Positive Solutions for a Class of Fractional p-Laplacian Equation with Critical Sobolev Exponent and Decaying Potentials

In this paper, we study the existence of positive solution for the p -Laplacian equations with fractional critical nonlinearity { ( − Δ ) p s u + V ( x ) | u | p − 2 u = K ( x ) f ( u ) + P ( x ) | u | p s ∗ − 2 u , x ∈ ℝ N , u ∈ D s , p ( ℝ N ) , where s ∈ ( 0 , 1 ) , p s ∗ = N p N − s p , N > s...

Full description

Saved in:
Bibliographic Details
Published inActa Mathematicae Applicatae Sinica Vol. 38; no. 2; pp. 463 - 483
Main Authors Li, Na, He, Xiao-ming
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.04.2022
Springer Nature B.V
EditionEnglish series
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this paper, we study the existence of positive solution for the p -Laplacian equations with fractional critical nonlinearity { ( − Δ ) p s u + V ( x ) | u | p − 2 u = K ( x ) f ( u ) + P ( x ) | u | p s ∗ − 2 u , x ∈ ℝ N , u ∈ D s , p ( ℝ N ) , where s ∈ ( 0 , 1 ) , p s ∗ = N p N − s p , N > s p , p > 1 and V ( x ), K ( x ) are positive continuous functions which vanish at infinity, f is a function with a subcritical growth, and P ( x ) is bounded, nonnegative continuous function. By using variational method in the weighted spaces, we prove the above problem has at least one positive solution.
AbstractList In this paper, we study the existence of positive solution for the p -Laplacian equations with fractional critical nonlinearity { ( − Δ ) p s u + V ( x ) | u | p − 2 u = K ( x ) f ( u ) + P ( x ) | u | p s ∗ − 2 u , x ∈ ℝ N , u ∈ D s , p ( ℝ N ) , where s ∈ ( 0 , 1 ) , p s ∗ = N p N − s p , N > s p , p > 1 and V ( x ), K ( x ) are positive continuous functions which vanish at infinity, f is a function with a subcritical growth, and P ( x ) is bounded, nonnegative continuous function. By using variational method in the weighted spaces, we prove the above problem has at least one positive solution.
In this paper, we study the existence of positive solution for the p-Laplacian equations with fractional critical nonlinearity {(−Δ)psu+V(x)|u|p−2u=K(x)f(u)+P(x)|u|ps∗−2u,x∈ℝN,u∈Ds,p(ℝN), where s∈(0,1),ps∗=NpN−sp,N>sp,p>1 and V(x), K(x) are positive continuous functions which vanish at infinity, f is a function with a subcritical growth, and P(x) is bounded, nonnegative continuous function. By using variational method in the weighted spaces, we prove the above problem has at least one positive solution.
Author He, Xiao-ming
Li, Na
Author_xml – sequence: 1
  givenname: Na
  surname: Li
  fullname: Li, Na
  organization: College of Science, Minzu University of China
– sequence: 2
  givenname: Xiao-ming
  surname: He
  fullname: He, Xiao-ming
  email: xmhe923@126.com
  organization: College of Science, Minzu University of China
BookMark eNp1kM1LxDAQxYMouH78Ad4CnqOTpG3So6zrByy4sHoO0zRdK7WpSVfd_94sFTx5Gnjz3o-Zd0IOe987Qi44XHEAdR05iDxnIATjUALTB2TGC66ZLKU4JDPghWZloeQxOYnxDYArWagZ-V752I7tp6Nr323H1veRNj5QpPMOY6S-oXcB7X6BHR3YEocObYs9XXxscS_Tr3Z8pfOQKDZZ1r7ynfuki-8hXdiPFPua3jqLu7bf0JUfk9ZiF8_IUZOGO_-dp-TlbvE8f2DLp_vH-c2SWcmLkdm6yLhWtVROVtqJykFtpbOQu0rVqgDUTamyXFSALgOUtZQZohAqq0GVtTwllxN3CP5j6-Jo3vw2pGeiEUWmEyHTkFx8ctngYwyuMUNo3zHsDAezL9hMBZtUsNkXbHTKiCkTk7ffuPBH_j_0A-eYgPE
CitedBy_id crossref_primary_10_1016_j_aml_2022_108422
crossref_primary_10_1002_mana_202300015
crossref_primary_10_11948_20220353
Cites_doi 10.1016/S0252-9602(18)30091-2
10.4171/RMI/921
10.3934/dcds.2016.36.1813
10.1016/S0362-546X(03)00129-9
10.1017/CBO9781316282397
10.1007/s10231-009-0109-6
10.3934/dcds.2018254
10.1007/BF00946631
10.1016/0022-1236(73)90051-7
10.1515/acv-2015-0007
10.1016/j.bulsci.2011.12.004
10.1007/s00526-013-0600-1
10.1080/03605300600987306
10.1142/S0219199715500637
10.1017/S0308210511000746
10.1016/j.anihpc.2015.04.003
10.1007/s00229-016-0878-3
10.4171/JEMS/24
10.1016/j.jde.2012.11.013
10.1090/S0002-9939-1983-0699419-3
10.1002/cpa.3160360405
10.1016/j.jde.2017.02.051
10.3934/dcds.2010.28.469
10.1112/jlms.12009
10.1007/s10231-019-00880-7
10.11650/tjm/7947
10.3934/cpaa.2017004
10.1016/j.jfa.2014.05.023
10.1007/s00526-016-0958-y
10.1515/acv-2014-0024
10.1007/978-1-4612-4146-1
10.1007/s00009-017-0846-51660-5446/17/020001-14
ContentType Journal Article
Copyright The Editorial Office of AMAS & Springer-Verlag GmbH Germany 2022
The Editorial Office of AMAS & Springer-Verlag GmbH Germany 2022.
