Ranking weighted clustering coefficient in large dynamic graphs
Efficiently searching top- k representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities formed by a vertex with high local clustering coefficient and its neighbours can achieve enhanced information propagation speed as well as dis...
Saved in:
Published in | World wide web (Bussum) Vol. 20; no. 5; pp. 855 - 883 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Efficiently searching top-
k
representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities formed by a vertex with high local clustering coefficient and its neighbours can achieve enhanced information propagation speed as well as disease transmission speed. However, local clustering coefficient, which measures the cliquishness of a vertex in its local neighbourhood, prefers vertices with small degrees. To remedy this issue, in this paper we propose a new ranking measure, weighted clustering coefficient (WCC) of vertices, by integrating both local clustering coefficient and degree. WCC not only inherits the properties of local clustering coefficient but also approximately measures the density (i.e., average degree) of its neighbourhood subgraph. Thus, vertices with higher WCC are more likely to be representative. We study efficiently computing and monitoring top-
k
representative vertices based on WCC over large dynamic graphs. To reduce the search space, we propose a series of heuristic upper bounds for WCC to prune a large portion of disqualifying vertices from the search space. We also develop an approximation algorithm by utilizing Flajolet-Martin sketch to trade acceptable accuracy for enhanced efficiency. An efficient incremental algorithm dealing with frequent updates in dynamic graphs is explored as well. Extensive experimental results on a variety of real-life graph datasets demonstrate the efficiency and effectiveness of our approaches. |
---|---|
AbstractList | Efficiently searching top-
k
representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities formed by a vertex with high local clustering coefficient and its neighbours can achieve enhanced information propagation speed as well as disease transmission speed. However, local clustering coefficient, which measures the cliquishness of a vertex in its local neighbourhood, prefers vertices with small degrees. To remedy this issue, in this paper we propose a new ranking measure, weighted clustering coefficient (WCC) of vertices, by integrating both local clustering coefficient and degree. WCC not only inherits the properties of local clustering coefficient but also approximately measures the density (i.e., average degree) of its neighbourhood subgraph. Thus, vertices with higher WCC are more likely to be representative. We study efficiently computing and monitoring top-
k
representative vertices based on WCC over large dynamic graphs. To reduce the search space, we propose a series of heuristic upper bounds for WCC to prune a large portion of disqualifying vertices from the search space. We also develop an approximation algorithm by utilizing Flajolet-Martin sketch to trade acceptable accuracy for enhanced efficiency. An efficient incremental algorithm dealing with frequent updates in dynamic graphs is explored as well. Extensive experimental results on a variety of real-life graph datasets demonstrate the efficiency and effectiveness of our approaches. Efficiently searching top-k representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities formed by a vertex with high local clustering coefficient and its neighbours