Ranking weighted clustering coefficient in large dynamic graphs

Efficiently searching top- k representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities formed by a vertex with high local clustering coefficient and its neighbours can achieve enhanced information propagation speed as well as dis...

Full description

Saved in:
Bibliographic Details
Published inWorld wide web (Bussum) Vol. 20; no. 5; pp. 855 - 883
Main Authors Li, Xuefei, Chang, Lijun, Zheng, Kai, Huang, Zi, Zhou, Xiaofang
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Efficiently searching top- k representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities formed by a vertex with high local clustering coefficient and its neighbours can achieve enhanced information propagation speed as well as disease transmission speed. However, local clustering coefficient, which measures the cliquishness of a vertex in its local neighbourhood, prefers vertices with small degrees. To remedy this issue, in this paper we propose a new ranking measure, weighted clustering coefficient (WCC) of vertices, by integrating both local clustering coefficient and degree. WCC not only inherits the properties of local clustering coefficient but also approximately measures the density (i.e., average degree) of its neighbourhood subgraph. Thus, vertices with higher WCC are more likely to be representative. We study efficiently computing and monitoring top- k representative vertices based on WCC over large dynamic graphs. To reduce the search space, we propose a series of heuristic upper bounds for WCC to prune a large portion of disqualifying vertices from the search space. We also develop an approximation algorithm by utilizing Flajolet-Martin sketch to trade acceptable accuracy for enhanced efficiency. An efficient incremental algorithm dealing with frequent updates in dynamic graphs is explored as well. Extensive experimental results on a variety of real-life graph datasets demonstrate the efficiency and effectiveness of our approaches.
AbstractList Efficiently searching top- k representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities formed by a vertex with high local clustering coefficient and its neighbours can achieve enhanced information propagation speed as well as disease transmission speed. However, local clustering coefficient, which measures the cliquishness of a vertex in its local neighbourhood, prefers vertices with small degrees. To remedy this issue, in this paper we propose a new ranking measure, weighted clustering coefficient (WCC) of vertices, by integrating both local clustering coefficient and degree. WCC not only inherits the properties of local clustering coefficient but also approximately measures the density (i.e., average degree) of its neighbourhood subgraph. Thus, vertices with higher WCC are more likely to be representative. We study efficiently computing and monitoring top- k representative vertices based on WCC over large dynamic graphs. To reduce the search space, we propose a series of heuristic upper bounds for WCC to prune a large portion of disqualifying vertices from the search space. We also develop an approximation algorithm by utilizing Flajolet-Martin sketch to trade acceptable accuracy for enhanced efficiency. An efficient incremental algorithm dealing with frequent updates in dynamic graphs is explored as well. Extensive experimental results on a variety of real-life graph datasets demonstrate the efficiency and effectiveness of our approaches.
Efficiently searching top-k representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities formed by a vertex with high local clustering coefficient and its neighbours can achieve enhanced information propagation speed as well as disease transmission speed. However, local clustering coefficient, which measures the cliquishness of a vertex in its local neighbourhood, prefers vertices with small degrees. To remedy this issue, in this paper we propose a new ranking measure, weighted clustering coefficient (WCC) of vertices, by integrating both local clustering coefficient and degree. WCC not only inherits the properties of local clustering coefficient but also approximately measures the density (i.e., average degree) of its neighbourhood subgraph. Thus, vertices with higher WCC are more likely to be representative. We study efficiently computing and monitoring top-k representative vertices based on WCC over large dynamic graphs. To reduce the search space, we propose a series of heuristic upper bounds for WCC to prune a large portion of disqualifying vertices from the search space. We also develop an approximation algorithm by utilizing Flajolet-Martin sketch to trade acceptable accuracy for enhanced efficiency. An efficient incremental algorithm dealing with frequent updates in dynamic graphs is explored as well. Extensive experimental results on a variety of real-life graph datasets demonstrate the efficiency and effectiveness of our approaches.
