Kernel estimates for elliptic operators with second-order discontinuous coefficients

We study parabolic problems associated to the second-order elliptic operator L = Δ + ( a - 1 ) ∑ i , j = 1 N x i x j | x | 2 D i j + c x | x | 2 · ∇ - b | x | - 2 with a > 0 and b , c real coefficients and prove kernel estimates for the transition kernel.

Saved in:
Bibliographic Details
Published inJournal of evolution equations Vol. 17; no. 1; pp. 485 - 522
Main Authors Metafune, G., Sobajima, M., Spina, C.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.03.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We study parabolic problems associated to the second-order elliptic operator L = Δ + ( a - 1 ) ∑ i , j = 1 N x i x j | x | 2 D i j + c x | x | 2 · ∇ - b | x | - 2 with a > 0 and b , c real coefficients and prove kernel estimates for the transition kernel.
ISSN:1424-3199
1424-3202
DOI:10.1007/s00028-016-0355-1