can achieve enhanced information propagation speed as well as disease transmission speed. However, local clustering coefficient, which measures the cliquishness of a vertex in its local neighbourhood, prefers vertices with small degrees. To remedy this issue, in this paper we propose a new ranking measure, weighted clustering coefficient (WCC) of vertices, by integrating both local clustering coefficient and degree. WCC not only inherits the properties of local clustering coefficient but also approximately measures the density (i.e., average degree) of its neighbourhood subgraph. Thus, vertices with higher WCC are more likely to be representative. We study efficiently computing and monitoring top-k representative vertices based on WCC over large dynamic graphs. To reduce the search space, we propose a series of heuristic upper bounds for WCC to prune a large portion of disqualifying vertices from the search space. We also develop an approximation algorithm by utilizing Flajolet-Martin sketch to trade acceptable accuracy for enhanced efficiency. An efficient incremental algorithm dealing with frequent updates in dynamic graphs is explored as well. Extensive experimental results on a variety of real-life graph datasets demonstrate the efficiency and effectiveness of our approaches. |
Author | Huang, Zi Chang, Lijun Zheng, Kai Zhou, Xiaofang Li, Xuefei |
Author_xml | – sequence: 1 givenname: Xuefei orcidid: 0000-0001-9331-5551 surname: Li fullname: Li, Xuefei email: xuefei.li89@gmail.com organization: School of Information Technology and Electrical Engineering, The University of Queensland – sequence: 2 givenname: Lijun surname: Chang fullname: Chang, Lijun organization: School of Computer Science and Engineering, The University of New South Wales – sequence: 3 givenname: Kai surname: Zheng fullname: Zheng, Kai organization: School of Information Technology and Electrical Engineering, The University of Queensland – sequence: 4 givenname: Zi surname: Huang fullname: Huang, Zi organization: School of Information Technology and Electrical Engineering, The University of Queensland – sequence: 5 givenname: Xiaofang surname: Zhou fullname: Zhou, Xiaofang organization: School of Information Technology and Electrical Engineering, The University of Queensland |
BookMark | eNp1kE9LxDAQxYOs4O7qB_BW8FzNJNk0PYks_oMFQRS8hTSddLvupjVpkf32ttSDF0_zGOa94f0WZOYbj4RcAr0GSrObCMAUTSnIlApGU3ZC5rDKeAoC-GzQXMlBrz7OyCLGHaVU8hzm5PbV-M_aV8k31tW2wzKx-z52GMadbdC52tbou6T2yd6ECpPy6M2htkkVTLuN5-TUmX3Ei9-5JO8P92_rp3Tz8vi8vtukloPs0sLk1uZCCCWzggnFcgVOKQTJClTCCoMFlrmTIBy3VuTUYllyJ1kmqDGML8nVlNuG5qvH2Old0wc_vNSQUyZBjm2XBKYrG5oYAzrdhvpgwlED1SMnPXHSAyc9ctJjMps8sR1LY_iT_K_pB2tsbGA |
CitedBy_id | crossref_primary_10_1038_s41598_023_39174_7 crossref_primary_10_1007_s11280_017_0510_9 crossref_primary_10_1038_s41598_022_25243_w |
Cites_doi | 10.1016/0022-0000(85)90041-8 10.14778/2856318.2856323 10.1145/2882903.2882913 10.1037/a0016902 10.14778/2536258.2536272 10.1038/30918 10.1016/j.tcs.2008.07.017 10.1038/35065725 10.1086/228943 10.1016/j.neuroimage.2009.10.003 10.1145/1391729.1391730 10.1103/PhysRevE.71.057101 10.1109/ICDE.2014.6816651 10.1145/956755.956769 10.1145/1963192.1963217 10.1109/ICDE.2007.367854 10.1145/2487575.2487678 10.14778/2350229.2350233 10.1145/800105.803390 10.1145/2020408.2020513 10.1145/2505515.2505741 10.1145/2623330.2623655 10.1145/2588555.2610495 10.1109/ICDE.2010.5447863 10.1145/2213836.2213883 10.1145/1401890.1401898 10.1145/2213836.2213882 10.1145/1247480.1247495 10.1145/28395.28396 10.1145/1963405.1963491 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 World Wide Web is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: World Wide Web is a copyright of Springer, 2017. |
DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PQEST PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s11280-016-0420-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest Central Korea Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) |
DatabaseTitleList | Computer Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1573-1413 |
EndPage | 883 |
ExternalDocumentID | 10_1007_s11280_016_0420_2 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1SB 203 29R 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8FE 8FG 8TC 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYOK AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LLZTM M0N M4Y MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P62 P9O PF0 PQQKQ PROAC PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 ZMTXR ~A9 AACDK AAJBT AASML AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AGQEE AIGIU CITATION H13 7SC 7XB 8AL 8FD 8FK AAYZH JQ2 L7M L~C L~D PQEST PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c316t-ba9cc9444867b2482981f88e162be84c4aebed9f614f3cc490cedd3f62740aa23 |
IEDL.DBID | AGYKE |
ISSN | 1386-145X |
IngestDate | Mon Nov 04 11:16:11 EST 2024 Thu Sep 12 18:04:13 EDT 2024 Sat Dec 16 12:01:29 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Large dynamic graphs Top-k search Node ranking Clustering coefficient |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-ba9cc9444867b2482981f88e162be84c4aebed9f614f3cc490cedd3f62740aa23 |
ORCID | 0000-0001-9331-5551 |
PQID | 1902616157 |
PQPubID | 2034525 |
PageCount | 29 |
ParticipantIDs | proquest_journals_1902616157 crossref_primary_10_1007_s11280_016_0420_2 springer_journals_10_1007_s11280_016_0420_2 |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | Internet and Web Information Systems |
PublicationTitle | World wide web (Bussum) |
PublicationTitleAbbrev | World Wide Web |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Huang, Lakshmanan, Yu, Cheng (CR15) 2015; 9 Chan, Vitevitch (CR6) 2009; 35 Angel, Koudas, Sarkas, Srivastava (CR2) 2012; 5 CR19 CR18 Watts, Strogatz (CR35) 1998; 393 CR37 CR14 CR36 Flajolet, Martin (CR11) 1985; 31 CR12 Strogatz (CR30) 2001; 6825 CR33 CR10 CR32 CR31 Huang, Lu, Lakshmanan (CR16) 2016 Alon, Yuster, Zwick (CR1) 1997; 17 Coleman (CR8) 1988; 94 Olsen, Labouseur, Hwang (CR25) 2014 CR4 CR5 CR7 CR29 Huang, Cheng, Li, Qin, Yu (CR13) 2013; 6 Rubinov, Sporns (CR28) 2010; 52 CR9 CR27 CR26 CR24 CR23 CR22 Ilyas, Beskales, Soliman (CR17) 2008; 58 Latapy (CR21) 2008; 407 CR20 Wang, Li, Wang, Pan (CR34) 2011 Bahmani, Kumar, Vassilvitskii (CR3) 2012; 5 P Flajolet (420_CR11) 1985; 31 X Huang (420_CR16) 2016 IF Ilyas (420_CR17) 2008; 58 N Alon (420_CR1) 1997; 17 DJ Watts (420_CR35) 1998; 393 420_CR14 420_CR36 H Wang (420_CR34) 2011 420_CR12 PW Olsen (420_CR25) 2014 420_CR33 420_CR10 X Huang (420_CR13) 2013; 6 420_CR32 420_CR31 A Angel (420_CR2) 2012; 5 420_CR29 420_CR27 420_CR26 X Huang (420_CR15) 2015; 9 KYY Chan (420_CR6) 2009; 35 420_CR24 420_CR23 420_CR22 420_CR20 SH Strogatz (420_CR30) 2001; 6825 420_CR19 420_CR18 M Latapy (420_CR21) 2008; 407 B Bahmani (420_CR3) 2012; 5 420_CR37 M Rubinov (420_CR28) 2010; 52 420_CR9 JS Coleman (420_CR8) 1988; 94 420_CR7 420_CR4 420_CR5 |