Author Huang, Zi
Chang, Lijun
Zheng, Kai
Zhou, Xiaofang
Li, Xuefei
Author_xml – sequence: 1
  givenname: Xuefei
  orcidid: 0000-0001-9331-5551
  surname: Li
  fullname: Li, Xuefei
  email: xuefei.li89@gmail.com
  organization: School of Information Technology and Electrical Engineering, The University of Queensland
– sequence: 2
  givenname: Lijun
  surname: Chang
  fullname: Chang, Lijun
  organization: School of Computer Science and Engineering, The University of New South Wales
– sequence: 3
  givenname: Kai
  surname: Zheng
  fullname: Zheng, Kai
  organization: School of Information Technology and Electrical Engineering, The University of Queensland
– sequence: 4
  givenname: Zi
  surname: Huang
  fullname: Huang, Zi
  organization: School of Information Technology and Electrical Engineering, The University of Queensland
– sequence: 5
  givenname: Xiaofang
  surname: Zhou
  fullname: Zhou, Xiaofang
  organization: School of Information Technology and Electrical Engineering, The University of Queensland
BookMark eNp1kE9LxDAQxYOs4O7qB_BW8FzNJNk0PYks_oMFQRS8hTSddLvupjVpkf32ttSDF0_zGOa94f0WZOYbj4RcAr0GSrObCMAUTSnIlApGU3ZC5rDKeAoC-GzQXMlBrz7OyCLGHaVU8hzm5PbV-M_aV8k31tW2wzKx-z52GMadbdC52tbou6T2yd6ECpPy6M2htkkVTLuN5-TUmX3Ei9-5JO8P92_rp3Tz8vi8vtukloPs0sLk1uZCCCWzggnFcgVOKQTJClTCCoMFlrmTIBy3VuTUYllyJ1kmqDGML8nVlNuG5qvH2Old0wc_vNSQUyZBjm2XBKYrG5oYAzrdhvpgwlED1SMnPXHSAyc9ctJjMps8sR1LY_iT_K_pB2tsbGA
CitedBy_id crossref_primary_10_1038_s41598_023_39174_7
crossref_primary_10_1007_s11280_017_0510_9
crossref_primary_10_1038_s41598_022_25243_w
Cites_doi 10.1016/0022-0000(85)90041-8
10.14778/2856318.2856323
10.1145/2882903.2882913
10.1037/a0016902
10.14778/2536258.2536272
10.1038/30918
10.1016/j.tcs.2008.07.017
10.1038/35065725
10.1086/228943
10.1016/j.neuroimage.2009.10.003
10.1145/1391729.1391730
10.1103/PhysRevE.71.057101
10.1109/ICDE.2014.6816651
10.1145/956755.956769
10.1145/1963192.1963217
10.1109/ICDE.2007.367854
10.1145/2487575.2487678
10.14778/2350229.2350233
10.1145/800105.803390
10.1145/2020408.2020513
10.1145/2505515.2505741
10.1145/2623330.2623655
10.1145/2588555.2610495
10.1109/ICDE.2010.5447863
10.1145/2213836.2213883
10.1145/1401890.1401898
10.1145/2213836.2213882
10.1145/1247480.1247495
10.1145/28395.28396
10.1145/1963405.1963491
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
World Wide Web is a copyright of Springer, 2017.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: World Wide Web is a copyright of Springer, 2017.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PQEST
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s11280-016-0420-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
DatabaseTitleList
Computer Science Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1573-1413
EndPage 883
ExternalDocumentID 10_1007_s11280_016_0420_2
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1SB
203
29R
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8FE
8FG
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYOK
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LLZTM
M0N
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P62
P9O
PF0
PQQKQ
PROAC
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AGQEE
AIGIU
CITATION
H13
7SC
7XB
8AL
8FD
8FK
AAYZH
JQ2
L7M
L~C
L~D
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-ba9cc9444867b2482981f88e162be84c4aebed9f614f3cc490cedd3f62740aa23
IEDL.DBID AGYKE
ISSN 1386-145X
IngestDate Mon Nov 04 11:16:11 EST 2024
Thu Sep 12 18:04:13 EDT 2024
Sat Dec 16 12:01:29 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Large dynamic graphs
Top-k search
Node ranking
Clustering coefficient
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-ba9cc9444867b2482981f88e162be84c4aebed9f614f3cc490cedd3f62740aa23
ORCID 0000-0001-9331-5551
PQID 1902616157
PQPubID 2034525
PageCount 29
ParticipantIDs proquest_journals_1902616157
crossref_primary_10_1007_s11280_016_0420_2
springer_journals_10_1007_s11280_016_0420_2
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle Internet and Web Information Systems
PublicationTitle World wide web (Bussum)
PublicationTitleAbbrev World Wide Web
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Huang, Lakshmanan, Yu, Cheng (CR15) 2015; 9
