Deep residual learning for image steganalysis
Image steganalysis is to discriminate innocent images and those suspected images with hidden messages. This task is very challenging for modern adaptive steganography, since modifications due to message hiding are extremely small. Recent studies show that Convolutional Neural Networks (CNN) have dem...
Saved in:
Published in | Multimedia tools and applications Vol. 77; no. 9; pp. 10437 - 10453 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Image steganalysis is to discriminate innocent images and those suspected images with hidden messages. This task is very challenging for modern adaptive steganography, since modifications due to message hiding are extremely small. Recent studies show that Convolutional Neural Networks (CNN) have demonstrated superior performances than traditional steganalytic methods. Following this idea, we propose a novel CNN model for image steganalysis based on residual learning. The proposed Deep Residual learning based Network (DRN) shows two attractive properties than existing CNN based methods. First, the model usually contains a large number of network layers, which proves to be effective to capture the complex statistics of digital images. Second, the residual learning in DRN preserves the stego signal coming from secret messages, which is extremely beneficial for the discrimination of cover images and stego images. Comprehensive experiments on standard dataset show that the DRN model can detect the state of arts steganographic algorithms at a high accuracy. It also outperforms the classical rich model method and several recently proposed CNN based methods. |
---|---|
AbstractList | Image steganalysis is to discriminate innocent images and those suspected images with hidden messages. This task is very challenging for modern adaptive steganography, since modifications due to message hiding are extremely small. Recent studies show that Convolutional Neural Networks (CNN) have demonstrated superior performances than traditional steganalytic methods. Following this idea, we propose a novel CNN model for image steganalysis based on residual learning. The proposed Deep Residual learning based Network (DRN) shows two attractive properties than existing CNN based methods. First, the model usually contains a large number of network layers, which proves to be effective to capture the complex statistics of digital images. Second, the residual learning in DRN preserves the stego signal coming from secret messages, which is extremely beneficial for the discrimination of cover images and stego images. Comprehensive experiments on standard dataset show that the DRN model can detect the state of arts steganographic algorithms at a high accuracy. It also outperforms the classical rich model method and several recently proposed CNN based methods. |
Author | Liu, Yan Wu, Songtao Zhong, Shenghua |
Author_xml | – sequence: 1 givenname: Songtao surname: Wu fullname: Wu, Songtao organization: College of Computer Science and Software Engineering, Shenzhen University – sequence: 2 givenname: Shenghua surname: Zhong fullname: Zhong, Shenghua email: csshzhong@szu.edu.cn organization: College of Computer Science and Software Engineering, Shenzhen University – sequence: 3 givenname: Yan surname: Liu fullname: Liu, Yan organization: Department of Computing, The Hong Kong Polytechnic University |
BookMark | eNp9kE1Lw0AQhhepYFv9Ad4CnldnP2dzlKpVKHjR87JNdsOWmNTd9NB_b0oEQdDTzOF9Zl6eBZl1fecJuWZwywDwLjMGklNgSKWUQOUZmTOFgiJyNht3YYCiAnZBFjnvAJhWXM4JffB-XySfY31wbdF6l7rYNUXoUxE_XOOLPPjGda495pgvyXlwbfZX33NJ3p8e31bPdPO6flndb2glmB5oLbZbw2VwqEuGdXDalMjQaaFMaZySUKKopA6opJYCtkYGHhxXRvK6RBBLcjPd3af-8-DzYHf9IY0lsuUgdIkczSnFplSV-pyTD3afxs7paBnYkxU7WbGjFXuyYuXI4C-mioMbYt8NycX2X5JPZB6_dI1PP53-hr4A92N1dQ |
CitedBy_id | crossref_primary_10_1016_j_sigpro_2022_108908 crossref_primary_10_1145_3352691 crossref_primary_10_1038_s41746_018_0065_x crossref_primary_10_3390_math11204322 crossref_primary_10_1007_s12599_019_00593_4 crossref_primary_10_1016_j_microc_2024_111234 crossref_primary_10_1016_j_neucom_2018_12_040 crossref_primary_10_1155_2022_7313612 crossref_primary_10_1088_1361_6420_ab80d7 crossref_primary_10_1140_epjp_s13360_024_05220_0 crossref_primary_10_3390_app132413157 crossref_primary_10_1016_j_future_2019_05_074 crossref_primary_10_3390_s20092557 crossref_primary_10_2139_ssrn_4113621 crossref_primary_10_1007_s11042_022_13599_0 crossref_primary_10_1088_1361_6528_ac8109 crossref_primary_10_1117_1_JMI_6_4_044001 