A depth-based Indian Sign Language recognition using Microsoft Kinect
Recognition of sign language by a system has become important to bridge the communication gap between the abled and the Hearing and Speech Impaired people. This paper introduces an efficient algorithm for translating the input hand gesture in Indian Sign Language (ISL) into meaningful English text a...
Saved in:
Published in | Sadhana (Bangalore) Vol. 45; no. 1 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New Delhi
Springer India
01.12.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Recognition of sign language by a system has become important to bridge the communication gap between the abled and the Hearing and Speech Impaired people. This paper introduces an efficient algorithm for translating the input hand gesture in Indian Sign Language (ISL) into meaningful English text and speech. The system captures hand gestures through Microsoft Kinect (preferred as the system performance is unaffected by the surrounding light conditions and object colour). The dataset used consists of depth and RGB images (taken using Kinect Xbox 360) with 140 unique gestures of the ISL taken from 21 subjects, which includes single-handed signs, double-handed signs and fingerspelling (signs for alphabets and numbers), totaling to 4600 images. To recognize the hand posture, the hand region is accurately segmented and hand features are extracted using Speeded Up Robust Features, Histogram of Oriented Gradients and Local Binary Patterns. The system ensembles the three feature classifiers trained using Support Vector Machine to improve the average recognition accuracy up to 71.85%. The system then translates the sequence of hand gestures recognized into the best approximate meaningful English sentences. We achieved 100% accuracy for the signs representing 9, A, F, G, H, N and P. |
---|---|
AbstractList | Recognition of sign language by a system has become important to bridge the communication gap between the abled and the Hearing and Speech Impaired people. This paper introduces an efficient algorithm for translating the input hand gesture in Indian Sign Language (ISL) into meaningful English text and speech. The system captures hand gestures through Microsoft Kinect (preferred as the system performance is unaffected by the surrounding light conditions and object colour). The dataset used consists of depth and RGB images (taken using Kinect Xbox 360) with 140 unique gestures of the ISL taken from 21 subjects, which includes single-handed signs, double-handed signs and fingerspelling (signs for alphabets and numbers), totaling to 4600 images. To recognize the hand posture, the hand region is accurately segmented and hand features are extracted using Speeded Up Robust Features, Histogram of Oriented Gradients and Local Binary Patterns. The system ensembles the three feature classifiers trained using Support Vector Machine to improve the average recognition accuracy up to 71.85%. The system then translates the sequence of hand gestures recognized into the best approximate meaningful English sentences. We achieved 100% accuracy for the signs representing 9, A, F, G, H, N and P. |
ArticleNumber | 34 |
Author | Deepthi, R Raghuveera, T Mangalashri, R Akshaya, R |
