Orbit Dirichlet series and multiset permutations

We study Dirichlet series enumerating orbits of Cartesian products of maps whose orbit distributions are modelled on the distributions of finite index subgroups of free abelian groups of finite rank. We interpret Euler factors of such orbit Dirichlet series in terms of generating polynomials for sta...

Full description

Saved in:
Bibliographic Details
Published inMonatshefte für Mathematik Vol. 186; no. 2; pp. 215 - 233
Main Authors Carnevale, Angela, Voll, Christopher
Format Journal Article
LanguageEnglish
Published Vienna Springer Vienna 01.06.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0026-9255
1436-5081
DOI10.1007/s00605-017-1128-9

Cover

Loading…
Abstract We study Dirichlet series enumerating orbits of Cartesian products of maps whose orbit distributions are modelled on the distributions of finite index subgroups of free abelian groups of finite rank. We interpret Euler factors of such orbit Dirichlet series in terms of generating polynomials for statistics on multiset permutations, viz. descent and major index, generalizing Carlitz’s q -Eulerian polynomials. We give two main applications of this combinatorial interpretation. Firstly, we establish local functional equations for the Euler factors of the orbit Dirichlet series under consideration. Secondly, we determine these (global) Dirichlet series’ abscissae of convergence and establish some meromorphic continuation beyond these abscissae. As a corollary, we describe the asymptotics of the relevant orbit growth sequences. For Cartesian products of more than two maps we establish a natural boundary for meromorphic continuation. For products of two maps, we prove the existence of such a natural boundary subject to a combinatorial conjecture.
AbstractList We study Dirichlet series enumerating orbits of Cartesian products of maps whose orbit distributions are modelled on the distributions of finite index subgroups of free abelian groups of finite rank. We interpret Euler factors of such orbit Dirichlet series in terms of generating polynomials for statistics on multiset permutations, viz. descent and major index, generalizing Carlitz’s q-Eulerian polynomials. We give two main applications of this combinatorial interpretation. Firstly, we establish local functional equations for the Euler factors of the orbit Dirichlet series under consideration. Secondly, we determine these (global) Dirichlet series’ abscissae of convergence and establish some meromorphic continuation beyond these abscissae. As a corollary, we describe the asymptotics of the relevant orbit growth sequences. For Cartesian products of more than two maps we establish a natural boundary for meromorphic continuation. For products of two maps, we prove the existence of such a natural boundary subject to a combinatorial conjecture.
We study Dirichlet series enumerating orbits of Cartesian products of maps whose orbit distributions are modelled on the distributions of finite index subgroups of free abelian groups of finite rank. We interpret Euler factors of such orbit Dirichlet series in terms of generating polynomials for statistics on multiset permutations, viz. descent and major index, generalizing Carlitz’s q -Eulerian polynomials. We give two main applications of this combinatorial interpretation. Firstly, we establish local functional equations for the Euler factors of the orbit Dirichlet series under consideration. Secondly, we determine these (global) Dirichlet series’ abscissae of convergence and establish some meromorphic continuation beyond these abscissae. As a corollary, we describe the asymptotics of the relevant orbit growth sequences. For Cartesian products of more than two maps we establish a natural boundary for meromorphic continuation. For products of two maps, we prove the existence of such a natural boundary subject to a combinatorial conjecture.