crossref_primary_10_1016_j_sigpro_2020_107481 crossref_primary_10_3389_fcell_2021_684522 crossref_primary_10_1109_ACCESS_2024_3474553 crossref_primary_10_1080_08839514_2021_1902124 crossref_primary_10_3390_ijms20143389 crossref_primary_10_1016_j_jisa_2024_103743 crossref_primary_10_25046_aj0506187 crossref_primary_10_1007_s10921_023_00938_w crossref_primary_10_1007_s11042_019_08227_3 crossref_primary_10_1109_ACCESS_2021_3070751 crossref_primary_10_1109_TNNLS_2022_3152245 crossref_primary_10_1049_iet_ipr_2019_0334 crossref_primary_10_1109_ACCESS_2021_3090445 crossref_primary_10_1007_s10915_024_02761_5 crossref_primary_10_3390_app12188972 crossref_primary_10_1002_cpe_6143 crossref_primary_10_1016_j_eswa_2025_126639 crossref_primary_10_1007_s11042_023_16901_w crossref_primary_10_1080_01431161_2020_1734251 crossref_primary_10_55528_18292828_2022_1_127 crossref_primary_10_1049_itr2_12103 crossref_primary_10_1002_jbio_202300149 crossref_primary_10_1109_THMS_2023_3327661 crossref_primary_10_1109_ACCESS_2019_2960629 crossref_primary_10_1109_ACCESS_2020_3033814 crossref_primary_10_1007_s12652_023_04591_z crossref_primary_10_1016_j_engappai_2022_105510 crossref_primary_10_1016_j_neucom_2019_07_068 crossref_primary_10_1109_ACCESS_2023_3236391 crossref_primary_10_1007_s10462_022_10303_4 crossref_primary_10_4018_JITR_299391 crossref_primary_10_1016_j_neucom_2024_127528 crossref_primary_10_1007_s42452_021_04897_7 crossref_primary_10_7717_peerj_cs_555 crossref_primary_10_1007_s11042_018_6601_5 crossref_primary_10_1016_j_conbuildmat_2023_134220 crossref_primary_10_1109_ACCESS_2022_3150276 crossref_primary_10_1002_mp_13756 crossref_primary_10_1080_19361610_2022_2110637 crossref_primary_10_1007_s41024_022_00226_6 crossref_primary_10_2139_ssrn_4115298 crossref_primary_10_1088_1742_6596_2781_1_012029 crossref_primary_10_1007_s11063_021_10661_0 crossref_primary_10_1007_s10489_022_03383_w crossref_primary_10_1186_s12886_019_1184_0 crossref_primary_10_1016_j_autcon_2022_104388 crossref_primary_10_1016_j_neucom_2023_126945 crossref_primary_10_1109_ACCESS_2022_3202905 crossref_primary_10_3390_electronics8090997 crossref_primary_10_1007_s12205_023_0522_1 crossref_primary_10_1016_j_neunet_2020_12_026 crossref_primary_10_1109_TIM_2022_3225008 crossref_primary_10_1016_j_dsp_2023_104063 crossref_primary_10_1145_3694965 crossref_primary_10_3390_rs13112031 crossref_primary_10_3390_s25051542 crossref_primary_10_1007_s11042_023_14772_9 crossref_primary_10_1016_j_eswa_2019_112840 crossref_primary_10_1016_j_asoc_2022_109550 crossref_primary_10_1016_j_jvcir_2022_103633 crossref_primary_10_1088_1757_899X_1098_3_032065 crossref_primary_10_3390_app12031477 crossref_primary_10_1007_s10044_022_01102_2 crossref_primary_10_1080_19648189_2021_2003250 crossref_primary_10_1007_s42600_024_00370_7 crossref_primary_10_1007_s43926_024_00061_w crossref_primary_10_1007_s13369_023_08630_x crossref_primary_10_1016_j_engfailanal_2023_107735 crossref_primary_10_1109_TIM_2024_3387505 crossref_primary_10_1109_ACCESS_2024_3446613 crossref_primary_10_1016_j_engappai_2024_109451 crossref_primary_10_1061_JPSEA2_PSENG_1454 crossref_primary_10_34133_plantphenomics_0062 crossref_primary_10_1007_s11192_022_04541_0 crossref_primary_10_1155_2022_9169772 crossref_primary_10_1016_j_compag_2022_106839 crossref_primary_10_1016_j_trc_2019_07_003 crossref_primary_10_3390_app122312086 crossref_primary_10_1007_s11042_024_19350_1 crossref_primary_10_1155_2022_4560072 crossref_primary_10_1016_j_knosys_2022_109941 crossref_primary_10_1007_s11277_024_11040_3 crossref_primary_10_1007_s11554_019_00915_5 crossref_primary_10_2478_msr_2022_0014 crossref_primary_10_3390_app122211869 crossref_primary_10_1186_s13677_020_00208_4 crossref_primary_10_3390_e22050501 crossref_primary_10_1016_j_isprsjprs_2019_07_010 crossref_primary_10_4018_IJICTRAME_2019070102 crossref_primary_10_32604_cmc_2023_035881 crossref_primary_10_1016_j_isci_2022_105692 crossref_primary_10_1007_s11042_018_6573_5 crossref_primary_10_1007_s42835_024_01939_z crossref_primary_10_1016_j_array_2024_100353 crossref_primary_10_1109_ACCESS_2021_3086103 crossref_primary_10_2174_0122103279296370240529075507 crossref_primary_10_1007_s11042_024_19675_x crossref_primary_10_1016_j_cie_2022_108129 crossref_primary_10_1186_s40537_021_00444_8 crossref_primary_10_1088_2632_2153_aba8e7 crossref_primary_10_3390_rs13091761 crossref_primary_10_1016_j_comnet_2019_01_019 crossref_primary_10_1016_j_neunet_2019_04_005 crossref_primary_10_3390_app12104943 crossref_primary_10_3390_electronics8111225 