A depth-based Indian Sign Language recognition using Microsoft Kinect

Recognition of sign language by a system has become important to bridge the communication gap between the abled and the Hearing and Speech Impaired people. This paper introduces an efficient algorithm for translating the input hand gesture in Indian Sign Language (ISL) into meaningful English text a...

Full description

Saved in:
Bibliographic Details
Published inSadhana (Bangalore) Vol. 45; no. 1
Main Authors Raghuveera, T, Deepthi, R, Mangalashri, R, Akshaya, R
Format Journal Article
LanguageEnglish
Published New Delhi Springer India 01.12.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Recognition of sign language by a system has become important to bridge the communication gap between the abled and the Hearing and Speech Impaired people. This paper introduces an efficient algorithm for translating the input hand gesture in Indian Sign Language (ISL) into meaningful English text and speech. The system captures hand gestures through Microsoft Kinect (preferred as the system performance is unaffected by the surrounding light conditions and object colour). The dataset used consists of depth and RGB images (taken using Kinect Xbox 360) with 140 unique gestures of the ISL taken from 21 subjects, which includes single-handed signs, double-handed signs and fingerspelling (signs for alphabets and numbers), totaling to 4600 images. To recognize the hand posture, the hand region is accurately segmented and hand features are extracted using Speeded Up Robust Features, Histogram of Oriented Gradients and Local Binary Patterns. The system ensembles the three feature classifiers trained using Support Vector Machine to improve the average recognition accuracy up to 71.85%. The system then translates the sequence of hand gestures recognized into the best approximate meaningful English sentences. We achieved 100% accuracy for the signs representing 9, A, F, G, H, N and P.
AbstractList Recognition of sign language by a system has become important to bridge the communication gap between the abled and the Hearing and Speech Impaired people. This paper introduces an efficient algorithm for translating the input hand gesture in Indian Sign Language (ISL) into meaningful English text and speech. The system captures hand gestures through Microsoft Kinect (preferred as the system performance is unaffected by the surrounding light conditions and object colour). The dataset used consists of depth and RGB images (taken using Kinect Xbox 360) with 140 unique gestures of the ISL taken from 21 subjects, which includes single-handed signs, double-handed signs and fingerspelling (signs for alphabets and numbers), totaling to 4600 images. To recognize the hand posture, the hand region is accurately segmented and hand features are extracted using Speeded Up Robust Features, Histogram of Oriented Gradients and Local Binary Patterns. The system ensembles the three feature classifiers trained using Support Vector Machine to improve the average recognition accuracy up to 71.85%. The system then translates the sequence of hand gestures recognized into the best approximate meaningful English sentences. We achieved 100% accuracy for the signs representing 9, A, F, G, H, N and P.
ArticleNumber 34
Author Deepthi, R
Raghuveera, T
Mangalashri, R
Akshaya, R
Author_xml – sequence: 1
  givenname: T
  surname: Raghuveera
  fullname: Raghuveera, T
  email: raghuveera@annauniv.edu
  organization: Department of Computer Science and Engineering, College of Engineering Guindy Campus, Anna University
– sequence: 2
  givenname: R
  surname: Deepthi
  fullname: Deepthi, R
  organization: Department of Computer Science and Engineering, College of Engineering Guindy Campus, Anna University
– sequence: 3
  givenname: R
  surname: Mangalashri
  fullname: Mangalashri, R
  organization: Department of Computer Science and Engineering, College of Engineering Guindy Campus, Anna University
– sequence: 4
  givenname: R
  surname: Akshaya
  fullname: Akshaya, R
  organization: Department of Computer Science and Engineering, College of Engineering Guindy Campus, Anna University
BookMark eNp9kE1LAzEQhoNUsK3-AG8Bz9HJxybNsZSqxYoH9Ryyu9k1pWZrkj34792lgiDoaebwPjMvzwxNQhccQpcUrimAukmUgZAEqCaUFUDkCZqCVpwoqdRk2FkhCRNan6FZSjsApmDBp2i9xLU75DdS2uRqvAm1twE_-zbgrQ1tb1uHo6u6Nvjsu4D75EOLH30Vu9Q1GT_44Kp8jk4bu0_u4nvO0evt-mV1T7ZPd5vVcksqTmUmNW8os1qwRnMHRakaW4tKgBKsLChIJTU02taqHmJUqEIr7ShVtixFJcuGz9HV8e4hdh-9S9nsuj6G4aVhXCwWBQjGh5Q6psaSKbrGVD7bsX6O1u8NBTM6M0dnZnBmRmdGDiT9RR6if7fx81-GHZk0ZEPr4k-nv6EvN-V-6w
