Distributed Kernel-Based Gradient Descent Algorithms
We study the generalization ability of distributed learning equipped with a divide-and-conquer approach and gradient descent algorithm in a reproducing kernel Hilbert space (RKHS). Using special spectral features of the gradient descent algorithms and a novel integral operator approach, we provide o...
Saved in:
Published in | Constructive approximation Vol. 47; no. 2; pp. 249 - 276 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0176-4276 1432-0940 |
DOI | 10.1007/s00365-017-9379-1 |
Cover
Loading…
Abstract | We study the generalization ability of distributed learning equipped with a divide-and-conquer approach and gradient descent algorithm in a reproducing kernel Hilbert space (RKHS). Using special spectral features of the gradient descent algorithms and a novel integral operator approach, we provide optimal learning rates of
distributed gradient descent algorithms
in probability and partly conquer the saturation phenomenon in the literature in the sense that the maximum number of local machines to guarantee the optimal learning rates does not vary if the regularity of the regression function goes beyond a certain quantity. We also find that additional unlabeled data can help relax the restriction on the number of local machines in distributed learning. |
---|---|
AbstractList | We study the generalization ability of distributed learning equipped with a divide-and-conquer approach and gradient descent algorithm in a reproducing kernel Hilbert space (RKHS). Using special spectral features of the gradient descent algorithms and a novel integral operator approach, we provide optimal learning rates of
distributed gradient descent algorithms
in probability and partly conquer the saturation phenomenon in the literature in the sense that the maximum number of local machines to guarantee the optimal learning rates does not vary if the regularity of the regression function goes beyond a certain quantity. We also find that additional unlabeled data can help relax the restriction on the number of local machines in distributed learning. We study the generalization ability of distributed learning equipped with a divide-and-conquer approach and gradient descent algorithm in a reproducing kernel Hilbert space (RKHS). Using special spectral features of the gradient descent algorithms and a novel integral operator approach, we provide optimal learning rates of distributed gradient descent algorithms in probability and partly conquer the saturation phenomenon in the literature in the sense that the maximum number of local machines to guarantee the optimal learning rates does not vary if the regularity of the regression function goes beyond a certain quantity. We also find that additional unlabeled data can help relax the restriction on the number of local machines in distributed learning. |
Author | Zhou, Ding-Xuan Lin, Shao-Bo |
Author_xml | – sequence: 1 givenname: Shao-Bo surname: Lin fullname: Lin, Shao-Bo email: sblin1983@gmail.com organization: College of Mathematics and Information Science, Wenzhou University – sequence: 2 givenname: Ding-Xuan surname: Zhou fullname: Zhou, Ding-Xuan organization: Department of Mathematics, City University of Hong Kong |