crossref_primary_10_1371_journal_pone_0295805 crossref_primary_10_1007_s00521_021_06551_0 crossref_primary_10_3390_s20092710 crossref_primary_10_1016_j_eij_2023_100402 crossref_primary_10_47000_tjmcs_897631 crossref_primary_10_1007_s10462_020_09865_y crossref_primary_10_18267_j_aip_190 crossref_primary_10_1007_s11042_020_08925_3 crossref_primary_10_17671_gazibtd_799370 crossref_primary_10_3390_app11167754 crossref_primary_10_3390_s22051705 crossref_primary_10_1007_s10278_017_9990_5 crossref_primary_10_3389_fbioe_2022_861079 crossref_primary_10_3847_1538_4357_ad901e crossref_primary_10_1109_TCSVT_2023_3275314 crossref_primary_10_1007_s11042_018_5691_4 crossref_primary_10_3390_agriengineering5040111 crossref_primary_10_3390_app131810512 crossref_primary_10_3390_app12073676 crossref_primary_10_3390_ma17153741 crossref_primary_10_1109_TVT_2023_3237620 crossref_primary_10_32604_iasc_2020_011988 crossref_primary_10_1007_s00530_021_00750_4 crossref_primary_10_1016_j_cag_2023_06_034 crossref_primary_10_1007_s11042_020_10353_2 crossref_primary_10_1142_S0219519422400528 crossref_primary_10_1007_s11042_018_5904_x crossref_primary_10_1117_1_JEI_27_4_043040 crossref_primary_10_1007_s10462_020_09825_6 crossref_primary_10_3389_fnhum_2020_00365 crossref_primary_10_1016_j_compeleceng_2022_108431 crossref_primary_10_1109_TCE_2024_3439691 crossref_primary_10_3390_sym14010117 crossref_primary_10_4274_mirt_galenos_2022_63644 crossref_primary_10_1016_j_compag_2022_107448 crossref_primary_10_4018_IJGHPC_2020070106 crossref_primary_10_53730_ijhs_v6nS1_6047 crossref_primary_10_1587_transinf_2020EDL8116 crossref_primary_10_1007_s11042_021_11210_6 crossref_primary_10_1155_2021_5395705 crossref_primary_10_1007_s00521_021_05837_7 crossref_primary_10_1007_s11554_024_01447_3 crossref_primary_10_1109_ACCESS_2023_3334650 crossref_primary_10_3390_buildings13051143 crossref_primary_10_1007_s11042_019_7168_5 crossref_primary_10_1038_s41598_022_16217_z crossref_primary_10_1109_ACCESS_2022_3188119 crossref_primary_10_1007_s11042_020_09630_x crossref_primary_10_1007_s12530_022_09427_3 crossref_primary_10_1016_j_image_2021_116567 crossref_primary_10_1016_j_chemolab_2019_06_011 crossref_primary_10_1109_ACCESS_2024_3374108 crossref_primary_10_1007_s11042_023_15306_z crossref_primary_10_1016_j_bbe_2022_06_003 crossref_primary_10_1155_2021_9512501 crossref_primary_10_1016_j_eswa_2023_120032 crossref_primary_10_1109_TSMC_2023_3298921 crossref_primary_10_1089_cmb_2022_0101 crossref_primary_10_1002_prot_25868 crossref_primary_10_1007_s11042_022_12340_1 crossref_primary_10_1007_s00417_022_05653_2 crossref_primary_10_1016_j_patrec_2020_05_019 crossref_primary_10_3233_XST_180490 crossref_primary_10_1016_j_ins_2022_07_120 crossref_primary_10_3390_electronics9040661 crossref_primary_10_1109_JSEN_2020_3032897 crossref_primary_10_1007_s00521_018_3895_1 crossref_primary_10_3389_fnins_2020_00290 crossref_primary_10_1109_TMM_2019_2920605 crossref_primary_10_1155_2021_2356284 crossref_primary_10_1186_s13677_021_00258_2 crossref_primary_10_1049_ipr2_12043 crossref_primary_10_1109_ACCESS_2019_2918086 crossref_primary_10_1007_s11042_021_10523_w crossref_primary_10_1007_s11760_019_01488_3 crossref_primary_10_1002_widm_1460 crossref_primary_10_3390_e24101358 crossref_primary_10_1016_j_eng_2018_11_030 crossref_primary_10_3390_app122110793 crossref_primary_10_1007_s11042_021_10519_6 crossref_primary_10_1007_s11042_019_08251_3 crossref_primary_10_1155_2022_8317138 crossref_primary_10_1007_s13198_023_02203_9 crossref_primary_10_3390_app9132593 |
Cites_doi | 10.1002/cpe.3927 10.1109/TIFS.2011.2175919 10.1109/TIFS.2009.2025841 10.1016/j.eswa.2015.05.034 10.1109/JBHI.2015.2425041 10.2352/ISSN.2470-1173.2016.8.MWSF-078 10.1016/j.jvcir.2015.06.010 10.1109/TNNLS.2013.2293637 10.1109/TIFS.2015.2486744 10.1109/APSIPA.2014.7041565 10.1109/ICCV.2015.123 10.1109/LSP.2016.2548421 10.1145/2909827.2930798 10.1007/s11042-015-2875-z 10.1109/WIFS.2014.7084302 10.1109/TIFS.2012.2190402 10.1109/CVPR.2015.7298594 10.1016/j.sigpro.2009.08.010 10.1117/12.526012 10.1109/TIFS.2013.2286682 10.1007/s00530-014-0384-y 10.1007/978-3-642-24178-9_5 10.1145/1022594.1022597 10.1109/TIFS.2015.2434600 10.1109/WIFS.2012.6412655 10.1109/ICIP.2014.7025854 10.1109/TIFS.2010.2045842 10.1016/j.compeleceng.2016.08.008 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2017 Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media New York 2017 – notice: Multimedia Tools and Applications is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11042-017-4440-4 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-7721 |