Author Carnevale, Angela
Voll, Christopher
Author_xml – sequence: 1
  givenname: Angela
  surname: Carnevale
  fullname: Carnevale, Angela
  organization: Fakultät für Mathematik, Universität Bielefeld
– sequence: 2
  givenname: Christopher
  surname: Voll
  fullname: Voll, Christopher
  email: C.Voll.98@cantab.net
  organization: Fakultät für Mathematik, Universität Bielefeld
BookMark eNp9kE1LxDAQhoOs4O7qD_BW8BydaZo0Ocr6CQt70XNo00SzdNs1SQ_-e1sqCIKeBl7eZ2Z4VmTR9Z0l5BLhGgHKmwgggFPAkiLmkqoTssSCCcpB4oIsAXJBVc75GVnFuAcAZEItCexC7VN254M3761NWbTB25hVXZMdhjb5OGZHGw5DqpLvu3hOTl3VRnvxPdfk9eH-ZfNEt7vH583tlhqGItHaFSpnohKcSZB1OaUgLTRomSpdWSiOWMhamaJ2TkCOhhmpuGsUykZytiZX895j6D8GG5Pe90PoxpM6h0IC8lJMrXJumdDHGKzTxs-PplD5ViPoSY-e9ehRj570aDWS-Is8Bn-owue_TD4zcex2bzb8_PQ39AWAaHdZ
CitedBy_id crossref_primary_10_1093_imrn_rnab345
crossref_primary_10_1112_plms_12159
crossref_primary_10_1007_s40687_019_0189_x
crossref_primary_10_1090_proc_14574
Cites_doi 10.1112/jlms/jdu061
10.1080/00029890.1975.11993769
10.1016/0097-3165(84)90075-X
10.1016/0021-9045(90)90072-X
10.1016/0022-314X(84)90050-7
10.1090/S0002-9947-09-04962-9
10.1107/S0108767397009781
10.1007/BF01393692
10.1090/S0002-9947-09-04671-6
10.4007/annals.2010.172.1185
10.1016/S0196-8858(02)00522-5
10.2307/2661355
10.1017/S0143385707000715
10.1093/imrn/rnx186
10.37236/6702
ContentType Journal Article
Copyright Springer-Verlag GmbH Austria 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer-Verlag GmbH Austria 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s00605-017-1128-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1436-5081
EndPage 233
ExternalDocumentID 10_1007_s00605_017_1128_9
GrantInformation_xml – fundername: German-Israeli Foundation for Scientific Research and Development
  grantid: 1246
  funderid: http://dx.doi.org/10.13039/501100001736
GroupedDBID --Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2WC
2~H
30V
406
408
409
40D
40E
5QI
5VS
67Z
692
6NX
6TJ
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFFNX
AFLOW
AFQWF
AFWTZ
AFZKB
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HG5
HG6
HMJXF
HQYDN
HRMNR
HZ~
H~9
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OK1
P19
P2P
P9R
PF0
PKN
PT4
PT5
QOK
QOS
R4E
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RYB
RZK
RZZ
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TWZ
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Y6R
YLTOR
YNT
YQT
Z45
Z7U
ZMTXR
ZWQNP
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-bf49236a653808b7c31608e0d1e397f74951148b9c4bff6021c3c895fd918d853
IEDL.DBID U2A
ISSN 0026-9255
IngestDate Fri Jul 25 11:08:39 EDT 2025
Thu Apr 24 22:48:45 EDT 2025
Tue Jul 01 04:13:01 EDT 2025
Fri Feb 21 02:25:02 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 11M41
Orbit Dirichlet series
30B50
37P35
Hadamard products of rational generating functions
Eulerian polynomials
Natural boundaries
Igusa functions
37C30
local functional equations
05A19
Multiset permutations
05A15
Carlitz’s