BookMark | eNp9kEtLAzEUhYNUsK3-AHcF19G8mseytr6w4EbXITNzp6ZMMzVJF_57U0YQBF0dLvd89x7OBI1CHwChS0quKSHqJhHC5RwTqrDhymB6gsZUcIaJEWSExmUhsWBKnqFJSltC6FxzNUZi5VOOvjpkaGbPEAN0-NalMjxE13gIebaCVB910W366PP7Lp2j09Z1CS6-dYre7u9el494_fLwtFyscc2pzLjRrHJOGcaFakQtYK5aZaiT0DKnK6eZ5m1JAqatKgDjgGvuGEgppKuqhk_R1XB3H_uPA6Rst_0hhvLSMkK0YUJpU1xqcNWxTylCa2ufXfZ9yNH5zlJijxXZoSJbmrDHiiwtJP1F7qPfufj5L8MGJhVv2ED8yfQ39AXZsXpI |
CitedBy_id | crossref_primary_10_3390_math10203734 crossref_primary_10_1080_24754269_2021_1974158 crossref_primary_10_1109_TNNLS_2020_2979228 crossref_primary_10_1142_S0219530519500258 crossref_primary_10_1016_j_sigpro_2024_109512 crossref_primary_10_1109_TCYB_2017_2771463 crossref_primary_10_1109_TNNLS_2020_3027613 crossref_primary_10_1109_TIT_2024_3428325 crossref_primary_10_1007_s10208_021_09529_5 crossref_primary_10_1016_j_jco_2018_09_003 crossref_primary_10_1016_j_neunet_2020_07_029 crossref_primary_10_1016_j_neunet_2022_06_007 crossref_primary_10_1016_j_neucom_2019_06_071 crossref_primary_10_1109_TCYB_2018_2850819 crossref_primary_10_1016_j_neunet_2021_12_016 crossref_primary_10_3390_e20120968 crossref_primary_10_1016_j_acha_2021_03_008 crossref_primary_10_1007_s00025_021_01601_4 crossref_primary_10_2139_ssrn_4128032 crossref_primary_10_3390_math10030304 crossref_primary_10_1142_S0219530523500355 crossref_primary_10_1109_TPAMI_2020_3032422 crossref_primary_10_1109_TNNLS_2019_2952219 crossref_primary_10_1137_19M1281095 crossref_primary_10_1016_j_neunet_2020_01_018 crossref_primary_10_1145_3522591 crossref_primary_10_3389_fams_2018_00014 crossref_primary_10_1109_TNNLS_2018_2844242 crossref_primary_10_1287_ijoc_2022_1224 crossref_primary_10_1137_22M1519948 crossref_primary_10_1109_TCYB_2018_2885029 crossref_primary_10_1088_1361_6420_ac4153 crossref_primary_10_1007_s11432_020_3113_4 crossref_primary_10_1016_j_inffus_2023_102087 crossref_primary_10_1109_TIT_2023_3341704 crossref_primary_10_1093_jrsssb_qkad059 crossref_primary_10_1142_S0219530519400037 crossref_primary_10_1016_j_acha_2019_01_002 crossref_primary_10_1080_24754269_2024_2343151 crossref_primary_10_1109_TIT_2023_3344656 crossref_primary_10_1109_TNNLS_2018_2868980 crossref_primary_10_1142_S0219530519400074 crossref_primary_10_1109_TIT_2022_3175761 crossref_primary_10_1109_TIT_2025_3531048 crossref_primary_10_1016_j_jco_2023_101783 crossref_primary_10_1142_S0219530520500098 crossref_primary_10_1142_S021953052350032X crossref_primary_10_1016_j_acha_2023_06_005 crossref_primary_10_1016_j_neunet_2021_09_027 crossref_primary_10_1007_s00365_023_09649_x crossref_primary_10_1016_j_neunet_2023_07_036 crossref_primary_10_1007_s11766_023_4309_4 |
Cites_doi | 10.1145/1327452.1327492 10.1007/978-94-009-1740-8 10.1214/17-EJS1258 10.1109/MCI.2014.2350953 10.1016/j.jco.2006.07.001 10.1007/s00365-006-0663-2 10.1109/ALLERTON.2014.7028543 10.1016/j.camwa.2008.09.014 10.1142/S0219530514500110 10.1109/TIT.2003.813564 10.1007/s10208-006-0196-8 10.1088/1361-6420/aa72b2 10.1007/s00365-006-0659-y 10.1142/S0219530510001564 10.1162/neco.2008.05-07-517 10.1109/TKDE.2013.109 10.1007/978-1-4757-2545-2 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2017 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer Science+Business Media New York 2017 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00365-017-9379-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1432-0940 |
EndPage | 276 |