EndPage | 10453 |
ExternalDocumentID | 10_1007_s11042_017_4440_4 |
GrantInformation_xml | – fundername: Tencent “Rhinoceros Birds” - Scientific Research Foundation for Young Teachers of Shenzhen University – fundername: National Natural Science Foundation of China grantid: 61373122 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Natural Science Foundation of Guangdong Province grantid: 2016A030310053 – fundername: Science and Technology Innovation Commission of Shenzhen under Grant grantid: JCYJ20150324141711640 – fundername: Shenzhen University research funding grantid: 201535 – fundername: National Natural Science Foundation of China grantid: 61502311 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29M 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3EH 3V. 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 7WY 8AO 8FE 8FG 8FL 8G5 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITG ITH ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW LAK LLZTM M0C M0N M2O M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8Q Z8R Z8S Z8T Z8U Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c316t-d3bb824fa76917dfa689717a635898a540973c46f7546430b84f2fa25842d9703 |
IEDL.DBID | U2A |
ISSN | 1380-7501 |
IngestDate | Fri Jul 25 06:14:48 EDT 2025 Thu Apr 24 22:59:04 EDT 2025 Tue Jul 01 02:06:41 EDT 2025 Fri Feb 21 02:37:41 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Keywords | Convolutional neural networks Residual learning Image steganalysis |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-d3bb824fa76917dfa689717a635898a540973c46f7546430b84f2fa25842d9703 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2036972780 |
PQPubID | 54626 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2036972780 crossref_primary_10_1007_s11042_017_4440_4 crossref_citationtrail_10_1007_s11042_017_4440_4 springer_journals_10_1007_s11042_017_4440_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180500 2018-5-00 20180501 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 5 year: 2018 text: 20180500 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationSubtitle | An International Journal |
PublicationTitle | Multimedia tools and applications |
PublicationTitleAbbrev | Multimed Tools Appl |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | KodovskyJFridrichJHolubVEnsemble classifiers for steganalysis of digital mediaIEEE Trans Inf Forensic Secur20127243244410.1109/TIFS.2011.2175919 Simonyan K, Zisserman A (2014) Very deep convolutional networks for large scale image recognition. arXiv:1409.1556v6 WuH-THuangJShiYQA reversible data hiding method with contrast enhancement for medical imagesJ Vis Commun Image Represent20153114615310.1016/j.jvcir.2015.06.010 CheddadACondellJCurranKKevittPMDigital image steganography: Survey and analysis of current methodsSignal Process201090372775210.1016/j.sigpro.2009.08.0101177.94138 FridrichJKodovskyJRich models for steganalysis of digital imagesIEEE Trans Inf Forensic Secur20127386888210.1109/TIFS.2012.2190402 LiBHeJHuangJShiYQA survey on image steganography and steganalysisJ Inf Hiding Multimed Signal Process201122142172 WangHWangSCyber warfare: steganography vs. steganalysisCommun ACM20044710768210.1145/1022594.1022597 ZhongSHLiuYLiBLongJQuery-oriented unsupervised multi-document summarization via deep learningExpert Syst Appl201542218146815510.1016/j.eswa.2015.05.034 HolubVFridrichJDenemarkTUniversal distortion function for steganography in an arbitrary domainEURASIP J Inf Secur201411113 PevnyTBasPFridrichJSteganalysis by subtractive pixel adjacency matrixIEEE Trans Inf Forensic Secur20105221522410.1109/TIFS.2010.2045842 Qian Y, Dong J, Wang W, Tan T (2015) Deep learning for steganalysis via convolutional neural networks. SPIE Media Watermarking, Security, and Forensics, vol 9409 He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. arXiv:1502.01852v1 Pibre L, Pasquet J, Ienco D, Chaumont M (2016) Deep learning for steganalysis is better than a rich model with an ensemble classifier and is natively robust to the cover source-mismatch. SPIE Media Watermarking, Security, and Forensics Provos N, Honeyman P (2002) Detecting steganographic content on the internet. Proceedings of Network and Distributed System Security Symposium (NDSS) Couchot JF, Couturier R, Guyeux C, Salomon M (2016) Steganalysis via a convolutional neural network using large convolution filters for embedding process with same stego key. arXiv:1605.07946v3 Xu