CitedBy_id crossref_primary_10_1007_s10044_024_01229_4
crossref_primary_10_1007_s00521_020_05448_8
crossref_primary_10_1145_3591471
crossref_primary_10_1002_masy_202100286
crossref_primary_10_1007_s00521_021_05802_4
crossref_primary_10_1016_j_eswa_2022_119394
crossref_primary_10_3390_s22041406
crossref_primary_10_1109_ACCESS_2024_3421992
crossref_primary_10_1007_s11042_024_20384_8
crossref_primary_10_1016_j_eswa_2023_119772
crossref_primary_10_1109_TIM_2021_3092072
crossref_primary_10_1007_s11042_024_18173_4
crossref_primary_10_32604_cmes_2023_045731
crossref_primary_10_1080_08839514_2021_1982184
crossref_primary_10_1007_s42979_024_02793_6
crossref_primary_10_1038_s41598_024_82785_x
crossref_primary_10_1016_j_mejo_2024_106345
crossref_primary_10_3233_FRL_200010
crossref_primary_10_1007_s11042_021_11595_4
crossref_primary_10_1016_j_specom_2023_102960
crossref_primary_10_1016_j_gvc_2021_200032
crossref_primary_10_1016_j_sna_2022_113482
crossref_primary_10_1016_j_measen_2022_100385
crossref_primary_10_1109_ACCESS_2024_3372425
crossref_primary_10_1109_ACCESS_2024_3354775
crossref_primary_10_1038_s41598_024_62008_z
crossref_primary_10_3390_info14020079
crossref_primary_10_1007_s11042_024_20520_4
crossref_primary_10_1142_S0218001424560081
crossref_primary_10_3390_app12115523
crossref_primary_10_1038_s41598_022_15998_7
crossref_primary_10_3233_JIFS_235132
crossref_primary_10_1007_s11042_024_18583_4
Cites_doi 10.1109/THMS.2014.2318280
10.1109/ICARA.2011.6144864
10.1109/TSMCC.2007.893280
10.1109/ICCV.2009.5459207
10.1080/10400435.2014.952845
10.13176/11.626
10.1109/TIM.2011.2161140
10.1109/WACV.2011.5711485
10.14257/ijmue.2015.10.2.07
10.1093/deafed/enj003
10.1109/FGR.2006.101
10.1007/s12046-015-0405-3
10.1109/IC3.2013.6612186
10.1109/ICACCI.2015.7275608
ContentType Journal Article
Copyright Indian Academy of Sciences 2020
Indian Academy of Sciences 2020.
Copyright_xml – notice: Indian Academy of Sciences 2020
– notice: Indian Academy of Sciences 2020.
DBID AAYXX
CITATION
DOI 10.1007/s12046-019-1250-6
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 0973-7677
ExternalDocumentID 10_1007_s12046_019_1250_6
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
123
1N0
203
28-
29P
29~
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2WC
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDBF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABLLD
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
C1A
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
E3Z
EAD
EAP
EBLON
EBS
EIOEI
EJD
EOJEC
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GROUPED_DOAJ
H13
HG5
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KOV
KQ8
LLZTM
M4Y
MA-
MK~
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OBODZ
OK1
P19
P2P
P9P
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RAB
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TR2
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
XSB
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
_50
~8M
~A9
~EX
AAPKM
AAYXX
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
CITATION
OVT
ABRTQ
ID FETCH-LOGICAL-c316t-d3f12a942f93e05b7fad4c40742b51067690f9ad7d12a1475979e117abb4c6bf3
IEDL.DBID U2A
ISSN 0256-2499
IngestDate Wed Aug 13 11:29:28 EDT 2025
Tue Jul 01 03:41:50 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Fri Feb 21 02:49:03 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords SURF
HOG
gesture translation
ISL gesture recognition
multi-class SVM
depth based
LBP
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-d3f12a942f93e05b7fad4c40742b51067690f9ad7d12a1475979e117abb4c6bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2348850423
PQPubID 2043821
ParticipantIDs proquest_journals_2348850423
crossref_citationtrail_10_1007_s12046_019_1250_6
crossref_primary_10_1007_s12046_019_1250_6
springer_journals_10_1007_s12046_019_1250_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace New Delhi
PublicationPlace_xml – name: New Delhi
– name: Dordrecht
PublicationSubtitle Published by the Indian Academy of Sciences
PublicationTitle Sadhana (Bangalore)
PublicationTitleAbbrev Sādhanā
PublicationYear 2020
Publisher Springer India
Springer Nature B.V
Publisher_xml – name: Springer India
– name: Springer Nature B.V
References NagashreeRNStaffordMAishwaryaGNBeebiHAJayalakshmiMRKrupaRRHand gesture recognition using support vector machineInt. J. Eng. Sci.2015464246