References_xml | – ident: CR22 – ident: CR18 – ident: CR4 – volume: 31 start-page: 182 year: 1985 end-page: 209 ident: CR11 article-title: Probabilistic counting algorithms for data base applications publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(85)90041-8 contributor: fullname: Martin – ident: CR14 – volume: 9 start-page: 276 issue: 4 year: 2015 end-page: 287 ident: CR15 article-title: Approximate closest community search in networks publication-title: Proc. VLDB Endowment doi: 10.14778/2856318.2856323 contributor: fullname: Cheng – ident: CR37 – ident: CR12 – ident: CR10 – ident: CR33 – year: 2016 ident: CR16 publication-title: Truss decomposition of probabilistic graphs: Semantics and algorithms doi: 10.1145/2882903.2882913 contributor: fullname: Lakshmanan – volume: 35 start-page: 1934 issue: 6 year: 2009 end-page: 1949 ident: CR6 article-title: The influence of the phonological neighborhood clustering coefficient on spoken word recognition publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/a0016902 contributor: fullname: Vitevitch – ident: CR29 – volume: 6 start-page: 1618 issue: 13 year: 2013 end-page: 1629 ident: CR13 article-title: Top-k structural diversity search in large networks publication-title: Proc. VLDB Endow. doi: 10.14778/2536258.2536272 contributor: fullname: Yu – year: 2014 ident: CR25 article-title: Efficient top-k closeness centrality search publication-title: IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014 contributor: fullname: Hwang – volume: 17 start-page: 354 year: 1997 end-page: 364 ident: CR1 article-title: Finding and counting given length cycles publication-title: Algorithmica contributor: fullname: Zwick – ident: CR27 – volume: 393 start-page: 409 issue: 6684 year: 1998 end-page: 10 ident: CR35 article-title: Collective dynamics of ‘small-world’ networks publication-title: Nature doi: 10.1038/30918 contributor: fullname: Strogatz – ident: CR23 – ident: CR19 – volume: 407 start-page: 458 issue: 1 - 3 year: 2008 end-page: 473 ident: CR21 article-title: Main-memory triangle computations for very large (sparse (power-law)) graphs publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2008.07.017 contributor: fullname: Latapy – volume: 6825 start-page: 268 year: 2001 end-page: 276 ident: CR30 article-title: Exploring complex networks publication-title: Nature doi: 10.1038/35065725 contributor: fullname: Strogatz – start-page: 87 year: 2011 end-page: 98 ident: CR34 publication-title: A new method for identifying essential proteins based on edge clustering coefficient contributor: fullname: Pan – volume: 94 start-page: S95 year: 1988 end-page: S120 ident: CR8 article-title: Social Capital in the Creation of Human Capital publication-title: Am. J. Sociol. doi: 10.1086/228943 contributor: fullname: Coleman – ident: CR31 – ident: CR9 – volume: 52 start-page: 1059 issue: 3 year: 2010 end-page: 1069 ident: CR28 article-title: Complex network measures of brain connectivity: Uses and interpretations publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 contributor: fullname: Sporns – ident: CR32 – volume: 58 start-page: 1 year: 2008 end-page: 11 ident: CR17 article-title: A survey of top-k query processing techniques in relational database systems publication-title: ACM Comput. Surv. doi: 10.1145/1391729.1391730 contributor: fullname: Soliman – ident: CR36 – ident: CR5 – ident: CR7 – volume: 5 start-page: 574 issue: 6 year: 2012 end-page: 585 ident: CR2 article-title: Dense subgraph maintenance under streaming edge weight updates for real-time story identification publication-title: PVLDB contributor: fullname: Srivastava – ident: CR26 – ident: CR24 – volume: 5 start-page: 454 issue: 5 year: 2012 end-page: 465 ident: CR3 article-title: Densest subgraph in streaming and mapreduce publication-title: PVLDB