Author_xml | – sequence: 1 givenname: T surname: Raghuveera fullname: Raghuveera, T email: raghuveera@annauniv.edu organization: Department of Computer Science and Engineering, College of Engineering Guindy Campus, Anna University – sequence: 2 givenname: R surname: Deepthi fullname: Deepthi, R organization: Department of Computer Science and Engineering, College of Engineering Guindy Campus, Anna University – sequence: 3 givenname: R surname: Mangalashri fullname: Mangalashri, R organization: Department of Computer Science and Engineering, College of Engineering Guindy Campus, Anna University – sequence: 4 givenname: R surname: Akshaya fullname: Akshaya, R organization: Department of Computer Science and Engineering, College of Engineering Guindy Campus, Anna University |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8Bz9HJxybNsZSqxYoH9Ryyu9k1pWZrkj34792lgiDoaebwPjMvzwxNQhccQpcUrimAukmUgZAEqCaUFUDkCZqCVpwoqdRk2FkhCRNan6FZSjsApmDBp2i9xLU75DdS2uRqvAm1twE_-zbgrQ1tb1uHo6u6Nvjsu4D75EOLH30Vu9Q1GT_44Kp8jk4bu0_u4nvO0evt-mV1T7ZPd5vVcksqTmUmNW8os1qwRnMHRakaW4tKgBKsLChIJTU02taqHmJUqEIr7ShVtixFJcuGz9HV8e4hdh-9S9nsuj6G4aVhXCwWBQjGh5Q6psaSKbrGVD7bsX6O1u8NBTM6M0dnZnBmRmdGDiT9RR6if7fx81-GHZk0ZEPr4k-nv6EvN-V-6w |
CitedBy_id | crossref_primary_10_1007_s10044_024_01229_4 crossref_primary_10_1007_s00521_020_05448_8 crossref_primary_10_1145_3591471 crossref_primary_10_1002_masy_202100286 crossref_primary_10_1007_s00521_021_05802_4 crossref_primary_10_1016_j_eswa_2022_119394 crossref_primary_10_3390_s22041406 crossref_primary_10_1109_ACCESS_2024_3421992 crossref_primary_10_1007_s11042_024_20384_8 crossref_primary_10_1016_j_eswa_2023_119772 crossref_primary_10_1109_TIM_2021_3092072 crossref_primary_10_1007_s11042_024_18173_4 crossref_primary_10_32604_cmes_2023_045731 crossref_primary_10_1080_08839514_2021_1982184 crossref_primary_10_1007_s42979_024_02793_6 crossref_primary_10_1038_s41598_024_82785_x crossref_primary_10_1016_j_mejo_2024_106345 crossref_primary_10_3233_FRL_200010 crossref_primary_10_1007_s11042_021_11595_4 crossref_primary_10_1016_j_specom_2023_102960 crossref_primary_10_1016_j_gvc_2021_200032 crossref_primary_10_1016_j_sna_2022_113482 crossref_primary_10_1016_j_measen_2022_100385 crossref_primary_10_1109_ACCESS_2024_3372425 crossref_primary_10_1109_ACCESS_2024_3354775 crossref_primary_10_1038_s41598_024_62008_z crossref_primary_10_3390_info14020079 crossref_primary_10_1007_s11042_024_20520_4 crossref_primary_10_1142_S0218001424560081 crossref_primary_10_3390_app12115523 crossref_primary_10_1038_s41598_022_15998_7 crossref_primary_10_3233_JIFS_235132 crossref_primary_10_1007_s11042_024_18583_4 |
Cites_doi | 10.1109/THMS.2014.2318280 10.1109/ICARA.2011.6144864 10.1109/TSMCC.2007.893280 10.1109/ICCV.2009.5459207 10.1080/10400435.2014.952845 10.13176/11.626 10.1109/TIM.2011.2161140 10.1109/WACV.2011.5711485 10.14257/ijmue.2015.10.2.07 10.1093/deafed/enj003 10.1109/FGR.2006.101 10.1007/s12046-015-0405-3 10.1109/IC3.2013.6612186 10.1109/ICACCI.2015.7275608 |
ContentType | Journal Article |
Copyright | Indian Academy of Sciences 2020 Indian Academy of Sciences 2020. |
Copyright_xml | – notice: Indian Academy of Sciences 2020 – notice: Indian Academy of Sciences 2020. |
DBID | AAYXX CITATION |
DOI | 10.1007/s12046-019-1250-6 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 0973-7677 |
ExternalDocumentID | 10_1007_s12046_019_1250_6 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 203 28- 29P 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2WC 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDBF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABLLD ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA C1A CAG COF CS3 CSCUP DDRTE DNIVK DPUIP E3Z EAD EAP EBLON EBS EIOEI EJD EOJEC ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GROUPED_DOAJ H13 HG5 HG6 HMJXF HRMNR HVGLF HZ~ I-F IJ- IKXTQ IWAJR IXD I~X I~Z J-C J0Z JBSCW JZLTJ KOV KQ8 LLZTM M4Y MA- MK~ N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OBODZ OK1 P19 P2P P9P PF0 PT4 PT5 QOK QOS R4E R89 R9I RAB RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SCV SDH SDM SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TR2 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 XSB YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR _50 ~8M ~A9 ~EX AAPKM AAYXX ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR CITATION OVT ABRTQ |