G, Wu H, Shi YQ (2016a) Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett 23(5):708–712 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition LiYUnderwater image de-scattering and classification by deep neural networkComput Electr Eng201654687710.1016/j.compeleceng.2016.08.008 ChenHNiDQinJLiSYangXWangTHengPAStandard plane localization in fetal ultrasound via domain transferred deep neural networksIEEE J Biomed Health Inf20151951627163610.1109/JBHI.2015.2425041 He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385v1 LiBHuangJShiYQSteganalysis of YASSIEEE Trans Inf Forensic Secur20094336938210.1109/TIFS.2009.2025841 SedighiVCogranneRFridrichJContent-Adaptive steganography by minimizing statistical detectabilityIEEE Trans Inf Forensic Secur20161222123410.1109/TIFS.2015.2486744 XuXHeLLuHShimadaATaniguchiRNon-linear matrix completion for social image taggingIEEE Access2016201617 BianchiniMScarselliFOn the complexity of neural network classifiers: a comparison between shallow and deep architecturesIEEE Trans Neural Netw Learn Syst20142581553156510.1109/TNNLS.2013.2293637 WuJZhongSHJiangJYangYA novel clustering method for static video summarizationMultimed Tools Appl20162016117 RenTLiuYJuRWuGHow important is location information in saliency detection of natural imagesMultimed Tools Appl20167552543256410.1007/s11042-015-2875-z RenTQiuZLiuYYuTBeiJSoft-assigned bag of features for object trackingMultimed Syst J201521218920510.1007/s00530-014-0384-y Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J (2014) Selection-channel-aware rich model for steganalysis of digital images. IEEE Workshop on Information Forensic and Security (WIFS) ZhongSHLiuYHuaKField effect deep networks for image recognition with incomplete dataACM Trans Multimed Comput Commun Appl201612Article52 Holub V, Fridrich J (2012) Designing steganographic distortion using directional filters. IEEE Workshop on Information Forensic and Security (WIFS) Tan S, Li B (2014) Stacked convolutional auto-encoders for steganalysis of digital images. Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit and Conference (APSIPA) pp 1–4 HolubVFridrichJRandom projections of residuals for digital image steganalysisIEEE Trans Inf Forensic Secur20138121996200610.1109/TIFS.2013.2286682 FridrichJGoljanMPractical steganalysis of digital images - state of the artProc SPIE Photonics Imaging, Secur Watermarking Multimed Contents20024675113 Lu H et al (2016) Wound intensity correction and segmentation with convolutional neural networks. Concurrency and Computation: Practice and Experience Lyu S, Farid H (2004) Steganalysis using color wavelet statistics and one-class support vector machines. SPIE Symposium on Electronic Imaging pp 35–45 Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS) Xu G, Wu H, Shi YQ (2016b) Ensemble of CNNs for steganalysis: an empirical study. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security pp 103–107 Li B, Wang M, Huang J, Li X (2014) A new cost function for spatial image steganography. IEEE International Conference on Image Processing (ICIP) pp 4206–4210 Bas P, Filler T, Pevny T (2011) Break our steganographic system: The ins and outs of organizing BOSS. Information Hiding pp 59–70 LiBWangMLiXTanSHuangJA strategy of clustering modification directions in spatial image steganographyIEEE Trans Inf Forensic Secur20151091905191710.1109/TIFS.2015.2423656 B Li (4440_CR18) 2011; 2 4440_CR30 J Wu (4440_CR35) 2016; 2016 4440_CR19 H-T Wu (4440_CR34) 2015; 31 4440_CR1 H Chen (4440_CR4) 2015; 19 T Ren (4440_CR27) 2016; 75 B Li (4440_CR17) 2015; 10 X Xu (4440_CR38) 2016; 2016 J Fridrich (4440_CR8) 2012; 7 B Li (4440_CR16) 2009; 4 4440_CR11 4440_CR31 4440_CR10 T Ren (4440_CR28) 2015; 21 4440_CR32 4440_CR37 4440_CR14 4440_CR36 V Holub (4440_CR13) 2014; 1 Y Li (4440_CR22) 2016; 54 H Wang (4440_CR33) 2004; 47 T Pevny (4440_CR24) 2010; 5 4440_CR6 4440_CR9 J Kodovsky (4440_CR15) 2012; 7 SH Zhong (4440_CR39) 2016; 12 4440_CR5 SH Zhong (4440_CR40) 2015; 42 J Fridrich (4440_CR7) 2002; 4675 4440_CR23 4440_CR20 V Sedighi (4440_CR29) 2016; 1 M Bianchini (4440_CR2) 2014; 25 A Cheddad (4440_CR3) 2010; 90 4440_CR21 4440_CR26 V Holub (4440_CR12) 2013; 8 4440_CR25 |