Chan, Vitevitch (CR6) 2009; 35
Angel, Koudas, Sarkas, Srivastava (CR2) 2012; 5
CR19
CR18
Watts, Strogatz (CR35) 1998; 393
CR37
CR14
CR36
Flajolet, Martin (CR11) 1985; 31
CR12
Strogatz (CR30) 2001; 6825
CR33
CR10
CR32
CR31
Huang, Lu, Lakshmanan (CR16) 2016
Alon, Yuster, Zwick (CR1) 1997; 17
Coleman (CR8) 1988; 94
Olsen, Labouseur, Hwang (CR25) 2014
CR4
CR5
CR7
CR29
Huang, Cheng, Li, Qin, Yu (CR13) 2013; 6
Rubinov, Sporns (CR28) 2010; 52
CR9
CR27
CR26
CR24
CR23
CR22
Ilyas, Beskales, Soliman (CR17) 2008; 58
Latapy (CR21) 2008; 407
CR20
Wang, Li, Wang, Pan (CR34) 2011
Bahmani, Kumar, Vassilvitskii (CR3) 2012; 5
P Flajolet (420_CR11) 1985; 31
X Huang (420_CR16) 2016
IF Ilyas (420_CR17) 2008; 58
N Alon (420_CR1) 1997; 17
DJ Watts (420_CR35) 1998; 393
420_CR14
420_CR36
H Wang (420_CR34) 2011
420_CR12
PW Olsen (420_CR25) 2014
420_CR33
420_CR10
X Huang (420_CR13) 2013; 6
420_CR32
420_CR31
A Angel (420_CR2) 2012; 5
420_CR29
420_CR27
420_CR26
X Huang (420_CR15) 2015; 9
KYY Chan (420_CR6) 2009; 35
420_CR24
420_CR23
420_CR22
420_CR20
SH Strogatz (420_CR30) 2001; 6825
420_CR19
420_CR18
M Latapy (420_CR21) 2008; 407
B Bahmani (420_CR3) 2012; 5
420_CR37
M Rubinov (420_CR28) 2010; 52
420_CR9
JS Coleman (420_CR8) 1988; 94
420_CR7
420_CR4
420_CR5
References_xml – ident: CR22
– ident: CR18
– ident: CR4
– volume: 31
  start-page: 182
  year: 1985
  end-page: 209
  ident: CR11
  article-title: Probabilistic counting algorithms for data base applications
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(85)90041-8
  contributor:
    fullname: Martin
– ident: CR14
– volume: 9
  start-page: 276
  issue: 4
  year: 2015
  end-page: 287
  ident: CR15
  article-title: Approximate closest community search in networks
  publication-title: Proc. VLDB Endowment
  doi: 10.14778/2856318.2856323
  contributor:
    fullname: Cheng
– ident: CR37
– ident: CR12
– ident: CR10
– ident: CR33
– year: 2016
  ident: CR16
  publication-title: Truss decomposition of probabilistic graphs: Semantics and algorithms
  doi: 10.1145/2882903.2882913
  contributor:
    fullname: Lakshmanan
– volume: 35
  start-page: 1934
  issue: 6
  year: 2009
  end-page: 1949
  ident: CR6
  article-title: The influence of the phonological neighborhood clustering coefficient on spoken word recognition
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
  doi: 10.1037/a0016902
  contributor:
    fullname: Vitevitch
– ident: CR29
– volume: 6
  start-page: 1618
  issue: 13
  year: 2013
  end-page: 1629
  ident: CR13
  article-title: Top-k structural diversity search in large networks
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536258.2536272
  contributor:
    fullname: Yu
– year: 2014
  ident: CR25
  article-title: Efficient top-k closeness centrality search
  publication-title: IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014
  contributor:
    fullname: Hwang
– volume: 17
  start-page: 354
  year: 1997
  end-page: 364
  ident: CR1
  article-title: Finding and counting given length cycles
  publication-title: Algorithmica
  contributor:
    fullname: Zwick
– ident: CR27
– volume: 393
  start-page: 409
  issue: 6684
  year: 1998
  end-page: 10
  ident: CR35
  article-title: Collective dynamics of ‘small-world’ networks
  publication-title: Nature
  doi: 10.1038/30918
  contributor:
    fullname: Strogatz
– ident: CR23
– ident: CR19
– volume: 407
  start-page: 458
  issue: 1 - 3
  year: 2008
  end-page: 473
  ident: CR21
  article-title: Main-memory triangle computations for very large (sparse (power-law)) graphs
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2008.07.017
  contributor:
    fullname: Latapy
– volume: 6825
  start-page: 268
  year: 2001
  end-page: 276
  ident: CR30
  article-title: Exploring complex networks
  publication-title: Nature
  doi: 10.1038/35065725
  contributor:
    fullname: Strogatz
– start-page: 87
  year: 2011
  end-page: 98
  ident: CR34
  publication-title: A new method for identifying essential proteins based on edge clustering coefficient
  contributor:
    fullname: Pan
– volume: 94
  start-page: S95
  year: 1988
  end-page: S120
  ident: CR8
  article-title: Social Capital in the Creation of Human Capital
  publication-title: Am. J. Sociol.
