZrCHdqsg0emVu7qPNiA5QDuTRmE1O0S0bxVvrVkVRM4I0gSW-NYwUuQ8pEUXV-70S6Ump7d8XqWv-ctbdoTmg_vZ3RBXDghYe4TlOApcJaWV-KM8opqCz2MuiGQQuzJQ0qRLXmzWDCJWCkBIMAmndIExyqRSkXeMWskqgRPkMEPlmseacK2o0FISLWjsxUIqqQ04bdStoQh1JQ9uXSqWYSNsXKAXGvRCi15I2ui6eeW91Mb4a3CnxjesPpOs8MA0CSAPRBvd1JivH_862em_Rl-ireFsMg7Hj9PRGdo2IU9Q9t50UCtPP-DchBW5uiiO0SfwFcJk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA0yQfRB_MTp1D74pIQtbZY0j9M5p3PDBwd7K0l6o8Lsxlb_v0m_hqKCz00DOUl77uXenIPQhVKUC8kVbkHAMdVGYhkogkGTuE04MJ5ZJwxHrD-mD5P2pPA5XZbd7mVJMr_T4FSakrQ5j02zuvjmZFRc0xnHll4FtunPuv0bE3esx36nKiO0w1w0k3CGqc9ZWdb8aYqvxLSKNr8VSDPe6e2g7SJg9Dr5Du-iNUj20NawUltd7iPadeq3zrgKYm8AiwSm-NqyU-zdLbKOrtTr5qpNXmf6Mlu8pa_vywM07t0-3_Rx4YaAdUBYiuPQV1I6uT_KY6optLnhgkgGxpehkjZ1CoxdMwijFICQYJNP6QNjlEml4uAQ1ZJZAkfIY5bWNTeacK2o0FISLagJjJBKagtOHbVKKCJdSIU7x4ppVIkcZ-hFFr3IoReROrqsXpnnOhl_DW6U-EbFJ7PM_DBtMshDUUdXJearx79Odvyv0edo46nbix7vR4MTtGmjnzBvw2mgWrr4gFMbYaTqLDtFn3_pxqA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Kernel-Based+Gradient+Descent+Algorithms&rft.jtitle=Constructive+approximation&rft.au=Lin%2C+Shao-Bo&rft.au=Zhou%2C+Ding-Xuan&rft.date=2018-04-01&rft.pub=Springer+US&rft.issn=0176-4276&rft.eissn=1432-0940&rft.volume=47&rft.issue=2&rft.spage=249&rft.epage=276&rft_id=info:doi/10.1007%2Fs00365-017-9379-1&rft.externalDocID=10_1007_s00365_017_9379_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0176-4276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0176-4276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0176-4276&client=summon