Dynamic behaviors of graphene platelets-reinforced metal foam piezoelectric beams with velocity feedback control

Graphene platelets (GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams. Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and mechanics Vol. 46; no. 1; pp. 63 - 80
Main Authors Chen, Jie, Zhang, Xinyue, Fan, Mingyang
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2025
Springer Nature B.V
EditionEnglish ed.
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Graphene platelets (GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams. Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control, greatly expanding their applications in the aerospace industry. For the first time, this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surface-bonded piezoelectric layers. The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors. The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied. The Newmark- β method combined with Newton’s iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads, impact loads, and moving loads. Additionally, special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam.
AbstractList Graphene platelets (GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams. Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control, greatly expanding their applications in the aerospace industry. For the first time, this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surface-bonded piezoelectric layers. The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors. The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied. The Newmark-β method combined with Newton’s iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads, impact loads, and moving loads. Additionally, special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam.
Graphene platelets (GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams. Further bonding piezoelectric actuator and sensor layers on the surfaces of GPLs-reinforced metal foam beams enables active vibration control, greatly expanding their applications in the aerospace industry. For the first time, this paper investigates the vibration characteristics and active vibration control of GPLs-reinforced metal foam beams with surface-bonded piezoelectric layers. The constant velocity feedback scheme is used to design the closed-loop controller including piezoelectric actuators and sensors. The effects of the GPLs on the linear and nonlinear free vibrations of the beams are numerically studied. The Newmark- β method combined with Newton’s iteration technique is used to calculate the nonlinear responses of the beams under different load forms including harmonic loads, impact loads, and moving loads. Additionally, special attention is given to the vibration reduction performance of the velocity feedback control on the responses of the beam.
Author Chen, Jie
Fan, Mingyang
Zhang, Xinyue
Author_xml – sequence: 1
  givenname: Jie
  surname: Chen
  fullname: Chen, Jie
  email: jchen@bjut.edu.cn
  organization: School of Mathematics, Statistics and Mechanics, Beijing University of Technology
– sequence: 2
  givenname: Xinyue
  surname: Zhang
  fullname: Zhang, Xinyue
  organization: College of Mechanical & Energy Engineering, Beijing University of Technology
– sequence: 3
  givenname: Mingyang
  surname: Fan
  fullname: Fan, Mingyang
  organization: College of Mechanical & Energy Engineering, Beijing University of Technology
BookMark eNp9kMtKBDEQRYMoOD4-wF3AdTTP6e6l-AbBja5DOl1xMnZ32iQq49ebcQRB0FVB1T1Vde8e2h7DCAgdMXrCKK1OE6OyFoRyRQSnDam30IypShBeKbmNZmUgiKx5tYv2UlpSSmUl5QxNF6vRDN7iFhbmzYeYcHD4KZppASPgqTcZesiJRPCjC9FChwfIpscumAFPHj5CEdgcv3aYIeF3nxf4DfpgfV5hB9C1xj5jG8YcQ3-AdpzpExx-1330eHX5cH5D7u6vb8_P7ogVbJ5J21ghGHDJrGSUzzlAI2olStco3jaKUkelkg2VnTBdU3dSKNUx41rmKkPFPjre7J1ieHmFlPUyvMaxnNSCKc5YXSteVGyjsjGkFMHpKfrBxJVmVK-D1ZtgdclPr4PVdWGqX0wxarJf-zO-_5fkGzKVK-MTxJ-f_oY-AbHXj9c
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2025_126952
Cites_doi 10.1016/j.compscitech.2017.02.008
10.1016/j.ijmecsci.2016.01.025
10.1177/1045389X15585896
10.1016/j.enganabound.2022.08.032
10.1016/j.apm.2020.01.054
10.1177/0142331216649431
10.1016/j.compstruct.2012.10.005
10.1016/j.matdes.2012.04.024
10.1080/15397734.2024.2404611
10.1016/j.compstruct.2015.07.052
10.1016/j.compstruct.2018.11.014
10.1088/0964-1726/14/5/045
10.1016/j.matdes.2015.01.004
10.1002/9781119375081
10.1021/nn9010472
10.1088/1361-665X/aad1b6
10.1016/j.ast.2024.109050
10.1016/j.jcsr.2011.10.028
10.1016/j.matdes.2016.12.061
10.1142/S0219455424501037
10.1016/j.tws.2016.05.025
10.1016/j.ijmecsci.2015.11.019
10.1016/j.compstruct.2022.116535
10.1016/j.compscitech.2015.12.005
10.1088/0964-1726/20/5/055013
10.1016/j.compositesb.2015.12.007
10.1088/1361-665X/aae623
10.1088/0964-1726/17/5/055008
10.1016/j.compstruct.2010.02.008
10.1016/j.matlet.2008.11.002
10.1016/j.engstruct.2024.118997
10.1007/s10483-022-2917-7
10.1016/j.cma.2018.06.006
10.1016/j.matdes.2008.03.028
10.1016/j.ijimpeng.2006.06.012
10.1016/j.compositesb.2019.05.060
10.1016/S1359-6454(00)00314-1
10.1016/j.jsv.2019.04.035
10.1016/j.tws.2023.111534
10.1016/j.apm.2024.04.049
10.1016/j.actaastro.2023.10.016
10.1140/epjp/s13360-019-00011-4
ContentType Journal Article
Copyright Shanghai University 2025
Copyright Springer Nature B.V. 2025
Copyright_xml – notice: Shanghai University 2025
– notice: Copyright Springer Nature B.V. 2025
DBID AAYXX
CITATION
DOI 10.1007/s10483-025-3209-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1573-2754
Edition English ed.