  doi: 10.1086/228943
  contributor:
    fullname: Coleman
– ident: CR31
– ident: CR9
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  end-page: 1069
  ident: CR28
  article-title: Complex network measures of brain connectivity: Uses and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
  contributor:
    fullname: Sporns
– ident: CR32
– volume: 58
  start-page: 1
  year: 2008
  end-page: 11
  ident: CR17
  article-title: A survey of top-k query processing techniques in relational database systems
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1391729.1391730
  contributor:
    fullname: Soliman
– ident: CR36
– ident: CR5
– ident: CR7
– volume: 5
  start-page: 574
  issue: 6
  year: 2012
  end-page: 585
  ident: CR2
  article-title: Dense subgraph maintenance under streaming edge weight updates for real-time story identification
  publication-title: PVLDB
  contributor:
    fullname: Srivastava
– ident: CR26
– ident: CR24
– volume: 5
  start-page: 454
  issue: 5
  year: 2012
  end-page: 465
  ident: CR3
  article-title: Densest subgraph in streaming and mapreduce
  publication-title: PVLDB
  contributor:
    fullname: Vassilvitskii
– ident: CR20
– ident: 420_CR29
  doi: 10.1103/PhysRevE.71.057101
– volume-title: IEEE 30th International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014
  year: 2014
  ident: 420_CR25
  doi: 10.1109/ICDE.2014.6816651
  contributor:
    fullname: PW Olsen
– ident: 420_CR20
  doi: 10.1145/956755.956769
– ident: 420_CR26
– volume: 6
  start-page: 1618
  issue: 13
  year: 2013
  ident: 420_CR13
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536258.2536272
  contributor:
    fullname: X Huang
– volume: 6825
  start-page: 268
  year: 2001
  ident: 420_CR30
  publication-title: Nature
  doi: 10.1038/35065725
  contributor:
    fullname: SH Strogatz
– ident: 420_CR12
  doi: 10.1145/1963192.1963217
– ident: 420_CR22
  doi: 10.1109/ICDE.2007.367854
– volume: 52
  start-page: 1059
  issue: 3
  year: 2010
  ident: 420_CR28
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2009.10.003
  contributor:
    fullname: M Rubinov
– ident: 420_CR19
  doi: 10.1145/2487575.2487678
– ident: 420_CR27
  doi: 10.14778/2350229.2350233
– volume: 393
  start-page: 409
  issue: 6684
  year: 1998
  ident: 420_CR35
  publication-title: Nature
  doi: 10.1038/30918
  contributor:
    fullname: DJ Watts
– volume: 35
  start-page: 1934
  issue: 6
  year: 2009
  ident: 420_CR6
  publication-title: J. Exp. Psychol. Hum. Percept. Perform.
  doi: 10.1037/a0016902
  contributor:
    fullname: KYY Chan
– ident: 420_CR18
  doi: 10.1145/800105.803390
– volume-title: Truss decomposition of probabilistic graphs: Semantics and algorithms
  year: 2016
  ident: 420_CR16
  doi: 10.1145/2882903.2882913
  contributor:
    fullname: X Huang
– ident: 420_CR10
– ident: 420_CR33
– ident: 420_CR7
  doi: 10.1145/2020408.2020513
– volume: 94
  start-page: S95
  year: 1988
  ident: 420_CR8
  publication-title: Am. J. Sociol.
