Dynamic behaviors of graphene platelets-reinforced metal foam piezoelectric beams with velocity feedback control
Graphene platelets (GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams. Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control...
Saved in:
Published in | Applied mathematics and mechanics Vol. 46; no. 1; pp. 63 - 80 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2025
Springer Nature B.V |
Edition | English ed. |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Graphene platelets (GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams. Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control, greatly expanding their applications in the aerospace industry. For the first time, this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surface-bonded piezoelectric layers. The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors. The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied. The Newmark-
β
method combined with Newton’s iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads, impact loads, and moving loads. Additionally, special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam. |
---|---|
AbstractList | Graphene platelets (GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams. Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control, greatly expanding their applications in the aerospace industry. For the first time, this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surface-bonded piezoelectric layers. The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors. The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied. The Newmark-β method combined with Newton’s iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads, impact loads, and moving loads. Additionally, special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam. Graphene platelets (GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams. Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control, greatly expanding their applications in the aerospace industry. For the first time, this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surface-bonded piezoelectric layers. The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors. The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied. The Newmark- β method combined with Newton’s iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads, impact loads, and moving loads. Additionally, special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam. |
Author | Chen, Jie Fan, Mingyang Zhang, Xinyue |
Author_xml | – sequence: 1 givenname: Jie surname: Chen fullname: Chen, Jie email: jchen@bjut.edu.cn organization: School of Mathematics, Statistics and Mechanics, Beijing University of Technology – sequence: 2 givenname: Xinyue surname: Zhang fullname: Zhang, Xinyue organization: College of Mechanical & Energy Engineering, Beijing University of Technology – sequence: 3 givenname: Mingyang surname: Fan fullname: Fan, Mingyang organization: College of Mechanical & Energy Engineering, Beijing University of Technology |
BookMark | eNp9kMtKBDEQRYMoOD4-wF3AdTTP6e6l-AbBja5DOl1xMnZ32iQq49ebcQRB0FVB1T1Vde8e2h7DCAgdMXrCKK1OE6OyFoRyRQSnDam30IypShBeKbmNZmUgiKx5tYv2UlpSSmUl5QxNF6vRDN7iFhbmzYeYcHD4KZppASPgqTcZesiJRPCjC9FChwfIpscumAFPHj5CEdgcv3aYIeF3nxf4DfpgfV5hB9C1xj5jG8YcQ3-AdpzpExx-1330eHX5cH5D7u6vb8_P7ogVbJ5J21ghGHDJrGSUzzlAI2olStco3jaKUkelkg2VnTBdU3dSKNUx41rmKkPFPjre7J1ieHmFlPUyvMaxnNSCKc5YXSteVGyjsjGkFMHpKfrBxJVmVK-D1ZtgdclPr4PVdWGqX0wxarJf-zO-_5fkGzKVK-MTxJ-f_oY-AbHXj9c |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2025_126952 |