contributor: fullname: Vassilvitskii – ident: CR20 – ident: 420_CR29 doi: 10.1103/PhysRevE.71.057101 – volume-title: IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014 year: 2014 ident: 420_CR25 doi: 10.1109/ICDE.2014.6816651 contributor: fullname: PW Olsen – ident: 420_CR20 doi: 10.1145/956755.956769 – ident: 420_CR26 – volume: 6 start-page: 1618 issue: 13 year: 2013 ident: 420_CR13 publication-title: Proc. VLDB Endow. doi: 10.14778/2536258.2536272 contributor: fullname: X Huang – volume: 6825 start-page: 268 year: 2001 ident: 420_CR30 publication-title: Nature doi: 10.1038/35065725 contributor: fullname: SH Strogatz – ident: 420_CR12 doi: 10.1145/1963192.1963217 – ident: 420_CR22 doi: 10.1109/ICDE.2007.367854 – volume: 52 start-page: 1059 issue: 3 year: 2010 ident: 420_CR28 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2009.10.003 contributor: fullname: M Rubinov – ident: 420_CR19 doi: 10.1145/2487575.2487678 – ident: 420_CR27 doi: 10.14778/2350229.2350233 – volume: 393 start-page: 409 issue: 6684 year: 1998 ident: 420_CR35 publication-title: Nature doi: 10.1038/30918 contributor: fullname: DJ Watts – volume: 35 start-page: 1934 issue: 6 year: 2009 ident: 420_CR6 publication-title: J. Exp. Psychol. Hum. Percept. Perform. doi: 10.1037/a0016902 contributor: fullname: KYY Chan – ident: 420_CR18 doi: 10.1145/800105.803390 – volume-title: Truss decomposition of probabilistic graphs: Semantics and algorithms year: 2016 ident: 420_CR16 doi: 10.1145/2882903.2882913 contributor: fullname: X Huang – ident: 420_CR10 – ident: 420_CR33 – ident: 420_CR7 doi: 10.1145/2020408.2020513 – volume: 94 start-page: S95 year: 1988 ident: 420_CR8 publication-title: Am. J. Sociol. doi: 10.1086/228943 contributor: fullname: JS Coleman – volume: 58 start-page: 1 year: 2008 ident: 420_CR17 publication-title: ACM Comput. Surv. doi: 10.1145/1391729.1391730 contributor: fullname: IF Ilyas – volume: 407 start-page: 458 issue: 1 - 3 year: 2008 ident: 420_CR21 publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2008.07.017 contributor: fullname: M Latapy – ident: 420_CR32 doi: 10.1145/2505515.2505741 – ident: 420_CR5 doi: 10.1145/2623330.2623655 – volume: 5 start-page: 454 issue: 5 year: 2012 ident: 420_CR3 publication-title: PVLDB contributor: fullname: B Bahmani – ident: 420_CR14 doi: 10.1145/2588555.2610495 – volume: 9 start-page: 276 issue: 4 year: 2015 ident: 420_CR15 publication-title: Proc. VLDB Endowment doi: 10.14778/2856318.2856323 contributor: fullname: X Huang – ident: 420_CR36 doi: 10.1109/ICDE.2010.5447863 – volume: 17 start-page: 354 year: 1997 ident: 420_CR1 publication-title: Algorithmica contributor: fullname: N Alon – ident: 420_CR23 doi: 10.1145/2213836.2213883 – volume: 5 start-page: 574 issue: 6 year: 2012 ident: 420_CR2 publication-title: PVLDB contributor: fullname: A Angel – ident: 420_CR4 doi: 10.1145/1401890.1401898 – ident: 420_CR37 doi: 10.1145/2213836.2213882 – ident: 420_CR24 doi: 10.1145/1247480.1247495 – start-page: 87 volume-title: A new method for identifying essential proteins based on edge clustering coefficient year: 2011 ident: 420_CR34 contributor: fullname: H Wang – volume: 31 start-page: 182 year: 1985 ident: 420_CR11 publication-title: J. Comput. Syst. Sci. doi: 10.1016/0022-0000(85)90041-8 contributor: fullname: P Flajolet – ident: 420_CR9 doi: 10.1145/28395.28396 – ident: 420_CR31 doi: 10.1145/1963405.1963491 |
SSID | ssj0006391 |
Score | 2.151731 |
Snippet | Efficiently searching top-
k
representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities... Efficiently searching top-k representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 855 |