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-bf49236a653808b7c31608e0d1e397f74951148b9c4bff6021c3c895fd918d853
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2048015765
PQPubID 2043621
PageCount 19
ParticipantIDs proquest_journals_2048015765
crossref_citationtrail_10_1007_s00605_017_1128_9
crossref_primary_10_1007_s00605_017_1128_9
springer_journals_10_1007_s00605_017_1128_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Heidelberg
PublicationTitle Monatshefte für Mathematik
PublicationTitleAbbrev Monatsh Math
PublicationYear 2018
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References Stanley (CR23) 2012
CR18
Simion (CR21) 2003; 30
CR16
Windsor (CR26) 2008; 28
Frobenius (CR9) 1910
Schein, Voll (CR19) 2015; 91
Gasper, Rahman (CR10) 2004
Grunewald, Segal, Smith (CR12) 1988; 93
Carlitz (CR1) 1954; 76
Carlitz (CR2) 1975; 82
Heidrich (CR13) 1984; 18
Chihara, Stanton (CR4) 1990; 60
Knuth (CR15) 1998
CR3
du Sautoy, Grunewald (CR5) 2000; 152
Gruber (CR11) 1997; 53
CR25
Everest, Miles, Stevens, Ward (CR7) 2010; 362
Voll (CR24) 2010; 172
Pakapongpun, Ward (CR17) 2014; 12
Klopsch, Voll (CR14) 2009; 361
Simion (CR20) 1984; 36
Evseev (CR8) 2009; 633
Stanley (CR22) 1996
du Sautoy, Woodward (CR6) 2008
L Chihara (1128_CR4) 1990; 60
G Gasper (1128_CR10) 2004
C Voll (1128_CR24) 2010; 172
MPF Sautoy du (1128_CR6) 2008
DE Knuth (1128_CR15) 1998
1128_CR16
1128_CR18
RP Stanley (1128_CR22) 1996
G Frobenius (1128_CR9) 1910
A Evseev (1128_CR8) 2009; 633
B Gruber (1128_CR11) 1997; 53
AJJ Heidrich (1128_CR13) 1984; 18
G Everest (1128_CR7) 2010; 362
R Simion (1128_CR20) 1984; 36
R Simion (1128_CR21) 2003; 30
1128_CR3
L Carlitz (1128_CR2) 1975; 82
AJ Windsor (1128_CR26) 2008; 28
FJ Grunewald (1128_CR12) 1988; 93
MM Schein (1128_CR19) 2015; 91
A Pakapongpun (1128_CR17) 2014; 12
L Carlitz (1128_CR1) 1954; 76
R P Stanley (1128_CR23) 2012
B Klopsch (1128_CR14) 2009; 361
M P F du Sautoy (1128_CR5) 2000; 152
1128_CR25
References_xml – start-page: 809
  year: 1910
  end-page: 847
  ident: CR9
  publication-title: Über die Bernoullischen Zahlen und die Eulerschen Polynome
– ident: CR18
– volume: 91
  start-page: 19
  issue: 2
  year: 2015
  end-page: 46
  ident: CR19
  article-title: Normal zeta functions of the Heisenberg groups over number rings I—the unramified case
  publication-title: J. Lond. Math. Soc
  doi: 10.1112/jlms/jdu061
– volume: 76
  start-page: 332
  year: 1954
  end-page: 350
  ident: CR1
  article-title: -Bernoulli and Eulerian numbers
  publication-title: Trans. Am. Math. Soc.
– volume: 82
  start-page: 51
  year: 1975
  end-page: 54
  ident: CR2
  article-title: A combinatorial property of -Eulerian numbers
  publication-title: Am. Math. Mon.
  doi: 10.1080/00029890.1975.11993769
– ident: CR16
– year: 2008
  ident: CR6
  publication-title: Zeta Functions of Groups and Rings, vol. 1925. Lecture Notes in Mathematics
– volume: 28
  start-page: 1037
  issue: 3
  year: 2008
  end-page: 1041
  ident: CR26
  article-title: Smoothness is not an obstruction to realizability
  publication-title: Ergod. Theory Dyn. Syst.
