Deep residual learning for image steganalysis

Image steganalysis is to discriminate innocent images and those suspected images with hidden messages. This task is very challenging for modern adaptive steganography, since modifications due to message hiding are extremely small. Recent studies show that Convolutional Neural Networks (CNN) have dem...

Full description

Saved in:
Bibliographic Details
Published inMultimedia tools and applications Vol. 77; no. 9; pp. 10437 - 10453
Main Authors Wu, Songtao, Zhong, Shenghua, Liu, Yan
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image steganalysis is to discriminate innocent images and those suspected images with hidden messages. This task is very challenging for modern adaptive steganography, since modifications due to message hiding are extremely small. Recent studies show that Convolutional Neural Networks (CNN) have demonstrated superior performances than traditional steganalytic methods. Following this idea, we propose a novel CNN model for image steganalysis based on residual learning. The proposed Deep Residual learning based Network (DRN) shows two attractive properties than existing CNN based methods. First, the model usually contains a large number of network layers, which proves to be effective to capture the complex statistics of digital images. Second, the residual learning in DRN preserves the stego signal coming from secret messages, which is extremely beneficial for the discrimination of cover images and stego images. Comprehensive experiments on standard dataset show that the DRN model can detect the state of arts steganographic algorithms at a high accuracy. It also outperforms the classical rich model method and several recently proposed CNN based methods.
AbstractList Image steganalysis is to discriminate innocent images and those suspected images with hidden messages. This task is very challenging for modern adaptive steganography, since modifications due to message hiding are extremely small. Recent studies show that Convolutional Neural Networks (CNN) have demonstrated superior performances than traditional steganalytic methods. Following this idea, we propose a novel CNN model for image steganalysis based on residual learning. The proposed Deep Residual learning based Network (DRN) shows two attractive properties than existing CNN based methods. First, the model usually contains a large number of network layers, which proves to be effective to capture the complex statistics of digital images. Second, the residual learning in DRN preserves the stego signal coming from secret messages, which is extremely beneficial for the discrimination of cover images and stego images. Comprehensive experiments on standard dataset show that the DRN model can detect the state of arts steganographic algorithms at a high accuracy. It also outperforms the classical rich model method and several recently proposed CNN based methods.
Author Liu, Yan
Wu, Songtao
Zhong, Shenghua
Author_xml – sequence: 1
  givenname: Songtao
  surname: Wu
  fullname: Wu, Songtao
  organization: College of Computer Science and Software Engineering, Shenzhen University
– sequence: 2
  givenname: Shenghua
  surname: Zhong
  fullname: Zhong, Shenghua
  email: csshzhong@szu.edu.cn
  organization: College of Computer Science and Software Engineering, Shenzhen University
– sequence: 3
  givenname: Yan
  surname: Liu
  fullname: Liu, Yan
  organization: Department of Computing, The Hong Kong Polytechnic University
BookMark eNp9kE1Lw0AQhhepYFv9Ad4CnldnP2dzlKpVKHjR87JNdsOWmNTd9NB_b0oEQdDTzOF9Zl6eBZl1fecJuWZwywDwLjMGklNgSKWUQOUZmTOFgiJyNht3YYCiAnZBFjnvAJhWXM4JffB-XySfY31wbdF6l7rYNUXoUxE_XOOLPPjGda495pgvyXlwbfZX33NJ3p8e31bPdPO6flndb2glmB5oLbZbw2VwqEuGdXDalMjQaaFMaZySUKKopA6opJYCtkYGHhxXRvK6RBBLcjPd3af-8-DzYHf9IY0lsuUgdIkczSnFplSV-pyTD3afxs7paBnYkxU7WbGjFXuyYuXI4C-mioMbYt8NycX2X5JPZB6_dI1PP53-hr4A92N1dQ
CitedBy_id crossref_primary_10_1016_j_sigpro_2022_108908
crossref_primary_10_1145_3352691
crossref_primary_10_1038_s41746_018_0065_x
crossref_primary_10_3390_math11204322
crossref_primary_10_1007_s12599_019_00593_4
crossref_primary_10_1016_j_microc_2024_111234
crossref_primary_10_1016_j_neucom_2018_12_040
crossref_primary_10_1155_2022_7313612
crossref_primary_10_1088_1361_6420_ab80d7
crossref_primary_10_1140_epjp_s13360_024_05220_0
crossref_primary_10_3390_app132413157
crossref_primary_10_1016_j_future_2019_05_074
crossref_primary_10_3390_s20092557
crossref_primary_10_2139_ssrn_4113621
crossref_primary_10_1007_s11042_022_13599_0
crossref_primary_10_1088_1361_6528_ac8109
crossref_primary_10_1117_1_JMI_6_4_044001
crossref_primary_10_1016_j_sigpro_2020_107481
crossref_primary_10_3389_fcell_2021_684522
crossref_primary_10_1109_ACCESS_2024_3474553