ID | FETCH-LOGICAL-c316t-d3f12a942f93e05b7fad4c40742b51067690f9ad7d12a1475979e117abb4c6bf3 |
IEDL.DBID | U2A |
ISSN | 0256-2499 |
IngestDate | Wed Aug 13 11:29:28 EDT 2025 Tue Jul 01 03:41:50 EDT 2025 Thu Apr 24 22:54:55 EDT 2025 Fri Feb 21 02:49:03 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | SURF HOG gesture translation ISL gesture recognition multi-class SVM depth based LBP |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-d3f12a942f93e05b7fad4c40742b51067690f9ad7d12a1475979e117abb4c6bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2348850423 |
PQPubID | 2043821 |
ParticipantIDs | proquest_journals_2348850423 crossref_citationtrail_10_1007_s12046_019_1250_6 crossref_primary_10_1007_s12046_019_1250_6 springer_journals_10_1007_s12046_019_1250_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201200 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
PublicationDecade | 2020 |
PublicationPlace | New Delhi |
PublicationPlace_xml | – name: New Delhi – name: Dordrecht |
PublicationSubtitle | Published by the Indian Academy of Sciences |
PublicationTitle | Sadhana (Bangalore) |
PublicationTitleAbbrev | Sādhanā |
PublicationYear | 2020 |
Publisher | Springer India Springer Nature B.V |
Publisher_xml | – name: Springer India – name: Springer Nature B.V |
References | NagashreeRNStaffordMAishwaryaGNBeebiHAJayalakshmiMRKrupaRRHand gesture recognition using support vector machineInt. J. Eng. Sci.2015464246 MohandesMDericheMLiuJImage-based and sensor-based approaches to Arabic Sign Language recognitionIEEE Trans. Hum. -Mach. Syst.201444455155710.1109/THMS.2014.2318280 HalimZAbbasGKinect-based sign language hand gesture recognition system for hearing- and speech-impaired: a pilot study of Pakistani Sign LanguageAssist. Technol. J.2015271344310.1080/10400435.2014.952845 GhotkarASKharateGKDynamic hand gesture recognition and novel sentence interpretation algorithm for Indian sign language using Microsoft Kinect sensorJ. Pattern Recognit. Res.20151243810.13176/11.626 Biswas K K and Basu S K 2011 Gesture recognition using Microsoft Kinect®\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textregistered $$\end{document}. In: Proceedings of the 5th International Conference on Automation, Robotics and Applications (ICARA), Wellington, New Zealand, 6–8 December, pp. 100–103 MadhuriSRanjnaPSohoAKIndian sign language recognition using neural networks and KNN classifiersARPN J. Eng. Appl. Sci.20149812551259 Agarwal A and Thakur M K 2013 Sign language recognition using Microsoft Kinect. In: Proceedings of the Sixth International Conference on Contemporary Computing (IC3), Noida, pp. 181–185. https://doi.org/10.1109/IC3.2013.6612186 VijayPKSuhasNNChandrashekharCSDhananjayDKRecent developments in sign language recognition: a reviewInt. J. Adv. Comput. Technol.2012122126 DardasNHGeorganasNDReal-time hand gesture detection and recognition using bag-of-features and support vector machine techniquesIEEE Trans. Instrum. Meas.201160113592360710.1109/TIM.2011.2161140 AnsariZAHaritGNearest neighbor classification of Indian sign language gestures using Kinect cameraSadhana2016412161182347976810.1007/s12046-015-0405-3 NagarajanSSubashiniTSStatic hand gesture recognition for sign language alphabets using edge oriented histogram and multi class SVMInt. J. Comput. Appl.20138242835 Yang C, Jang Y, Beh J, Han D and Ko H 2012 Recent developments in Indian sign language recognition: an analysis. In: Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), pp. 297–298 ViswanathanDMIdiculaSMRecent developments in Indian sign language recognition: an analysisInt. J. Comput. Sci. Inf. Technol.201561289293 Wang Y and Yang R 2013 Real-time hand posture recognition based on hand dominant line using Kinect. In: Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 15–19 July, pp. 1–4 Tiwari V, Anand V, Keskar A G and Satpute V R 2015 Sign language recognition through Kinect based depth images and neural network. In: Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, pp. 194–198 Fujimura K and Liu X 2006 Sign recognition using depth image streams. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06). https://doi.org/10.1109/FGR.2006.101 Indian Sign Language Research and Training Centre (ISLRTC) http://www.islrtc.nic.in KimKKimSKChoiHIDepth based sign language recognition system using SVMInt. J. Multimed. Ubiquitous Eng.2015102758610.14257/ijmue.2015.10.2.07 Wang X, Han T X and Yan S 2009 An HOG–LBP human detector with partial occlusion handling. In: Proceedings of the IEEE 12th International Conference on Computer Vision, pp. 32–39 MitraSAcharyaTGesture recognition: a surveyIEEE Trans. Syst. Man Cybern. Part C Appl. Rev.200737331132410.1109/TSMCC.2007.893280 Padmavathi S, Saipreethy M and Valliammai V 2013 Indian sign language character recognition using neural networks. Int. J. Comput. Appl. (Special Issue: Recent Trends in Pattern Recognition and Image Analysis) (1): 40–45 Van den Bergh M and Van Gool L 2011 Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In: Proceedings of the IEEE Workshop on Applications of Computer Vision (WACV), Kona, HI, pp. 66–72 PartonBSSign language recognition and translation: a multidisciplined approach from the field of artificial intelligenceJ. Deaf Stud. Deaf Educ.20061119410110.1093/deafed/enj003 S Madhuri (1250_CR11) 2014; 9 BS Parton (1250_CR2) 2006; 11 DM Viswanathan (1250_CR4) 2015; 6 AS Ghotkar (1250_CR19) 2015; 1 1250_CR1 1250_CR10 S Nagarajan (1250_CR18) 2013; 82 1250_CR20 RN Nagashree (1250_CR7) 2015; 4 1250_CR23 1250_CR3 Z Halim (1250_CR17) 2015; 27 1250_CR22 S Mitra (1250_CR5) 2007; 37 1250_CR9 1250_CR13 1250_CR16 1250_CR15 PK Vijay (1250_CR6) 2012; 1 NH Dardas (1250_CR8) 2011; 60 ZA Ansari (1250_CR14) 2016; 41 M Mohandes (1250_CR21) 2014; 44 K Kim (1250_CR12) 2015; 10 |
References_xml | – reference: NagarajanSSubashiniTSStatic hand gesture recognition for sign language alphabets using edge oriented histogram and multi class SVMInt. J. Comput. Appl.20138242835 – reference: Wang Y and Yang R 2013 Real-time hand posture recognition based on hand dominant line using Kinect. In: Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 15–19 July, pp. 1–4 – reference: Wang X, Han T X and Yan S 2009 An HOG–LBP human detector with partial occlusion handling. In: Proceedings of the IEEE 12th International Conference on Computer Vision, pp. 32–39 – reference: Fujimura K and Liu X 2006 Sign recognition using depth image streams. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06). https://doi.org/10.1109/FGR.2006.101 – reference: Yang C, Jang Y, Beh J, Han D and Ko H 2012 Recent developments in Indian sign language recognition: an analysis. In: Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), pp. 297–298 – reference: DardasNHGeorganasNDReal-time hand gesture detection and recognition using bag-of-features and support vector machine techniquesIEEE Trans. Instrum. Meas.201160113592360710.1109/TIM.2011.2161140 – reference: MitraSAcharyaTGesture recognition: a surveyIEEE Trans. Syst. Man Cybern. Part C Appl. Rev.200737331132410.1109/TSMCC.2007.893280 – reference: GhotkarASKharateGKDynamic hand gesture recognition and novel sentence interpretation algorithm for Indian sign language using Microsoft Kinect sensorJ. Pattern Recognit. Res.20151243810.13176/11.626 – reference: Agarwal A and Thakur M K 2013 Sign language recognition using Microsoft Kinect. In: Proceedings of the Sixth International Conference on Contemporary Computing (IC3), Noida, pp. 181–185. https://doi.org/10.1109/IC3.2013.6612186 – reference: NagashreeRNStaffordMAishwaryaGNBeebiHAJayalakshmiMRKrupaRRHand