– volume: 36
  start-page: 15
  issue: 1
  year: 1984
  end-page: 22
  ident: CR20
  article-title: A multi-indexed Sturm sequence of polynomials and unimodality of certain combinatorial sequences
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/0097-3165(84)90075-X
– volume: 60
  start-page: 43
  issue: 1
  year: 1990
  end-page: 57
  ident: CR4
  article-title: Zeros of generalized Krawtchouk polynomials
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(90)90072-X
– volume: 18
  start-page: 157
  issue: 2
  year: 1984
  end-page: 168
  ident: CR13
  article-title: On the factorization of Eulerian polynomials
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(84)90050-7
– volume: 12
  start-page: 33
  issue: 1
  year: 2014
  end-page: 44
  ident: CR17
  article-title: Orbits for products of maps
  publication-title: Thai J. Math.
– volume: 362
  start-page: 199
  issue: 1
  year: 2010
  end-page: 227
  ident: CR7
  article-title: Dirichlet series for finite combinatorial rank dynamics
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-09-04962-9
– volume: 53
  start-page: 807
  issue: 6
  year: 1997
  end-page: 808
  ident: CR11
  article-title: Alternative formulae for the number of sublattices
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0108767397009781
– ident: CR25
– volume: 93
  start-page: 185
  year: 1988
  end-page: 223
  ident: CR12
  article-title: Subgroups of finite index in nilpotent groups
  publication-title: Invent. Math.
  doi: 10.1007/BF01393692
– year: 2012
  ident: CR23
  publication-title: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics
– year: 1996
  ident: CR22
  publication-title: Combinatorics and Commutative Algebra
– volume: 361
  start-page: 4405
  issue: 8
  year: 2009
  end-page: 4436
  ident: CR14
  article-title: Igusa-type functions associated to finite formed spaces and their functional equations
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-09-04671-6
– ident: CR3
– volume: 172
  start-page: 1181
  issue: 2
  year: 2010
  end-page: 1218
  ident: CR24
  article-title: Functional equations for zeta functions of groups and rings
  publication-title: Ann. Math. (2)
  doi: 10.4007/annals.2010.172.1185
– volume: 30
  start-page: 2
  issue: 1–2
  year: 2003
  end-page: 25
  ident: CR21
  article-title: A type-B associahedron
  publication-title: Adv. Appl. Math.
  doi: 10.1016/S0196-8858(02)00522-5
– year: 1998
  ident: CR15
  publication-title: The Art of Computer Programming: Sorting and Searching
– volume: 633
  start-page: 197
  year: 2009
  end-page: 211
  ident: CR8
  article-title: Reduced zeta functions of Lie algebras
  publication-title: J. Reine Angew. Math. (Crelle)
– volume: 152
  start-page: 793
  issue: (2)
  year: 2000
  end-page: 833
  ident: CR5
  article-title: Analytic properties of zeta functions and subgroup growth
  publication-title: Ann. Math.
  doi: 10.2307/2661355
– year: 2004
  ident: CR10
  publication-title: Basic Hypergeometric Series, 2 edn. Encyclopedia of Mathematics and its Applications
– volume: 76
  start-page: 332
  year: 1954
  ident: 1128_CR1
  publication-title: Trans. Am. Math. Soc.
– volume: 28
  start-page: 1037
  issue: 3
  year: 2008
  ident: 1128_CR26
  publication-title: Ergod. Theory Dyn. Syst.
  doi: 10.1017/S0143385707000715
– volume: 152
  start-page: 793
  issue: (2)
  year: 2000
  ident: 1128_CR5
  publication-title: Ann. Math.
  doi: 10.2307/2661355
– volume: 361
  start-page: 4405
  issue: 8
  year: 2009
  ident: 1128_CR14
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-09-04671-6
– volume: 60
  start-page: 43
  issue: 1
  year: 1990
  ident: 1128_CR4
  publication-title: J. Approx. Theory
  doi: 10.1016/0021-9045(90)90072-X
– ident: 1128_CR25
  doi: 10.1093/imrn/rnx186
– volume: 53
  start-page: 807
  issue: 6
  year: 1997
  ident: 1128_CR11
  publication-title: Acta Crystallogr. Sect. A
  doi: 10.1107/S0108767397009781
– ident: 1128_CR3
  doi: 10.37236/6702
– volume: 36
  start-page: 15
  issue: 1
  year: 1984
  ident: 1128_CR20
  publication-title: J. Combin. Theory Ser. A
  doi: 10.1016/0097-3165(84)90075-X
– volume: 30
  start-page: 2
  issue: 1–2
  year: 2003
  ident: 1128_CR21
  publication-title: Adv. Appl. Math.