EndPage 80
ExternalDocumentID 10_1007_s10483_025_3209_8
GroupedDBID -01
-0A
-52
-5D
-5G
-BR
-EM
-SA
-S~
-XX
-Y2
-~C
.86
.VR
06D
0R~
0VY
188
1N0
1SB
2.D
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5GY
5VR
5VS
5XA
5XB
67Z
6NX
8RM
8TC
8UJ
92E
92I
92M
92Q
93N
95-
95.
95~
96X
9D9
9DA
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BAPOH
BBWZM
BDATZ
BGNMA
BSONS
CAG
CAJEA
CCEZO
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
H13
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
IWAJR
IXD
IZIGR
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OVD
P19
P9R
PF0
PT4
PT5
Q--
Q-0
QOK
QOS
R-A
R89
R9I
REI
RHV
RNI
ROL
RPX
RSV
RT1
RZC
RZE
RZK
S..
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
T8Q
TCJ
TEORI
TGP
TSG
TSK
TSV
TUC
TUS
U1F
U1G
U2A
U5A
U5K
UG4
UGNYK
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7S
Z7U
Z7X
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
ZMTXR
ZWQNP
~8M
~A9
~L9
~LB
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
AMVHM
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-b9c331e241c410262ee93853c33a52b9500f0454904d3ad98d4355d1afb1f7a03
IEDL.DBID U2A
ISSN 0253-4827
IngestDate Fri Jul 25 09:46:06 EDT 2025
Tue Jul 01 02:11:09 EDT 2025
Thu Apr 24 22:56:24 EDT 2025
Fri Feb 21 02:35:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 70K30
O341
piezoelectric material
metal foam
nonlinear free vibration
active vibration control
velocity feedback control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-b9c331e241c410262ee93853c33a52b9500f0454904d3ad98d4355d1afb1f7a03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3152118852
PQPubID 2043692
PageCount 18
ParticipantIDs proquest_journals_3152118852
crossref_primary_10_1007_s10483_025_3209_8
crossref_citationtrail_10_1007_s10483_025_3209_8
springer_journals_10_1007_s10483_025_3209_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250100
2025-01-00
20250101
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 1
  year: 2025
  text: 20250100
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Dordrecht
PublicationSubtitle English Edition
PublicationTitle Applied mathematics and mechanics
PublicationTitleAbbrev Appl. Math. Mech.-Engl. Ed
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References S Kitipornchai (3209_CR14) 2017; 116
J P Song (3209_CR17) 2024; 147
L L Gan (3209_CR18) 2024; 214
C Li (3209_CR28) 2022; 43
Z Yang (3209_CR16) 2024; 197
H Q Tran (3209_CR32) 2023; 305
M Şimşek (3209_CR42) 2010; 92
D Chen (3209_CR7) 2016; 108–109
Y Luo (3209_CR20) 2018; 27
F Ebrahimi (3209_CR31) 2020; 135
M Rafiee (3209_CR41) 2013; 96
Y Chen (3209_CR21) 2005; 14
B H Smith (3209_CR1) 2012; 71
Y Wang (3209_CR10) 2019; 209
R Rajendran (3209_CR3) 2008; 29
H N Li (3209_CR27) 2023; 24
A Rabiei (3209_CR2) 2009; 63
Z G Song (3209_CR24) 2011; 20
D Chen (3209_CR8) 2016; 107
O E Ozbulut (3209_CR9) 2018; 27
D Chen (3209_CR40) 2017; 142
X Y Zhang (3209_CR25) 2024
A Mirghaffari (3209_CR26) 2016; 39
X Wang (3209_CR22) 2019; 455
K R Kumar (3209_CR37) 2008; 17
L L Gan (3209_CR19) 2024; 132
U Aridogan (3209_CR23) 2015; 26
D J Inman (3209_CR35) 2017
P Malekzadeh (3209_CR29) 2018; 340
H L Wu (3209_CR36) 2016; 90
M A Rafiee (3209_CR12) 2009; 3
Y Dong (3209_CR33) 2020; 82
Z G Song (3209_CR38) 2016; 105
A Hassani (3209_CR5) 2012; 40
N V Nguyen (3209_CR30) 2019; 172
H Sun (3209_CR15) 2024; 321