SubjectTerms | Clustering Coefficients Computer Science Database Management Graphs Information Systems Applications (incl.Internet) Operating Systems Ranking Residential density Upper bounds |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA3aXvQgfmK1Sg6elOBuNrsmp6LSUgSLFAu9LZtJAkJpq23x7zvJ7toq6DWBHGZ2581MJu8RcpWmKRSJcIxb55gArZiCKGXCYrS0KjFZeMX_PMj6I_E0TsdVw21RjVXWMTEEajMD3yO_ReDCZB_x964zf2deNcrfrlYSGtukybFSiBqk-dAdvAy_YzHib1lyyYzFIh3X95rh8RyGZj-UhRW1wBqK_0Smdbr564Y0AE9vn-xVGSO9L118QLbs9JDsbvAIHpHOsAgKCPQzNDqtoTBZeQYEvwYzG2giEF3o25RO_Og3NaUQPQ181YtjMup1Xx_7rFJGYJDE2ZLpQgEoITxdnuZCciVjJ6WNM66tFCAK9I1RDrHXJQBCRWCNSZwX2omKgicnpDGdTe0poZnEVY5FHgAWC5lWErgyDqwEq7VSLXJdWyWflwQY-Zrq2Jsw90Ni3oQ5b5F2bbe8-hcW-dpzLXJT23Jj-6_Dzv4_7JzscA-xYd6rTRrLj5W9wARhqS-rr-ALjn23gQ priority: 102 providerName: ProQuest |
Title | Ranking weighted clustering coefficient in large dynamic graphs |
URI | https://link.springer.com/article/10.1007/s11280-016-0420-2 https://www.proquest.com/docview/1902616157 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mfNEH5ydOp-TBJ6VjS9OaPMmUTVEUGQ7mU2muKchGJ25D8K_3krbOzwefCmkJ9JLc3S939zuAoyAIMPZF6nGTpp5ArTyFrcAThrSlUX4Suir-27vwaiCuh8GwAvzj6iIbNcuIpFPUi1o30qQ2h4oAsCDIQ2p3uag7Xe5cPt50P_Qv2dwcZsnQa4tgWMYyf5vkqzVauJjfoqLO2PRqeQHg1HEU2hyTUXM-0018-8ng-I__WIe1wvdknXyzbEDFZJtQK_s6sOKYb8LqJ5LCLTjrx669Ant1t6gmYTieW3oFO4YT4zgoyHSxp4yNbV45S_Iu98yRYU-3YdDrPlxceUXbBQ_9djjzdKwQlRCWi09zIbmS7VRK0w65NlKgiGnhE5WSYU99RKFaaJLET20Xn1Ycc38HqtkkM7vAQkmjnBAkIiGRUCuJXCUpGolGa6XqcFyKP3rO2TWiBY-yFVRkM9CsoCJeh0a5QFFx0KYR-TOEAcktO63DSSnwT6__mmzvX1_vwwq35tzlljWgOnuZmwNyRmb6EJZk7_Kw2IP0PO_e3fdpdMA779922BI |
link.rule.ids | 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246,74369,74636 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA86D-pB_MTp1Bw8KcE1TWtyGiLOqdsOssFupXlNQBjddBv--76krZuCXhPI4b32_d7n7xFyGUURpKGwjBtrmQCtmIJmxIRBa2lUmMV-ir_XjztD8TyKRmXCbVa2VVY20RvqbAIuR36DwIXOPuLvbWv6ztzWKFddLVdorJMNESJWu0nx9uO3JUb0LQIuGbNARKOqqulH59Awu5YsjKcFRlD8Jy4tnc1f9VEPO-1dslP6i_SuUPAeWTP5PtleYRE8IK3X1O8_oJ8-zWkyCuOF4z9wZzAxniQCsYW-5XTsGr9pVqyhp56tenZIhu2HwX2HlXsRGIRBPGc6VQBKCEeWp7mQXMnASmmCmGsjBYgUNZMpi8hrQwChmmCyLLRuzU4zTXl4RGr5JDfHhMYSTzmGeAAYKsRaSeAqs2AkGK2VqpOrSirJtKC_SJZEx06EiWsRcyJMeJ00Krkl5Z8wS5Z6q5PrSpYr1389dvL_YxdkszPodZPuU__llGxxB7a-86tBavOPhTlDV2Guz_338AUoK7kM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA1aQfQgfmK1ag6elNA2m12TUxF1rV9FxEJvy2Y2AaFsq23x7zvJ7toq6DULOczMzptJXt4QchqGIaSBsIwba5kArZiCVsiEwWxpVJBF_hX_Uy_q9sX9IByU_KdJSauscqJP1NkI3Bl5E4ELi33E34umLWkRz9dxZ_zO3AQpd9NajtNYJiuIipGLcBnffmdlROKi-ZIRa4twUN1w-md0mKQdPQt7a4HdFP-JUfPC89ddqYegeJNslLUjvSycvUWWTL5N1hcUBXdI5yX1sxDopz_yNBmF4cxpIbg1GBkvGIE4Q99yOnQkcJoVI-mpV66e7JJ-fPN61WXljAQGQTuaMp0qACWEE87TXEiuZNtKadoR10YKECl6KVMWUdgGAEK1wGRZYN3InVaa8mCP1PJRbvYJjSSucmz3ALBtiLSSwFVmwUgwWitVJ2eVVZJxIYWRzEWPnQkTRxdzJkx4nTQquyXlXzFJ5j6sk_PKlguf_9rs4P_NTsgqhkLyeNd7OCRr3OGuJ4E1SG36MTNHWDVM9bEPhy_jB71K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ranking+weighted+clustering+coefficient+in+large+dynamic+graphs&rft.jtitle=World+wide+web+%28Bussum%29&rft.au=Li%2C+Xuefei&rft.au=Chang%2C+Lijun&rft.au=Zheng%2C+Kai&rft.au=Huang%2C+Zi&rft.date=2017-09-01&rft.pub=Springer+US&rft.issn=1386-145X&rft.eissn=1573-1413&rft.volume=20&rft.issue=5&rft.spage=855&rft.epage=883&rft_id=info:doi/10.1007%2Fs11280-016-0420-2&rft.externalDocID=10_1007_s11280_016_0420_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-145X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-145X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-145X&client=summon |