  doi: 10.1016/S0196-8858(02)00522-5
– volume: 91
  start-page: 19
  issue: 2
  year: 2015
  ident: 1128_CR19
  publication-title: J. Lond. Math. Soc
  doi: 10.1112/jlms/jdu061
– volume-title: Basic Hypergeometric Series, 2 edn. Encyclopedia of Mathematics and its Applications
  year: 2004
  ident: 1128_CR10
– volume: 12
  start-page: 33
  issue: 1
  year: 2014
  ident: 1128_CR17
  publication-title: Thai J. Math.
– ident: 1128_CR18
– volume: 18
  start-page: 157
  issue: 2
  year: 1984
  ident: 1128_CR13
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(84)90050-7
– volume: 362
  start-page: 199
  issue: 1
  year: 2010
  ident: 1128_CR7
  publication-title: Trans. Am. Math. Soc.
  doi: 10.1090/S0002-9947-09-04962-9
– volume-title: Enumerative Combinatorics, vol. 1. Cambridge Studies in Advanced Mathematics
  year: 2012
  ident: 1128_CR23
– volume: 93
  start-page: 185
  year: 1988
  ident: 1128_CR12
  publication-title: Invent. Math.
  doi: 10.1007/BF01393692
– volume: 172
  start-page: 1181
  issue: 2
  year: 2010
  ident: 1128_CR24
  publication-title: Ann. Math. (2)
  doi: 10.4007/annals.2010.172.1185
– ident: 1128_CR16
– volume: 82
  start-page: 51
  year: 1975
  ident: 1128_CR2
  publication-title: Am. Math. Mon.
  doi: 10.1080/00029890.1975.11993769
– volume: 633
  start-page: 197
  year: 2009
  ident: 1128_CR8
  publication-title: J. Reine Angew. Math. (Crelle)
– volume-title: The Art of Computer Programming: Sorting and Searching
  year: 1998
  ident: 1128_CR15
– start-page: 809
  volume-title: Über die Bernoullischen Zahlen und die Eulerschen Polynome
  year: 1910
  ident: 1128_CR9
– volume-title: Zeta Functions of Groups and Rings, vol. 1925. Lecture Notes in Mathematics
  year: 2008
  ident: 1128_CR6
– volume-title: Combinatorics and Commutative Algebra
  year: 1996
  ident: 1128_CR22
SSID ssj0001369
Score 2.2020636
Snippet We study Dirichlet series enumerating orbits of Cartesian products of maps whose orbit distributions are modelled on the distributions of finite index...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 215
SubjectTerms Combinatorial analysis
Dirichlet problem
Functional equations
Mathematics
Mathematics and Statistics
Permutations
Polynomials
Sequences
Subgroups
Title Orbit Dirichlet series and multiset permutations
URI https://link.springer.com/article/10.1007/s00605-017-1128-9
https://www.proquest.com/docview/2048015765