A P Roberts (3209_CR34) 2001; 49
D Chen (3209_CR6) 2015; 133
A Antenucci (3209_CR11) 2015; 71
Y Wang (3209_CR39) 2022; 144
M Avalle (3209_CR4) 2007; 34
Z Li (3209_CR13) 2016; 123
References_xml – volume: 142
  start-page: 235
  year: 2017
  ident: 3209_CR40
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2017.02.008
– volume: 108–109
  start-page: 14
  year: 2016
  ident: 3209_CR7
  publication-title: International Journal of Mechanical Sciences
  doi: 10.1016/j.ijmecsci.2016.01.025
– volume: 26
  start-page: 1455
  issue: 12
  year: 2015
  ident: 3209_CR23
  publication-title: Journal of Intelligent Material Systems and Structures
  doi: 10.1177/1045389X15585896
– volume: 144
  start-page: 262
  year: 2022
  ident: 3209_CR39
  publication-title: Engineering Analysis with Boundary Elements
  doi: 10.1016/j.enganabound.2022.08.032
– volume: 82
  start-page: 252
  year: 2020
  ident: 3209_CR33
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2020.01.054
– volume: 39
  start-page: 1851
  issue: 12
  year: 2016
  ident: 3209_CR26
  publication-title: Transactions of the Institute of Measurement and Control
  doi: 10.1177/0142331216649431
– volume: 96
  start-page: 716
  year: 2013
  ident: 3209_CR41
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2012.10.005
– volume: 40
  start-page: 510
  year: 2012
  ident: 3209_CR5
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2012.04.024
– start-page: 1
  volume-title: Mechanics Based Design of Structures and Machines
  year: 2024
  ident: 3209_CR25
  doi: 10.1080/15397734.2024.2404611
– volume: 133
  start-page: 54
  year: 2015
  ident: 3209_CR6
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2015.07.052
– volume: 209
  start-page: 928
  year: 2019
  ident: 3209_CR10
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2018.11.014
– volume: 14
  start-page: 1066
  issue: 5
  year: 2005
  ident: 3209_CR21
  publication-title: Smart Materials and Structures
  doi: 10.1088/0964-1726/14/5/045
– volume: 71
  start-page: 78
  year: 2015
  ident: 3209_CR11
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2015.01.004
– volume-title: Vibration with Control
  year: 2017
  ident: 3209_CR35
  doi: 10.1002/9781119375081
– volume: 3
  start-page: 3884
  issue: 12
  year: 2009
  ident: 3209_CR12
  publication-title: ACS Nano
  doi: 10.1021/nn9010472
– volume: 27
  start-page: 085030
  issue: 8
  year: 2018
  ident: 3209_CR20
  publication-title: Smart Materials and Structures
  doi: 10.1088/1361-665X/aad1b6
– volume: 147
  start-page: 109050
  year: 2024
  ident: 3209_CR17
  publication-title: Aerospace Science and Technology
  doi: 10.1016/j.ast.2024.109050
– volume: 71
  start-page: 1
  year: 2012
  ident: 3209_CR1
  publication-title: Journal of Constructional Steel Research
  doi: 10.1016/j.jcsr.2011.10.028
– volume: 116
  start-page: 656
  year: 2017
  ident: 3209_CR14
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2016.12.061
– volume: 24
  start-page: 2450103
  issue: 9
  year: 2023
  ident: 3209_CR27
  publication-title: International Journal of Structural Stability and Dynamics
  doi: 10.1142/S0219455424501037
– volume: 107
  start-page: 39
  year: 2016
  ident: 3209_CR8
  publication-title: Thin-Walled Structures
  doi: 10.1016/j.tws.2016.05.025
– volume: 105
  start-page: 90
  year: 2016
  ident: 3209_CR38
  publication-title: International Journal of Mechanical Sciences
  doi: 10.1016/j.ijmecsci.2015.11.019
– volume: 305
  start-page: 116535
  year: 2023
  ident: 3209_CR32
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2022.116535
– volume: 123
  start-page: 125
  year: 2016
  ident: 3209_CR13
  publication-title: Composites Science and Technology
  doi: 10.1016/j.compscitech.2015.12.005
– volume: 20
  start-page: 055013
  issue: 5
  year: 2011
  ident: 3209_CR24
  publication-title: Smart Materials and Structures
  doi: 10.1088/0964-1726/20/5/055013
– volume: 90
  start-page: 86
  year: 2016
  ident: 3209_CR36
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2015.12.007
– volume: 27
  start-page: 115029
  issue: 11
  year: 2018
  ident: 3209_CR9
  publication-title: Smart Materials and Structures
  doi: 10.1088/1361-665X/aae623
– volume: 17
  start-page: 055008
  issue: 5
  year: 2008
  ident: 3209_CR37
  publication-title: Smart Materials and Structures
  doi: 10.1088/0964-1726/17/5/055008
– volume: 92
  start-page: 2532
  issue: 10
  year: 2010
  ident: 3209_CR42
  publication-title: Composite Structures
  doi: 10.1016/j.compstruct.2010.02.008
– volume: 63
  start-page: 533
  issue: 5
  year: 2009
  ident: 3209_CR2
  publication-title: Materials Letters
  doi: 10.1016/j.matlet.2008.11.002
– volume: 321
  start-page: 118997
  year: 2024
  ident: 3209_CR15
  publication-title: Engineering Structures
  doi: 10.1016/j.engstruct.2024.118997
– volume: 43
  start-page: 1821
  issue: 12
  year: 2022
  ident: 3209_CR28
  publication-title: Applied Mathematics and Mechanics (English Edition)
  doi: 10.1007/s10483-022-2917-7
– volume: 340
  start-page: 451
  year: 2018
  ident: 3209_CR29
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/j.cma.2018.06.006
– volume: 29
  start-page: 1732
  issue: 9
  year: 2008
  ident: 3209_CR3
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2008.03.028
– volume: 34
  start-page: 3
  issue: 1
  year: 2007
  ident: 3209_CR4
  publication-title: International Journal of Impact Engineering
  doi: 10.1016/j.ijimpeng.2006.06.012
– volume: 172
  start-page: 769
  year: 2019
  ident: 3209_CR30
  publication-title: Composites Part B: Engineering
  doi: 10.1016/j.compositesb.2019.05.060
– volume: 49
  start-page: 189
  issue: 2
  year: 2001
  ident: 3209_CR34
  publication-title: Acta Materialia
  doi: 10.1016/S1359-6454(00)00314-1
– volume: 455
  start-page: 1
  year: 2019
  ident: 3209_CR22
  publication-title: Journal of Sound and Vibration
  doi: 10.1016/j.jsv.2019.04.035
– volume: 197
  start-page: 111534
  year: 2024
  ident: 3209_CR16
  publication-title: Thin-Walled Structures
  doi: 10.1016/j.tws.2023.111534
– volume: 132
  start-page: 166
  year: 2024
  ident: 3209_CR19
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2024.04.049
– volume: 214
  start-page: 11
  year: 2024
  ident: 3209_CR18
  publication-title: Acta Astronautica
  doi: 10.1016/j.actaastro.2023.10.016
– volume: 135
  start-page: 215
  issue: 2
  year: 2020
  ident: 3209_CR31
  publication-title: The European Physical Journal Plus
  doi: 10.1140/epjp/s13360-019-00011-4
SSID ssj0004744
Score 2.3747716
Snippet Graphene platelets (GPLs)-reinforced metal foam structures enhance the mechanical properties while maintaining the lightweight characteristics of metal foams....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 63
SubjectTerms Aerospace industry
Applications of Mathematics
Cantilever beams
Classical Mechanics
Closed loops
Control systems design
Feedback control
Fluid- and Aerodynamics
Foamed metals
Free vibration
Graphene
Impact loads
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Mechanical properties
Metal foams
Moving loads
Nonlinear control
Nonlinear response
Partial Differential Equations
Piezoelectric actuators
Platelets (materials)
Reinforced metals
Vibration
Vibration control
Title Dynamic behaviors of graphene platelets-reinforced metal foam piezoelectric beams with velocity feedback control
URI https://link.springer.com/article/10.1007/s10483-025-3209-8
https://www.proquest.com/docview/3152118852
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgXWBAfIpCqTwwgSzFcZzYYwUtFahMVCpTlNiOhGibqCkLv56zk7SAAIk1udxw5_iefXfvELrMAIRTTynC_IyTwNcRkSJRJEqppRsJdMpto_D4MRxNgvspn9Z93GVT7d6kJN1O_anZLRA258hBryeJ2EZtDkd3W8c18fubZsjITXAFOUYsx2WTyvxJxddgtEGY35KiLtYM99FeDRJxv_LqAdoyi0O0O14zrJZHqLitRsnjps--xHmGHf007F64mAGGBJeUZGkcN6oyGs8NIG2c5ckcFy_mPa9G4DgdybzE9koW2xIiBcgcZxDW0kS94rqY_RhNhoOnmxGppycQxWi4IqlUjFEDEVoFgCJC3xjJIDjD04T7qeSel1n-PQkOYYmWQgNy4pomWUqzKPHYCWot8oU5RRjOaFwKExoIZHBCMsIwEJdUB0prrWQHeY0ZY1VTi9sJF7N4Q4psLR-D5WNr-Vh00NX6k6Li1fhLuNv4Jq5_sTJmFnlQIbjfQdeNvzavf1V29i_pc7Tj2_XiLl26qLVavpkLgCGrtIfa_bvnh0HPLb8PwSPVYA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED7xGIAB8RTl6QEWkKXEjlt7YEBAVR7t1ErdQmI7EoI-RIoQ_B3-KGc3oYAAiYE1cU7W-ez7nLv7DmA_QxAeBlpTzjJBI2ZqVMlE01oaOrqRyKTCFQo3W9VGJ7rsiu4UvJa1MD7bvQxJ-pP6Q7FbJF3MUaDcQFFZZFJe2ecnvKflxxdnuKgHjNXP26cNWrQSoJqH1RFNleY8tOiudIQutcqsVRw9FT5NBEuVCILMkdEpnB1PjJIGYYQwYZKlYVZLAo5yp2EWsYd0W6fDTibFlzXfMRbnxanj1CxDp99N-bPzmyDaL0FY79vqS7BYgFJyMraiZZiy_RVYaL4zuuarMDwbt64nZV1_TgYZ8XTXeFqS4T1iVjSBnD5Yz8WqrSE9i8ieZIOkR4a39mUwbrnjZSS9nLhfwMSlLGm8CZAM3Wia6DtSJM-vQedfVLwOM_1B324AwTuhUNJWLTpOvJFZaTkOV6GJtDFGqwoEpRpjXVCZu44a9_GEhNlpPkbNx07zsazA4fsnwzGPx2-Dt8u1iYstncfcIZ1QSsEqcFSu1-T1j8I2_zR6D-Ya7eZ1fH3RutqCeeZsx__w2YaZ0cOj3UEINEp3vQkSuPlvm38DhEUO6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT-MwEB6xRULLAS2wqy10wQe4gCwSO27tAwdEqXiLA5W4hcQPCS1tI1KE4E_xFxnnQQEBEgeuieNY40nmG8_MNwBrDkF4GGhNOXOCRsx0qJKJpp009HQjkUmFLxQ-OW3v96PDC3ExBY91LUyR7V6HJMuaBs_SNBxvZcZtvSh8i6SPPwp8R6CorLIqj-z9Hfps-fZBFzd4nbHe3vnuPq3aClDNw_aYpkpzHlo0XTpC89pm1iqOVguvJoKlSgSB88R0ClfKE6OkQUghTJi4NHSdJOA47w-YjnzxMX5AfbYzKcTsFN1jcV2cen7NOoz63pJfG8IJun0TkC3sXO8XzFUAleyUGjUPU3a4ALMnz-yu-SJk3bKNPalr_HMycqSgvsY_J8muEb-iOuT0xha8rNoaMrCI8okbJQOSXdmHUdl-p5gjGeTEHwcTn76k0SsgDk1qmuj_pEqk_w39bxHxH2gMR0P7Fwj6h0JJ27ZoRNE7s9JyHK5CE2ljjFZNCGoxxrqiNffdNa7jCSGzl3yMko-95GPZhI3nR7KS0-Ozwa16b-Lq885j7lFPKKVgTdis92ty-8PJlr40ehVmzrq9-Pjg9GgZfjKvOsXZTwsa45tb-w_R0DhdKTSQwOV3q_wTgUsTHQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+behaviors+of+graphene+platelets-reinforced+metal+foam+piezoelectric+beams+with+velocity+feedback+control&rft.jtitle=Applied+mathematics+and+mechanics&rft.date=2025-01-01&rft.pub=Springer+Nature+B.V&rft.issn=0253-4827&rft.eissn=1573-2754&rft.volume=46&rft.issue=1&rft.spage=63&rft.epage=80&rft_id=info:doi/10.1007%2Fs10483-025-3209-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0253-4827&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0253-4827&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0253-4827&client=summon