ExternalDocumentID | 10_1007_s00365_017_9379_1 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- MK~ ML~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P9R PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z8M ZMTXR ZWQNP ZY4 ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADXHL AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-d82baa792347d4c4e57f791a6ef2a8ba8283f001e9fbbee9ae383a2e6646abbd3 |
IEDL.DBID | U2A |
ISSN | 0176-4276 |
IngestDate | Fri Jul 25 11:11:54 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Tue Jul 01 03:09:31 EDT 2025 Fri Feb 21 02:34:45 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Integral operator 41A35 Distributed learning 68T05 Gradient descent algorithm Learning theory 94A20 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-d82baa792347d4c4e57f791a6ef2a8ba8283f001e9fbbee9ae383a2e6646abbd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2008924789 |
PQPubID | 2043922 |
PageCount | 28 |
ParticipantIDs | proquest_journals_2008924789 crossref_citationtrail_10_1007_s00365_017_9379_1 crossref_primary_10_1007_s00365_017_9379_1 springer_journals_10_1007_s00365_017_9379_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-04-01 |
PublicationDateYYYYMMDD | 2018-04-01 |
PublicationDate_xml | – month: 04 year: 2018 text: 2018-04-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Constructive approximation |
PublicationTitleAbbrev | Constr Approx |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Chang, X., Lin, S.B., Zhou, D.X.: Distributed semi-supervised learning with kernel ridge regression. J. Mach. Learn. Res. (to appear) Lo GerfoLRosascoLOdoneFDe VitoEVerriASpectral algorithms for supervised learningNeural Comput.20082018731897241710910.1162/neco.2008.05-07-5171147.68643 ZhouDXCapacity of reproducing kernel spaces in learning theoryIEEE Trans. Inf. Theory20034917431752198557510.1109/TIT.2003.8135641290.62033 DeanJGhemawatSMapReduce: simplified data processing on large clustersCommun. ACM20085110711310.1145/1327452.1327492 YaoYRosascoLCaponnettoAOn early stopping in gradient descent learningConstr. Approx.200726289315232760110.1007/s00365-006-0663-21125.62035 Blanchard, G., Krämer, N.: Optimal learning rates for kernel conjugate gradient regression. In: NIPS, pp. 226–234 (2010) CaponnettoADeVitoEOptimal rates for the regularized least squares algorithmFound. Comput. Math.20077331368233524910.1007/s10208-006-0196-81129.68058 SmaleSZhouDXLearning theory estimates via integral operators and their approximationsConstr. Approx.200726153172232759710.1007/s00365-006-0659-y1127.68088 Lin, S.B., Guo, X., Zhou, D.X.: Distributed learning with regularized least squares. J. Mach. Learn. Res. arXiv:1608.03339v2 (2016) (revision under review) WuXZhuXWuGQDingWData mining with big dataIEEE Trans. Knowl. Data Eng.2014269710710.1109/TKDE.2013.2297923 Dicker, L.H., Foster, D.P., Hsu, D.: Kernel ridge vs. principal component regression: minimax bounds and adaptability of regularization operators, arXiv preprint arXiv:1605.08839 (2016) van der VaartAWWellnerJAWeak Convergence and Empirical Process: with Applications to Statistics1996New YorkSpringer Series in Statistics. Springer10.1007/978-1-4757-2545-20862.60002 CaponnettoAYaoYCross-validation based adaptation for regularization operators in learning theoryAnal. Appl.20108161183264690910.1142/S02195305100015641209.68405 