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60vehBfGK1Sg6elIU8N5tjK61Fab1YqKeQfWFBYmnS_-_s5lEUFTwFNps9fNmd-YaZ-RbgRjOmlMqMzD6VJJRxaI6UJjqiSah1lknbtzad0ck8fFxEi7qPu2iq3ZuUpLXUbbObkQ4xhWYxQY6Ap3QXuhGG7mZbz_1Ba369gNZ1HZQkSJibVOZPS3x1RluG-S0pan3N-BAOapLoDKq_egQ7Kj-G_WmrsFqcgPu85svSQYu1FG-IvWO2kiqcLJeOLRIscGyFZndT5dqLU5iPRy_3E1LffkBE4NGScG2002hG0SS5jMdm1GXKlZ5CDqFjjGxMLMMTEXKtKfpqEQiWRFomHpPohc-gk3_k6hycWGoWmIRo4uuQSy9ToSe4G0VKSiZivwduA0Mqamlwc0PFe9qKGlvkUkQuNcilSQ9u209WlS7GX5P7DbZpfUSK1LfKNRjuRD24a_Devv51sYt_zb6EPaQ4rCru6kOnXG_UFdKIkl9DdzAeDmfm-fD6NLq22-gTRAe_QA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHNSDbyOK2oMnTUkL7XZ7JAZEeXiBBE9N9xWJphJaLv56Z_siEjXhut1u2pmdmW8ys98C3CpKpZShptknwnSE52iTUqZyie8oFYYiPbc2HJHexHmeutP8HHdcdLsXJcnUU5eH3TR1iG4080zECGil21B1MAV3K1BtP772O6UDtlsk7-wgpo-QuShm_rbIz3C0wphrZdE02nQPYFx8Z9Zk8t5YJqzBv9YoHDf8kUPYz9Gn0c62yxFsyegY9oYldWt8AtbLgs0SA13hjL-hUg29R2VshJEw0u7DGMfm6M-XWRE_PoVJtzN-6Jn5tQomb9kkMZnSpGwkJOjrLMo8PWpRaQlbIjhRHqZMOkliPneYUgRBAG9x6rtK-DYVGN7PoBJ9RvIcDE8o2tKVVr-pHCbsUDo2Z5brSiEo95o1sArpBjznHNdXX3wEJVtyKowAhRFoYQR-De7KV-YZ4cZ_k-uFyoLc9uKgmVLiYB7l1uC-0MDq8Z-LXWw0-wZ2euPhIBg8jfqXsIs4imYdZHWoJIulvEKskrDrfG9-AxE82-I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB60guhBfGK0ag6elNA8N5tjUUt9tHqw0NuSfWFBYmnS_-9sXkVRwetms4fZnZlvmJlvAC41pUqp1NDsE-mEMg6NSmlHRyQJtU5TWfatjcZkOAkfptG0nnOaN9XuTUqy6mkwLE1Z0ZtL3Wsb3wyNiCk6ix3EC6ix67CB1tgzNV0Tv9-aYi8gdY0HcRIEz01a86cjvjqmFdr8liAt_c5gF3ZqwGj3qxvegzWV7cP2qGVbzQ_AfV7wWWGj9ZqJN7wH2zwrldtpJu2yYDDHtTma4GWVd88PYTK4e70ZOvUkBEcEHikcrg2PGkkJmieX8tisulS50lOIJ3SMUY6Ja3giQq41Qb8tAkGTSMvEoxI98hF0so9MHYMdS00DkxxNfB1y6aUq9AR3o0hJSUXsW-A2YmCipgk30yreWUtwXEqOoeSYkRxLLLhqf5lXHBl_be42smW1uuTML1lsMPSJLLhu5L36_OthJ__afQGbL7cD9nQ_fjyFLUQ-tKr56kKnWCzVGaKLgp-XL-gT8TLDXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Orbit+Dirichlet+series+and+multiset+permutations&rft.jtitle=Monatshefte+f%C3%BCr+Mathematik&rft.au=Carnevale%2C+Angela&rft.au=Voll%2C+Christopher&rft.date=2018-06-01&rft.pub=Springer+Vienna&rft.issn=0026-9255&rft.eissn=1436-5081&rft.volume=186&rft.issue=2&rft.spage=215&rft.epage=233&rft_id=info:doi/10.1007%2Fs00605-017-1128-9&rft.externalDocID=10_1007_s00605_017_1128_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0026-9255&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0026-9255&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0026-9255&client=summon