Copyright_xml – notice: The Editorial Office of AMAS & Springer-Verlag GmbH Germany 2022
– notice: The Editorial Office of AMAS & Springer-Verlag GmbH Germany 2022.
DBID AAYXX
CITATION
DOI 10.1007/s10255-022-1090-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1618-3932
Edition English series
EndPage 483
ExternalDocumentID 10_1007_s10255_022_1090_8
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5QI
5VR
5VS
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPOP
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFLOW
AFMKY
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGPAZ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
CAG
CCEZO
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
P9R
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
ZWQNP
~A9
~EX
-SA
-S~
5XA
5XB
AACDK
AAEOY
AAJBT
AASML
AAXDM
AAYXX
AAYZH
ABAKF
ABQSL
ACAOD
ACDTI
ACZOJ
AEARS
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
CAJEA
CITATION
H13
Q--
U1G
U5K
ID FETCH-LOGICAL-c316t-cd64187d37e3b8e2be0dc3ec05eb7d760a8f97452b0ae40a3d334aa2274d079d3
IEDL.DBID AGYKE
ISSN 0168-9673
IngestDate Thu Oct 10 16:38:33 EDT 2024
Fri Dec 06 02:19:05 EST 2024
Sat Dec 16 12:08:16 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 35J62
Variational methods
35J50
Mountain Pass Theorem
35B65
Fractional
Critical growth
Vanishing potential
Laplacian
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-cd64187d37e3b8e2be0dc3ec05eb7d760a8f97452b0ae40a3d334aa2274d079d3
PQID 2648760480
PQPubID 2043978
PageCount 21
ParticipantIDs proquest_journals_2648760480
crossref_primary_10_1007_s10255_022_1090_8
springer_journals_10_1007_s10255_022_1090_8
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Acta Mathematicae Applicatae Sinica
PublicationTitleAbbrev Acta Math. Appl. Sin. Engl. Ser
PublicationYear 2022
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Lindgren, Lindqvist (CR31) 2014; 49
Felmer, Quaas, Tan (CR23) 2012; 142
Alves, Souto (CR1) 2013; 254
Brasco, Parini, Squassina (CR9) 2016; 36
(CR30) 2016; 23
(CR36) 2016; 55
Bonheure, Schaftingen (CR8) 2010; 189
Brasco, Mosconi, Squassina (CR10) 2016; 55
Li, Li, Teng, Wu (CR29) 2017; 14
Ambrosio, Isernia (CR7) 2018; 38
Iannizzotto, Squassina (CR27) 2014; 88
Nezza, Palatucci, Valdinoci (CR20) 2012; 136
Brasco, Parini (CR11) 2016; 9
Brezis, Nirenberg (CR13) 1983; 36
Di Castro, Kuusi, Palatucci (CR16) 2014; 267
Iannizzotto, Mosconi, Squassina (CR25) 2016; 32
Ambrosio, Figueiredo, Isernia (CR6) 2020; 199
Rabinowitz (CR39) 1992; 43
Opic, Kufner (CR37) 1990
Caffarelli, Silvestre (CR14) 2007; 32
Mercuri, Willem (CR34) 2010; 28
Ambrosetti, Wang (CR4) 2005; 18
Torres (CR38) 2017; 16
CR5
Deng, Guo, Wang (CR18) 2003; 54
Molica Bisci, Rǎdulescu, Servadei (CR35) 2016
Mawhin, Bisci (CR33) 2017; 95
Dipierro, Medina, Peral, Valdinoci (CR21) 2017; 153