ZhangYDuchiJWainwrightMDivide and conquer kernel ridge regression: a distributed algorithm with minimax optimal ratesJ. Mach. Learn. Res.2015163299334034505401351.62142 DudleyRMReal Analysis and Probability, Cambridge Studies in Advanced Mathematics 742002CambridgeCambridge University Press BauerFPereverzevSRosascoLOn regularization algorithms in learning theoryJ. Complex.2007235272229701510.1016/j.jco.2006.07.0011109.68088 EnglHWHankeMNeubauerARegularization of Inverse Problems, Mathematics and Its Applications 3751996DordrechtKluwer Academic Publishers Group10.1007/978-94-009-1740-80859.65054 RaskuttiGWainwrightMYuBEarly stopping and non-parametric regression: an optimal data-dependent stopping ruleJ. Mach. Learn. Res.20141533536631908431318.62136 Balcan, M., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communication complexity, and privacy. In: COLT, vol. 23 (2012) Guo, Z.-C., Lin, S.-B., Zhou, D.-X.: Learning theory of distributed spectral algorithms. Inverse Probl. (2017). doi:10.1088/1361-6420/aa72b2 ZhouZHChawlaNVJinYWilliamsGJBig data opportunities and challenges: discussions from data analytics perspectivesIEEE Comput. Intell. Mag.20149627410.1109/MCI.2014.2350953 LinJZhouDXLearning theory of randomized Kaczmarz algorithmJ. Mach. Learn. Res.2015163341336534505411351.62133 Gillick, D., Faria, A., DeNero, J.: MapReduce: distributed computing for machine learning, Berkley (2006) WuQZhouDXLearning with sample dependent hypothesis spaceComput. Math. Appl.20085628962907246767810.1016/j.camwa.2008.09.0141165.68388 Mann, G., McDonald, R., Mohri, M., Silberman, N., Walker, D.: Efficient large-scale distributed training of conditional maximum entropy models. In: NIPS, pp. 1231–1239 (2009) HuTFanJWuQZhouDXRegularization schemes for minimum error entropy principleAnal. Appl.201513437455334067010.1142/S02195305145001101329.68216 Ameet, T.: Spark Meetup: MLbase, Distributed Machine Learning with Spark, Slideshare. net. Spark User Meetup, San Francisco, California (2013) ZhangYDuchiJWainwrightMCommunication-efficient algorithms for statistical optimizationJ. Mach. Learn. Res.2013143321336331444641318.62016 Blanchard, G., Mücke, N.: Parallelizing spectral algorithms for kernel learning, arXiv preprint arXiv:1610.07487 (2016) Shamir, O., Srebro, N.: Distributed stochastic optimization and learning. In: 52nd Annual Allerton Conference on Communication, Control and Computing (2014) HW Engl (9379_CR12) 1996 A Caponnetto (9379_CR6) 2007; 7 ZH Zhou (9379_CR30) 2014; 9 J Dean (9379_CR9) 2008; 51 9379_CR4 9379_CR5 G Raskutti (9379_CR20) 2014; 15 9379_CR2 9379_CR8 F Bauer (9379_CR3) 2007; 23 9379_CR19 A Caponnetto (9379_CR7) 2010; 8 9379_CR17 T Hu (9379_CR15) 2015; 13 RM Dudley (9379_CR11) 2002 S Smale (9379_CR22) 2007; 26 9379_CR13 9379_CR14 J Lin (9379_CR16) 2015; 16 9379_CR10 Y Yao (9379_CR26) 2007; 26 Y Zhang (9379_CR28) 2015; 16 Y Zhang (9379_CR27) 2013; 14 L Lo Gerfo (9379_CR18) 2008; 20 X Wu (9379_CR25) 2014; 26 AW Vaart van der (9379_CR23) 1996 DX Zhou (9379_CR29) 2003; 49 9379_CR1 Q Wu (9379_CR24) 2008; 56 9379_CR21 |