Cites_doi | 10.1016/j.compscitech.2017.02.008 10.1016/j.ijmecsci.2016.01.025 10.1177/1045389X15585896 10.1016/j.enganabound.2022.08.032 10.1016/j.apm.2020.01.054 10.1177/0142331216649431 10.1016/j.compstruct.2012.10.005 10.1016/j.matdes.2012.04.024 10.1080/15397734.2024.2404611 10.1016/j.compstruct.2015.07.052 10.1016/j.compstruct.2018.11.014 10.1088/0964-1726/14/5/045 10.1016/j.matdes.2015.01.004 10.1002/9781119375081 10.1021/nn9010472 10.1088/1361-665X/aad1b6 10.1016/j.ast.2024.109050 10.1016/j.jcsr.2011.10.028 10.1016/j.matdes.2016.12.061 10.1142/S0219455424501037 10.1016/j.tws.2016.05.025 10.1016/j.ijmecsci.2015.11.019 10.1016/j.compstruct.2022.116535 10.1016/j.compscitech.2015.12.005 10.1088/0964-1726/20/5/055013 10.1016/j.compositesb.2015.12.007 10.1088/1361-665X/aae623 10.1088/0964-1726/17/5/055008 10.1016/j.compstruct.2010.02.008 10.1016/j.matlet.2008.11.002 10.1016/j.engstruct.2024.118997 10.1007/s10483-022-2917-7 10.1016/j.cma.2018.06.006 10.1016/j.matdes.2008.03.028 10.1016/j.ijimpeng.2006.06.012 10.1016/j.compositesb.2019.05.060 10.1016/S1359-6454(00)00314-1 10.1016/j.jsv.2019.04.035 10.1016/j.tws.2023.111534 10.1016/j.apm.2024.04.049 10.1016/j.actaastro.2023.10.016 10.1140/epjp/s13360-019-00011-4 |
ContentType | Journal Article |
Copyright | Shanghai University 2025 Copyright Springer Nature B.V. 2025 |
Copyright_xml | – notice: Shanghai University 2025 – notice: Copyright Springer Nature B.V. 2025 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10483-025-3209-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1573-2754 |
Edition | English ed. |
EndPage | 80 |
ExternalDocumentID | 10_1007_s10483_025_3209_8 |
GroupedDBID | -01 -0A -52 -5D -5G -BR -EM -SA -S~ -XX -Y2 -~C .86 .VR 06D 0R~ 0VY 188 1N0 1SB 2.D 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5GY 5VR 5VS 5XA 5XB 67Z 6NX 8RM 8TC 8UJ 92E 92I 92M 92Q 93N 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BAPOH BBWZM BDATZ BGNMA BSONS CAG CAJEA CCEZO CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG ESX FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ IWAJR IXD IZIGR I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LAK LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OVD P19 P9R PF0 PT4 PT5 Q-- Q-0 QOK QOS R-A R89 R9I REI RHV RNI ROL RPX RSV RT1 RZC RZE RZK S.. S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 T8Q TCJ TEORI TGP TSG TSK TSV TUC TUS U1F U1G U2A U5A U5K UG4 UGNYK UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7U Z7X Z7Z Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8T Z8W ZMTXR ZWQNP ~8M ~A9 ~L9 ~LB AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ AMVHM ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-b9c331e241c410262ee93853c33a52b9500f0454904d3ad98d4355d1afb1f7a03 |
IEDL.DBID | U2A |
ISSN | 0253-4827 |
IngestDate | Fri Jul 25 09:46:06 EDT 2025 Tue Jul 01 02:11:09 EDT 2025 Thu Apr 24 22:56:24 EDT 2025 Fri Feb 21 02:35:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 70K30 O341 piezoelectric material metal foam nonlinear free vibration active vibration control velocity feedback control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-b9c331e241c410262ee93853c33a52b9500f0454904d3ad98d4355d1afb1f7a03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3152118852 |
PQPubID | 2043692 |
PageCount | 18 |
ParticipantIDs | proquest_journals_3152118852 crossref_primary_10_1007_s10483_025_3209_8 crossref_citationtrail_10_1007_s10483_025_3209_8 springer_journals_10_1007_s10483_025_3209_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250100 2025-01-00 20250101 |
PublicationDateYYYYMMDD | 2025-01-01 |
PublicationDate_xml | – month: 1 year: 2025 text: 20250100 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Dordrecht |