MohandesMDericheMLiuJImage-based and sensor-based approaches to Arabic Sign Language recognitionIEEE Trans. Hum. -Mach. Syst.201444455155710.1109/THMS.2014.2318280
HalimZAbbasGKinect-based sign language hand gesture recognition system for hearing- and speech-impaired: a pilot study of Pakistani Sign LanguageAssist. Technol. J.2015271344310.1080/10400435.2014.952845
GhotkarASKharateGKDynamic hand gesture recognition and novel sentence interpretation algorithm for Indian sign language using Microsoft Kinect sensorJ. Pattern Recognit. Res.20151243810.13176/11.626
Biswas K K and Basu S K 2011 Gesture recognition using Microsoft Kinect®\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textregistered $$\end{document}. In: Proceedings of the 5th International Conference on Automation, Robotics and Applications (ICARA), Wellington, New Zealand, 6–8 December, pp. 100–103
MadhuriSRanjnaPSohoAKIndian sign language recognition using neural networks and KNN classifiersARPN J. Eng. Appl. Sci.20149812551259
Agarwal A and Thakur M K 2013 Sign language recognition using Microsoft Kinect. In: Proceedings of the Sixth International Conference on Contemporary Computing (IC3), Noida, pp. 181–185. https://doi.org/10.1109/IC3.2013.6612186
VijayPKSuhasNNChandrashekharCSDhananjayDKRecent developments in sign language recognition: a reviewInt. J. Adv. Comput. Technol.2012122126
DardasNHGeorganasNDReal-time hand gesture detection and recognition using bag-of-features and support vector machine techniquesIEEE Trans. Instrum. Meas.201160113592360710.1109/TIM.2011.2161140
AnsariZAHaritGNearest neighbor classification of Indian sign language gestures using Kinect cameraSadhana2016412161182347976810.1007/s12046-015-0405-3
NagarajanSSubashiniTSStatic hand gesture recognition for sign language alphabets using edge oriented histogram and multi class SVMInt. J. Comput. Appl.20138242835
Yang C, Jang Y, Beh J, Han D and Ko H 2012 Recent developments in Indian sign language recognition: an analysis. In: Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), pp. 297–298
ViswanathanDMIdiculaSMRecent developments in Indian sign language recognition: an analysisInt. J. Comput. Sci. Inf. Technol.201561289293
Wang Y and Yang R 2013 Real-time hand posture recognition based on hand dominant line using Kinect. In: Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 15–19 July, pp. 1–4
Tiwari V, Anand V, Keskar A G and Satpute V R 2015 Sign language recognition through Kinect based depth images and neural network. In: Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, pp. 194–198
Fujimura K and Liu X 2006 Sign recognition using depth image streams. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06). https://doi.org/10.1109/FGR.2006.101
Indian Sign Language Research and Training Centre (ISLRTC) http://www.islrtc.nic.in
KimKKimSKChoiHIDepth based sign language recognition system using SVMInt. J. Multimed. Ubiquitous Eng.2015102758610.14257/ijmue.2015.10.2.07
Wang X, Han T X and Yan S 2009 An HOG–LBP human detector with partial occlusion handling. In: Proceedings of the IEEE 12th International Conference on Computer Vision, pp. 32–39
MitraSAcharyaTGesture recognition: a surveyIEEE Trans. Syst. Man Cybern. Part C Appl. Rev.200737331132410.1109/TSMCC.2007.893280
Padmavathi S, Saipreethy M and Valliammai V 2013 Indian sign language character recognition using neural networks. Int. J. Comput. Appl. (Special Issue: Recent Trends in Pattern Recognition and Image Analysis) (1): 40–45
Van den Bergh M and Van Gool L 2011 Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In: Proceedings of the IEEE Workshop on Applications of Computer Vision (WACV), Kona, HI, pp. 66–72
PartonBSSign language recognition and translation: a multidisciplined approach from the field of artificial intelligenceJ. Deaf Stud. Deaf Educ.20061119410110.1093/deafed/enj003
S Madhuri (1250_CR11) 2014; 9
BS Parton (1250_CR2) 2006; 11
DM Viswanathan (1250_CR4) 2015; 6
AS Ghotkar (1250_CR19) 2015; 1
1250_CR1
1250_CR10
S Nagarajan (1250_CR18) 2013; 82
1250_CR20
RN Nagashree (1250_CR7) 2015; 4
1250_CR23
1250_CR3
Z Halim (1250_CR17) 2015; 27
1250_CR22
S Mitra (1250_CR5) 2007; 37
1250_CR9
1250_CR13
1250_CR16
1250_CR15
PK Vijay (1250_CR6) 2012; 1
NH Dardas (1250_CR8) 2011; 60
ZA Ansari (1250_CR14) 2016; 41
M Mohandes (1250_CR21) 2014; 44
K Kim (1250_CR12) 2015; 10
References_xml – reference: NagarajanSSubashiniTSStatic hand gesture recognition for sign language alphabets using edge oriented histogram and multi class SVMInt. J. Comput. Appl.20138242835