Ambrosetti, Rabinowitz (CR3) 1973; 14
Ambrosetti, Felli, Malchiodi (CR2) 2005; 7
Castro, Kuusi, Palatucci (CR15) 2016; 33
Iannizzotto, Liu, Perera, Squassina (CR26) 2014; 9
do Ó, Miyagaki, Squassina (CR22) 2016; 18
Del Pezzo, Quaas (CR19) 2017; 263
Franzina, Palatucci (CR24) 2014; 5
CR40
Zhu (CR41) 1990; 31
Brezis, Lieb (CR12) 1983; 88
Deng, Li, Shuai (CR17) 2016; 36
Luo, Tang, Li (CR32) 2017; 21
Li (CR28) 1994; 14
A Iannizzotto (1090_CR25) 2016; 32
V Ambrosio (1090_CR6) 2020; 199
A Di Castro (1090_CR16) 2014; 267
L M Del Pezzo (1090_CR19) 2017; 263
1090_CR40
1090_CR5
P Rabinowitz (1090_CR39) 1992; 43
Y Deng (1090_CR17) 2016; 36
(1090_CR30) 2016; 23
A Ambrosetti (1090_CR4) 2005; 18
G Li (1090_CR28) 1994; 14
A Iannizzotto (1090_CR27) 2014; 88
A Ambrosetti (1090_CR2) 2005; 7
P Felmer (1090_CR23) 2012; 142
L Caffarelli (1090_CR14) 2007; 32
E Lindgren (1090_CR31) 2014; 49
G Molica Bisci (1090_CR35) 2016
(1090_CR36) 2016; 55
CE Torres (1090_CR38) 2017; 16
L Brasco (1090_CR9) 2016; 36
L Brasco (1090_CR10) 2016; 55
X Zhu (1090_CR41) 1990; 31
S Dipierro (1090_CR21) 2017; 153
C Mercuri (1090_CR34) 2010; 28
A Ambrosetti (1090_CR3) 1973; 14
H Brezis (1090_CR12) 1983; 88
Y Deng (1090_CR18) 2003; 54
E Nezza (1090_CR20) 2012; 136
H Luo (1090_CR32) 2017; 21
JM do Ó (1090_CR22) 2016; 18
D Bonheure (1090_CR8) 2010; 189
G Franzina (1090_CR24) 2014; 5
A Iannizzotto (1090_CR26) 2014; 9
A D Castro (1090_CR15) 2016; 33
L Brasco (1090_CR11) 2016; 9
J Mawhin (1090_CR33) 2017; 95
C Alves (1090_CR1) 2013; 254
V Ambrosio (1090_CR7) 2018; 38
Q Li (1090_CR29) 2017; 14
B Opic (1090_CR37) 1990
H Brezis (1090_CR13) 1983; 36
References_xml – volume: 14
  start-page: 64
  year: 1994
  end-page: 74
  ident: CR28
  article-title: The existence of a weak solution of quasilinear elliptic equation with critical Sobolev exponent on unbounded domain
  publication-title: Acta Math. Sci.
  doi: 10.1016/S0252-9602(18)30091-2
  contributor:
    fullname: Li
– volume: 55
  issue: 4
  year: 2016
  ident: CR36
  publication-title: Calc. Var. Partial Differential Equations
– volume: 32
  start-page: 1353
  year: 2016
  end-page: 1392
  ident: CR25
  article-title: Global Hölder regularity for the fractional -Laplacian
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/RMI/921
  contributor:
    fullname: Squassina
– volume: 36
  start-page: 1813
  year: 2016
  end-page: 1845
  ident: CR9
  article-title: Stability of variational eigenvalues for the fractional -Laplacian
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2016.36.1813
  contributor:
    fullname: Squassina
– volume: 54
  start-page: 1121
  year: 2003
  end-page: 1151
  ident: CR18
  article-title: Nodal solutions for -Laplace equations with critical growth
  publication-title: Nonlin. Analysis, TMA.