References_xml | – reference: Holub V, Fridrich J (2012) Designing steganographic distortion using directional filters. IEEE Workshop on Information Forensic and Security (WIFS) – reference: HolubVFridrichJDenemarkTUniversal distortion function for steganography in an arbitrary domainEURASIP J Inf Secur201411113 – reference: Li B, Wang M, Huang J, Li X (2014) A new cost function for spatial image steganography. IEEE International Conference on Image Processing (ICIP) pp 4206–4210 – reference: Lyu S, Farid H (2004) Steganalysis using color wavelet statistics and one-class support vector machines. SPIE Symposium on Electronic Imaging pp 35–45 – reference: WuJZhongSHJiangJYangYA novel clustering method for static video summarizationMultimed Tools Appl20162016117 – reference: Lu H et al (2016) Wound intensity correction and segmentation with convolutional neural networks. Concurrency and Computation: Practice and Experience – reference: KodovskyJFridrichJHolubVEnsemble classifiers for steganalysis of digital mediaIEEE Trans Inf Forensic Secur20127243244410.1109/TIFS.2011.2175919 – reference: ZhongSHLiuYLiBLongJQuery-oriented unsupervised multi-document summarization via deep learningExpert Syst Appl201542218146815510.1016/j.eswa.2015.05.034 – reference: CheddadACondellJCurranKKevittPMDigital image steganography: Survey and analysis of current methodsSignal Process201090372775210.1016/j.sigpro.2009.08.0101177.94138 – reference: FridrichJGoljanMPractical steganalysis of digital images - state of the artProc SPIE Photonics Imaging, Secur Watermarking Multimed Contents20024675113 – reference: BianchiniMScarselliFOn the complexity of neural network classifiers: a comparison between shallow and deep architecturesIEEE Trans Neural Netw Learn Syst20142581553156510.1109/TNNLS.2013.2293637 – reference: WangHWangSCyber warfare: steganography vs. steganalysisCommun ACM20044710768210.1145/1022594.1022597 – reference: Qian Y, Dong J, Wang W, Tan T (2015) Deep learning for steganalysis via convolutional neural networks. SPIE Media Watermarking, Security, and Forensics, vol 9409 – reference: WuH-THuangJShiYQA reversible data hiding method with contrast enhancement for medical imagesJ Vis Commun Image Represent20153114615310.1016/j.jvcir.2015.06.010 – reference: Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A (2015) Going deeper with convolutions. IEEE Conference on Computer Vision and Pattern Recognition – reference: XuXHeLLuHShimadaATaniguchiRNon-linear matrix completion for social image taggingIEEE Access2016201617 – reference: PevnyTBasPFridrichJSteganalysis by subtractive pixel adjacency matrixIEEE Trans Inf Forensic Secur20105221522410.1109/TIFS.2010.2045842 – reference: Xu G, Wu H, Shi YQ (2016a) Structural design of convolutional neural networks for steganalysis. IEEE Signal Process Lett 23(5):708–712 – reference: LiBHuangJShiYQSteganalysis of YASSIEEE Trans Inf Forensic Secur20094336938210.1109/TIFS.2009.2025841 – reference: RenTQiuZLiuYYuTBeiJSoft-assigned bag of features for object trackingMultimed Syst J201521218920510.1007/s00530-014-0384-y – reference: ZhongSHLiuYHuaKField effect deep networks for image recognition with incomplete dataACM Trans Multimed Comput Commun Appl201612Article52 – reference: Glorot X, Bordes A, Bengio Y (2011) Deep sparse rectifier neural networks. Proceedings of the 14th International Conference on Artificial Intelligence and Statistics (AISTATS) – reference: Xu G, Wu H, Shi YQ (2016b) Ensemble of CNNs for steganalysis: an empirical study. Proceedings of the 4th ACM Workshop on Information Hiding and Multimedia Security pp 103–107 – reference: Tan S, Li B (2014) Stacked convolutional auto-encoders for steganalysis of digital images. Asia-Pacific Signal and Information Processing Association, 2014 Annual Summit and Conference (APSIPA) pp 1–4 – reference: ChenHNiDQinJLiSYangXWangTHengPAStandard plane localization in fetal ultrasound via domain transferred deep neural networksIEEE J Biomed Health Inf20151951627163610.1109/JBHI.2015.2425041 – reference: Couchot JF, Couturier R, Guyeux C, Salomon M (2016) Steganalysis via a convolutional neural network using large convolution filters for embedding process with same stego key. arXiv:1605.07946v3 – reference: He K, Zhang X, Ren S, Sun J (2015) Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. arXiv:1502.01852v1 – reference: LiYUnderwater image de-scattering and classification by deep neural networkComput Electr Eng201654687710.1016/j.compeleceng.2016.08.008 – reference: Provos N, Honeyman P (2002) Detecting steganographic content on the internet. Proceedings of Network and Distributed System Security Symposium (NDSS) – reference: LiBWangMLiXTanSHuangJA strategy of clustering modification directions in spatial image steganographyIEEE Trans Inf Forensic Secur20151091905191710.1109/TIFS.2015.2423656 – reference: Simonyan K, Zisserman A (2014) Very deep convolutional networks for large scale image recognition. arXiv:1409.1556v6 – reference: FridrichJKodovskyJRich models for steganalysis of digital imagesIEEE Trans Inf Forensic Secur20127386888210.1109/TIFS.2012.2190402 – reference: HolubVFridrichJRandom projections of residuals for digital image steganalysisIEEE Trans Inf Forensic Secur20138121996200610.1109/TIFS.2013.2286682 – reference: Pibre L, Pasquet J, Ienco D, Chaumont M (2016) Deep learning for steganalysis is better than a rich model with an ensemble classifier and is natively robust to the cover source-mismatch. SPIE Media Watermarking, Security, and Forensics – reference: He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. arXiv:1512.03385v1 – reference: LiBHeJHuangJShiYQA survey on image steganography and steganalysisJ Inf Hiding Multimed Signal Process201122142172 – reference: RenTLiuYJuRWuGHow important is location information in saliency detection of natural imagesMultimed Tools Appl20167552543256410.1007/s11042-015-2875-z – reference: Bas P, Filler T, Pevny T (2011) Break our steganographic system: The ins and outs of organizing BOSS. Information Hiding pp 59–70 – reference: Denemark T, Sedighi V, Holub V, Cogranne R, Fridrich J (2014) Selection-channel-aware rich model for steganalysis of digital images. IEEE Workshop on Information Forensic and Security (WIFS) – reference: SedighiVCogranneRFridrichJContent-Adaptive steganography by minimizing statistical detectabilityIEEE Trans Inf Forensic Secur20161222123410.1109/TIFS.2015.2486744 – ident: 4440_CR20 doi: 10.1002/cpe.3927 – volume: 7 start-page: 432 issue: 2 year: 2012 ident: 4440_CR15 publication-title: IEEE Trans Inf Forensic Secur doi: 10.1109/TIFS.2011.2175919 – volume: 4 start-page: 369 issue: 3 year: 2009 ident: 4440_CR16 publication-title: IEEE Trans Inf Forensic Secur doi: 10.1109/TIFS.2009.2025841 – ident: 4440_CR5 – volume: 2 start-page: 142 issue: 2 year: 2011 ident: 4440_CR18 publication-title: J Inf Hiding Multimed Signal Process – volume: 42 start-page: 8146 issue: 21 year: 2015 ident: 4440_CR40 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2015.05.034 – volume: 19 start-page: 1627 issue: 5 year: 2015 ident: 4440_CR4 publication-title: IEEE J Biomed Health Inf doi: 10.1109/JBHI.2015.2425041 – volume: 4675 start-page: 1 year: 2002 ident: 4440_CR7 publication-title: Proc SPIE Photonics Imaging, Secur Watermarking Multimed Contents – ident: 4440_CR23 doi: 10.2352/ISSN.2470-1173.2016.8.MWSF-078 – volume: 31 start-page: 146 year: 2015 ident: 4440_CR34 publication-title: J Vis Commun Image Represent doi: 10.1016/j.jvcir.2015.06.010 – volume: 2016 start-page: 1 year: 2016 ident: 4440_CR35 publication-title: Multimed Tools Appl – volume: 25 start-page: 1553 issue: 8 year: 2014 ident: 4440_CR2 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2293637 – ident: 4440_CR9 – volume: 12 start-page: 52 issue: Article year: 2016 ident: 4440_CR39 publication-title: ACM Trans Multimed Comput Commun Appl – volume: 1 start-page: 1 issue: 1 year: 2014 ident: 4440_CR13 publication-title: EURASIP J Inf Secur – volume: 1 start-page: 221 issue: 2 year: 2016 ident: 4440_CR29 publication-title: IEEE Trans Inf Forensic Secur doi: 10.1109/TIFS.2015.2486744 – ident: 4440_CR32 doi: 10.1109/APSIPA.2014.7041565 – ident: 4440_CR30 – ident: 4440_CR11 doi: 10.1109/ICCV.2015.123 – ident: 4440_CR36 doi: 10.1109/LSP.2016.2548421 – ident: 4440_CR37 doi: 10.1145/2909827.2930798 – volume: 75 start-page: 2543 issue: 5 year: 2016 ident: 4440_CR27 publication-title: Multimed Tools Appl doi: 10.1007/s11042-015-2875-z – ident: 4440_CR6 doi: 10.1109/WIFS.2014.7084302 – volume: 7 start-page: 868 issue: 3 year: 2012 ident: 4440_CR8 publication-title: IEEE Trans Inf Forensic Secur doi: 10.1109/TIFS.2012.2190402 – ident: 4440_CR31 doi: 10.1109/CVPR.2015.7298594 – volume: 90 start-page: 727 issue: 3 year: 2010 ident: 4440_CR3 publication-title: Signal Process doi: 10.1016/j.sigpro.2009.08.010 – ident: 4440_CR25 – ident: 4440_CR21 doi: 10.1117/12.526012 – volume: 8 start-page: 1996 issue: 12 year: 2013 ident: 4440_CR12 publication-title: IEEE Trans Inf Forensic Secur doi: 10.1109/TIFS.2013.2286682 – volume: 21 start-page: 189 issue: 2 year: 2015 ident: 4440_CR28 publication-title: Multimed Syst J doi: 10.1007/s00530-014-0384-y – ident: 4440_CR1 doi: 10.1007/978-3-642-24178-9_5 – volume: 47 start-page: 76 issue: 10 year: 2004 ident: 4440_CR33 publication-title: Commun ACM doi: 10.1145/1022594.1022597 – volume: 10 start-page: 1905 issue: 9 year: 2015 ident: 4440_CR17 publication-title: IEEE Trans Inf Forensic Secur doi: 10.1109/TIFS.2015.2434600 – ident: 4440_CR10 – ident: 4440_CR14 doi: 10.1109/WIFS.2012.6412655 – ident: 4440_CR19 doi: 10.1109/ICIP.2014.7025854 – volume: 5 start-page: 215 issue: 2 year: 2010 ident: 4440_CR24 publication-title: IEEE Trans Inf Forensic Secur doi: 10.1109/TIFS.2010.2045842 – ident: 4440_CR26 – volume: 2016 start-page: 1 year: 2016 ident: 4440_CR38 publication-title: IEEE Access – volume: 54 start-page: 68 year: 2016 ident: 4440_CR22 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2016.08.008 |