crossref_primary_10_1080_08839514_2021_1902124
crossref_primary_10_3390_ijms20143389
crossref_primary_10_1016_j_jisa_2024_103743
crossref_primary_10_25046_aj0506187
crossref_primary_10_1007_s10921_023_00938_w
crossref_primary_10_1007_s11042_019_08227_3
crossref_primary_10_1109_ACCESS_2021_3070751
crossref_primary_10_1109_TNNLS_2022_3152245
crossref_primary_10_1049_iet_ipr_2019_0334
crossref_primary_10_1109_ACCESS_2021_3090445
crossref_primary_10_1007_s10915_024_02761_5
crossref_primary_10_3390_app12188972
crossref_primary_10_1002_cpe_6143
crossref_primary_10_1016_j_eswa_2025_126639
crossref_primary_10_1007_s11042_023_16901_w
crossref_primary_10_1080_01431161_2020_1734251
crossref_primary_10_55528_18292828_2022_1_127
crossref_primary_10_1049_itr2_12103
crossref_primary_10_1002_jbio_202300149
crossref_primary_10_1109_THMS_2023_3327661
crossref_primary_10_1109_ACCESS_2019_2960629
crossref_primary_10_1109_ACCESS_2020_3033814
crossref_primary_10_1007_s12652_023_04591_z
crossref_primary_10_1016_j_engappai_2022_105510
crossref_primary_10_1016_j_neucom_2019_07_068
crossref_primary_10_1109_ACCESS_2023_3236391
crossref_primary_10_1007_s10462_022_10303_4
crossref_primary_10_4018_JITR_299391
crossref_primary_10_1016_j_neucom_2024_127528
crossref_primary_10_1007_s42452_021_04897_7
crossref_primary_10_7717_peerj_cs_555
crossref_primary_10_1007_s11042_018_6601_5
crossref_primary_10_1016_j_conbuildmat_2023_134220
crossref_primary_10_1109_ACCESS_2022_3150276
crossref_primary_10_1002_mp_13756
crossref_primary_10_1080_19361610_2022_2110637
crossref_primary_10_1007_s41024_022_00226_6
crossref_primary_10_2139_ssrn_4115298
crossref_primary_10_1088_1742_6596_2781_1_012029
crossref_primary_10_1007_s11063_021_10661_0
crossref_primary_10_1007_s10489_022_03383_w
crossref_primary_10_1186_s12886_019_1184_0
crossref_primary_10_1016_j_autcon_2022_104388
crossref_primary_10_1016_j_neucom_2023_126945
crossref_primary_10_1109_ACCESS_2022_3202905
crossref_primary_10_3390_electronics8090997
crossref_primary_10_1007_s12205_023_0522_1
crossref_primary_10_1016_j_neunet_2020_12_026
crossref_primary_10_1109_TIM_2022_3225008
crossref_primary_10_1016_j_dsp_2023_104063
crossref_primary_10_1145_3694965
crossref_primary_10_3390_rs13112031
crossref_primary_10_3390_s25051542
crossref_primary_10_1007_s11042_023_14772_9
crossref_primary_10_1016_j_eswa_2019_112840
crossref_primary_10_1016_j_asoc_2022_109550
crossref_primary_10_1016_j_jvcir_2022_103633
crossref_primary_10_1088_1757_899X_1098_3_032065
crossref_primary_10_3390_app12031477
crossref_primary_10_1007_s10044_022_01102_2
crossref_primary_10_1080_19648189_2021_2003250
crossref_primary_10_1007_s42600_024_00370_7
crossref_primary_10_1007_s43926_024_00061_w
crossref_primary_10_1007_s13369_023_08630_x
crossref_primary_10_1016_j_engfailanal_2023_107735
crossref_primary_10_1109_TIM_2024_3387505
crossref_primary_10_1109_ACCESS_2024_3446613
crossref_primary_10_1016_j_engappai_2024_109451
crossref_primary_10_1061_JPSEA2_PSENG_1454
crossref_primary_10_34133_plantphenomics_0062
crossref_primary_10_1007_s11192_022_04541_0
crossref_primary_10_1155_2022_9169772
crossref_primary_10_1016_j_compag_2022_106839
crossref_primary_10_1016_j_trc_2019_07_003
crossref_primary_10_3390_app122312086
crossref_primary_10_1007_s11042_024_19350_1
crossref_primary_10_1155_2022_4560072
crossref_primary_10_1016_j_knosys_2022_109941
crossref_primary_10_1007_s11277_024_11040_3
crossref_primary_10_1007_s11554_019_00915_5
crossref_primary_10_2478_msr_2022_0014
crossref_primary_10_3390_app122211869
crossref_primary_10_1186_s13677_020_00208_4
crossref_primary_10_3390_e22050501
crossref_primary_10_1016_j_isprsjprs_2019_07_010
crossref_primary_10_4018_IJICTRAME_2019070102
crossref_primary_10_32604_cmc_2023_035881
crossref_primary_10_1016_j_isci_2022_105692
crossref_primary_10_1007_s11042_018_6573_5
crossref_primary_10_1007_s42835_024_01939_z
crossref_primary_10_1016_j_array_2024_100353
crossref_primary_10_1109_ACCESS_2021_3086103
crossref_primary_10_2174_0122103279296370240529075507
crossref_primary_10_1007_s11042_024_19675_x
crossref_primary_10_1016_j_cie_2022_108129
crossref_primary_10_1186_s40537_021_00444_8
crossref_primary_10_1088_2632_2153_aba8e7
crossref_primary_10_3390_rs13091761
crossref_primary_10_1016_j_comnet_2019_01_019
crossref_primary_10_1016_j_neunet_2019_04_005
crossref_primary_10_3390_app12104943
crossref_primary_10_3390_electronics8111225
crossref_primary_10_1371_journal_pone_0295805
crossref_primary_10_1007_s00521_021_06551_0
crossref_primary_10_3390_s20092710
crossref_primary_10_1016_j_eij_2023_100402
crossref_primary_10_47000_tjmcs_897631
crossref_primary_10_1007_s10462_020_09865_y
crossref_primary_10_18267_j_aip_190
crossref_primary_10_1007_s11042_020_08925_3
crossref_primary_10_17671_gazibtd_799370