– reference: Wang Y and Yang R 2013 Real-time hand posture recognition based on hand dominant line using Kinect. In: Proceedings of the IEEE International Conference on Multimedia and Expo Workshops (ICMEW), San Jose, CA, USA, 15–19 July, pp. 1–4
– reference: Wang X, Han T X and Yan S 2009 An HOG–LBP human detector with partial occlusion handling. In: Proceedings of the IEEE 12th International Conference on Computer Vision, pp. 32–39
– reference: Fujimura K and Liu X 2006 Sign recognition using depth image streams. In: Proceedings of the 7th International Conference on Automatic Face and Gesture Recognition (FGR’06). https://doi.org/10.1109/FGR.2006.101
– reference: Yang C, Jang Y, Beh J, Han D and Ko H 2012 Recent developments in Indian sign language recognition: an analysis. In: Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), pp. 297–298
– reference: DardasNHGeorganasNDReal-time hand gesture detection and recognition using bag-of-features and support vector machine techniquesIEEE Trans. Instrum. Meas.201160113592360710.1109/TIM.2011.2161140
– reference: MitraSAcharyaTGesture recognition: a surveyIEEE Trans. Syst. Man Cybern. Part C Appl. Rev.200737331132410.1109/TSMCC.2007.893280
– reference: GhotkarASKharateGKDynamic hand gesture recognition and novel sentence interpretation algorithm for Indian sign language using Microsoft Kinect sensorJ. Pattern Recognit. Res.20151243810.13176/11.626
– reference: Agarwal A and Thakur M K 2013 Sign language recognition using Microsoft Kinect. In: Proceedings of the Sixth International Conference on Contemporary Computing (IC3), Noida, pp. 181–185. https://doi.org/10.1109/IC3.2013.6612186
– reference: NagashreeRNStaffordMAishwaryaGNBeebiHAJayalakshmiMRKrupaRRHand gesture recognition using support vector machineInt. J. Eng. Sci.2015464246
– reference: AnsariZAHaritGNearest neighbor classification of Indian sign language gestures using Kinect cameraSadhana2016412161182347976810.1007/s12046-015-0405-3
– reference: VijayPKSuhasNNChandrashekharCSDhananjayDKRecent developments in sign language recognition: a reviewInt. J. Adv. Comput. Technol.2012122126
– reference: HalimZAbbasGKinect-based sign language hand gesture recognition system for hearing- and speech-impaired: a pilot study of Pakistani Sign LanguageAssist. Technol. J.2015271344310.1080/10400435.2014.952845
– reference: Biswas K K and Basu S K 2011 Gesture recognition using Microsoft Kinect®\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textregistered $$\end{document}. In: Proceedings of the 5th International Conference on Automation, Robotics and Applications (ICARA), Wellington, New Zealand, 6–8 December, pp. 100–103
– reference: Indian Sign Language Research and Training Centre (ISLRTC) http://www.islrtc.nic.in/
– reference: KimKKimSKChoiHIDepth based sign language recognition system using SVMInt. J. Multimed. Ubiquitous Eng.2015102758610.14257/ijmue.2015.10.2.07
– reference: Tiwari V, Anand V, Keskar A G and Satpute V R 2015 Sign language recognition through Kinect based depth images and neural network. In: Proceedings of the 2015 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Kochi, pp. 194–198
– reference: PartonBSSign language recognition and translation: a multidisciplined approach from the field of artificial intelligenceJ. Deaf Stud. Deaf Educ.20061119410110.1093/deafed/enj003
– reference: Van den Bergh M and Van Gool L 2011 Combining RGB and ToF cameras for real-time 3D hand gesture interaction. In: Proceedings of the IEEE Workshop on Applications of Computer Vision (WACV), Kona, HI, pp. 66–72
– reference: MohandesMDericheMLiuJImage-based and sensor-based approaches to Arabic Sign Language recognitionIEEE Trans. Hum. -Mach. Syst.201444455155710.1109/THMS.2014.2318280
– reference: ViswanathanDMIdiculaSMRecent developments in Indian sign language recognition: an analysisInt. J. Comput. Sci. Inf. Technol.201561289293
– reference: Padmavathi S, Saipreethy M and Valliammai V 2013 Indian sign language character recognition using neural networks. Int. J. Comput. Appl. (Special Issue: Recent Trends in Pattern Recognition and Image Analysis) (1): 40–45
– reference: MadhuriSRanjnaPSohoAKIndian sign language recognition using neural networks and KNN classifiersARPN J. Eng. Appl. Sci.20149812551259
– ident: 1250_CR3
– volume: 44
  start-page: 551
  issue: 4
  year: 2014
  ident: 1250_CR21
  publication-title: IEEE Trans. Hum. -Mach. Syst.