PublicationSubtitle | English Edition |
PublicationTitle | Applied mathematics and mechanics |
PublicationTitleAbbrev | Appl. Math. Mech.-Engl. Ed |
PublicationYear | 2025 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | S Kitipornchai (3209_CR14) 2017; 116 J P Song (3209_CR17) 2024; 147 L L Gan (3209_CR18) 2024; 214 C Li (3209_CR28) 2022; 43 Z Yang (3209_CR16) 2024; 197 H Q Tran (3209_CR32) 2023; 305 M Şimşek (3209_CR42) 2010; 92 D Chen (3209_CR7) 2016; 108–109 Y Luo (3209_CR20) 2018; 27 F Ebrahimi (3209_CR31) 2020; 135 M Rafiee (3209_CR41) 2013; 96 Y Chen (3209_CR21) 2005; 14 B H Smith (3209_CR1) 2012; 71 Y Wang (3209_CR10) 2019; 209 R Rajendran (3209_CR3) 2008; 29 H N Li (3209_CR27) 2023; 24 A Rabiei (3209_CR2) 2009; 63 Z G Song (3209_CR24) 2011; 20 D Chen (3209_CR8) 2016; 107 O E Ozbulut (3209_CR9) 2018; 27 D Chen (3209_CR40) 2017; 142 X Y Zhang (3209_CR25) 2024 A Mirghaffari (3209_CR26) 2016; 39 X Wang (3209_CR22) 2019; 455 K R Kumar (3209_CR37) 2008; 17 L L Gan (3209_CR19) 2024; 132 U Aridogan (3209_CR23) 2015; 26 D J Inman (3209_CR35) 2017 P Malekzadeh (3209_CR29) 2018; 340 H L Wu (3209_CR36) 2016; 90 M A Rafiee (3209_CR12) 2009; 3 Y Dong (3209_CR33) 2020; 82 Z G Song (3209_CR38) 2016; 105 A Hassani (3209_CR5) 2012; 40 N V Nguyen (3209_CR30) 2019; 172 H Sun (3209_CR15) 2024; 321 A P Roberts (3209_CR34) 2001; 49 D Chen (3209_CR6) 2015; 133 A Antenucci (3209_CR11) 2015; 71 Y Wang (3209_CR39) 2022; 144 M Avalle (3209_CR4) 2007; 34 Z Li (3209_CR13) 2016; 123 |
References_xml | – volume: 142 start-page: 235 year: 2017 ident: 3209_CR40 publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2017.02.008 – volume: 108–109 start-page: 14 year: 2016 ident: 3209_CR7 publication-title: International Journal of Mechanical Sciences doi: 10.1016/j.ijmecsci.2016.01.025 – volume: 26 start-page: 1455 issue: 12 year: 2015 ident: 3209_CR23 publication-title: Journal of Intelligent Material Systems and Structures doi: 10.1177/1045389X15585896 – volume: 144 start-page: 262 year: 2022 ident: 3209_CR39 publication-title: Engineering Analysis with Boundary Elements doi: 10.1016/j.enganabound.2022.08.032 – volume: 82 start-page: 252 year: 2020 ident: 3209_CR33 publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2020.01.054 – volume: 39 start-page: 1851 issue: 12 year: 2016 ident: 3209_CR26 publication-title: Transactions of the Institute of Measurement and Control doi: 10.1177/0142331216649431 – volume: 96 start-page: 716 year: 2013 ident: 3209_CR41 publication-title: Composite Structures doi: 10.1016/j.compstruct.2012.10.005 – volume: 40 start-page: 510 year: 2012 ident: 3209_CR5 publication-title: Materials & Design doi: 10.1016/j.matdes.2012.04.024 – start-page: 1 volume-title: Mechanics Based Design of Structures and Machines year: 2024 ident: 3209_CR25 doi: 10.1080/15397734.2024.2404611 – volume: 133 start-page: 54 year: 2015 ident: 3209_CR6 publication-title: Composite Structures doi: 10.1016/j.compstruct.2015.07.052 – volume: 209 start-page: 928 year: 2019 ident: 3209_CR10 publication-title: Composite Structures doi: 10.1016/j.compstruct.2018.11.014 – volume: 14 start-page: 1066 issue: 5 year: 2005 ident: 3209_CR21 publication-title: Smart Materials and Structures doi: 10.1088/0964-1726/14/5/045 – volume: 71 start-page: 78 year: 2015 ident: 3209_CR11 publication-title: Materials & Design doi: 10.1016/j.matdes.2015.01.004 – volume-title: Vibration with Control year: 2017 ident: 3209_CR35 doi: 10.1002/9781119375081 – volume: 3 start-page: 3884 issue: 12 year: 2009 ident: 3209_CR12 publication-title: ACS Nano doi: 10.1021/nn9010472 – volume: 27 start-page: 085030 issue: 8 year: 2018 ident: 3209_CR20 publication-title: Smart Materials and Structures doi: 10.1088/1361-665X/aad1b6 – volume: 147 start-page: 109050 year: 2024 ident: 3209_CR17 publication-title: Aerospace Science and Technology doi: 10.1016/j.ast.2024.109050 – volume: 71 start-page: 1 year: 2012 ident: 3209_CR1 publication-title: Journal of Constructional Steel Research doi: 10.1016/j.jcsr.2011.10.028 – volume: 116 start-page: 656 year: 2017 ident: 3209_CR14 publication-title: Materials & Design doi: 10.1016/j.matdes.2016.12.061 – volume: 24 start-page: 2450103 issue: 9 year: 2023 ident: 3209_CR27 publication-title: International Journal of Structural Stability and Dynamics doi: 10.1142/S0219455424501037 – volume: 107 start-page: 39 year: 2016 ident: 3209_CR8 publication-title: Thin-Walled Structures doi: 10.1016/j.tws.2016.05.025 – volume: 105 start-page: 90 year: 2016 ident: 3209_CR38 publication-title: International Journal of Mechanical Sciences doi: 10.1016/j.ijmecsci.2015.11.019 – volume: 305 start-page: 116535 year: 2023 ident: 3209_CR32 publication-title: Composite Structures doi: 10.1016/j.compstruct.2022.116535 – volume: 123 start-page: 125 year: 2016 ident: 3209_CR13 publication-title: Composites Science and Technology doi: 10.1016/j.compscitech.2015.12.005 – volume: 20 start-page: 055013 issue: 5 year: 2011 ident: 3209_CR24 publication-title: Smart Materials and Structures doi: 10.1088/0964-1726/20/5/055013 – volume: 90 start-page: 86 year: 2016 ident: 3209_CR36 publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2015.12.007 – volume: 27 start-page: 115029 issue: 11 year: 2018 ident: 3209_CR9 publication-title: Smart Materials and Structures doi: 10.1088/1361-665X/aae623 – volume: 17 start-page: 055008 issue: 5 year: 2008 ident: 3209_CR37 publication-title: Smart Materials and Structures doi: 10.1088/0964-1726/17/5/055008 – volume: 92 start-page: 2532 issue: 10 year: 2010 ident: 3209_CR42 publication-title: Composite Structures doi: 10.1016/j.compstruct.2010.02.008 – volume: 63 start-page: 533 issue: 5 year: 2009 ident: 3209_CR2 publication-title: Materials Letters doi: 10.1016/j.matlet.2008.11.002 – volume: 321 start-page: 118997 year: 2024 ident: 3209_CR15 publication-title: Engineering Structures doi: 10.1016/j.engstruct.2024.118997 – volume: 43 start-page: 1821 issue: 12 year: 2022 ident: 3209_CR28 publication-title: Applied Mathematics and Mechanics (English Edition) doi: 10.1007/s10483-022-2917-7 – volume: 340 start-page: 451 year: 2018 ident: 3209_CR29 publication-title: Computer Methods in Applied Mechanics and Engineering doi: 10.1016/j.cma.2018.06.006 – volume: 29 start-page: 1732 issue: 9 year: 2008 ident: 3209_CR3 publication-title: Materials & Design doi: 10.1016/j.matdes.2008.03.028 – volume: 34 start-page: 3 issue: 1 year: 2007 ident: 3209_CR4 publication-title: International Journal of Impact Engineering doi: 10.1016/j.ijimpeng.2006.06.012 – volume: 172 start-page: 769 year: 2019 ident: 3209_CR30 publication-title: Composites Part B: Engineering doi: 10.1016/j.compositesb.2019.05.060 – volume: 49 start-page: 189 issue: 2 year: 2001 ident: 3209_CR34 publication-title: Acta Materialia doi: 10.1016/S1359-6454(00)00314-1 – volume: 455 start-page: 1 year: 2019 ident: 3209_CR22 publication-title: Journal of Sound and Vibration doi: 10.1016/j.jsv.2019.04.035 – volume: 197 start-page: 111534 year: 2024 ident: 3209_CR16 publication-title: Thin-Walled Structures doi: 10.1016/j.tws.2023.111534 – volume: 132 start-page: 166 year: 2024 ident: 3209_CR19 publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2024.04.049 – volume: 214 start-page: 11 year: 2024 ident: 3209_CR18 publication-title: Acta Astronautica doi: 10.1016/j.actaastro.2023.10.016 – volume: 135 start-page: 215 issue: 2 year: 2020 ident: 3209_CR31 publication-title: The European Physical Journal Plus doi: 10.1140/epjp/s13360-019-00011-4 |