  doi: 10.1086/228943
  contributor:
    fullname: JS Coleman
– volume: 58
  start-page: 1
  year: 2008
  ident: 420_CR17
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1391729.1391730
  contributor:
    fullname: IF Ilyas
– volume: 407
  start-page: 458
  issue: 1 - 3
  year: 2008
  ident: 420_CR21
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2008.07.017
  contributor:
    fullname: M Latapy
– ident: 420_CR32
  doi: 10.1145/2505515.2505741
– ident: 420_CR5
  doi: 10.1145/2623330.2623655
– volume: 5
  start-page: 454
  issue: 5
  year: 2012
  ident: 420_CR3
  publication-title: PVLDB
  contributor:
    fullname: B Bahmani
– ident: 420_CR14
  doi: 10.1145/2588555.2610495
– volume: 9
  start-page: 276
  issue: 4
  year: 2015
  ident: 420_CR15
  publication-title: Proc. VLDB Endowment
  doi: 10.14778/2856318.2856323
  contributor:
    fullname: X Huang
– ident: 420_CR36
  doi: 10.1109/ICDE.2010.5447863
– volume: 17
  start-page: 354
  year: 1997
  ident: 420_CR1
  publication-title: Algorithmica
  contributor:
    fullname: N Alon
– ident: 420_CR23
  doi: 10.1145/2213836.2213883
– volume: 5
  start-page: 574
  issue: 6
  year: 2012
  ident: 420_CR2
  publication-title: PVLDB
  contributor:
    fullname: A Angel
– ident: 420_CR4
  doi: 10.1145/1401890.1401898
– ident: 420_CR37
  doi: 10.1145/2213836.2213882
– ident: 420_CR24
  doi: 10.1145/1247480.1247495
– start-page: 87
  volume-title: A new method for identifying essential proteins based on edge clustering coefficient
  year: 2011
  ident: 420_CR34
  contributor:
    fullname: H Wang
– volume: 31
  start-page: 182
  year: 1985
  ident: 420_CR11
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(85)90041-8
  contributor:
    fullname: P Flajolet
– ident: 420_CR9
  doi: 10.1145/28395.28396
– ident: 420_CR31
  doi: 10.1145/1963405.1963491
SSID ssj0006391
Score 2.151731
Snippet Efficiently searching top- k representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities...
Efficiently searching top-k representative vertices is crucial for understanding the structure of large dynamic graphs. Recent studies show that communities...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 855
SubjectTerms Clustering
Coefficients
Computer Science
Database Management
Graphs
Information Systems Applications (incl.Internet)
Operating Systems
Ranking
Residential density
Upper bounds
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA3aXvQgfmK1Sg6elOBuNrsmp6LSUgSLFAu9LZtJAkJpq23x7zvJ7toq6DWBHGZ2581MJu8RcpWmKRSJcIxb55gArZiCKGXCYrS0KjFZeMX_PMj6I_E0TsdVw21RjVXWMTEEajMD3yO_ReDCZB_x964zf2deNcrfrlYSGtukybFSiBqk-dAdvAy_YzHib1lyyYzFIh3X95rh8RyGZj-UhRW1wBqK_0Smdbr564Y0AE9vn-xVGSO9L118QLbs9JDsbvAIHpHOsAgKCPQzNDqtoTBZeQYEvwYzG2giEF3o25RO_Og3NaUQPQ181YtjMup1Xx_7rFJGYJDE2ZLpQgEoITxdnuZCciVjJ6WNM66tFCAK9I1RDrHXJQBCRWCNSZwX2omKgicnpDGdTe0poZnEVY5FHgAWC5lWErgyDqwEq7VSLXJdWyWflwQY-Zrq2Jsw90Ni3oQ5b5F2bbe8-hcW-dpzLXJT23Jj-6_Dzv4_7JzscA-xYd6rTRrLj5W9wARhqS-rr-ALjn23gQ