  doi: 10.1109/THMS.2014.2318280
– ident: 1250_CR1
  doi: 10.1109/ICARA.2011.6144864
– volume: 37
  start-page: 311
  issue: 3
  year: 2007
  ident: 1250_CR5
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2007.893280
– ident: 1250_CR16
  doi: 10.1109/ICCV.2009.5459207
– ident: 1250_CR13
– volume: 6
  start-page: 289
  issue: 1
  year: 2015
  ident: 1250_CR4
  publication-title: Int. J. Comput. Sci. Inf. Technol.
– volume: 4
  start-page: 42
  issue: 6
  year: 2015
  ident: 1250_CR7
  publication-title: Int. J. Eng. Sci.
– ident: 1250_CR10
– volume: 27
  start-page: 34
  issue: 1
  year: 2015
  ident: 1250_CR17
  publication-title: Assist. Technol. J.
  doi: 10.1080/10400435.2014.952845
– volume: 82
  start-page: 28
  issue: 4
  year: 2013
  ident: 1250_CR18
  publication-title: Int. J. Comput. Appl.
– volume: 1
  start-page: 24
  year: 2015
  ident: 1250_CR19
  publication-title: J. Pattern Recognit. Res.
  doi: 10.13176/11.626
– ident: 1250_CR9
– volume: 60
  start-page: 3592
  issue: 11
  year: 2011
  ident: 1250_CR8
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2011.2161140
– ident: 1250_CR20
  doi: 10.1109/WACV.2011.5711485
– volume: 1
  start-page: 2126
  issue: 2
  year: 2012
  ident: 1250_CR6
  publication-title: Int. J. Adv. Comput. Technol.
– volume: 10
  start-page: 75
  issue: 2
  year: 2015
  ident: 1250_CR12
  publication-title: Int. J. Multimed. Ubiquitous Eng.
  doi: 10.14257/ijmue.2015.10.2.07
– volume: 11
  start-page: 94
  issue: 1
  year: 2006
  ident: 1250_CR2
  publication-title: J. Deaf Stud. Deaf Educ.
  doi: 10.1093/deafed/enj003
– ident: 1250_CR23
  doi: 10.1109/FGR.2006.101
– volume: 9
  start-page: 1255
  issue: 8
  year: 2014
  ident: 1250_CR11
  publication-title: ARPN J. Eng. Appl. Sci.