  doi: 10.1016/S0362-546X(03)00129-9
  contributor:
    fullname: Wang
– start-page: 162
  year: 2016
  ident: CR35
  publication-title: Variational Methods for Nonlocal Fractional Problems
  doi: 10.1017/CBO9781316282397
  contributor:
    fullname: Servadei
– volume: 189
  start-page: 273
  year: 2010
  end-page: 301
  ident: CR8
  article-title: Van. Ground states for the nonlinear Schrödinger equation with potentials vanishing at infinitly
  publication-title: Annali Mat. Pura Appl.
  doi: 10.1007/s10231-009-0109-6
  contributor:
    fullname: Schaftingen
– volume: 38
  start-page: 5835
  year: 2018
  end-page: 5881
  ident: CR7
  article-title: Multiplicity results for nonlinear Schrödinger Equations with the fractional -Laplacian
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2018254
  contributor:
    fullname: Isernia
– volume: 43
  start-page: 270
  year: 1992
  end-page: 291
  ident: CR39
  article-title: On a class of nonlinear Schrödinger equations
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF00946631
  contributor:
    fullname: Rabinowitz
– volume: 14
  start-page: 349
  year: 1973
  end-page: 381
  ident: CR3
  article-title: Dual varitional methods in critical point theory and applications
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(73)90051-7
  contributor:
    fullname: Rabinowitz
– volume: 9
  start-page: 323
  year: 2016
  end-page: 355
  ident: CR11
  article-title: The second eigenvalue of the fractional -Laplacian
  publication-title: Adv. Calc. Var.
  doi: 10.1515/acv-2015-0007
  contributor:
    fullname: Parini
– volume: 136
  start-page: 521
  year: 2012
  end-page: 573
  ident: CR20
  article-title: Hitchhiker’s guide to the fractional Sobolev spaces
  publication-title: Bull. Sci. Math.
  doi: 10.1016/j.bulsci.2011.12.004
  contributor:
    fullname: Valdinoci
– volume: 88
  start-page: 233
  year: 2014
  end-page: 245
  ident: CR27
  article-title: Weyl-type laws for fractional -eigenvalue problems
  publication-title: Asymptot. Anal. TMA
  contributor:
    fullname: Squassina
– volume: 49
  start-page: 795
  year: 2014
  end-page: 826
  ident: CR31
  article-title: Fractional eigenvalues
  publication-title: Calc. Var. Partial Differential Equations
  doi: 10.1007/s00526-013-0600-1
  contributor:
    fullname: Lindqvist
– volume: 32
  start-page: 1245
  year: 2007
  end-page: 1260
  ident: CR14
  article-title: An extension problem related to the fractional Laplacian
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605300600987306
  contributor:
    fullname: Silvestre
– volume: 18
  start-page: 1550063
  issue: 06
  year: 2016
  ident: CR22
  article-title: Critical and subcritical fractional problems with vanishing potentials
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S0219199715500637
  contributor:
    fullname: Squassina
– volume: 142
  start-page: 1237
  year: 2012
  end-page: 1262
  ident: CR23
  article-title: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian
  publication-title: Proc. Roy. Soc. Edinburgh Sect. A
  doi: 10.1017/S0308210511000746
  contributor:
    fullname: Tan
– volume: 33
  start-page: 1279
  year: 2016
  end-page: 1299
  ident: CR15
  article-title: Local behavior of fractional -minimizers
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2015.04.003
  contributor:
    fullname: Palatucci
– volume: 153
  start-page: 183
  year: 2017
  end-page: 230
  ident: CR21
  article-title: Bifurcation results for a fractional elliptic equation with critical exponent in ℝ
  publication-title: Manuscripta Math.
  doi: 10.1007/s00229-016-0878-3
  contributor:
    fullname: Valdinoci
– volume: 18
  start-page: 1321
  year: 2005
  end-page: 1332
  ident: CR4
  article-title: Nonlinear Schrödinger equations with vanishing and decaying potential
  publication-title: Diff. Integ. Eqns.
  contributor:
    fullname: Wang
– ident: CR40
– volume: 7
  start-page: 117
  year: 2005
  end-page: 144
  ident: CR2
  article-title: Ground states of nonlinear Schrödinger equations with potentials vanishing at infinitly
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/JEMS/24
  contributor:
    fullname: Malchiodi
– volume: 254
  start-page: 1977
  year: 2013
  end-page: 1991
  ident: CR1
  article-title: Existence of solutions for a class of nonlinear Schrödinger equations with potentials vanishing at infinitly
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2012.11.013
  contributor:
    fullname: Souto
– volume: 88
  start-page: 486
  year: 1983
  end-page: 490
  ident: CR12
  article-title: A relation between pointwise convergence of functions and convergence of functionals
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1983-0699419-3
  contributor:
    fullname: Lieb
– volume: 31
  start-page: 1161
  year: 1990
  end-page: 1181
  ident: CR41
  article-title: Nontrivial solution of quasilinear elliptic equation involving critical Sobolev exponent
  publication-title: Sci. Sinica.