  priority: 102
  providerName: ProQuest
Title Ranking weighted clustering coefficient in large dynamic graphs
URI https://link.springer.com/article/10.1007/s11280-016-0420-2
https://www.proquest.com/docview/1902616157
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_mfNEH5ydOp-TBJ6VjS9OaPMmUTVEUGQ7mU2muKchGJ25D8K_3krbOzwefCmkJ9JLc3S939zuAoyAIMPZF6nGTpp5ArTyFrcAThrSlUX4Suir-27vwaiCuh8GwAvzj6iIbNcuIpFPUi1o30qQ2h4oAsCDIQ2p3uag7Xe5cPt50P_Qv2dwcZsnQa4tgWMYyf5vkqzVauJjfoqLO2PRqeQHg1HEU2hyTUXM-0018-8ng-I__WIe1wvdknXyzbEDFZJtQK_s6sOKYb8LqJ5LCLTjrx669Ant1t6gmYTieW3oFO4YT4zgoyHSxp4yNbV45S_Iu98yRYU-3YdDrPlxceUXbBQ_9djjzdKwQlRCWi09zIbmS7VRK0w65NlKgiGnhE5WSYU99RKFaaJLET20Xn1Ycc38HqtkkM7vAQkmjnBAkIiGRUCuJXCUpGolGa6XqcFyKP3rO2TWiBY-yFVRkM9CsoCJeh0a5QFFx0KYR-TOEAcktO63DSSnwT6__mmzvX1_vwwq35tzlljWgOnuZmwNyRmb6EJZk7_Kw2IP0PO_e3fdpdMA779922BI
link.rule.ids 315,783,787,12777,21400,27936,27937,33385,33756,41093,41535,42162,42604,43612,43817,52123,52246,74369,74636
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NS8MwFA86D-pB_MTp1Bw8KcE1TWtyGiLOqdsOssFupXlNQBjddBv--76krZuCXhPI4b32_d7n7xFyGUURpKGwjBtrmQCtmIJmxIRBa2lUmMV-ir_XjztD8TyKRmXCbVa2VVY20RvqbAIuR36DwIXOPuLvbWv6ztzWKFddLVdorJMNESJWu0nx9uO3JUb0LQIuGbNARKOqqulH59Awu5YsjKcFRlD8Jy4tnc1f9VEPO-1dslP6i_SuUPAeWTP5PtleYRE8IK3X1O8_oJ8-zWkyCuOF4z9wZzAxniQCsYW-5XTsGr9pVqyhp56tenZIhu2HwX2HlXsRGIRBPGc6VQBKCEeWp7mQXMnASmmCmGsjBYgUNZMpi8hrQwChmmCyLLRuzU4zTXl4RGr5JDfHhMYSTzmGeAAYKsRaSeAqs2AkGK2VqpOrSirJtKC_SJZEx06EiWsRcyJMeJ00Krkl5Z8wS5Z6q5PrSpYr1389dvL_YxdkszPodZPuU__llGxxB7a-86tBavOPhTlDV2Guz_338AUoK7kM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NSwMxEA1aQfQgfmK1ag6elNA2m12TUxF1rV9FxEJvy2Y2AaFsq23x7zvJ7toq6DULOczMzptJXt4QchqGIaSBsIwba5kArZiCVsiEwWxpVJBF_hX_Uy_q9sX9IByU_KdJSauscqJP1NkI3Bl5E4ELi33E34umLWkRz9dxZ_zO3AQpd9NajtNYJiuIipGLcBnffmdlROKi-ZIRa4twUN1w-md0mKQdPQt7a4HdFP-JUfPC89ddqYegeJNslLUjvSycvUWWTL5N1hcUBXdI5yX1sxDopz_yNBmF4cxpIbg1GBkvGIE4Q99yOnQkcJoVI-mpV66e7JJ-fPN61WXljAQGQTuaMp0qACWEE87TXEiuZNtKadoR10YKECl6KVMWUdgGAEK1wGRZYN3InVaa8mCP1PJRbvYJjSSucmz3ALBtiLSSwFVmwUgwWitVJ2eVVZJxIYWRzEWPnQkTRxdzJkx4nTQquyXlXzFJ5j6sk_PKlguf_9rs4P_NTsgqhkLyeNd7OCRr3OGuJ4E1SG36MTNHWDVM9bEPhy_jB71K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ranking+weighted+clustering+coefficient+in+large+dynamic+graphs&rft.jtitle=World+wide+web+%28Bussum%29&rft.au=Li%2C+Xuefei&rft.au=Chang%2C+Lijun&rft.au=Zheng%2C+Kai&rft.au=Huang%2C+Zi&rft.date=2017-09-01&rft.pub=Springer+US&rft.issn=1386-145X&rft.eissn=1573-1413&rft.volume=20&rft.issue=5&rft.spage=855&rft.epage=883&rft_id=info:doi/10.1007%2Fs11280-016-0420-2&rft.externalDocID=10_1007_s11280_016_0420_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1386-145X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1386-145X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1386-145X&client=summon