References_xml | – reference: WuXZhuXWuGQDingWData mining with big dataIEEE Trans. Knowl. Data Eng.2014269710710.1109/TKDE.2013.2297923 – reference: Gillick, D., Faria, A., DeNero, J.: MapReduce: distributed computing for machine learning, Berkley (2006) – reference: CaponnettoAYaoYCross-validation based adaptation for regularization operators in learning theoryAnal. Appl.20108161183264690910.1142/S02195305100015641209.68405 – reference: Shamir, O., Srebro, N.: Distributed stochastic optimization and learning. In: 52nd Annual Allerton Conference on Communication, Control and Computing (2014) – reference: ZhouDXCapacity of reproducing kernel spaces in learning theoryIEEE Trans. Inf. Theory20034917431752198557510.1109/TIT.2003.8135641290.62033 – reference: Ameet, T.: Spark Meetup: MLbase, Distributed Machine Learning with Spark, Slideshare. net. Spark User Meetup, San Francisco, California (2013) – reference: Chang, X., Lin, S.B., Zhou, D.X.: Distributed semi-supervised learning with kernel ridge regression. J. Mach. Learn. Res. (to appear) – reference: Guo, Z.-C., Lin, S.-B., Zhou, D.-X.: Learning theory of distributed spectral algorithms. Inverse Probl. (2017). doi:10.1088/1361-6420/aa72b2 – reference: DudleyRMReal Analysis and Probability, Cambridge Studies in Advanced Mathematics 742002CambridgeCambridge University Press – reference: Dicker, L.H., Foster, D.P., Hsu, D.: Kernel ridge vs. principal component regression: minimax bounds and adaptability of regularization operators, arXiv preprint arXiv:1605.08839 (2016) – reference: LinJZhouDXLearning theory of randomized Kaczmarz algorithmJ. Mach. Learn. Res.2015163341336534505411351.62133 – reference: Lin, S.B., Guo, X., Zhou, D.X.: Distributed learning with regularized least squares. J. Mach. Learn. Res. arXiv:1608.03339v2 (2016) (revision under review) – reference: HuTFanJWuQZhouDXRegularization schemes for minimum error entropy principleAnal. Appl.201513437455334067010.1142/S02195305145001101329.68216 – reference: Balcan, M., Blum, A., Fine, S., Mansour, Y.: Distributed learning, communication complexity, and privacy. In: COLT, vol. 23 (2012) – reference: ZhangYDuchiJWainwrightMCommunication-efficient algorithms for statistical optimizationJ. Mach. Learn. Res.2013143321336331444641318.62016 – reference: ZhouZHChawlaNVJinYWilliamsGJBig data opportunities and challenges: discussions from data analytics perspectivesIEEE Comput. Intell. Mag.20149627410.1109/MCI.2014.2350953 – reference: ZhangYDuchiJWainwrightMDivide and conquer kernel ridge regression: a distributed algorithm with minimax optimal ratesJ. Mach. Learn. Res.2015163299334034505401351.62142 – reference: Lo GerfoLRosascoLOdoneFDe VitoEVerriASpectral algorithms for supervised learningNeural Comput.20082018731897241710910.1162/neco.2008.05-07-5171147.68643 – reference: van der VaartAWWellnerJAWeak Convergence and Empirical Process: with Applications to Statistics1996New YorkSpringer Series in Statistics. Springer10.1007/978-1-4757-2545-20862.60002 – reference: WuQZhouDXLearning with sample dependent hypothesis spaceComput. Math. Appl.20085628962907246767810.1016/j.camwa.2008.09.0141165.68388 – reference: Blanchard, G., Mücke, N.: Parallelizing spectral algorithms for kernel learning, arXiv preprint arXiv:1610.07487 (2016) – reference: DeanJGhemawatSMapReduce: simplified data processing on large clustersCommun. ACM20085110711310.1145/1327452.1327492 – reference: BauerFPereverzevSRosascoLOn regularization algorithms in learning theoryJ. Complex.2007235272229701510.1016/j.jco.2006.07.0011109.68088 – reference: Mann, G., McDonald, R., Mohri, M., Silberman, N., Walker, D.: Efficient large-scale distributed training of conditional maximum entropy models. In: NIPS, pp. 1231–1239 (2009) – reference: RaskuttiGWainwrightMYuBEarly stopping and non-parametric regression: an optimal data-dependent stopping ruleJ. Mach. Learn. Res.20141533536631908431318.62136 – reference: SmaleSZhouDXLearning theory estimates via integral operators and their approximationsConstr. Approx.200726153172232759710.1007/s00365-006-0659-y1127.68088 – reference: Blanchard, G., Krämer, N.: Optimal learning rates for kernel conjugate gradient regression. In: NIPS, pp. 226–234 (2010) – reference: CaponnettoADeVitoEOptimal rates for the regularized least squares algorithmFound. Comput. Math.20077331368233524910.1007/s10208-006-0196-81129.68058 – reference: YaoYRosascoLCaponnettoAOn early stopping in gradient descent learningConstr. Approx.200726289315232760110.1007/s00365-006-0663-21125.62035 – reference: EnglHWHankeMNeubauerARegularization of Inverse Problems, Mathematics and Its Applications 3751996DordrechtKluwer Academic Publishers Group10.1007/978-94-009-1740-80859.65054 – volume: 51 start-page: 107 year: 2008 ident: 9379_CR9 publication-title: Commun. ACM doi: 10.1145/1327452.1327492 – volume: 15 start-page: 335 year: 2014 ident: 9379_CR20 publication-title: J. Mach. Learn. Res. – ident: 9379_CR2 – volume: 14 start-page: 3321 year: 2013 ident: 9379_CR27 publication-title: J. Mach. Learn. Res. – ident: 9379_CR4 – volume-title: Regularization of Inverse Problems, Mathematics and Its Applications 375 year: 1996 ident: 9379_CR12 doi: 10.1007/978-94-009-1740-8 – volume: 16 start-page: 3341 year: 2015 ident: 9379_CR16 publication-title: J. Mach. Learn. Res. – ident: 9379_CR19 – ident: 9379_CR17 – ident: 9379_CR10 doi: 10.1214/17-EJS1258 – volume: 16 start-page: 3299 year: 2015 ident: 9379_CR28 publication-title: J. Mach. Learn. Res. – volume: 9 start-page: 62 year: 2014 ident: 9379_CR30 publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2014.2350953 – volume: 23 start-page: 52 year: 2007 ident: 9379_CR3 publication-title: J. Complex. doi: 10.1016/j.jco.2006.07.001 – ident: 9379_CR8 – volume-title: Real Analysis and Probability, Cambridge Studies in Advanced Mathematics 74 year: 2002 ident: 9379_CR11 – ident: 9379_CR1 – volume: 26 start-page: 289 year: 2007 ident: 9379_CR26 publication-title: Constr. Approx. doi: 10.1007/s00365-006-0663-2 – ident: 9379_CR21 doi: 10.1109/ALLERTON.2014.7028543 – ident: 9379_CR5 – volume: 56 start-page: 2896 year: 2008 ident: 9379_CR24 publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2008.09.014 – volume: 13 start-page: 437 year: 2015 ident: 9379_CR15 publication-title: Anal. Appl. doi: 10.1142/S0219530514500110 – volume: 49 start-page: 1743 year: 2003 ident: 9379_CR29 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2003.813564 – volume: 7 start-page: 331 year: 2007 ident: 9379_CR6 publication-title: Found. Comput. Math. doi: 10.1007/s10208-006-0196-8 – ident: 9379_CR14 doi: 10.1088/1361-6420/aa72b2 – volume: 26 start-page: 153 year: 2007 ident: 9379_CR22 publication-title: Constr. Approx. doi: 10.1007/s00365-006-0659-y – ident: 9379_CR13 – volume: 8 start-page: 161 year: 2010 ident: 9379_CR7 publication-title: Anal. Appl. doi: 10.1142/S0219530510001564 – volume: 20 start-page: 1873 year: 2008 ident: 9379_CR18 publication-title: Neural Comput. doi: 10.1162/neco.2008.05-07-517 – volume: 26 start-page: 97 year: 2014 ident: 9379_CR25 publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2013.109 – volume-title: Weak Convergence and Empirical Process: with Applications to Statistics year: 1996 ident: 9379_CR23 doi: 10.1007/978-1-4757-2545-2 |