crossref_primary_10_3390_app11167754
crossref_primary_10_3390_s22051705
crossref_primary_10_1007_s10278_017_9990_5
crossref_primary_10_3389_fbioe_2022_861079
crossref_primary_10_3847_1538_4357_ad901e
crossref_primary_10_1109_TCSVT_2023_3275314
crossref_primary_10_1007_s11042_018_5691_4
crossref_primary_10_3390_agriengineering5040111
crossref_primary_10_3390_app131810512
crossref_primary_10_3390_app12073676
crossref_primary_10_3390_ma17153741
crossref_primary_10_1109_TVT_2023_3237620
crossref_primary_10_32604_iasc_2020_011988
crossref_primary_10_1007_s00530_021_00750_4
crossref_primary_10_1016_j_cag_2023_06_034
crossref_primary_10_1007_s11042_020_10353_2
crossref_primary_10_1142_S0219519422400528
crossref_primary_10_1007_s11042_018_5904_x
crossref_primary_10_1117_1_JEI_27_4_043040
crossref_primary_10_1007_s10462_020_09825_6
crossref_primary_10_3389_fnhum_2020_00365
crossref_primary_10_1016_j_compeleceng_2022_108431
crossref_primary_10_1109_TCE_2024_3439691
crossref_primary_10_3390_sym14010117
crossref_primary_10_4274_mirt_galenos_2022_63644
crossref_primary_10_1016_j_compag_2022_107448
crossref_primary_10_4018_IJGHPC_2020070106
crossref_primary_10_53730_ijhs_v6nS1_6047
crossref_primary_10_1587_transinf_2020EDL8116
crossref_primary_10_1007_s11042_021_11210_6
crossref_primary_10_1155_2021_5395705
crossref_primary_10_1007_s00521_021_05837_7
crossref_primary_10_1007_s11554_024_01447_3
crossref_primary_10_1109_ACCESS_2023_3334650
crossref_primary_10_3390_buildings13051143
crossref_primary_10_1007_s11042_019_7168_5
crossref_primary_10_1038_s41598_022_16217_z
crossref_primary_10_1109_ACCESS_2022_3188119
crossref_primary_10_1007_s11042_020_09630_x
crossref_primary_10_1007_s12530_022_09427_3
crossref_primary_10_1016_j_image_2021_116567
crossref_primary_10_1016_j_chemolab_2019_06_011
crossref_primary_10_1109_ACCESS_2024_3374108
crossref_primary_10_1007_s11042_023_15306_z
crossref_primary_10_1016_j_bbe_2022_06_003
crossref_primary_10_1155_2021_9512501
crossref_primary_10_1016_j_eswa_2023_120032
crossref_primary_10_1109_TSMC_2023_3298921
crossref_primary_10_1089_cmb_2022_0101
crossref_primary_10_1002_prot_25868
crossref_primary_10_1007_s11042_022_12340_1
crossref_primary_10_1007_s00417_022_05653_2
crossref_primary_10_1016_j_patrec_2020_05_019
crossref_primary_10_3233_XST_180490
crossref_primary_10_1016_j_ins_2022_07_120
crossref_primary_10_3390_electronics9040661
crossref_primary_10_1109_JSEN_2020_3032897
crossref_primary_10_1007_s00521_018_3895_1
crossref_primary_10_3389_fnins_2020_00290
crossref_primary_10_1109_TMM_2019_2920605
crossref_primary_10_1155_2021_2356284
crossref_primary_10_1186_s13677_021_00258_2
crossref_primary_10_1049_ipr2_12043
crossref_primary_10_1109_ACCESS_2019_2918086
crossref_primary_10_1007_s11042_021_10523_w
crossref_primary_10_1007_s11760_019_01488_3
crossref_primary_10_1002_widm_1460
crossref_primary_10_3390_e24101358
crossref_primary_10_1016_j_eng_2018_11_030
crossref_primary_10_3390_app122110793
crossref_primary_10_1007_s11042_021_10519_6
crossref_primary_10_1007_s11042_019_08251_3
crossref_primary_10_1155_2022_8317138
crossref_primary_10_1007_s13198_023_02203_9
crossref_primary_10_3390_app9132593
Cites_doi 10.1002/cpe.3927
10.1109/TIFS.2011.2175919
10.1109/TIFS.2009.2025841
10.1016/j.eswa.2015.05.034
10.1109/JBHI.2015.2425041
10.2352/ISSN.2470-1173.2016.8.MWSF-078
10.1016/j.jvcir.2015.06.010
10.1109/TNNLS.2013.2293637
10.1109/TIFS.2015.2486744
10.1109/APSIPA.2014.7041565
10.1109/ICCV.2015.123
10.1109/LSP.2016.2548421
10.1145/2909827.2930798
10.1007/s11042-015-2875-z
10.1109/WIFS.2014.7084302
10.1109/TIFS.2012.2190402
10.1109/CVPR.2015.7298594
10.1016/j.sigpro.2009.08.010
10.1117/12.526012
10.1109/TIFS.2013.2286682
10.1007/s00530-014-0384-y
10.1007/978-3-642-24178-9_5
10.1145/1022594.1022597
10.1109/TIFS.2015.2434600
10.1109/WIFS.2012.6412655
10.1109/ICIP.2014.7025854
10.1109/TIFS.2010.2045842
10.1016/j.compeleceng.2016.08.008
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11042-017-4440-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-7721
EndPage 10453
ExternalDocumentID 10_1007_s11042_017_4440_4
GrantInformation_xml – fundername: Tencent “Rhinoceros Birds” - Scientific Research Foundation for Young Teachers of Shenzhen University
– fundername: National Natural Science Foundation of China
  grantid: 61373122
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2016A030310053
– fundername: Science and Technology Innovation Commission of Shenzhen under Grant
  grantid: JCYJ20150324141711640
– fundername: Shenzhen University research funding
  grantid: 201535
– fundername: National Natural Science Foundation of China
  grantid: 61502311
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29M
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3EH
3V.