gesture recognition using support vector machineInt. J. Eng. Sci.2015464246 – reference: AnsariZAHaritGNearest neighbor classification of Indian sign language gestures using Kinect cameraSadhana2016412161182347976810.1007/s12046-015-0405-3 – reference: VijayPKSuhasNNChandrashekharCSDhananjayDKRecent developments in sign language recognition: a reviewInt. J. Adv. Comput. Technol.2012122126 – reference: HalimZAbbasGKinect-based sign language hand gesture recognition system for hearing- and speech-impaired: a pilot study of Pakistani Sign LanguageAssist. Technol. J.2015271344310.1080/10400435.2014.952845 – reference: Biswas K K and Basu S K 2011 Gesture recognition using Microsoft Kinect®\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textregistered $$\end{document}. In: Proceedings of the 5th International Conference on Automation, Robotics and Applications (ICARA), Wellington, New Zealand, 6–8 December, pp. 100–103 – reference: Indian Sign Language Research and Training Centre (ISLRTC) http://www.islrtc.nic.in/ – reference: KimKKimSKChoiHIDepth based sign language recognition system using SVMInt. J. Multimed. Ubiquitous Eng.2015102758610.14257/ijmue.2015.10.2.07 – reference: Tiwari V, Anand V, Keskar A G and Satpute V R 2015 Sign language recognition through Kinect based depth images and neural network. In: Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, pp. 194–198 – reference: PartonBSSign language recognition and translation: a multidisciplined approach from the field of artificial intelligenceJ. Deaf Stud. Deaf Educ.20061119410110.1093/deafed/enj003 – reference: Van den Bergh M and Van Gool L 2011 Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In: Proceedings of the IEEE Workshop on Applications of Computer Vision (WACV), Kona, HI, pp. 66–72 – reference: MohandesMDericheMLiuJImage-based and sensor-based approaches to Arabic Sign Language recognitionIEEE Trans. Hum. -Mach. Syst.201444455155710.1109/THMS.2014.2318280 – reference: ViswanathanDMIdiculaSMRecent developments in Indian sign language recognition: an analysisInt. J. Comput. Sci. Inf. Technol.201561289293 – reference: Padmavathi S, Saipreethy M and Valliammai V 2013 Indian sign language character recognition using neural networks. Int. J. Comput. Appl. (Special Issue: Recent Trends in Pattern Recognition and Image Analysis) (1): 40–45 – reference: MadhuriSRanjnaPSohoAKIndian sign language recognition using neural networks and KNN classifiersARPN J. Eng. Appl. Sci.20149812551259 – ident: 1250_CR3 – volume: 44 start-page: 551 issue: 4 year: 2014 ident: 1250_CR21 publication-title: IEEE Trans. Hum. -Mach. Syst. doi: 10.1109/THMS.2014.2318280 – ident: 1250_CR1 doi: 10.1109/ICARA.2011.6144864 – volume: 37 start-page: 311 issue: 3 year: 2007 ident: 1250_CR5 publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. doi: 10.1109/TSMCC.2007.893280 – ident: 1250_CR16 doi: 10.1109/ICCV.2009.5459207 – ident: 1250_CR13 – volume: 6 start-page: 289 issue: 1 year: 2015 ident: 1250_CR4 publication-title: Int. J. Comput. Sci. Inf. Technol. – volume: 4 start-page: 42 issue: 6 year: 2015 ident: 1250_CR7 publication-title: Int. J. Eng. Sci. – ident: 1250_CR10 – volume: 27 start-page: 34 issue: 1 year: 2015 ident: 1250_CR17 publication-title: Assist. Technol. J. doi: 10.1080/10400435.2014.952845 – volume: 82 start-page: 28 issue: 4 year: 2013 ident: 1250_CR18 publication-title: Int. J. Comput. Appl. – volume: 1 start-page: 24 year: 2015 ident: 1250_CR19 publication-title: J. Pattern Recognit. Res. doi: 10.13176/11.626 – ident: 1250_CR9 – volume: 60 start-page: 3592 issue: 11 year: 2011 ident: 1250_CR8 publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2011.2161140 – ident: 1250_CR20 doi: 10.1109/WACV.2011.5711485 – volume: 1 start-page: 2126 issue: 2 year: 2012 