SSID | ssj0015837 |
Score | 2.4161198 |
Snippet | We study the generalization ability of distributed learning equipped with a divide-and-conquer approach and gradient descent algorithm in a reproducing kernel... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 249 |
SubjectTerms | Algorithms Analysis Hilbert space Machine learning Mathematics Mathematics and Statistics Numerical Analysis Operators (mathematics) Statistical analysis |
Title | Distributed Kernel-Based Gradient Descent Algorithms |
URI | https://link.springer.com/article/10.1007/s00365-017-9379-1 https://www.proquest.com/docview/2008924789 |
Volume | 47 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA2yveiD-InTOfrgkxJY2jRpHqv7wjGfHMynkqQ3KsxO2vr_TT-HooLPTQM5SXvv4d6cg9CVUpQLyRUegscx1UZi6SmCQZPYJxwYL60TFg9stqT3K39V3-POmm73piRZ_qnby26FdErRaMaxDakCW8rT9Qvqbg_x0g3b0oEfVEKZhDNMXc6aUuZPU3wNRtsM81tRtIw1kwO0XyeJTljt6iHageQI7S1ahdXsGNFRoXhbmFVB7MwhTWCNb21Eip1pWnZx5c6oUmpywvXzJn3NX96yE7ScjB_vZrh2QMDaIyzHceAqKQuJP8pjqin43HBBJAPjykBJS5c8Y9cMwigFICRYwildYIwyqVTsnaJOskngDDnMhnLNjSZcKyq0lEQLajwjpJLagtNDwwaKSNfy4IVLxTpqhY1L9CKLXlSgF5Eeum5fea-0Mf4a3G_wjerPJCs9MC0B5IHooZsG8-3jXyc7_9foC7Rr05yg6rfpo06efsClTSVyNUDdcPo0Hw_KI_QJwyHBBQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LTsMwELRQOQAHxFMUCuTACWSpThw7PhZKKfRxaqXeItvZAFJJURL-HzuvCgRInONY8tjJ7GrXMwhdKUW5kFzhLngcUx1LLD1FMGgS-YQD44V1wmTKhnP6tPAX1T3urO52r0uSxZ-6uexmpVNsoxnHhlIFNinPpokFAtvHNXd7TenAD0qhTMIZpi5ndSnzpym-ktE6wvxWFC24ZrCHdqsg0emVu7qPNiA5QDuTRmE1O0S0bxVvrVkVRM4I0gSW-NYwUuQ8pEUXV-70S6Ump7d8XqWv-ctbdoTmg_vZ3RBXDghYe4TlOApcJaWV-KM8opqCz2MuiGQQuzJQ0qRLXmzWDCJWCkBIMAmndIExyqRSkXeMWskqgRPkMEPlmseacK2o0FISLWjsxUIqqQ04bdStoQh1JQ9uXSqWYSNsXKAXGvRCi15I2ui6eeW91Mb4a3CnxjesPpOs8MA0CSAPRBvd1JivH_862em_Rl-ireFsMg7Hj9PRGdo2IU9Q9t50UCtPP-DchBW5uiiO0SfwFcJk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFA0yQfRB_MTp1D74pIQtbZY0j9M5p3PDBwd7K0l6o8Lsxlb_v0m_hqKCz00DOUl77uXenIPQhVKUC8kVbkHAMdVGYhkogkGTuE04MJ5ZJwxHrD-mD5P2pPA5XZbd7mVJMr_T4FSakrQ5j02zuvjmZFRc0xnHll4FtunPuv0bE3esx36nKiO0w1w0k3CGqc9ZWdb8aYqvxLSKNr8VSDPe6e2g7SJg9Dr5Du-iNUj20NawUltd7iPadeq3zrgKYm8AiwSm-NqyU-zdLbKOrtTr5qpNXmf6Mlu8pa_vywM07t0-3_Rx4YaAdUBYiuPQV1I6uT_KY6optLnhgkgGxpehkjZ1CoxdMwijFICQYJNP6QNjlEml4uAQ1ZJZAkfIY5bWNTeacK2o0FISLagJjJBKagtOHbVKKCJdSIU7x4ppVIkcZ-hFFr3IoReROrqsXpnnOhl_DW6U-EbFJ7PM_DBtMshDUUdXJearx79Odvyv0edo46nbix7vR4MTtGmjnzBvw2mgWrr4gFMbYaTqLDtFn3_pxqA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Kernel-Based+Gradient+Descent+Algorithms&rft.jtitle=Constructive+approximation&rft.au=Lin%2C+Shao-Bo&rft.au=Zhou%2C+Ding-Xuan&rft.date=2018-04-01&rft.pub=Springer+US&rft.issn=0176-4276&rft.eissn=1432-0940&rft.volume=47&rft.issue=2&rft.spage=249&rft.epage=276&rft_id=info:doi/10.1007%2Fs00365-017-9379-1&rft.externalDocID=10_1007_s00365_017_9379_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0176-4276&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0176-4276&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0176-4276&client=summon |