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
7WY
8AO
8FE
8FG
8FL
8G5
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITG
ITH
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-d3bb824fa76917dfa689717a635898a540973c46f7546430b84f2fa25842d9703
IEDL.DBID U2A
ISSN 1380-7501
IngestDate Fri Jul 25 06:14:48 EDT 2025
Thu Apr 24 22:59:04 EDT 2025
Tue Jul 01 02:06:41 EDT 2025
Fri Feb 21 02:37:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Convolutional neural networks
Residual learning
Image steganalysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-d3bb824fa76917dfa689717a635898a540973c46f7546430b84f2fa25842d9703
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2036972780
PQPubID 54626
PageCount 17
ParticipantIDs proquest_journals_2036972780
crossref_primary_10_1007_s11042_017_4440_4
crossref_citationtrail_10_1007_s11042_017_4440_4
springer_journals_10_1007_s11042_017_4440_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180500
2018-5-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 5
  year: 2018
  text: 20180500
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal
PublicationTitle Multimedia tools and applications
PublicationTitleAbbrev Multimed Tools Appl
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References KodovskyJFridrichJHolubVEnsemble classifiers for steganalysis of digital mediaIEEE Trans Inf Forensic Secur20127243244410.1109/TIFS.2011.2175919
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large scale image recognition. arXiv:1409.1556v6
WuH-THuangJShiYQA reversible data hiding method with contrast enhancement for medical imagesJ Vis Commun Image Represent20153114615310.1016/j.jvcir.2015.06.010
CheddadACondellJCurranKKevittPMDigital image steganography: Survey and analysis of current methodsSignal Process201090372775210.1016/j.sigpro.2009.08.0101177.94138
FridrichJKodovskyJRich models for steganalysis of digital imagesIEEE Trans Inf Forensic Secur20127386888210.1109/TIFS.2012.2190402
LiBHeJHuangJShiYQA survey on image steganography and steganalysisJ Inf Hiding Multimed Signal Process201122142172
WangHWangSCyber warfare: steganography vs. steganalysisCommun ACM20044710768210.1145/1022594.1022597
ZhongSHLiuYLiBLongJQuery-oriented unsupervised multi-document summarization via deep learningExpert Syst Appl201542218146815510.1016/j.eswa.2015.05.034
HolubVFridrichJDenemarkTUniversal distortion function for steganography in an arbitrary domainEURASIP J Inf Secur201411113
PevnyTBasPFridrichJSteganalysis by subtractive pixel adjacency matrixIEEE Trans Inf Forensic Secur20105221522410.1109/TIFS.2010.2045842
Qian Y, Dong J, Wang W, Tan T (2015) Deep learning for steganalysis via convolutional neural networks. SPIE Media Watermarking, Security, and Forensics, vol 9409
He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. arXiv:1502.01852v1
Pibre L, Pasquet J, Ienco D, Chaumont M (2016) Deep learning for steganalysis is better than a rich model with an ensemble classifier and is natively robust to the cover source-mismatch. SPIE Media Watermarking, Security, and Forensics
Provos N, Honeyman P (2002) Detecting steganographic content on the internet. Proceedings of Network and Distributed System Security Symposium (NDSS)
Couchot JF, Couturier R, Guyeux C, Salomon M (2016) Steganalysis via a convolutional neural network using large convolution filters for embedding process with same stego key. arXiv:1605.07946v3
Xu G, Wu H, Shi YQ (2016a) Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett 23(5):708–712
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition
LiYUnderwater image de-scattering and classification by deep neural networkComput Electr Eng201654687710.1016/j.compeleceng.2016.08.008
ChenHNiDQinJLiSYangXWangTHengPAStandard plane localization in fetal ultrasound via domain transferred deep neural networksIEEE J Biomed Health Inf20151951627163610.1109/JBHI.2015.2425041
He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385v1
LiBHuangJShiYQSteganalysis of YASSIEEE Trans Inf Forensic Secur20094336938210.1109/TIFS.2009.2025841
SedighiVCogranneRFridrichJContent-Adaptive steganography by minimizing statistical detectabilityIEEE Trans Inf Forensic Secur20161222123410.1109/TIFS.2015.2486744