SSID | ssj0016524 |
Score | 2.5851827 |
Snippet | Image steganalysis is to discriminate innocent images and those suspected images with hidden messages. This task is very challenging for modern adaptive... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 10437 |
SubjectTerms | Artificial neural networks Computer Communication Networks Computer Science Data Structures and Information Theory Digital imaging Learning Messages Multimedia Information Systems Neural networks Special Purpose and Application-Based Systems Steganography |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV09T8MwED1Bu8DARwFRKMgDE8jCSZzEnhAfrSokKoSo1C1yYrtCgrbQ8v85p04DSDDH9nDO3b3zs-8BnAmTmkIicgtiiwVKpBgVKtBU51JoyXSktGN0HwZJf8jvR_HIH7jN_bXKKiaWgVpPC3dGfukIM4nJVrCr2Tt1qlGOXfUSGuvQxBAsRAOaN93B49OKR0hiL2srGMXcGFS8Zvl4LnBPU1yU5o7g5D8zUw03fzGkZeLp7cCWR4zkernFu7BmJi3YrtQYiHfOFmx-ay24B_TOmBnBWrp8bEW8OMSYIEYlL28YRAhu71j5liT7MOx1n2_71Esj0CIKkgXVUZ6LkFuVJlhvaasSIbEwUwgfhBQqdl2sooInNo05Yg6WC25Dq0KEG6GW6OUH0JhMJ-YQiIkSFStruGKacyOVdZnLmsBIwQObtoFVZskK3zfcyVe8ZnXHY2fJDGdlzpIZb8P5asps2TTjv8GdytaZ9595Vu92Gy4q-9ef_1zs6P_FjmEDAY9YXljsQGPx8WlOEFQs8lP_53wBfszFbQ priority: 102 providerName: ProQuest |
Title | Deep residual learning for image steganalysis |
URI | https://link.springer.com/article/10.1007/s11042-017-4440-4 https://www.proquest.com/docview/2036972780 |
Volume | 77 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RdoGBRwFRKJUHJlCkPJzEHltoWoGoEKJSmSIntiskKBUt_59z6jSAAInJQ2wP59zdd_ruAXDGVKxyjsjNCzUGKIFwHSY86ciMM8ldGQhpGN3bUTQc0-tJOLF13Isy272kJAtLXRW7eaaUxFhVaghJWoNGiKG7yeMa-901dRCFdpItcx10h15JZf50xVdnVCHMb6Ro4WuSXdi2IJF0V6-6Bxtq1oSdcgADsfrYhK1P3QT3wblSak4wfC7qq4idBzElCEvJ0wvaDYIvOhW2C8kBjJP-w-XQsdMQnDzwoqUjgyxjPtUijjDEklpEjGMsJhAxMM5EaBpXBTmNdBxShBluxqj2tfARYfiSo2IfQn32OlNHQFQQiVBoRYUrKVVcaOOstPIUZ9TTcQvcUixpbluFm4kVz2nV5NhIMsVTqZFkSltwvj4yX_XJ-Gtzu5R1alVmkRpGlCOaYm4LLkr5V59_vez4X7tPYBMhD1ulLLahvnx7V6cIK5ZZB2osGXSg0U16vZFZB483fVx7_dHdfaf4yT4Ak6PGAg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8JAEJ4oHtSDD9SIou5BL5rGPrZl92CMERHkcYKEW912d4mJAgrG-Kf8jc6WFtREbpzb3cN0dr6ZfjvzAZwyVVIxx8zN8TUWKJ6wLSYcacmIM8lt6QlpGN1mK6h26EPX7y7BV9YLY65VZjExCdRyEJt_5JeGMOMItsy-Hr5aRjXKsKuZhMbELerq8wNLttFVrYzf98x1K3ft26qVqgpYsecEY0t6UcRcqkUpwFJFahEwjjWNQORlnAnfDIDyYhrokk8Rru2IUe1q4SJSu5LjAcF9l2GFeojkpjO9cj9lLQI_FdFltoVI7GQsatKq55hGGIMJ1NCp9DcOzpLbP3xsAnOVLdhI81NyM3GobVhS_TxsZtoPJA0FeVj_MchwB6yyUkOClXvS2kVSKYoewYyYPL1gyCLoTD2RDkDZhc5CTLYHuf6gr_aBKC8QvtCKCltSqrjQBie1chRn1NGlAtiZWcI4nVJuxDKew9l8ZWPJEFeFxpIhLcD5dMlwMqJj3svFzNZhelpH4cy3CnCR2X_2-N_NDuZvdgKr1XazETZqrfohrGGqxSZXJYuQG7-9qyNMZ8bRceJDBB4X7bTfasz-WQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT8MwDLZgSAgOvBGDATnABVStj7RNDggB2zRe04RA2q2kTTIhwTbYEOKv8etwtnQDJLhxbpOD6_iz-8X-APaYilXGMXPzQo0FSiBchwlPOjLlTHJXBkIaRve6EdXv6EUrbE3BR94LY65V5jFxGKhlNzP_yMuGMOMItswta3stolmpHfeeHaMgZZjWXE5j5CKX6v0Ny7f-0XkFv_W-79eqt2d1xyoMOFngRQNHBmnKfKpFHGHZIrWIGMf6RiAKM85EaIZBBRmNdBxShG43ZVT7WviI2r7keFhw32mYiU1VVICZ02qjeTPmMKLQSuoy10Fc9nJOddi455m2GIMQ1JCr9DsqTlLdH-zsEPRqS7Bgs1VyMnKvZZhSnRVYzJUgiA0MKzD_ZazhKjgVpXoE6_hhoxexwhRtgvkxeXjCAEbQtdrCjkNZg7t_Mdo6FDrdjtoAooJIhEIrKlxJqeJCG9TUylOcUU_HRXBzsySZnVlupDMek8m0ZWPJBFclxpIJLcLBeElvNLDjr5dLua0Te3b7ycTTinCY23_y-NfNNv_ebBdm0WGTq_PG5RbMYd7FRvcmS1AYvLyqbcxtBumOdSIC9__tt5_nBAP6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+residual+learning+for+image+steganalysis&rft.jtitle=Multimedia+tools+and+applications&rft.au=Wu%2C+Songtao&rft.au=Zhong%2C+Shenghua&rft.au=Liu%2C+Yan&rft.date=2018-05-01&rft.pub=Springer+US&rft.issn=1380-7501&rft.eissn=1573-7721&rft.volume=77&rft.issue=9&rft.spage=10437&rft.epage=10453&rft_id=info:doi/10.1007%2Fs11042-017-4440-4&rft.externalDocID=10_1007_s11042_017_4440_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1380-7501&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1380-7501&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1380-7501&client=summon |