SSID | ssj0004744 |
Score | 2.3747716 |
Snippet | Graphene platelets (GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 63 |
SubjectTerms | Aerospace industry Applications of Mathematics Cantilever beams Classical Mechanics Closed loops Control systems design Feedback control Fluid- and Aerodynamics Foamed metals Free vibration Graphene Impact loads Mathematical Modeling and Industrial Mathematics Mathematics Mathematics and Statistics Mechanical properties Metal foams Moving loads Nonlinear control Nonlinear response Partial Differential Equations Piezoelectric actuators Platelets (materials) Reinforced metals Vibration Vibration control |
Title | Dynamic behaviors of graphene platelets-reinforced metal foam piezoelectric beams with velocity feedback control |
URI | https://link.springer.com/article/10.1007/s10483-025-3209-8 https://www.proquest.com/docview/3152118852 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgXWBAfIpCqTwwgSzFcZzYYwUtFahMVCpTlNiOhGibqCkLv56zk7SAAIk1udxw5_iefXfvELrMAIRTTynC_IyTwNcRkSJRJEqppRsJdMpto_D4MRxNgvspn9Z93GVT7d6kJN1O_anZLRA258hBryeJ2EZtDkd3W8c18fubZsjITXAFOUYsx2WTyvxJxddgtEGY35KiLtYM99FeDRJxv_LqAdoyi0O0O14zrJZHqLitRsnjps--xHmGHf007F64mAGGBJeUZGkcN6oyGs8NIG2c5ckcFy_mPa9G4DgdybzE9koW2xIiBcgcZxDW0kS94rqY_RhNhoOnmxGppycQxWi4IqlUjFEDEVoFgCJC3xjJIDjD04T7qeSel1n-PQkOYYmWQgNy4pomWUqzKPHYCWot8oU5RRjOaFwKExoIZHBCMsIwEJdUB0prrWQHeY0ZY1VTi9sJF7N4Q4psLR-D5WNr-Vh00NX6k6Li1fhLuNv4Jq5_sTJmFnlQIbjfQdeNvzavf1V29i_pc7Tj2_XiLl26qLVavpkLgCGrtIfa_bvnh0HPLb8PwSPVYA |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGIAB8RTl6QEWkKXEjlt7YEBAVR7t1ErdQmI7EoI-RIoQ_B3-KGc3oYAAiYE1cU7W-ez7nLv7DmA_QxAeBlpTzjJBI2ZqVMlE01oaOrqRyKTCFQo3W9VGJ7rsiu4UvJa1MD7bvQxJ-pP6Q7FbJF3MUaDcQFFZZFJe2ecnvKflxxdnuKgHjNXP26cNWrQSoJqH1RFNleY8tOiudIQutcqsVRw9FT5NBEuVCILMkdEpnB1PjJIGYYQwYZKlYVZLAo5yp2EWsYd0W6fDTibFlzXfMRbnxanj1CxDp99N-bPzmyDaL0FY79vqS7BYgFJyMraiZZiy_RVYaL4zuuarMDwbt64nZV1_TgYZ8XTXeFqS4T1iVjSBnD5Yz8WqrSE9i8ieZIOkR4a39mUwbrnjZSS9nLhfwMSlLGm8CZAM3Wia6DtSJM-vQedfVLwOM_1B324AwTuhUNJWLTpOvJFZaTkOV6GJtDFGqwoEpRpjXVCZu44a9_GEhNlpPkbNx07zsazA4fsnwzGPx2-Dt8u1iYstncfcIZ1QSsEqcFSu1-T1j8I2_zR6D-Ya7eZ1fH3RutqCeeZsx__w2YaZ0cOj3UEINEp3vQkSuPlvm38DhEUO6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xRULLAS2wqy10wQe4gCwSO27tAwdEqXiLA5W4hcQPCS1tI1KE4E_xFxnnQQEBEgeuieNY40nmG8_MNwBrDkF4GGhNOXOCRsx0qJKJpp009HQjkUmFLxQ-OW3v96PDC3ExBY91LUyR7V6HJMuaBs_SNBxvZcZtvSh8i6SPPwp8R6CorLIqj-z9Hfps-fZBFzd4nbHe3vnuPq3aClDNw_aYpkpzHlo0XTpC89pm1iqOVguvJoKlSgSB88R0ClfKE6OkQUghTJi4NHSdJOA47w-YjnzxMX5AfbYzKcTsFN1jcV2cen7NOoz63pJfG8IJun0TkC3sXO8XzFUAleyUGjUPU3a4ALMnz-yu-SJk3bKNPalr_HMycqSgvsY_J8muEb-iOuT0xha8rNoaMrCI8okbJQOSXdmHUdl-p5gjGeTEHwcTn76k0SsgDk1qmuj_pEqk_w39bxHxH2gMR0P7Fwj6h0JJ27ZoRNE7s9JyHK5CE2ljjFZNCGoxxrqiNffdNa7jCSGzl3yMko-95GPZhI3nR7KS0-Ozwa16b-Lq885j7lFPKKVgTdis92ty-8PJlr40ehVmzrq9-Pjg9GgZfjKvOsXZTwsa45tb-w_R0DhdKTSQwOV3q_wTgUsTHQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+behaviors+of+graphene+platelets-reinforced+metal+foam+piezoelectric+beams+with+velocity+feedback+control&rft.jtitle=Applied+mathematics+and+mechanics&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0253-4827&rft.eissn=1573-2754&rft.volume=46&rft.issue=1&rft.spage=63&rft.epage=80&rft_id=info:doi/10.1007%2Fs10483-025-3209-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-4827&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-4827&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-4827&client=summon |