XuXHeLLuHShimadaATaniguchiRNon-linear matrix completion for social image taggingIEEE Access2016201617
BianchiniMScarselliFOn the complexity of neural network classifiers: a comparison between shallow and deep architecturesIEEE Trans Neural Netw Learn Syst20142581553156510.1109/TNNLS.2013.2293637
WuJZhongSHJiangJYangYA novel clustering method for static video summarizationMultimed Tools Appl20162016117
RenTLiuYJuRWuGHow important is location information in saliency detection of natural imagesMultimed Tools Appl20167552543256410.1007/s11042-015-2875-z
RenTQiuZLiuYYuTBeiJSoft-assigned bag of features for object trackingMultimed Syst J201521218920510.1007/s00530-014-0384-y
Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J (2014) Selection-channel-aware rich model for steganalysis of digital images. IEEE Workshop on Information Forensic and Security (WIFS)
ZhongSHLiuYHuaKField effect deep networks for image recognition with incomplete dataACM Trans Multimed Comput Commun Appl201612Article52
Holub V, Fridrich J (2012) Designing steganographic distortion using directional filters. IEEE Workshop on Information Forensic and Security (WIFS)
Tan S, Li B (2014) Stacked convolutional auto-encoders for steganalysis of digital images. Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit and Conference (APSIPA) pp 1–4
HolubVFridrichJRandom projections of residuals for digital image steganalysisIEEE Trans Inf Forensic Secur20138121996200610.1109/TIFS.2013.2286682
FridrichJGoljanMPractical steganalysis of digital images - state of the artProc SPIE Photonics Imaging, Secur Watermarking Multimed Contents20024675113
Lu H et al (2016) Wound intensity correction and segmentation with convolutional neural networks. Concurrency and Computation: Practice and Experience
Lyu S, Farid H (2004) Steganalysis using color wavelet statistics and one-class support vector machines. SPIE Symposium on Electronic Imaging pp 35–45
Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS)
Xu G, Wu H, Shi YQ (2016b) Ensemble of CNNs for steganalysis: an empirical study. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security pp 103–107
Li B, Wang M, Huang J, Li X (2014) A new cost function for spatial image steganography. IEEE International Conference on Image Processing (ICIP) pp 4206–4210
Bas P, Filler T, Pevny T (2011) Break our steganographic system: The ins and outs of organizing BOSS. Information Hiding pp 59–70
LiBWangMLiXTanSHuangJA strategy of clustering modification directions in spatial image steganographyIEEE Trans Inf Forensic Secur20151091905191710.1109/TIFS.2015.2423656
B Li (4440_CR18) 2011; 2
4440_CR30
J Wu (4440_CR35) 2016; 2016
4440_CR19
H-T Wu (4440_CR34) 2015; 31
4440_CR1
H Chen (4440_CR4) 2015; 19
T Ren (4440_CR27) 2016; 75
B Li (4440_CR17) 2015; 10
X Xu (4440_CR38) 2016; 2016
J Fridrich (4440_CR8) 2012; 7
B Li (4440_CR16) 2009; 4
4440_CR11
4440_CR31
4440_CR10
T Ren (4440_CR28) 2015; 21
4440_CR32
4440_CR37
4440_CR14
4440_CR36
V Holub (4440_CR13) 2014; 1
Y Li (4440_CR22) 2016; 54
H Wang (4440_CR33) 2004; 47
T Pevny (4440_CR24) 2010; 5
4440_CR6
4440_CR9
J Kodovsky (4440_CR15) 2012; 7
SH Zhong (4440_CR39) 2016; 12
4440_CR5
SH Zhong (4440_CR40) 2015; 42
J Fridrich (4440_CR7) 2002; 4675
4440_CR23
4440_CR20
V Sedighi (4440_CR29) 2016; 1
M Bianchini (4440_CR2) 2014; 25
A Cheddad (4440_CR3) 2010; 90
4440_CR21
4440_CR26
V Holub (4440_CR12) 2013; 8
4440_CR25
References_xml – reference: Holub V, Fridrich J (2012) Designing steganographic distortion using directional filters. IEEE Workshop on Information Forensic and Security (WIFS)
– reference: HolubVFridrichJDenemarkTUniversal distortion function for steganography in an arbitrary domainEURASIP J Inf Secur201411113
– reference: Li B, Wang M, Huang J, Li X (2014) A new cost function for spatial image steganography. IEEE International Conference on Image Processing (ICIP) pp 4206–4210
– reference: Lyu S, Farid H (2004) Steganalysis using color wavelet statistics and one-class support vector machines. SPIE Symposium on Electronic Imaging pp 35–45
– reference: WuJZhongSHJiangJYangYA novel clustering method for static video summarizationMultimed Tools Appl20162016117