  contributor:
    fullname: Zhu
– volume: 36
  start-page: 437
  year: 1983
  end-page: 477
  ident: CR13
  article-title: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents
  publication-title: Commun. Pure. Appl. Math.
  doi: 10.1002/cpa.3160360405
  contributor:
    fullname: Nirenberg
– volume: 263
  start-page: 765
  year: 2017
  end-page: 778
  ident: CR19
  article-title: A Hopf’s lemma and a strong minimum principle for the fractional -Laplacian
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2017.02.051
  contributor:
    fullname: Quaas
– volume: 28
  start-page: 469
  year: 2010
  end-page: 493
  ident: CR34
  article-title: A global compactness result for the -Laplacian involving critical nonlinearities
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2010.28.469
  contributor:
    fullname: Willem
– volume: 95
  start-page: 73
  year: 2017
  end-page: 93
  ident: CR33
  article-title: A Brezis-Nirenberg type result for a nonlocal fractional operator
  publication-title: J. London Math. Soc. (2)
  doi: 10.1112/jlms.12009
  contributor:
    fullname: Bisci
– volume: 199
  start-page: 317
  year: 2020
  end-page: 344
  ident: CR6
  article-title: Existence and concentration of positive solutions for -fractional Schrödinger equations
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-019-00880-7
  contributor:
    fullname: Isernia
– volume: 21
  start-page: 1017
  year: 2017
  end-page: 1035
  ident: CR32
  article-title: Multiple Solutions of Nonlinear Schrödinger Equation with the Fractional -Laplacian
  publication-title: Taiwan. J. Math.
  doi: 10.11650/tjm/7947
  contributor:
    fullname: Li
– volume: 9
  start-page: 101
  year: 2014
  end-page: 125
  ident: CR26
  article-title: Existence results for fractional -Laplacian problems via Morse theory
  publication-title: Adv. Calc. Var.
  contributor:
    fullname: Squassina
– volume: 16
  start-page: 99
  year: 2017
  end-page: 113
  ident: CR38
  article-title: Existence and symmetry result for fractional -Laplacian in
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2017004
  contributor:
    fullname: Torres
– volume: 267
  start-page: 1807
  year: 2014
  end-page: 1836
  ident: CR16
  article-title: Nonlocal Harnack inequalities
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2014.05.023
  contributor:
    fullname: Palatucci
– volume: 23
  issue: 5
  year: 2016
  ident: CR30
  publication-title: Nonlinear Diff. Equat. Appl.
– ident: CR5
– volume: 55
  start-page: 32
  year: 2016
  ident: CR10
  article-title: Optimal decay of extremal functions for the fractional Sobolev inequality
  publication-title: Calc. Var. Partial Differ. Equations
  doi: 10.1007/s00526-016-0958-y
  contributor:
    fullname: Squassina
– volume: 36
  start-page: 683
  year: 2016
  end-page: 699
  ident: CR17
  article-title: Existence of solutions for a class of -Laplacian type equation with critical growth and potential vanishing at infinity
  publication-title: Discrete Cont. Dyna. Syst.
  contributor:
    fullname: Shuai
– volume: 14
  start-page: 14:80
  year: 2017
  ident: CR29
  article-title: Existence of positive solutions for a class of critical fractional Schrödinger equations with potential vanishing at infinity
  publication-title: Mediter. J. Math.
  contributor:
    fullname: Wu
– year: 1990
  ident: CR37
  publication-title: Hardy-Type Inequalities
  contributor:
    fullname: Kufner
– volume: 5
  start-page: 373
  year: 2014
  end-page: 386
  ident: CR24
  article-title: Fractional -eigenvalues
  publication-title: Riv. Math. Univ. Parma (N.S.)
  contributor:
    fullname: Palatucci
– volume: 9
  start-page: 101
  year: 2014
  ident: 1090_CR26
  publication-title: Adv. Calc. Var.