ident: 1250_CR6 publication-title: Int. J. Adv. Comput. Technol. – volume: 10 start-page: 75 issue: 2 year: 2015 ident: 1250_CR12 publication-title: Int. J. Multimed. Ubiquitous Eng. doi: 10.14257/ijmue.2015.10.2.07 – volume: 11 start-page: 94 issue: 1 year: 2006 ident: 1250_CR2 publication-title: J. Deaf Stud. Deaf Educ. doi: 10.1093/deafed/enj003 – ident: 1250_CR23 doi: 10.1109/FGR.2006.101 – volume: 9 start-page: 1255 issue: 8 year: 2014 ident: 1250_CR11 publication-title: ARPN J. Eng. Appl. Sci. – volume: 41 start-page: 161 issue: 2 year: 2016 ident: 1250_CR14 publication-title: Sadhana doi: 10.1007/s12046-015-0405-3 – ident: 1250_CR22 doi: 10.1109/IC3.2013.6612186 – ident: 1250_CR15 doi: 10.1109/ICACCI.2015.7275608 |
SSID | ssj0027083 |
Score | 2.4968395 |
Snippet | Recognition of sign language by a system has become important to bridge the communication gap between the abled and the Hearing and Speech Impaired people.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Algorithms Color imagery Engineering Feature extraction Histograms Human communication Sentences Sign language Support vector machines Translating |
Title | A depth-based Indian Sign Language recognition using Microsoft Kinect |
URI | https://link.springer.com/article/10.1007/s12046-019-1250-6 https://www.proquest.com/docview/2348850423 |
Volume | 45 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFH7R7aIH46bG6Vx68OCPkFBogR6Zbk7nvOgSPRHa0mli2CL4_9syGGrUxBMH2oa819f3Pvr1K8Cx62OmP1BYVOkgJ3YcWDFhwiKu8KUktiKeOSg8ufNGU3LzSB_Lc9xZxXavtiSLlbo-7OZoLKehr5HvpxrzrEOTGuiuJ_HUCWuUZS-1N3UutzS2YNVW5k9DfE1GdYX5bVO0yDXDbdgqi0QULr3agrUkbcPmJ-nANrTKoMzQSakcfboDgxDJZJE_WyY3SXSdGuej-5dZim7L_5JoxRiap8iQ3mdoYjh5mV6O0ViPL_JdmA4HDxcjq7wnwRIu9nJLugo7MSOOYm5iU-6rWBJBDOrl1EjEaQSsWCx9qZthI_DnswRjP-acCI8rdw8a6TxN9gF5PMAKM-rwWBAiVcADJbHNqZfEnnDsDtiVwSJRioibuyxeo1r-2Ng40jaOjI0jrwNnqy6LpYLGX427lReiMpiyyHH1KkMNgacD55Vn6te_Dnbwr9aHsOEYLF1QVbrQyN_ekyNdcOS8B82wf9kfmufV03jQKybcBzwTzQI |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB0QKiUMADAw9Zih3nNVaoVUsfC63UzYrtuCChtKLh_2OnSQMIkJhzsaI7--6--PNngGs3IJH5QIk9bRY5c-IQxyySmLkyUIo5mvn2oPBo7Pem7HHmzYpz3KuS7V5uSeaZujrsRg2WM9DXyvd7BvNsw47pBULL45rSdoWynLX2pqnl2GCLqNzK_GmIr8Wo6jC_bYrmtaZ7CAdFk4ja66jWYStJG7D_STqwAfViUa7QTaEcfXsEnTZSyTJ7xrY2KdRPbfDR08s8RcPivyTaMIYWKbKk9zkaWU7eyqRjNDDjy-wYpt3O5KGHi3sSsHSJn2HlakLjiFEduYnjiUDHiklmUa_wrEScQcA6ilWgjBmxAn9BlBASxEIw6QvtnkAtXaTJKSBfhESTyKMilowpHYpQK-IIz09iX1KnCU7pMC4LEXF7l8Urr-SPrY-58TG3PuZ-E-42ryzXChp_GbfKKPBiMa04dU2W8SyBpwn3ZWSqx78OdvYv6yvY7U1GQz7sjwfnsEctrs5pKy2oZW_vyYVpPjJxmU-2DzLKzO8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBbFWsVt2DBx8Es8lmkxyLtrT2gaCF3sI-slWQtJj4_91tkkZFBc_ZDGFmd2a_zMw3AOeuj0P9gcLylD7kxGaBxUgoLOIKX0piK0JNo_BoTHsTcj_1psWc07Ssdi9TknlPg2FpSrKbhVQ3VeObo3GdhsGGyt_T-GcdNrQ3xmZbT5x2hbjsnIdTx3VL44ywTGv-JOJrYKpum98SpMu4092FneLCiNq5heuwFicN2P5EI9iAenFAU3RRsEhf7kGnjWS8yJ4tE6ck6idmI6DHl1mChsU_SrSqHponyBTAz9DI1Oel2jWjgZYvsn2YdDtPtz2rmJlgCRfTzJKuwg4LiaNCN7Y97ismiSAGAXPP0MVpNKxCJn2pl2FD9ueHMcY-45wIypV7ALVknsSHgCgPsMKh53AmCJEq4IGS2OYejRkVjt0Eu1RYJApCcTPX4jWqqJCNjiOt48joOKJNuFq9ssjZNP5a3CqtEBUHK40cV3sczxTzNOG6tEz1-FdhR_9afQabD3fdaNgfD45hyzEQe1nB0oJa9vYen-h7SMZPl3vtA2SX0Ss |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+depth-based+Indian+Sign+Language+recognition+using+Microsoft+Kinect&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Raghuveera%2C+T&rft.au=Deepthi%2C+R&rft.au=Mangalashri%2C+R&rft.au=Akshaya%2C+R&rft.date=2020-12-01&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=45&rft.issue=1&rft_id=info:doi/10.1007%2Fs12046-019-1250-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12046_019_1250_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-2499&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-2499&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-2499&client=summon |