– reference: Lu H et al (2016) Wound intensity correction and segmentation with convolutional neural networks. Concurrency and Computation: Practice and Experience
– reference: KodovskyJFridrichJHolubVEnsemble classifiers for steganalysis of digital mediaIEEE Trans Inf Forensic Secur20127243244410.1109/TIFS.2011.2175919
– reference: ZhongSHLiuYLiBLongJQuery-oriented unsupervised multi-document summarization via deep learningExpert Syst Appl201542218146815510.1016/j.eswa.2015.05.034
– reference: CheddadACondellJCurranKKevittPMDigital image steganography: Survey and analysis of current methodsSignal Process201090372775210.1016/j.sigpro.2009.08.0101177.94138
– reference: FridrichJGoljanMPractical steganalysis of digital images - state of the artProc SPIE Photonics Imaging, Secur Watermarking Multimed Contents20024675113
– reference: BianchiniMScarselliFOn the complexity of neural network classifiers: a comparison between shallow and deep architecturesIEEE Trans Neural Netw Learn Syst20142581553156510.1109/TNNLS.2013.2293637
– reference: WangHWangSCyber warfare: steganography vs. steganalysisCommun ACM20044710768210.1145/1022594.1022597
– reference: Qian Y, Dong J, Wang W, Tan T (2015) Deep learning for steganalysis via convolutional neural networks. SPIE Media Watermarking, Security, and Forensics, vol 9409
– reference: WuH-THuangJShiYQA reversible data hiding method with contrast enhancement for medical imagesJ Vis Commun Image Represent20153114615310.1016/j.jvcir.2015.06.010
– reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition
– reference: XuXHeLLuHShimadaATaniguchiRNon-linear matrix completion for social image taggingIEEE Access2016201617
– reference: PevnyTBasPFridrichJSteganalysis by subtractive pixel adjacency matrixIEEE Trans Inf Forensic Secur20105221522410.1109/TIFS.2010.2045842
– reference: Xu G, Wu H, Shi YQ (2016a) Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett 23(5):708–712
– reference: LiBHuangJShiYQSteganalysis of YASSIEEE Trans Inf Forensic Secur20094336938210.1109/TIFS.2009.2025841
– reference: RenTQiuZLiuYYuTBeiJSoft-assigned bag of features for object trackingMultimed Syst J201521218920510.1007/s00530-014-0384-y
– reference: ZhongSHLiuYHuaKField effect deep networks for image recognition with incomplete dataACM Trans Multimed Comput Commun Appl201612Article52
– reference: Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS)
– reference: Xu G, Wu H, Shi YQ (2016b) Ensemble of CNNs for steganalysis: an empirical study. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security pp 103–107
– reference: Tan S, Li B (2014) Stacked convolutional auto-encoders for steganalysis of digital images. Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit and Conference (APSIPA) pp 1–4
– reference: ChenHNiDQinJLiSYangXWangTHengPAStandard plane localization in fetal ultrasound via domain transferred deep neural networksIEEE J Biomed Health Inf20151951627163610.1109/JBHI.2015.2425041
– reference: Couchot JF, Couturier R, Guyeux C, Salomon M (2016) Steganalysis via a convolutional neural network using large convolution filters for embedding process with same stego key. arXiv:1605.07946v3
– reference: He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. arXiv:1502.01852v1
– reference: LiYUnderwater image de-scattering and classification by deep neural networkComput Electr Eng201654687710.1016/j.compeleceng.2016.08.008
– reference: Provos N, Honeyman P (2002) Detecting steganographic content on the internet. Proceedings of Network and Distributed System Security Symposium (NDSS)
– reference: LiBWangMLiXTanSHuangJA strategy of clustering modification directions in spatial image steganographyIEEE Trans Inf Forensic Secur20151091905191710.1109/TIFS.2015.2423656
– reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large scale image recognition. arXiv:1409.1556v6
– reference: FridrichJKodovskyJRich models for steganalysis of digital imagesIEEE Trans Inf Forensic Secur20127386888210.1109/TIFS.2012.2190402
– reference: HolubVFridrichJRandom projections of residuals for digital image steganalysisIEEE Trans Inf Forensic Secur20138121996200610.1109/TIFS.2013.2286682