  doi: 10.1515/acv-2014-0024
  contributor:
    fullname: A Iannizzotto
– volume: 28
  start-page: 469
  year: 2010
  ident: 1090_CR34
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2010.28.469
  contributor:
    fullname: C Mercuri
– volume: 32
  start-page: 1245
  year: 2007
  ident: 1090_CR14
  publication-title: Comm. Partial Differential Equations
  doi: 10.1080/03605300600987306
  contributor:
    fullname: L Caffarelli
– volume: 55
  start-page: 32
  year: 2016
  ident: 1090_CR10
  publication-title: Calc. Var. Partial Differ. Equations
  doi: 10.1007/s00526-016-0958-y
  contributor:
    fullname: L Brasco
– start-page: 162
  volume-title: Variational Methods for Nonlocal Fractional Problems
  year: 2016
  ident: 1090_CR35
  doi: 10.1017/CBO9781316282397
  contributor:
    fullname: G Molica Bisci
– volume: 9
  start-page: 323
  year: 2016
  ident: 1090_CR11
  publication-title: Adv. Calc. Var.
  doi: 10.1515/acv-2015-0007
  contributor:
    fullname: L Brasco
– volume-title: Hardy-Type Inequalities
  year: 1990
  ident: 1090_CR37
  contributor:
    fullname: B Opic
– volume: 55
  issue: 4
  year: 2016
  ident: 1090_CR36
  publication-title: Calc. Var. Partial Differential Equations
– ident: 1090_CR40
  doi: 10.1007/978-1-4612-4146-1
– volume: 31
  start-page: 1161
  year: 1990
  ident: 1090_CR41
  publication-title: Sci. Sinica.
  contributor:
    fullname: X Zhu
– volume: 136
  start-page: 521
  year: 2012
  ident: 1090_CR20
  publication-title: Bull. Sci. Math.
  doi: 10.1016/j.bulsci.2011.12.004
  contributor:
    fullname: E Nezza
– volume: 142
  start-page: 1237
  year: 2012
  ident: 1090_CR23
  publication-title: Proc. Roy. Soc. Edinburgh Sect. A
  doi: 10.1017/S0308210511000746
  contributor:
    fullname: P Felmer
– volume: 267
  start-page: 1807
  year: 2014
  ident: 1090_CR16
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2014.05.023
  contributor:
    fullname: A Di Castro
– volume: 23
  issue: 5
  year: 2016
  ident: 1090_CR30
  publication-title: Nonlinear Diff. Equat. Appl.
– ident: 1090_CR5
– volume: 54
  start-page: 1121
  year: 2003
  ident: 1090_CR18
  publication-title: Nonlin. Analysis, TMA.
  doi: 10.1016/S0362-546X(03)00129-9
  contributor:
    fullname: Y Deng
– volume: 36
  start-page: 683
  year: 2016
  ident: 1090_CR17
  publication-title: Discrete Cont. Dyna. Syst.
  contributor:
    fullname: Y Deng
– volume: 14
  start-page: 14:80
  year: 2017
  ident: 1090_CR29
  publication-title: Mediter. J. Math.
  doi: 10.1007/s00009-017-0846-51660-5446/17/020001-14
  contributor:
    fullname: Q Li
– volume: 32
  start-page: 1353
  year: 2016
  ident: 1090_CR25
  publication-title: Rev. Mat. Iberoam.
  doi: 10.4171/RMI/921
  contributor:
    fullname: A Iannizzotto
– volume: 16
  start-page: 99
  year: 2017
  ident: 1090_CR38
  publication-title: Commun. Pure Appl. Anal.
  doi: 10.3934/cpaa.2017004
  contributor:
    fullname: CE Torres
– volume: 43
  start-page: 270
  year: 1992
  ident: 1090_CR39
  publication-title: Z. Angew. Math. Phys.
  doi: 10.1007/BF00946631
  contributor:
    fullname: P Rabinowitz
– volume: 88
  start-page: 486
  year: 1983
  ident: 1090_CR12
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/S0002-9939-1983-0699419-3
  contributor:
    fullname: H Brezis
– volume: 5
  start-page: 373
  year: 2014
  ident: 1090_CR24
  publication-title: Riv. Math. Univ. Parma (N.S.)
  contributor:
    fullname: G Franzina
– volume: 18
  start-page: 1321
  year: 2005
  ident: 1090_CR4
  publication-title: Diff. Integ. Eqns.
  contributor:
    fullname: A Ambrosetti
– volume: 33
  start-page: 1279
  year: 2016
  ident: 1090_CR15
  publication-title: Ann. Inst. H. Poincaré Anal. Non Linéaire
  doi: 10.1016/j.anihpc.2015.04.003
  contributor:
    fullname: A D Castro
– volume: 14
  start-page: 64
  year: 1994
  ident: 1090_CR28
  publication-title: Acta Math. Sci.
  doi: 10.1016/S0252-9602(18)30091-2
  contributor:
    fullname: G Li
– volume: 49
  start-page: 795
  year: 2014
  ident: 1090_CR31
  publication-title: Calc. Var. Partial Differential Equations
  doi: 10.1007/s00526-013-0600-1
  contributor:
    fullname: E Lindgren
– volume: 199
  start-page: 317
  year: 2020
  ident: 1090_CR6
  publication-title: Ann. Mat. Pura Appl.
  doi: 10.1007/s10231-019-00880-7
  contributor:
    fullname: V Ambrosio
– volume: 153
  start-page: 183
  year: 2017
  ident: 1090_CR21
  publication-title: Manuscripta Math.
  doi: 10.1007/s00229-016-0878-3
  contributor:
    fullname: S Dipierro
– volume: 36
  start-page: 437
  year: 1983
  ident: 1090_CR13
  publication-title: Commun. Pure. Appl. Math.
  doi: 10.1002/cpa.3160360405
  contributor:
    fullname: H Brezis
– volume: 14
  start-page: 349
  year: 1973
  ident: 1090_CR3
  publication-title: J. Funct. Anal.
  doi: 10.1016/0022-1236(73)90051-7
  contributor:
    fullname: A Ambrosetti
– volume: 7
  start-page: 117
  year: 2005
  ident: 1090_CR2
  publication-title: J. Eur. Math. Soc.
  doi: 10.4171/JEMS/24
  contributor:
    fullname: A Ambrosetti
– volume: 36
  start-page: 1813
  year: 2016
  ident: 1090_CR9
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2016.36.1813
  contributor:
    fullname: L Brasco
– volume: 189
  start-page: 273
  year: 2010
  ident: 1090_CR8
  publication-title: Annali Mat. Pura Appl.
  doi: 10.1007/s10231-009-0109-6
  contributor:
    fullname: D Bonheure
– volume: 18
  start-page: 1550063
  issue: 06
  year: 2016
  ident: 1090_CR22
  publication-title: Commun. Contemp. Math.
  doi: 10.1142/S0219199715500637
  contributor:
    fullname: JM do Ó
– volume: 21
  start-page: 1017
  year: 2017
  ident: 1090_CR32
  publication-title: Taiwan. J. Math.
  doi: 10.11650/tjm/7947
  contributor:
    fullname: H Luo
– volume: 88
  start-page: 233
  year: 2014
  ident: 1090_CR27
  publication-title: Asymptot. Anal. TMA
  contributor:
    fullname: A Iannizzotto
– volume: 254
  start-page: 1977
  year: 2013
  ident: 1090_CR1
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2012.11.013
  contributor:
    fullname: C Alves
– volume: 263
  start-page: 765
  year: 2017
  ident: 1090_CR19
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2017.02.051
  contributor:
    fullname: L M Del Pezzo
– volume: 38
  start-page: 5835
  year: 2018
  ident: 1090_CR7
  publication-title: Discrete Contin. Dyn. Syst.
  doi: 10.3934/dcds.2018254
  contributor:
    fullname: V Ambrosio
– volume: 95
  start-page: 73
  year: 2017
  ident: 1090_CR33
  publication-title: J. London Math. Soc. (2)
  doi: 10.1112/jlms.12009
  contributor:
    fullname: J Mawhin
SSID ssj0017367
Score 2.3101017
Snippet In this paper, we study the existence of positive solution for the p -Laplacian equations with fractional critical nonlinearity { ( − Δ ) p s u + V ( x ) | u |...
