Total curvature (TC) model and its alternating direction method of multipliers algorithm for noise removal
This paper develops a variational model for image noise removal using total curvature (TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the characteristics of nonlinear, non-convex and non-smooth. Consequently, the numerical com...
Saved in:
Published in | Optoelectronics letters Vol. 15; no. 3; pp. 217 - 223 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Tianjin
Tianjin University of Technology
01.05.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1673-1905 1993-5013 |
DOI | 10.1007/s11801-019-8145-y |
Cover
Abstract | This paper develops a variational model for image noise removal using total curvature (TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the characteristics of nonlinear, non-convex and non-smooth. Consequently, the numerical computation with the curvature regularization is difficult. In order to conquer the computation problem, the proposed model is transformed into an alternating optimization problem by importing auxiliary variables. Furthermore, based on alternating direction method of multipliers, we design a fast numerical approximation iterative scheme for proposed model. Finally, numerous experiments are implemented to indicate the advantages of the proposed model in image edge preserving, image contrast and corners preserving. Meanwhile, the high computational efficiency of the designed model is verified by comparing with traditional models, including the total variation (TV) and total Laplace (TL) model. |
---|---|
AbstractList | This paper develops a variational model for image noise removal using total curvature (TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the characteristics of nonlinear, non-convex and non-smooth. Consequently, the numerical computation with the curvature regularization is difficult. In order to conquer the computation problem, the proposed model is transformed into an alternating optimization problem by importing auxiliary variables. Furthermore, based on alternating direction method of multipliers, we design a fast numerical approximation iterative scheme for proposed model. Finally, numerous experiments are implemented to indicate the advantages of the proposed model in image edge preserving, image contrast and corners preserving. Meanwhile, the high computational efficiency of the designed model is verified by comparing with traditional models, including the total variation (TV) and total Laplace (TL) model. |
Author | Huang, Bao-xiang Xue, Chao Wang, Ming-lei Wang, Yu-xi Mu, Yun-ping |
Author_xml | – sequence: 1 givenname: Yun-ping surname: Mu fullname: Mu, Yun-ping organization: School of Computer Science, Qingdao University – sequence: 2 givenname: Bao-xiang surname: Huang fullname: Huang, Bao-xiang email: hbx3726@163.com organization: School of Computer Science, Qingdao University – sequence: 3 givenname: Yu-xi surname: Wang fullname: Wang, Yu-xi organization: School of Computer Science, Qingdao University – sequence: 4 givenname: Ming-lei surname: Wang fullname: Wang, Ming-lei organization: School of Computer Science, Qingdao University – sequence: 5 givenname: Chao surname: Xue fullname: Xue, Chao organization: School of Computer Science, Qingdao University |
BookMark | eNp9kE1LxDAQhoMo-LU_wFvAix6qmSRt2qMsfsGCl_Uc0na6myVt1iQV9t_bZQVB0LnMHJ5nmHnPyfHgByTkCtgdMKbuI0DJIGNQZSXIPNsdkTOoKpHlDMTxNBdKZFCx_JTMYtywqQRXpazOyGbpk3G0GcOnSWNAerOc39Let-ioGVpqU6TGJQyDSXZY0dYGbJL1A-0xrX1LfUf70SW7dRbDnl35YNO6p50PdPA2Ig3Y-0_jLslJZ1zE2Xe_IO9Pj8v5S7Z4e36dPyyyRkCRslrWtVSyNEUuuZLABHY1ABfMQK0KhJwrbnJoC4WNUg0XyjAUVdfWVSmxFRfk-rB3G_zHiDHpjR-n-13UnAuZy0rKYqLUgWqCjzFgpxubzP6zFIx1GpjeZ6sP2eopW73PVu8mE36Z22B7E3b_OvzgxIkdVhh-bvpb-gK6BY7Z |