– reference: Pibre L, Pasquet J, Ienco D, Chaumont M (2016) Deep learning for steganalysis is better than a rich model with an ensemble classifier and is natively robust to the cover source-mismatch. SPIE Media Watermarking, Security, and Forensics
– reference: He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385v1
– reference: LiBHeJHuangJShiYQA survey on image steganography and steganalysisJ Inf Hiding Multimed Signal Process201122142172
– reference: RenTLiuYJuRWuGHow important is location information in saliency detection of natural imagesMultimed Tools Appl20167552543256410.1007/s11042-015-2875-z
– reference: Bas P, Filler T, Pevny T (2011) Break our steganographic system: The ins and outs of organizing BOSS. Information Hiding pp 59–70
– reference: Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J (2014) Selection-channel-aware rich model for steganalysis of digital images. IEEE Workshop on Information Forensic and Security (WIFS)
– reference: SedighiVCogranneRFridrichJContent-Adaptive steganography by minimizing statistical detectabilityIEEE Trans Inf Forensic Secur20161222123410.1109/TIFS.2015.2486744
– ident: 4440_CR20
  doi: 10.1002/cpe.3927
– volume: 7
  start-page: 432
  issue: 2
  year: 2012
  ident: 4440_CR15
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2011.2175919
– volume: 4
  start-page: 369
  issue: 3
  year: 2009
  ident: 4440_CR16
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2009.2025841
– ident: 4440_CR5
– volume: 2
  start-page: 142
  issue: 2
  year: 2011
  ident: 4440_CR18
  publication-title: J Inf Hiding Multimed Signal Process
– volume: 42
  start-page: 8146
  issue: 21
  year: 2015
  ident: 4440_CR40
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2015.05.034
– volume: 19
  start-page: 1627
  issue: 5
  year: 2015
  ident: 4440_CR4
  publication-title: IEEE J Biomed Health Inf
  doi: 10.1109/JBHI.2015.2425041
– volume: 4675
  start-page: 1
  year: 2002
  ident: 4440_CR7
  publication-title: Proc SPIE Photonics Imaging, Secur Watermarking Multimed Contents
– ident: 4440_CR23
  doi: 10.2352/ISSN.2470-1173.2016.8.MWSF-078
– volume: 31
  start-page: 146
  year: 2015
  ident: 4440_CR34
  publication-title: J Vis Commun Image Represent
  doi: 10.1016/j.jvcir.2015.06.010
– volume: 2016
  start-page: 1
  year: 2016
  ident: 4440_CR35
  publication-title: Multimed Tools Appl
– volume: 25
  start-page: 1553
  issue: 8
  year: 2014
  ident: 4440_CR2
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2293637
– ident: 4440_CR9
– volume: 12
  start-page: 52
  issue: Article
  year: 2016
  ident: 4440_CR39
  publication-title: ACM Trans Multimed Comput Commun Appl
– volume: 1
  start-page: 1
  issue: 1
  year: 2014
  ident: 4440_CR13
  publication-title: EURASIP J Inf Secur
– volume: 1
  start-page: 221
  issue: 2
  year: 2016
  ident: 4440_CR29
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2015.2486744
– ident: 4440_CR32
  doi: 10.1109/APSIPA.2014.7041565
– ident: 4440_CR30
– ident: 4440_CR11
  doi: 10.1109/ICCV.2015.123
– ident: 4440_CR36
  doi: 10.1109/LSP.2016.2548421
– ident: 4440_CR37
  doi: 10.1145/2909827.2930798
– volume: 75
  start-page: 2543
  issue: 5
  year: 2016
  ident: 4440_CR27
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-015-2875-z
– ident: 4440_CR6
  doi: 10.1109/WIFS.2014.7084302
– volume: 7
  start-page: 868
  issue: 3
  year: 2012
  ident: 4440_CR8
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2012.2190402
– ident: 4440_CR31
  doi: 10.1109/CVPR.2015.7298594
– volume: 90
  start-page: 727
  issue: 3
  year: 2010
  ident: 4440_CR3
  publication-title: Signal Process
  doi: 10.1016/j.sigpro.2009.08.010
– ident: 4440_CR25
– ident: 4440_CR21
  doi: 10.1117/12.526012
– volume: 8
  start-page: 1996
  issue: 12
  year: 2013
  ident: 4440_CR12
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2013.2286682
– volume: 21
  start-page: 189
  issue: 2
  year: 2015
  ident: 4440_CR28
  publication-title: Multimed Syst J
  doi: 10.1007/s00530-014-0384-y
– ident: 4440_CR1
  doi: 10.1007/978-3-642-24178-9_5
– volume: 47
  start-page: 76
  issue: 10
  year: 2004
  ident: 4440_CR33
  publication-title: Commun ACM
  doi: 10.1145/1022594.1022597
– volume: 10
  start-page: 1905
  issue: 9
  year: 2015
  ident: 4440_CR17
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2015.2434600