– volume: 41
  start-page: 161
  issue: 2
  year: 2016
  ident: 1250_CR14
  publication-title: Sadhana
  doi: 10.1007/s12046-015-0405-3
– ident: 1250_CR22
  doi: 10.1109/IC3.2013.6612186
– ident: 1250_CR15
  doi: 10.1109/ICACCI.2015.7275608
SSID ssj0027083
Score 2.4968395
Snippet Recognition of sign language by a system has become important to bridge the communication gap between the abled and the Hearing and Speech Impaired people....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Color imagery
Engineering
Feature extraction
Histograms
Human communication
Sentences
Sign language
Support vector machines
Translating
Title A depth-based Indian Sign Language recognition using Microsoft Kinect
URI https://link.springer.com/article/10.1007/s12046-019-1250-6
https://www.proquest.com/docview/2348850423
Volume 45
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT4MwFH7R7aIH46bG6Vx68OCPkFBogR6Zbk7nvOgSPRHa0mli2CL4_9syGGrUxBMH2oa819f3Pvr1K8Cx62OmP1BYVOkgJ3YcWDFhwiKu8KUktiKeOSg8ufNGU3LzSB_Lc9xZxXavtiSLlbo-7OZoLKehr5HvpxrzrEOTGuiuJ_HUCWuUZS-1N3UutzS2YNVW5k9DfE1GdYX5bVO0yDXDbdgqi0QULr3agrUkbcPmJ-nANrTKoMzQSakcfboDgxDJZJE_WyY3SXSdGuej-5dZim7L_5JoxRiap8iQ3mdoYjh5mV6O0ViPL_JdmA4HDxcjq7wnwRIu9nJLugo7MSOOYm5iU-6rWBJBDOrl1EjEaQSsWCx9qZthI_DnswRjP-acCI8rdw8a6TxN9gF5PMAKM-rwWBAiVcADJbHNqZfEnnDsDtiVwSJRioibuyxeo1r-2Ng40jaOjI0jrwNnqy6LpYLGX427lReiMpiyyHH1KkMNgacD55Vn6te_Dnbwr9aHsOEYLF1QVbrQyN_ekyNdcOS8B82wf9kfmufV03jQKybcBzwTzQI
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYAB0QKiUMADAw9Zih3nNVaoVUsfC63UzYrtuCChtKLh_2OnSQMIkJhzsaI7--6--PNngGs3IJH5QIk9bRY5c-IQxyySmLkyUIo5mvn2oPBo7Pem7HHmzYpz3KuS7V5uSeaZujrsRg2WM9DXyvd7BvNsw47pBULL45rSdoWynLX2pqnl2GCLqNzK_GmIr8Wo6jC_bYrmtaZ7CAdFk4ja66jWYStJG7D_STqwAfViUa7QTaEcfXsEnTZSyTJ7xrY2KdRPbfDR08s8RcPivyTaMIYWKbKk9zkaWU7eyqRjNDDjy-wYpt3O5KGHi3sSsHSJn2HlakLjiFEduYnjiUDHiklmUa_wrEScQcA6ilWgjBmxAn9BlBASxEIw6QvtnkAtXaTJKSBfhESTyKMilowpHYpQK-IIz09iX1KnCU7pMC4LEXF7l8Urr-SPrY-58TG3PuZ-E-42ryzXChp_GbfKKPBiMa04dU2W8SyBpwn3ZWSqx78OdvYv6yvY7U1GQz7sjwfnsEctrs5pKy2oZW_vyYVpPjJxmU-2DzLKzO8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBbFWsVt2DBx8Es8lmkxyLtrT2gaCF3sI-slWQtJj4_91tkkZFBc_ZDGFmd2a_zMw3AOeuj0P9gcLylD7kxGaBxUgoLOIKX0piK0JNo_BoTHsTcj_1psWc07Ssdi9TknlPg2FpSrKbhVQ3VeObo3GdhsGGyt_T-GcdNrQ3xmZbT5x2hbjsnIdTx3VL44ywTGv-JOJrYKpum98SpMu4092FneLCiNq5heuwFicN2P5EI9iAenFAU3RRsEhf7kGnjWS8yJ4tE6ck6idmI6DHl1mChsU_SrSqHponyBTAz9DI1Oel2jWjgZYvsn2YdDtPtz2rmJlgCRfTzJKuwg4LiaNCN7Y97ismiSAGAXPP0MVpNKxCJn2pl2FD9ueHMcY-45wIypV7ALVknsSHgCgPsMKh53AmCJEq4IGS2OYejRkVjt0Eu1RYJApCcTPX4jWqqJCNjiOt48joOKJNuFq9ssjZNP5a3CqtEBUHK40cV3sczxTzNOG6tEz1-FdhR_9afQabD3fdaNgfD45hyzEQe1nB0oJa9vYen-h7SMZPl3vtA2SX0Ss
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+depth-based+Indian+Sign+Language+recognition+using+Microsoft+Kinect&rft.jtitle=Sadhana+%28Bangalore%29&rft.au=Raghuveera%2C+T&rft.au=Deepthi%2C+R&rft.au=Mangalashri%2C+R&rft.au=Akshaya%2C+R&rft.date=2020-12-01&rft.issn=0256-2499&rft.eissn=0973-7677&rft.volume=45&rft.issue=1&rft_id=info:doi/10.1007%2Fs12046-019-1250-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12046_019_1250_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0256-2499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0256-2499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0256-2499&client=summon