Orbit Dirichlet series and multiset permutations
We study Dirichlet series enumerating orbits of Cartesian products of maps whose orbit distributions are modelled on the distributions of finite index subgroups of free abelian groups of finite rank. We interpret Euler factors of such orbit Dirichlet series in terms of generating polynomials for sta...
Saved in:
Published in | Monatshefte für Mathematik Vol. 186; no. 2; pp. 215 - 233 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Vienna
Springer Vienna
01.06.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0026-9255 1436-5081 |
DOI | 10.1007/s00605-017-1128-9 |
Cover
Loading…
Abstract | We study Dirichlet series enumerating orbits of Cartesian products of maps whose orbit distributions are modelled on the distributions of finite index subgroups of free abelian groups of finite rank. We interpret Euler factors of such orbit Dirichlet series in terms of generating polynomials for statistics on multiset permutations, viz. descent and major index, generalizing Carlitz’s
q
-Eulerian polynomials. We give two main applications of this combinatorial interpretation. Firstly, we establish local functional equations for the Euler factors of the orbit Dirichlet series under consideration. Secondly, we determine these (global) Dirichlet series’ abscissae of convergence and establish some meromorphic continuation beyond these abscissae. As a corollary, we describe the asymptotics of the relevant orbit growth sequences. For Cartesian products of more than two maps we establish a natural boundary for meromorphic continuation. For products of two maps, we prove the existence of such a natural boundary subject to a combinatorial conjecture. |
---|---|
AbstractList | We study Dirichlet series enumerating orbits of Cartesian products of maps whose orbit distributions are modelled on the distributions of finite index subgroups of free abelian groups of finite rank. We interpret Euler factors of such orbit Dirichlet series in terms of generating polynomials for statistics on multiset permutations, viz. descent and major index, generalizing Carlitz’s q-Eulerian polynomials. We give two main applications of this combinatorial interpretation. Firstly, we establish local functional equations for the Euler factors of the orbit Dirichlet series under consideration. Secondly, we determine these (global) Dirichlet series’ abscissae of convergence and establish some meromorphic continuation beyond these abscissae. As a corollary, we describe the asymptotics of the relevant orbit growth sequences. For Cartesian products of more than two maps we establish a natural boundary for meromorphic continuation. For products of two maps, we prove the existence of such a natural boundary subject to a combinatorial conjecture. We study Dirichlet series enumerating orbits of Cartesian products of maps whose orbit distributions are modelled on the distributions of finite index subgroups of free abelian groups of finite rank. We interpret Euler factors of such orbit Dirichlet series in terms of generating polynomials for statistics on multiset permutations, viz. descent and major index, generalizing Carlitz’s q -Eulerian polynomials. We give two main applications of this combinatorial interpretation. Firstly, we establish local functional equations for the Euler factors of the orbit Dirichlet series under consideration. Secondly, we determine these (global) Dirichlet series’ abscissae of convergence and establish some meromorphic continuation beyond these abscissae. As a corollary, we describe the asymptotics of the relevant orbit growth sequences. For Cartesian products of more than two maps we establish a natural boundary for meromorphic continuation. For products of two maps, we prove the existence of such a natural boundary subject to a combinatorial conjecture. |
Author | Carnevale, Angela Voll, Christopher |
Author_xml | – sequence: 1 givenname: Angela surname: Carnevale fullname: Carnevale, Angela organization: Fakultät für Mathematik, Universität Bielefeld – sequence: 2 givenname: Christopher surname: Voll fullname: Voll, Christopher email: C.Voll.98@cantab.net organization: Fakultät für Mathematik, Universität Bielefeld |
BookMark | eNp9kE1LxDAQhoOs4O7qD_BW8BydaZo0Ocr6CQt70XNo00SzdNs1SQ_-e1sqCIKeBl7eZ2Z4VmTR9Z0l5BLhGgHKmwgggFPAkiLmkqoTssSCCcpB4oIsAXJBVc75GVnFuAcAZEItCexC7VN254M3761NWbTB25hVXZMdhjb5OGZHGw5DqpLvu3hOTl3VRnvxPdfk9eH-ZfNEt7vH583tlhqGItHaFSpnohKcSZB1OaUgLTRomSpdWSiOWMhamaJ2TkCOhhmpuGsUykZytiZX895j6D8GG5Pe90PoxpM6h0IC8lJMrXJumdDHGKzTxs-PplD5ViPoSY-e9ehRj570aDWS-Is8Bn-owue_TD4zcex2bzb8_PQ39AWAaHdZ |
CitedBy_id | crossref_primary_10_1093_imrn_rnab345 crossref_primary_10_1112_plms_12159 crossref_primary_10_1007_s40687_019_0189_x crossref_primary_10_1090_proc_14574 |
Cites_doi | 10.1112/jlms/jdu061 10.1080/00029890.1975.11993769 10.1016/0097-3165(84)90075-X 10.1016/0021-9045(90)90072-X 10.1016/0022-314X(84)90050-7 10.1090/S0002-9947-09-04962-9 10.1107/S0108767397009781 10.1007/BF01393692 10.1090/S0002-9947-09-04671-6 10.4007/annals.2010.172.1185 10.1016/S0196-8858(02)00522-5 10.2307/2661355 10.1017/S0143385707000715 10.1093/imrn/rnx186 10.37236/6702 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Austria 2017 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer-Verlag GmbH Austria 2017 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00605-017-1128-9 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1436-5081 |
EndPage | 233 |
ExternalDocumentID | 10_1007_s00605_017_1128_9 |
GrantInformation_xml | – fundername: German-Israeli Foundation for Scientific Research and Development grantid: 1246 funderid: http://dx.doi.org/10.13039/501100001736 |
GroupedDBID | --Z -52 -5D -5G -BR -EM -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2WC 2~H 30V 406 408 409 40D 40E 5QI 5VS 67Z 692 6NX 6TJ 78A 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFFNX AFLOW AFQWF AFWTZ AFZKB AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HG5 HG6 HMJXF HQYDN HRMNR HZ~ H~9 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OK1 P19 P2P P9R PF0 PKN PT4 PT5 QOK QOS R4E R89 R9I REI RHV RNI ROL RPX RSV RYB RZK RZZ S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TWZ U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Y6R YLTOR YNT YQT Z45 Z7U ZMTXR ZWQNP ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-bf49236a653808b7c31608e0d1e397f74951148b9c4bff6021c3c895fd918d853 |
IEDL.DBID | U2A |
ISSN | 0026-9255 |
IngestDate | Fri Jul 25 11:08:39 EDT 2025 Thu Apr 24 22:48:45 EDT 2025 Tue Jul 01 04:13:01 EDT 2025 Fri Feb 21 02:25:02 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 11M41 Orbit Dirichlet series 30B50 37P35 Hadamard products of rational generating functions Eulerian polynomials Natural boundaries Igusa functions 37C30 local functional equations 05A19 Multiset permutations 05A15 Carlitz’s |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-bf49236a653808b7c31608e0d1e397f74951148b9c4bff6021c3c895fd918d853 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2048015765 |
PQPubID | 2043621 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2048015765 crossref_citationtrail_10_1007_s00605_017_1128_9 crossref_primary_10_1007_s00605_017_1128_9 springer_journals_10_1007_s00605_017_1128_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Vienna |
PublicationPlace_xml | – name: Vienna – name: Heidelberg |
PublicationTitle | Monatshefte für Mathematik |
PublicationTitleAbbrev | Monatsh Math |
PublicationYear | 2018 |
Publisher | Springer Vienna Springer Nature B.V |
Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
References | Stanley (CR23) 2012 CR18 Simion (CR21) 2003; 30 CR16 Windsor (CR26) 2008; 28 Frobenius (CR9) 1910 Schein, Voll (CR19) 2015; 91 Gasper, Rahman (CR10) 2004 Grunewald, Segal, Smith (CR12) 1988; 93 Carlitz (CR1) 1954; 76 Carlitz (CR2) 1975; 82 Heidrich (CR13) 1984; 18 Chihara, Stanton (CR4) 1990; 60 Knuth (CR15) 1998 CR3 du Sautoy, Grunewald (CR5) 2000; 152 Gruber (CR11) 1997; 53 CR25 Everest, Miles, Stevens, Ward (CR7) 2010; 362 Voll (CR24) 2010; 172 Pakapongpun, Ward (CR17) 2014; 12 Klopsch, Voll (CR14) 2009; 361 Simion (CR20) 1984; 36 Evseev (CR8) 2009; 633 Stanley (CR22) 1996 du Sautoy, Woodward (CR6) 2008 L Chihara (1128_CR4) 1990; 60 G Gasper (1128_CR10) 2004 C Voll (1128_CR24) 2010; 172 MPF Sautoy du (1128_CR6) 2008 DE Knuth (1128_CR15) 1998 1128_CR16 1128_CR18 RP Stanley (1128_CR22) 1996 G Frobenius (1128_CR9) 1910 A Evseev (1128_CR8) 2009; 633 B Gruber (1128_CR11) 1997; 53 AJJ Heidrich (1128_CR13) 1984; 18 G Everest (1128_CR7) 2010; 362 R Simion (1128_CR20) 1984; 36 R Simion (1128_CR21) 2003; 30 1128_CR3 L Carlitz (1128_CR2) 1975; 82 AJ Windsor (1128_CR26) 2008; 28 FJ Grunewald (1128_CR12) 1988; 93 MM Schein (1128_CR19) 2015; 91 A Pakapongpun (1128_CR17) 2014; 12 L Carlitz (1128_CR1) 1954; 76 R P Stanley (1128_CR23) 2012 B Klopsch (1128_CR14) 2009; 361 M P F du Sautoy (1128_CR5) 2000; 152 1128_CR25 |
References_xml | – start-page: 809 year: 1910 end-page: 847 ident: CR9 publication-title: Über die Bernoullischen Zahlen und die Eulerschen Polynome – ident: CR18 – volume: 91 start-page: 19 issue: 2 year: 2015 end-page: 46 ident: CR19 article-title: Normal zeta functions of the Heisenberg groups over number rings I—the unramified case publication-title: J. Lond. Math. Soc doi: 10.1112/jlms/jdu061 – volume: 76 start-page: 332 year: 1954 end-page: 350 ident: CR1 article-title: -Bernoulli and Eulerian numbers publication-title: Trans. Am. Math. Soc. – volume: 82 start-page: 51 year: 1975 end-page: 54 ident: CR2 article-title: A combinatorial property of -Eulerian numbers publication-title: Am. Math. Mon. doi: 10.1080/00029890.1975.11993769 – ident: CR16 – year: 2008 ident: CR6 publication-title: Zeta Functions of Groups and Rings, vol. 1925. Lecture Notes in Mathematics – volume: 28 start-page: 1037 issue: 3 year: 2008 end-page: 1041 ident: CR26 article-title: Smoothness is not an obstruction to realizability publication-title: Ergod. Theory Dyn. Syst. – volume: 36 start-page: 15 issue: 1 year: 1984 end-page: 22 ident: CR20 article-title: A multi-indexed Sturm sequence of polynomials and unimodality of certain combinatorial sequences publication-title: J. Combin. Theory Ser. A doi: 10.1016/0097-3165(84)90075-X – volume: 60 start-page: 43 issue: 1 year: 1990 end-page: 57 ident: CR4 article-title: Zeros of generalized Krawtchouk polynomials publication-title: J. Approx. Theory doi: 10.1016/0021-9045(90)90072-X – volume: 18 start-page: 157 issue: 2 year: 1984 end-page: 168 ident: CR13 article-title: On the factorization of Eulerian polynomials publication-title: J. Number Theory doi: 10.1016/0022-314X(84)90050-7 – volume: 12 start-page: 33 issue: 1 year: 2014 end-page: 44 ident: CR17 article-title: Orbits for products of maps publication-title: Thai J. Math. – volume: 362 start-page: 199 issue: 1 year: 2010 end-page: 227 ident: CR7 article-title: Dirichlet series for finite combinatorial rank dynamics publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-09-04962-9 – volume: 53 start-page: 807 issue: 6 year: 1997 end-page: 808 ident: CR11 article-title: Alternative formulae for the number of sublattices publication-title: Acta Crystallogr. Sect. A doi: 10.1107/S0108767397009781 – ident: CR25 – volume: 93 start-page: 185 year: 1988 end-page: 223 ident: CR12 article-title: Subgroups of finite index in nilpotent groups publication-title: Invent. Math. doi: 10.1007/BF01393692 – year: 2012 ident: CR23 publication-title: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics – year: 1996 ident: CR22 publication-title: Combinatorics and Commutative Algebra – volume: 361 start-page: 4405 issue: 8 year: 2009 end-page: 4436 ident: CR14 article-title: Igusa-type functions associated to finite formed spaces and their functional equations publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-09-04671-6 – ident: CR3 – volume: 172 start-page: 1181 issue: 2 year: 2010 end-page: 1218 ident: CR24 article-title: Functional equations for zeta functions of groups and rings publication-title: Ann. Math. (2) doi: 10.4007/annals.2010.172.1185 – volume: 30 start-page: 2 issue: 1–2 year: 2003 end-page: 25 ident: CR21 article-title: A type-B associahedron publication-title: Adv. Appl. Math. doi: 10.1016/S0196-8858(02)00522-5 – year: 1998 ident: CR15 publication-title: The Art of Computer Programming: Sorting and Searching – volume: 633 start-page: 197 year: 2009 end-page: 211 ident: CR8 article-title: Reduced zeta functions of Lie algebras publication-title: J. Reine Angew. Math. (Crelle) – volume: 152 start-page: 793 issue: (2) year: 2000 end-page: 833 ident: CR5 article-title: Analytic properties of zeta functions and subgroup growth publication-title: Ann. Math. doi: 10.2307/2661355 – year: 2004 ident: CR10 publication-title: Basic Hypergeometric Series, 2 edn. Encyclopedia of Mathematics and its Applications – volume: 76 start-page: 332 year: 1954 ident: 1128_CR1 publication-title: Trans. Am. Math. Soc. – volume: 28 start-page: 1037 issue: 3 year: 2008 ident: 1128_CR26 publication-title: Ergod. Theory Dyn. Syst. doi: 10.1017/S0143385707000715 – volume: 152 start-page: 793 issue: (2) year: 2000 ident: 1128_CR5 publication-title: Ann. Math. doi: 10.2307/2661355 – volume: 361 start-page: 4405 issue: 8 year: 2009 ident: 1128_CR14 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-09-04671-6 – volume: 60 start-page: 43 issue: 1 year: 1990 ident: 1128_CR4 publication-title: J. Approx. Theory doi: 10.1016/0021-9045(90)90072-X – ident: 1128_CR25 doi: 10.1093/imrn/rnx186 – volume: 53 start-page: 807 issue: 6 year: 1997 ident: 1128_CR11 publication-title: Acta Crystallogr. Sect. A doi: 10.1107/S0108767397009781 – ident: 1128_CR3 doi: 10.37236/6702 – volume: 36 start-page: 15 issue: 1 year: 1984 ident: 1128_CR20 publication-title: J. Combin. Theory Ser. A doi: 10.1016/0097-3165(84)90075-X – volume: 30 start-page: 2 issue: 1–2 year: 2003 ident: 1128_CR21 publication-title: Adv. Appl. Math. doi: 10.1016/S0196-8858(02)00522-5 – volume: 91 start-page: 19 issue: 2 year: 2015 ident: 1128_CR19 publication-title: J. Lond. Math. Soc doi: 10.1112/jlms/jdu061 – volume-title: Basic Hypergeometric Series, 2 edn. Encyclopedia of Mathematics and its Applications year: 2004 ident: 1128_CR10 – volume: 12 start-page: 33 issue: 1 year: 2014 ident: 1128_CR17 publication-title: Thai J. Math. – ident: 1128_CR18 – volume: 18 start-page: 157 issue: 2 year: 1984 ident: 1128_CR13 publication-title: J. Number Theory doi: 10.1016/0022-314X(84)90050-7 – volume: 362 start-page: 199 issue: 1 year: 2010 ident: 1128_CR7 publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-09-04962-9 – volume-title: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics year: 2012 ident: 1128_CR23 – volume: 93 start-page: 185 year: 1988 ident: 1128_CR12 publication-title: Invent. Math. doi: 10.1007/BF01393692 – volume: 172 start-page: 1181 issue: 2 year: 2010 ident: 1128_CR24 publication-title: Ann. Math. (2) doi: 10.4007/annals.2010.172.1185 – ident: 1128_CR16 – volume: 82 start-page: 51 year: 1975 ident: 1128_CR2 publication-title: Am. Math. Mon. doi: 10.1080/00029890.1975.11993769 – volume: 633 start-page: 197 year: 2009 ident: 1128_CR8 publication-title: J. Reine Angew. Math. (Crelle) – volume-title: The Art of Computer Programming: Sorting and Searching year: 1998 ident: 1128_CR15 – start-page: 809 volume-title: Über die Bernoullischen Zahlen und die Eulerschen Polynome year: 1910 ident: 1128_CR9 – volume-title: Zeta Functions of Groups and Rings, vol. 1925. Lecture Notes in Mathematics year: 2008 ident: 1128_CR6 – volume-title: Combinatorics and Commutative Algebra year: 1996 ident: 1128_CR22 |
SSID | ssj0001369 |
Score | 2.2020636 |
Snippet | We study Dirichlet series enumerating orbits of Cartesian products of maps whose orbit distributions are modelled on the distributions of finite index... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 215 |
SubjectTerms | Combinatorial analysis Dirichlet problem Functional equations Mathematics Mathematics and Statistics Permutations Polynomials Sequences Subgroups |
Title | Orbit Dirichlet series and multiset permutations |
URI | https://link.springer.com/article/10.1007/s00605-017-1128-9 https://www.proquest.com/docview/2048015765 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vehBfGK1Sg6elIU8N5tjK61Fab1YqKeQfWFBYmnS_-_s5lEUFTwFNps9fNmd-YaZ-RbgRjOmlMqMzD6VJJRxaI6UJjqiSah1lknbtzad0ck8fFxEi7qPu2iq3ZuUpLXUbbObkQ4xhWYxQY6Ap3QXuhGG7mZbz_1Ba369gNZ1HZQkSJibVOZPS3x1RluG-S0pan3N-BAOapLoDKq_egQ7Kj-G_WmrsFqcgPu85svSQYu1FG-IvWO2kiqcLJeOLRIscGyFZndT5dqLU5iPRy_3E1LffkBE4NGScG2002hG0SS5jMdm1GXKlZ5CDqFjjGxMLMMTEXKtKfpqEQiWRFomHpPohc-gk3_k6hycWGoWmIRo4uuQSy9ToSe4G0VKSiZivwduA0Mqamlwc0PFe9qKGlvkUkQuNcilSQ9u209WlS7GX5P7DbZpfUSK1LfKNRjuRD24a_Devv51sYt_zb6EPaQ4rCru6kOnXG_UFdKIkl9DdzAeDmfm-fD6NLq22-gTRAe_QA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHNSDbyOK2oMnTUkL7XZ7JAZEeXiBBE9N9xWJphJaLv56Z_siEjXhut1u2pmdmW8ys98C3CpKpZShptknwnSE52iTUqZyie8oFYYiPbc2HJHexHmeutP8HHdcdLsXJcnUU5eH3TR1iG4080zECGil21B1MAV3K1BtP772O6UDtlsk7-wgpo-QuShm_rbIz3C0wphrZdE02nQPYFx8Z9Zk8t5YJqzBv9YoHDf8kUPYz9Gn0c62yxFsyegY9oYldWt8AtbLgs0SA13hjL-hUg29R2VshJEw0u7DGMfm6M-XWRE_PoVJtzN-6Jn5tQomb9kkMZnSpGwkJOjrLMo8PWpRaQlbIjhRHqZMOkliPneYUgRBAG9x6rtK-DYVGN7PoBJ9RvIcDE8o2tKVVr-pHCbsUDo2Z5brSiEo95o1sArpBjznHNdXX3wEJVtyKowAhRFoYQR-De7KV-YZ4cZ_k-uFyoLc9uKgmVLiYB7l1uC-0MDq8Z-LXWw0-wZ2euPhIBg8jfqXsIs4imYdZHWoJIulvEKskrDrfG9-AxE82-I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGK0ag6elNA8N5tjUUt9tHqw0NuSfWFBYmnS_-9sXkVRwetms4fZnZlvmJlvAC41pUqp1NDsE-mEMg6NSmlHRyQJtU5TWfatjcZkOAkfptG0nnOaN9XuTUqy6mkwLE1Z0ZtL3Wsb3wyNiCk6ix3EC6ix67CB1tgzNV0Tv9-aYi8gdY0HcRIEz01a86cjvjqmFdr8liAt_c5gF3ZqwGj3qxvegzWV7cP2qGVbzQ_AfV7wWWGj9ZqJN7wH2zwrldtpJu2yYDDHtTma4GWVd88PYTK4e70ZOvUkBEcEHikcrg2PGkkJmieX8tisulS50lOIJ3SMUY6Ja3giQq41Qb8tAkGTSMvEoxI98hF0so9MHYMdS00DkxxNfB1y6aUq9AR3o0hJSUXsW-A2YmCipgk30yreWUtwXEqOoeSYkRxLLLhqf5lXHBl_be42smW1uuTML1lsMPSJLLhu5L36_OthJ__afQGbL7cD9nQ_fjyFLUQ-tKr56kKnWCzVGaKLgp-XL-gT8TLDXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orbit+Dirichlet+series+and+multiset+permutations&rft.jtitle=Monatshefte+f%C3%BCr+Mathematik&rft.au=Carnevale%2C+Angela&rft.au=Voll%2C+Christopher&rft.date=2018-06-01&rft.pub=Springer+Vienna&rft.issn=0026-9255&rft.eissn=1436-5081&rft.volume=186&rft.issue=2&rft.spage=215&rft.epage=233&rft_id=info:doi/10.1007%2Fs00605-017-1128-9&rft.externalDocID=10_1007_s00605_017_1128_9 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-9255&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-9255&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-9255&client=summon |