– ident: 4440_CR10
– ident: 4440_CR14
  doi: 10.1109/WIFS.2012.6412655
– ident: 4440_CR19
  doi: 10.1109/ICIP.2014.7025854
– volume: 5
  start-page: 215
  issue: 2
  year: 2010
  ident: 4440_CR24
  publication-title: IEEE Trans Inf Forensic Secur
  doi: 10.1109/TIFS.2010.2045842
– ident: 4440_CR26
– volume: 2016
  start-page: 1
  year: 2016
  ident: 4440_CR38
  publication-title: IEEE Access
– volume: 54
  start-page: 68
  year: 2016
  ident: 4440_CR22
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2016.08.008
SSID ssj0016524
Score 2.5851827
Snippet Image steganalysis is to discriminate innocent images and those suspected images with hidden messages. This task is very challenging for modern adaptive...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 10437
SubjectTerms Artificial neural networks
Computer Communication Networks
Computer Science
Data Structures and Information Theory
Digital imaging
Learning
Messages
Multimedia Information Systems
Neural networks
Special Purpose and Application-Based Systems
Steganography
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1Bu8DARwFRKMgDE8jCSZzEnhAfrSokKoSo1C1yYrtCgrbQ8v85p04DSDDH9nDO3b3zs-8BnAmTmkIicgtiiwVKpBgVKtBU51JoyXSktGN0HwZJf8jvR_HIH7jN_bXKKiaWgVpPC3dGfukIM4nJVrCr2Tt1qlGOXfUSGuvQxBAsRAOaN93B49OKR0hiL2srGMXcGFS8Zvl4LnBPU1yU5o7g5D8zUw03fzGkZeLp7cCWR4zkernFu7BmJi3YrtQYiHfOFmx-ay24B_TOmBnBWrp8bEW8OMSYIEYlL28YRAhu71j5liT7MOx1n2_71Esj0CIKkgXVUZ6LkFuVJlhvaasSIbEwUwgfhBQqdl2sooInNo05Yg6WC25Dq0KEG6GW6OUH0JhMJ-YQiIkSFStruGKacyOVdZnLmsBIwQObtoFVZskK3zfcyVe8ZnXHY2fJDGdlzpIZb8P5asps2TTjv8GdytaZ9595Vu92Gy4q-9ef_1zs6P_FjmEDAY9YXljsQGPx8WlOEFQs8lP_53wBfszFbQ
  priority: 102
  providerName: ProQuest
Title Deep residual learning for image steganalysis
URI https://link.springer.com/article/10.1007/s11042-017-4440-4
https://www.proquest.com/docview/2036972780
Volume 77
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoGBRwFRKJUHJlCkPJzEHltoWoGoEKJSmSIntiskKBUt_59z6jSAAInJQ2wP59zdd_ruAXDGVKxyjsjNCzUGKIFwHSY86ciMM8ldGQhpGN3bUTQc0-tJOLF13Isy272kJAtLXRW7eaaUxFhVaghJWoNGiKG7yeMa-901dRCFdpItcx10h15JZf50xVdnVCHMb6Ro4WuSXdi2IJF0V6-6Bxtq1oSdcgADsfrYhK1P3QT3wblSak4wfC7qq4idBzElCEvJ0wvaDYIvOhW2C8kBjJP-w-XQsdMQnDzwoqUjgyxjPtUijjDEklpEjGMsJhAxMM5EaBpXBTmNdBxShBluxqj2tfARYfiSo2IfQn32OlNHQFQQiVBoRYUrKVVcaOOstPIUZ9TTcQvcUixpbluFm4kVz2nV5NhIMsVTqZFkSltwvj4yX_XJ-Gtzu5R1alVmkRpGlCOaYm4LLkr5V59_vez4X7tPYBMhD1ulLLahvnx7V6cIK5ZZB2osGXSg0U16vZFZB483fVx7_dHdfaf4yT4Ak6PGAg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4oHtSDD9SIou5BL5rGPrZl92CMERHkcYKEW912d4mJAgrG-Kf8jc6WFtREbpzb3cN0dr6ZfjvzAZwyVVIxx8zN8TUWKJ6wLSYcacmIM8lt6QlpGN1mK6h26EPX7y7BV9YLY65VZjExCdRyEJt_5JeGMOMItsy-Hr5aRjXKsKuZhMbELerq8wNLttFVrYzf98x1K3ft26qVqgpYsecEY0t6UcRcqkUpwFJFahEwjjWNQORlnAnfDIDyYhrokk8Rru2IUe1q4SJSu5LjAcF9l2GFeojkpjO9cj9lLQI_FdFltoVI7GQsatKq55hGGIMJ1NCp9DcOzpLbP3xsAnOVLdhI81NyM3GobVhS_TxsZtoPJA0FeVj_MchwB6yyUkOClXvS2kVSKYoewYyYPL1gyCLoTD2RDkDZhc5CTLYHuf6gr_aBKC8QvtCKCltSqrjQBie1chRn1NGlAtiZWcI4nVJuxDKew9l8ZWPJEFeFxpIhLcD5dMlwMqJj3svFzNZhelpH4cy3CnCR2X_2-N_NDuZvdgKr1XazETZqrfohrGGqxSZXJYuQG7-9qyNMZ8bRceJDBB4X7bTfasz-WQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgSAgOvBGDATnABVStj7RNDggB2zRe04RA2q2kTTIhwTbYEOKv8etwtnQDJLhxbpOD6_iz-8X-APaYilXGMXPzQo0FSiBchwlPOjLlTHJXBkIaRve6EdXv6EUrbE3BR94LY65V5jFxGKhlNzP_yMuGMOMItswta3stolmpHfeeHaMgZZjWXE5j5CKX6v0Ny7f-0XkFv_W-79eqt2d1xyoMOFngRQNHBmnKfKpFHGHZIrWIGMf6RiAKM85EaIZBBRmNdBxShG43ZVT7WviI2r7keFhw32mYiU1VVICZ02qjeTPmMKLQSuoy10Fc9nJOddi455m2GIMQ1JCr9DsqTlLdH-zsEPRqS7Bgs1VyMnKvZZhSnRVYzJUgiA0MKzD_ZazhKjgVpXoE6_hhoxexwhRtgvkxeXjCAEbQtdrCjkNZg7t_Mdo6FDrdjtoAooJIhEIrKlxJqeJCG9TUylOcUU_HRXBzsySZnVlupDMek8m0ZWPJBFclxpIJLcLBeElvNLDjr5dLua0Te3b7ycTTinCY23_y-NfNNv_ebBdm0WGTq_PG5RbMYd7FRvcmS1AYvLyqbcxtBumOdSIC9__tt5_nBAP6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+residual+learning+for+image+steganalysis&rft.jtitle=Multimedia+tools+and+applications&rft.au=Wu%2C+Songtao&rft.au=Zhong%2C+Shenghua&rft.au=Liu%2C+Yan&rft.date=2018-05-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=77&rft.issue=9&rft.spage=10437&rft.epage=10453&rft_id=info:doi/10.1007%2Fs11042-017-4440-4&rft.externalDocID=10_1007_s11042_017_4440_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon