Molten salt synthesis of (Zn, Mg) TiO3 micro/nano crystals with pure hexagonal ilmenite structure
The pure hexagonal phase (Zn, Mg) TiO 3 (abbreviated to ZMT) micro/nano crystals were prepared by a molten salt method. The influences of the molten salt system and the heat treatment temperature on ZMT crystalline powders phase composition and particles morphology were studied. The results show tha...
Saved in:
Published in | Journal of materials science. Materials in electronics Vol. 27; no. 8; pp. 8319 - 8324 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The pure hexagonal phase (Zn, Mg) TiO
3
(abbreviated to ZMT) micro/nano crystals were prepared by a molten salt method. The influences of the molten salt system and the heat treatment temperature on ZMT crystalline powders phase composition and particles morphology were studied. The results show that the formation of ZMT phase takes place at about 530 °C and the hexagonal phase stability region is 530–810 °C in KCl–NaCl salt system when MgCl
2
·6H
2
O taken in excess. Compared to the conventional solid phase process, the formation temperature of hexagonal ZMT via the molten salt method is lower. The ZMT powders prepared by the molten salt method are indicative more uniform grain size distribution and small grain size (the average grain size is about 150 nm). |
---|---|
AbstractList | The pure hexagonal phase (Zn, Mg) TiO3 (abbreviated to ZMT) micro/nano crystals were prepared by a molten salt method. The influences of the molten salt system and the heat treatment temperature on ZMT crystalline powders phase composition and particles morphology were studied. The results show that the formation of ZMT phase takes place at about 530 °C and the hexagonal phase stability region is 530-810 °C in KCl-NaCl salt system when MgCl2·6H2O taken in excess. Compared to the conventional solid phase process, the formation temperature of hexagonal ZMT via the molten salt method is lower. The ZMT powders prepared by the molten salt method are indicative more uniform grain size distribution and small grain size (the average grain size is about 150 nm). The pure hexagonal phase (Zn, Mg) TiO 3 (abbreviated to ZMT) micro/nano crystals were prepared by a molten salt method. The influences of the molten salt system and the heat treatment temperature on ZMT crystalline powders phase composition and particles morphology were studied. The results show that the formation of ZMT phase takes place at about 530 °C and the hexagonal phase stability region is 530–810 °C in KCl–NaCl salt system when MgCl 2 ·6H 2 O taken in excess. Compared to the conventional solid phase process, the formation temperature of hexagonal ZMT via the molten salt method is lower. The ZMT powders prepared by the molten salt method are indicative more uniform grain size distribution and small grain size (the average grain size is about 150 nm). |
Author | Zuo, Chenguang Liu, Xiangchun |
Author_xml | – sequence: 1 givenname: Xiangchun surname: Liu fullname: Liu, Xiangchun email: liuxc@126.com organization: Department of Materials Science and Engineering, Xi’an University of Science and Technology – sequence: 2 givenname: Chenguang surname: Zuo fullname: Zuo, Chenguang organization: Department of Materials Science and Engineering, Xi’an University of Science and Technology |
BookMark | eNp9kE1LAzEQhoNUsK3-AG8BLwquTbLZzfYo4he09FJBvITZNNumbJOaZNH-e1PqQQQ9zQzzPvPxDlDPOqsROqfkhhIiRoGSquAZoWXGK04ycYT6tBB5qthrD_XJuBAZLxg7QYMQ1oSQkudVH8HUtVFbHKCNOOxsXOlgAnYNvnyz13i6vMJzM8vxxijvRhasw8rvQoQ24A8TV3jbeY1X-hOWzkKLTbvR1kSNQ_Sdiql5io6bpNZn33GIXh7u53dP2WT2-Hx3O8lUTsuY1SWruWhqoShjUIIAzqEpxilheUWh1ryERQ2M6oUqFgRqzopG5U2tiGJU5UN0cZi79e690yHKtet8uilIWlHKOBPjcVLRgyq9E4LXjdx6swG_k5TIvZPy4KRMTsq9k1IkRvxilIkQjbPRg2n_JdmBDGmLXWr_46Y_oS_IXosF |
CitedBy_id | crossref_primary_10_1007_s11595_019_2047_5 |
Cites_doi | 10.1016/j.jeurceramsoc.2012.02.043 10.1016/j.jallcom.2008.03.090 10.1007/s10853-011-5984-8 10.1016/j.matlet.2012.04.048 10.1016/j.ceramint.2015.04.036 10.1016/j.materresbull.2007.03.029 10.1007/s10853-007-1807-3 10.1016/j.jallcom.2006.10.120 10.1007/s10853-010-4732-9 10.1016/j.powtec.2013.02.041 10.1016/j.ceramint.2015.04.111 10.1016/j.mseb.2011.01.013 10.1016/j.mseb.2013.09.002 10.1016/j.jeurceramsoc.2011.12.025 10.1016/j.ceramint.2004.09.017 10.1021/cg070232a 10.1111/j.1151-2916.1999.tb02268.x |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 |
DBID | AAYXX CITATION 7SP 7SR 8BQ 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU D1I DWQXO F28 FR3 HCIFZ JG9 KB. L7M P5Z P62 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS S0W |
DOI | 10.1007/s10854-016-4840-7 |
DatabaseName | CrossRef Electronics & Communications Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection Materials Research Database Materials Science Database Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection Materials Science Collection SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering ProQuest Materials Science Collection Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection METADEX Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-482X |
EndPage | 8324 |
ExternalDocumentID | 4146715761 10_1007_s10854_016_4840_7 |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 51372197 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Scientific Research Program Funded by Shaanxi Provincial Education Department grantid: 14JK1483 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8FE 8FG 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AAJKR AANZL AARHV AARTL AASML AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS CAG CCPQU COF CS3 CSCUP D1I DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KB. KDC KOV KOW LAK LLZTM M4Y MA- MK~ N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P0- P19 P2P P62 P9N PDBOC PKN PT4 PT5 Q2X QF4 QM1 QN7 QO4 QOK QOR QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W4F WJK WK8 YLTOR Z45 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 Z8M Z8N Z8P Z8R Z8T Z8W Z8Z Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SP 7SR 8BQ 8FD ABRTQ DWQXO F28 FR3 JG9 L7M PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c316t-b62b47fb7c122a6a7a44af59a7a2381abe46adba21edc5d0ab425fc3fbc0c21c3 |
IEDL.DBID | BENPR |
ISSN | 0957-4522 |
IngestDate | Fri Jul 25 11:09:37 EDT 2025 Tue Jul 01 02:46:42 EDT 2025 Thu Apr 24 22:54:11 EDT 2025 Fri Feb 21 02:34:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | Microwave Dielectric Property Hexagonal Phase Grain Size Distribution Molten Salt TiO2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-b62b47fb7c122a6a7a44af59a7a2381abe46adba21edc5d0ab425fc3fbc0c21c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1811242799 |
PQPubID | 326250 |
PageCount | 6 |
ParticipantIDs | proquest_journals_1811242799 crossref_primary_10_1007_s10854_016_4840_7 crossref_citationtrail_10_1007_s10854_016_4840_7 springer_journals_10_1007_s10854_016_4840_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160800 2016-8-00 20160801 |
PublicationDateYYYYMMDD | 2016-08-01 |
PublicationDate_xml | – month: 8 year: 2016 text: 20160800 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Journal of materials science. Materials in electronics |
PublicationTitleAbbrev | J Mater Sci: Mater Electron |
PublicationYear | 2016 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Li, Tang, Zhang, Jiang (CR7) 2010; 45 Butee, Kulkarni, Prakash, Aiyar, Wattamwar, Bais, Sudheendran, James (CR1) 2011; 176 Kim, Nahm, Byun (CR5) 1999; 82 He, Hong, Feng, Badami (CR10) 2013; 239 Ekmekçi, Erdem, Başak, İlhan, Mergen (CR18) 2015; 41 Wu, Hao, Lin, Huang, Huang, Lan, Li (CR19) 2008; 8 Lusiola, Bortolani, Zhang, Dorey (CR16) 2012; 47 Lee, Yeh, Tsai (CR9) 2012; 32 Zhou, Wang, Zhou, Xie, Yao, Cheng (CR15) 2007; 42 Huang, Tseng, Chen, Kuo (CR17) 2012; 32 Liu (CR11) 2012; 80 Obradovic, Mitric, Nikolic, Minic, Mitrovic, Ristic (CR8) 2009; 471 Ding, Su, Tang, Zhang, Jing, Liu (CR6) 2015; 41 Liu, Zhao, Gao, Zhao, Tian (CR3) 2008; 450 Liu, Gao, Zhang, Gao (CR13) 2015; 26 Liu, Gao, Tian (CR2) 2008; 43 Tian, Gao, Qu, Ma, Wang (CR14) 2015; 26 Wang, Wang, Lin (CR4) 2005; 31 Liu, Gao, Li, Liu, Hu, Sun (CR12) 2013; 178 XC Liu (4840_CR3) 2008; 450 N Obradovic (4840_CR8) 2009; 471 T Lusiola (4840_CR16) 2012; 47 B Li (4840_CR7) 2010; 45 X Tian (4840_CR14) 2015; 26 S Butee (4840_CR1) 2011; 176 XC Liu (4840_CR11) 2012; 80 K He (4840_CR10) 2013; 239 HT Kim (4840_CR5) 1999; 82 L Liu (4840_CR13) 2015; 26 MK Ekmekçi (4840_CR18) 2015; 41 J Wu (4840_CR19) 2008; 8 XC Liu (4840_CR2) 2008; 43 L Liu (4840_CR12) 2013; 178 D Zhou (4840_CR15) 2007; 42 Z Ding (4840_CR6) 2015; 41 CL Huang (4840_CR17) 2012; 32 YR Wang (4840_CR4) 2005; 31 YC Lee (4840_CR9) 2012; 32 |
References_xml | – volume: 32 start-page: 2365 year: 2012 end-page: 2371 ident: CR17 article-title: Dielectric properties of high- (Mg Zn ) Ti O ceramics at microwave frequency publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2012.02.043 – volume: 471 start-page: 272 year: 2009 end-page: 277 ident: CR8 article-title: Influence of MgO addition on the synthesis and electrical properties of sintered zinc–titanate ceramics publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.03.090 – volume: 47 start-page: 1938 year: 2012 end-page: 1942 ident: CR16 article-title: Molten hydroxide synthesis as an alternative to molten salt synthesis for producing K Na NbO lead free ceramics publication-title: J. Mater. Sci. doi: 10.1007/s10853-011-5984-8 – volume: 80 start-page: 69 year: 2012 end-page: 71 ident: CR11 article-title: Molten salt synthesis of ZnTiO powders with around 100 nm grain size crystalline morphology publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.04.048 – volume: 41 start-page: 9680 year: 2015 end-page: 9685 ident: CR18 article-title: Molten saltsynthesis and optical properties of Eu , Dy or Nd doped NiNb O columbite-type phosphors publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.04.036 – volume: 43 start-page: 693 year: 2008 end-page: 699 ident: CR2 article-title: Synthesis, low-temperature sintering and the dielectric properties of the ZnO–(1– ) TiO – SnO ( = 0.04–0.2) publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2007.03.029 – volume: 42 start-page: 8387 year: 2007 end-page: 8390 ident: CR15 article-title: Preparation of Sb Nb O powders using molten salt method publication-title: J. Mater. Sci. doi: 10.1007/s10853-007-1807-3 – volume: 450 start-page: 440 year: 2008 end-page: 445 ident: CR3 article-title: Effects of WO additions on the phase structure and transition of zinc titanate ceramics publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2006.10.120 – volume: 45 start-page: 6461 year: 2010 end-page: 6466 ident: CR7 article-title: Low temperature sintering and microwave dielectric properties of (Zn Mg ) TiO ceramics with BiVO publication-title: J. Mater. Sci. doi: 10.1007/s10853-010-4732-9 – volume: 239 start-page: 518 year: 2013 end-page: 524 ident: CR10 article-title: A facile co-precipitation synthesis of hexagonal (Zn, Mg) TiO publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.02.041 – volume: 41 start-page: 10133 year: 2015 end-page: 10136 ident: CR6 article-title: Low: temperature: sintering characteristic and microwave dielectric properties of (Zn Mg )TiO ceramics with LBSCA glass publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.04.111 – volume: 26 start-page: 1136 year: 2015 end-page: 1141 ident: CR13 article-title: Preparation of cubic Na Sr NbO particles by molten salt synthesis publication-title: J. Mater. Sci.: Mater. Electron. – volume: 176 start-page: 567 year: 2011 end-page: 572 ident: CR1 article-title: Significant enhancement in quality factor of Zn TiO with Cu-substitution publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2011.01.013 – volume: 178 start-page: 1359 year: 2013 end-page: 1364 ident: CR12 article-title: Molten salt synthesis of acicular sodium strontium niobate particles publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2013.09.002 – volume: 32 start-page: 1725 year: 2012 end-page: 1732 ident: CR9 article-title: Effect of microwave sintering on the microstructure and electric properties of (Zn, Mg) TiO3-based multilayer ceramic capacitors publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2011.12.025 – volume: 31 start-page: 905 year: 2005 end-page: 909 ident: CR4 article-title: Low temperature sintering of (Zn , Mg ) TiO microwave dielectrics publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2004.09.017 – volume: 8 start-page: 247 year: 2008 end-page: 252 ident: CR19 article-title: Crystal morphology of anatase titania nanocrystals used in dye-sensitized solar cells publication-title: Cryst. Growth Des. doi: 10.1021/cg070232a – volume: 82 start-page: 3476 year: 1999 end-page: 3480 ident: CR5 article-title: Low-fired (Zn, Mg) TiO3 microwave dielectrics publication-title: J. Am. Cream. Soc. doi: 10.1111/j.1151-2916.1999.tb02268.x – volume: 26 start-page: 6189 year: 2015 end-page: 6193 ident: CR14 article-title: Effects of molten salt content and reaction temperature on molten salt preparation of CaNaBi Nb O powder publication-title: J. Mater. Sci.: Mater. Electron. – volume: 178 start-page: 1359 year: 2013 ident: 4840_CR12 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2013.09.002 – volume: 26 start-page: 6189 year: 2015 ident: 4840_CR14 publication-title: J. Mater. Sci.: Mater. Electron. – volume: 31 start-page: 905 year: 2005 ident: 4840_CR4 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2004.09.017 – volume: 82 start-page: 3476 year: 1999 ident: 4840_CR5 publication-title: J. Am. Cream. Soc. doi: 10.1111/j.1151-2916.1999.tb02268.x – volume: 80 start-page: 69 year: 2012 ident: 4840_CR11 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.04.048 – volume: 471 start-page: 272 year: 2009 ident: 4840_CR8 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2008.03.090 – volume: 41 start-page: 9680 year: 2015 ident: 4840_CR18 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.04.036 – volume: 8 start-page: 247 year: 2008 ident: 4840_CR19 publication-title: Cryst. Growth Des. doi: 10.1021/cg070232a – volume: 32 start-page: 2365 year: 2012 ident: 4840_CR17 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2012.02.043 – volume: 239 start-page: 518 year: 2013 ident: 4840_CR10 publication-title: Powder Technol. doi: 10.1016/j.powtec.2013.02.041 – volume: 450 start-page: 440 year: 2008 ident: 4840_CR3 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2006.10.120 – volume: 47 start-page: 1938 year: 2012 ident: 4840_CR16 publication-title: J. Mater. Sci. doi: 10.1007/s10853-011-5984-8 – volume: 32 start-page: 1725 year: 2012 ident: 4840_CR9 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2011.12.025 – volume: 176 start-page: 567 year: 2011 ident: 4840_CR1 publication-title: Mater. Sci. Eng. B doi: 10.1016/j.mseb.2011.01.013 – volume: 42 start-page: 8387 year: 2007 ident: 4840_CR15 publication-title: J. Mater. Sci. doi: 10.1007/s10853-007-1807-3 – volume: 45 start-page: 6461 year: 2010 ident: 4840_CR7 publication-title: J. Mater. Sci. doi: 10.1007/s10853-010-4732-9 – volume: 43 start-page: 693 year: 2008 ident: 4840_CR2 publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2007.03.029 – volume: 41 start-page: 10133 year: 2015 ident: 4840_CR6 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2015.04.111 – volume: 26 start-page: 1136 year: 2015 ident: 4840_CR13 publication-title: J. Mater. Sci.: Mater. Electron. |
SSID | ssj0006438 |
Score | 2.1058357 |
Snippet | The pure hexagonal phase (Zn, Mg) TiO
3
(abbreviated to ZMT) micro/nano crystals were prepared by a molten salt method. The influences of the molten salt... The pure hexagonal phase (Zn, Mg) TiO3 (abbreviated to ZMT) micro/nano crystals were prepared by a molten salt method. The influences of the molten salt system... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 8319 |
SubjectTerms | Characterization and Evaluation of Materials Chemistry and Materials Science Materials Science Optical and Electronic Materials |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60XvQgPrFaZQ8efAWTzWbTHItYilC9tFC8hNnNphbSpDQV7L93J03aKip4C-zjMPuYbzPffEPIpZIoym5Ly9eujSXMuNUMYtsC1AZxgHu6yIXpPotOnz8NvEGZx51XbPcqJFnc1GvJbk0PGRPC4k2kwW2SLc883ZHH1Wet5fVrXGxzIbCHgt6MVaHMn6b46oxWCPNbULTwNe09sluCRNparOo-2dDpAdlZkw48JNDNEgN3aQ7JjObz1OC4fJTTLKZXr-kd7Q6vaW_04tIxEu7uU0gzqqZzAwWTnOK_Vzp5n2r6pj9giFicjpKxRvhJF4KypvGI9NuPvYeOVZZLsJTriJklBZPcj6WvHMZAgA-cQ-wF5gP9MkjNBUQSmKMj5UU2SHNeY-XGUtmKOco9JrU0S_UJoUIHvmueEp6rHM4gAgcEj5gET4uIBVGd2JXdQlVqiWNJiyRcqSCjqUPkj6GpQ79ObpZDJgshjb86N6rFCMszlYcGixgwwvwgqJPbaoHWmn-b7PRfvc_INsMNUnD8GqRmjK7PDe6YyYtin30CetDOYg priority: 102 providerName: Springer Nature |
Title | Molten salt synthesis of (Zn, Mg) TiO3 micro/nano crystals with pure hexagonal ilmenite structure |
URI | https://link.springer.com/article/10.1007/s10854-016-4840-7 https://www.proquest.com/docview/1811242799 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1RT9swED6N9mU8TNvYRBlUfuABGBGJ4zjJ01SmFgQqoIlKsJfo7DhQKSQd6aTx7-drEgpI8BbFjh_uzndffOfvALa1IlJ2Vzmh8V1qYSacKM5cB4kbxEMRmMVdmPGZPJ6Ik6vgqjlwq5qyytYnLhx1Wmo6Iz-wkciGIh7G8Y_ZH4e6RlF2tWmhsQJd64KjqAPdw-HZxa9HX2zjbVSz7RG7N-dtXrO-PBcFVIEhHRFRWd3zyLSEmy8ypIvAM_oIHxrEyAa1ij_BO1N8htUnPIJrgOMyt9iXVZjPWfVQWFBXTStWZmznd7HPxje77HJ67rM7qr47KLAomb5_sLgwrxgdxLLZ33vDbs0_vCFgzqb5nSEsymp2WTv4BSaj4eXPY6fpneBo35NzR0muRJipUHuco8QQhcAsiO0DBWlURkhMFXLPpDpIXVR282baz5R2Nfe0_xU6RVmYdWDSxKFv_ysCX3uCY4oeSpFyhYGRKY_THrit3BLdEItTf4s8WVIik6gTKiYjUSdhD_YeP5nVrBpvTd5slZE0G6xKlubQg--tgp4Mv7bYxtuLfYP3nCxiUeG3CR0rZbNlUcdc9WElGh31oTs4uj4d9htDs28nfPAfCubWoA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3BbtNAEB2V9gAcEKWtCLR0D1QqUKv2er2ODxVClJC0TbmkUsXFzK7XIZJjhzqI5qf4xu7YcVIq0Vtvltbew-zzvNndmTcAb7UiUXZXOaHxXWphJpx2lLoOkjaIhyIwVS1M_1x2L8TJZXC5An-bWhhKq2x8YuWok0LTGfmhZSJLRTyMoo-TXw51jaLb1aaFRg2LUzP7Y7ds5VHv2K7vHuedL4PPXWfeVcDRvienjpJciTBVofY4R4khCoFpENkHoi9URkhMFHLPJDpIXFQW1qn2U6VdzT3t23kfwZrwLZNTZXrn68LzW3Zv19p-pCXOeXOLWpfqtQPK95COaFMS3788uAxu79zHVjTXeQ7P5vEp-1QDah1WTP4Cnt5SLdwA7BeZjbRZidmUlbPchpDlqGRFyva_5wesP3zHBqNvPhtTrt9hjnnB9NXMRqFZyejYl01-Xxn201zjkLYBbJSNDUW-rNaytYObcPEgNt2C1bzIzUtg0kShb3cxga89wTFBD6VIuMLAyIRHSQvcxm6xnsuYUzeNLF4KMJOpY0pdI1PHYQveLz6Z1Boe97283SxGPP-dy3gJvhZ8aBbo1vD_Jnt1_2S78Lg76J_FZ73z09fwhBM6qtzCbVi1Fjc7Nt6ZqjcVyBj8eGhU3wA0ZBEo |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7RRaraAwLaqtvy8KFI9BFt4jjO5oAQFFY8ultUgYS4pGPHoSstyUIWwf41fh2eTcLSSuXGLZITH8ZfPDP2N98AfNKKRNld5YTGd6mFmXDaUeo6SNogHorATGphuj25dyIOToPTGbira2GIVlnviZONOsk1nZG3rCeyroiHUdRKK1rE0U5nc3jpUAcpummt22mUEDk04xubvhUb-zt2rdc47-wef99zqg4DjvY9OXKU5EqEqQq1xzlKDFEITIPIPpArQ2WExEQh90yig8RFZSGeaj9V2tXc076d9wXMhpQVNWB2e7d39OvBD1hf3y6V_khZnPP6TrUs3GsHxP6QjmgTpe9vrzgNdf-5nZ04vc48zFXRKtsq4bUAMyZbhNePNAzfAHZza6aMFTgYsWKc2YCy6BcsT9n6WfaNdc8_s-P-T59dEPOvlWGWM301tjHpoGB0CMyG11eG_TG3eE5JAesPLgzFwaxUtrWDb-HkWaz6DhpZnpn3wKSJQt_mNIGvPcExQQ-lSLjCwMiER0kT3Npusa5Ezam3xiCeyjGTqWMispGp47AJXx4-GZaKHk-9vFQvRlz93EU8hWITvtYL9Gj4f5N9eHqyVXhpER3_2O8dfoRXnMAxIRouQcMa3Czb4GekViqUMfj93MC-B2VaFro |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molten+salt+synthesis+of+%28Zn%2C+Mg%29+TiO3+micro%2Fnano+crystals+with+pure+hexagonal+ilmenite+structure&rft.jtitle=Journal+of+materials+science.+Materials+in+electronics&rft.au=Liu%2C+Xiangchun&rft.au=Zuo%2C+Chenguang&rft.date=2016-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0957-4522&rft.eissn=1573-482X&rft.volume=27&rft.issue=8&rft.spage=8319&rft_id=info:doi/10.1007%2Fs10854-016-4840-7&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4146715761 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4522&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4522&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4522&client=summon |