In this paper, we study the existence of positive solution for the p-Laplacian equations with fractional critical nonlinearity...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 463
SubjectTerms Applications of Mathematics
Continuity (mathematics)
Laplace equation
Math Applications in Computer Science
Mathematical and Computational Physics
Mathematics
Mathematics and Statistics
Theoretical
Title Positive Solutions for a Class of Fractional p-Laplacian Equation with Critical Sobolev Exponent and Decaying Potentials
URI https://link.springer.com/article/10.1007/s10255-022-1090-8
https://www.proquest.com/docview/2648760480
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELb6WGDgjSiUygMTyJUbx0k6VtBSAUUdqFSmyI6dpSgtbVpV_HrOeZXn0DWxLonPlzvfffcZoat2qJRpxCEek4ZU2-VEWlIRyWUgVJu1ecK2P3h2-iP7YczHJWQVqYto0swrksmP-kuvG0S_xIDPDZaQeGVUBddjjLHauX997Ba1A5c5aZO0A6bsuCyvZf4l5Ls32oSYP6qiibPp7acNgIuEo9BgTCbNZSybwcdvBsctvuMA7WWxJ-6ki-UQlXR0hHYHBXHr4hithwmIa6VxkS_DENZigZPTM_E0xL152gsBkmbkSRhQFywx3H1PScOxyezi_AQFECOnb3qFu-vZNAIHh0Wk8J0OhGmvwsNpbNBKYAInaNTrvtz2SXY4AwlYy4lJoBy75bmKuZpJT1tSUxUwHVCupatchwovhL0KtyQV2qaCKcZsISzYBSvqthU7RZUIHnyGMFw3rIXaljyA3aIlNGUqhDiDc0-p0Kuh61xJ_izl4PA3bMtmOn2YTlNLpz4Mrudq9DNzXPgGxgevZHu0hm5ytWxu_yvsfKvRF2jHMnpNcD11VInnS30JIUssG9kabaDyyOp8AoBk414
link.rule.ids 314,780,784,27924,27925,41081,41523,42150,42592,52111,52234
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb8SjgAcmkJEbx0k6VtBSoEUdigRTZMfOAmpKGxDi13POo4UKhq6JdXZ859zZ991ngLNGrLUtxKEBV5ZU2xdUOUpTJVQkdYM3RMa233vwOo_u3ZN4Kuq4JyXavUxJZn_qH8VuGP5Siz63YEIaLEPVRYfFKlBt3jzft6bJA597eZW0h2vZ83mZzPxLyG93NIsx59Kimbdpb8CgHGcOMnm5fE_VZfQ1R-G44IdswnoRfZJmbi5bsGSG27DWm1K3Tnbgs5_BuD4MmZ6YEQxsiSTZ_ZkkiUl7nFdDoKQR7UoL60IjI623nDac2LNdUt6hgGJU8mo-SOtzlAzRxRE51OTaRNIWWJF-klq8Ei6CXXhstwZXHVpcz0AjXvdSGmnPrQe-5r7hKjCOMkxH3ERMGOVr32MyiHG3IhzFpHGZ5JpzV0oH98Ga-Q3N96AyxI73geBzy1toXCUi3C860jCuY4w0hAi0joMDOC-1FI5yFo5wxrdspzPE6bTZdBZi41qpx7BYkJPQAvlwSG7ADuCiVMvs9b_CDhdqfQornUGvG3ZvH-6PYNWxOs5QPjWopON3c4wBTKpOCoP9BpCZ5kk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gSAgOiKcYDMiBEyhaaJo-jhPbNGCbdmDSblXSpCfUjm1M-_nYfWyA4MC1jdzKcWQ7_vyZkNswMQYbcVggNJJq-5JpRxumpY6VCUUoc7b9wdDrjd3niZyUc07nFdq9KkkWPQ3I0pQumlOTNL80vkEozBCJjsBCFmyTHfREaOhjp7UuI_jCK_qlPTjVni-qsuZvIr47pk20-aNAmvud7iE5KANG2ip2-Ihs2fSY7A_WbKvzE7Ia5cirpaXrSy4KsShVNB95SbOEdmdFAwNImrK-QiQW2AXtvBdM3xSvY2k19gDE6OzNLmlnNc1S0ApVqaFtGyvsiaKjDDWFdntKxt3O62OPlRMVWCwevAWLjec-BL4RvhU6sI623MTCxlxa7Rvf4ypIIMGQjubKulwJI4SrlAOpq-F-aMQZqaXw4XNC4TlSDVpXyxhSPEdZLkwCwYGUgTFJUCd3lTqjaUGcEW0oklH3EegeC-A8gsWNSuFReYbmEWLv4JfcgNfJfbUJm9d_Crv41-obsjtqd6P-0_Dlkuw5aA85LqdBaovZh72CkGOhr3Oz-gSlSs3U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+Solutions+for+a+Class+of+Fractional+p-Laplacian+Equation+with+Critical+Sobolev+Exponent+and+Decaying+Potentials&rft.jtitle=Acta+Mathematicae+Applicatae+Sinica&rft.au=Li%2C+Na&rft.au=He%2C+Xiao-ming&rft.date=2022-04-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=0168-9673&rft.eissn=1618-3932&rft.volume=38&rft.issue=2&rft.spage=463&rft.epage=483&rft_id=info:doi/10.1007%2Fs10255-022-1090-8&rft.externalDocID=10_1007_s10255_022_1090_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-9673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-9673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-9673&client=summon