CitedBy_id | crossref_primary_10_1109_ACCESS_2019_2931581 |
Cites_doi | 10.1007/s11801-018-8033-x 10.1023/A:1007665907178 10.1109/83.869184 10.1016/0167-2789(92)90242-F 10.1002/mma.3858 10.1016/j.dsp.2017.07.001 10.1007/s10851-016-0662-8 10.1016/j.dsp.2018.03.019 10.1016/j.jcp.2017.05.001 10.1016/j.apm.2017.01.009 10.1109/TIP.2016.2552402 10.3934/ipi.2015.9.55 10.1016/j.sigpro.2015.09.026 10.1016/j.stamet.2011.04.003 10.1109/TCYB.2013.2278548 10.1007/s10107-015-0957-3 10.1007/s00607-005-0119-1 10.1016/j.apnum.2016.04.011 |
ContentType | Journal Article |
Copyright | Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019 Copyright Springer Nature B.V. 2019 |
Copyright_xml | – notice: Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019 – notice: Copyright Springer Nature B.V. 2019 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11801-019-8145-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1993-5013 |
EndPage | 223 |
ExternalDocumentID | 10_1007_s11801_019_8145_y |
GroupedDBID | -5F -5G -BR -EM -SI -S~ -Y2 -~C .VR 06D 0R~ 0VY 123 1N0 29N 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5VR 5VS 6NX 8TC 92H 92I 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAG CAJEI CCEZO CHBEP COF CS3 CSCUP CUBFJ CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HLICF HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9T PF0 PT4 Q-- QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 TCJ TGT TSG TUC U1G U2A U5S UG4 UOJIU UTJUX UZXMN VC2 VFIZW WK8 YLTOR Z7R Z7X Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-b4bb4748a654274103efb11230a1b76e15272a51d67ec77c237a0e39fdb984ed3 |
IEDL.DBID | U2A |
ISSN | 1673-1905 |
IngestDate | Fri Jul 25 03:10:01 EDT 2025 Thu Apr 24 23:07:59 EDT 2025 Tue Jul 01 02:10:31 EDT 2025 Fri Feb 21 02:41:40 EST 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 3 |
Keywords | A |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-b4bb4748a654274103efb11230a1b76e15272a51d67ec77c237a0e39fdb984ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2234549446 |
PQPubID | 2044109 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2234549446 crossref_citationtrail_10_1007_s11801_019_8145_y crossref_primary_10_1007_s11801_019_8145_y springer_journals_10_1007_s11801_019_8145_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Tianjin |
PublicationPlace_xml | – name: Tianjin – name: Heidelberg |
PublicationTitle | Optoelectronics letters |
PublicationTitleAbbrev | Optoelectron. Lett |
PublicationYear | 2019 |
Publisher | Tianjin University of Technology Springer Nature B.V |
Publisher_xml | – name: Tianjin University of Technology – name: Springer Nature B.V |
References | PardoEKapolkaMJournal of Computational Physics20173443392017JCoPh.344..339P365674410.1016/j.jcp.2017.05.001 YouY LKavehMIEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society20009172310.1109/83.869184 De ReyesJ C LSchönliebC BValkonenTJournal of Mathematical Imaging & Vision2017571359284010.1007/s10851-016-0662-8 JinmingDZhaowenQWenqiLGuodongWZhenkuanPLiBDigital Signal Processing20164916210.1016/j.sigpro.2015.09.026 GillesAPierreKApplied Intelligence200640291 AntoniBColl Bartomeu and Morel Jean MichelSiam Journal on Multiscale Modeling & Simulation20064490 AntoninCThomasPMathematical Programming2016159253353592510.1007/s10107-015-0957-3 WeiZChengT XTonyCInverse Problems & Imaging201771409 AlainHDjemelZImage Quality Metrics: PSNR vs. SSIM, International Conference on Pattern Recognition2010 ZhuS MSongQ HXiangZ GPingT SGuangJOptoelectronics Letters2018142262018OptEL..14..276Z10.1007/s11801-018-8033-x Bardeji SomayehGhFigueiredo IsabelNErciliaSApplied Numerical Mathematics2017114188360164110.1016/j.apnum.2016.04.011 Raymond HCHaixiaLSuhuaWMilaNChengT XInverse Problems & Imaging2015955330588610.3934/ipi.2015.9.55 Zhang K., Zuo W., Chen Y., Meng D. and Zhang L., IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society PP, 1 (2017). ZhiyuanZXinLZihengZXiaohuaHJingangSZhenhongSLanTYechaoBQiongWXingganZImage Denoising via group Sparsity Residual Constraint2017 VegaMMateosJMolinaRKatsaggelos AggelosKStatistical Methodology201691910.1016/j.stamet.2011.04.003 Jordan MichaelIGhahramaniZJaakkola TommiSSaul LawrenceKMachine Learning19993718310.1023/A:1007665907178 HinterbergerWScherzerOComputing200676109217467410.1007/s00607-005-0119-1 LingSRuomeiYXuelongLLiuYIEEE Transactions on Cybernetics201444100110.1109/TCYB.2013.2278548 XiangliNHongQBoZXiayuanHIEEE Transactions on Image Processing2016252620349365310.1109/TIP.2016.2552402 YangLChuanjiangHYongfeiWDigital Signal Processing20187842379570110.1016/j.dsp.2018.03.019 Prasath V. BSKalavathiPMixed Noise Removal Using Hybrid Fourth Order Mean Curvature Motion, Springer International Publishing2016 WenqiLJinmingDZhaowenQZhenkuanPWenL RLiBMathematical Methods in the Applied Sciences2016394208353653210.1002/mma.3858 JunLZhuH TGuangL XSiWApplied Mathematical Modelling201745516365467710.1016/j.apm.2017.01.009 Rudin LeonidIOsherSFatemiEPhysicaDNonlinear Phenomena19926025910.1016/0167-2789(92)90242-F JinmingDWard WilO CLukeSZhenkuanPLiBDigital Signal Processing20176932310.1016/j.dsp.2017.07.001 MarkNDavidMThe 2.1-D Sketch, International Conference on Computer Vision1990 E Pardo (8145_CR8) 2017; 344 L Wenqi (8145_CR25) 2016; 39 C Raymond H (8145_CR15) 2015; 9 Z Wei (8145_CR23) 2017; 7 B Antoni (8145_CR4) 2006; 4 Z Zhiyuan (8145_CR2) 2017 L Yang (8145_CR12) 2018; 78 L Jun (8145_CR16) 2017; 45 Y L You (8145_CR18) 2000; 9 M Vega (8145_CR6) 2016; 9 H Alain (8145_CR26) 2010 D Jinming (8145_CR17) 2017; 69 S Ling (8145_CR5) 2014; 44 I Rudin Leonid (8145_CR13) 1992; 60 I Jordan Michael (8145_CR7) 1999; 37 W Hinterberger (8145_CR20) 2006; 76 Gh Bardeji Somayeh (8145_CR11) 2017; 114 S M Zhu (8145_CR1) 2018; 14 A Gilles (8145_CR10) 2006; 40 N Xiangli (8145_CR9) 2016; 25 J C L De Reyes (8145_CR19) 2017; 57 N Mark (8145_CR24) 1990 S Prasath V. B (8145_CR22) 2016 C Antonin (8145_CR14) 2016; 159 8145_CR3 D Jinming (8145_CR21) 2016; 49 |
References_xml | – reference: WeiZChengT XTonyCInverse Problems & Imaging201771409 – reference: ZhuS MSongQ HXiangZ GPingT SGuangJOptoelectronics Letters2018142262018OptEL..14..276Z10.1007/s11801-018-8033-x – reference: LingSRuomeiYXuelongLLiuYIEEE Transactions on Cybernetics201444100110.1109/TCYB.2013.2278548 – reference: Rudin LeonidIOsherSFatemiEPhysicaDNonlinear Phenomena19926025910.1016/0167-2789(92)90242-F – reference: GillesAPierreKApplied Intelligence200640291 – reference: YangLChuanjiangHYongfeiWDigital Signal Processing20187842379570110.1016/j.dsp.2018.03.019 – reference: JinmingDZhaowenQWenqiLGuodongWZhenkuanPLiBDigital Signal Processing20164916210.1016/j.sigpro.2015.09.026 – reference: Raymond HCHaixiaLSuhuaWMilaNChengT XInverse Problems & Imaging2015955330588610.3934/ipi.2015.9.55 – reference: ZhiyuanZXinLZihengZXiaohuaHJingangSZhenhongSLanTYechaoBQiongWXingganZImage Denoising via group Sparsity Residual Constraint2017 – reference: Zhang K., Zuo W., Chen Y., Meng D. and Zhang L., IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society PP, 1 (2017). – reference: YouY LKavehMIEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society20009172310.1109/83.869184 – reference: VegaMMateosJMolinaRKatsaggelos AggelosKStatistical Methodology201691910.1016/j.stamet.2011.04.003 – reference: Jordan MichaelIGhahramaniZJaakkola TommiSSaul LawrenceKMachine Learning19993718310.1023/A:1007665907178 – reference: AlainHDjemelZImage Quality Metrics: PSNR vs. SSIM, International Conference on Pattern Recognition2010 – reference: De ReyesJ C LSchönliebC BValkonenTJournal of Mathematical Imaging & Vision2017571359284010.1007/s10851-016-0662-8 – reference: JunLZhuH TGuangL XSiWApplied Mathematical Modelling201745516365467710.1016/j.apm.2017.01.009 – reference: Bardeji SomayehGhFigueiredo IsabelNErciliaSApplied Numerical Mathematics2017114188360164110.1016/j.apnum.2016.04.011 – reference: AntoninCThomasPMathematical Programming2016159253353592510.1007/s10107-015-0957-3 – reference: WenqiLJinmingDZhaowenQZhenkuanPWenL RLiBMathematical Methods in the Applied Sciences2016394208353653210.1002/mma.3858 – reference: AntoniBColl Bartomeu and Morel Jean MichelSiam Journal on Multiscale Modeling & Simulation20064490 – reference: JinmingDWard WilO CLukeSZhenkuanPLiBDigital Signal Processing20176932310.1016/j.dsp.2017.07.001 – reference: Prasath V. BSKalavathiPMixed Noise Removal Using Hybrid Fourth Order Mean Curvature Motion, Springer International Publishing2016 – reference: PardoEKapolkaMJournal of Computational Physics20173443392017JCoPh.344..339P365674410.1016/j.jcp.2017.05.001 – reference: HinterbergerWScherzerOComputing200676109217467410.1007/s00607-005-0119-1 – reference: XiangliNHongQBoZXiayuanHIEEE Transactions on Image Processing2016252620349365310.1109/TIP.2016.2552402 – reference: MarkNDavidMThe 2.1-D Sketch, International Conference on Computer Vision1990 – volume: 14 start-page: 226 year: 2018 ident: 8145_CR1 publication-title: Optoelectronics Letters doi: 10.1007/s11801-018-8033-x – volume-title: Image Denoising via group Sparsity Residual Constraint year: 2017 ident: 8145_CR2 – volume: 37 start-page: 183 year: 1999 ident: 8145_CR7 publication-title: Machine Learning doi: 10.1023/A:1007665907178 – volume: 9 start-page: 1723 year: 2000 ident: 8145_CR18 publication-title: IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society doi: 10.1109/83.869184 – volume: 60 start-page: 259 year: 1992 ident: 8145_CR13 publication-title: Nonlinear Phenomena doi: 10.1016/0167-2789(92)90242-F – volume: 39 start-page: 4208 year: 2016 ident: 8145_CR25 publication-title: Mathematical Methods in the Applied Sciences doi: 10.1002/mma.3858 – volume: 69 start-page: 323 year: 2017 ident: 8145_CR17 publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2017.07.001 – volume: 40 start-page: 291 year: 2006 ident: 8145_CR10 publication-title: Applied Intelligence – volume: 57 start-page: 1 year: 2017 ident: 8145_CR19 publication-title: Journal of Mathematical Imaging & Vision doi: 10.1007/s10851-016-0662-8 – volume-title: The 2.1-D Sketch, International Conference on Computer Vision year: 1990 ident: 8145_CR24 – volume: 78 start-page: 42 year: 2018 ident: 8145_CR12 publication-title: Digital Signal Processing doi: 10.1016/j.dsp.2018.03.019 – volume: 344 start-page: 339 year: 2017 ident: 8145_CR8 publication-title: Journal of Computational Physics doi: 10.1016/j.jcp.2017.05.001 – volume-title: Mixed Noise Removal Using Hybrid Fourth Order Mean Curvature Motion, Springer International Publishing year: 2016 ident: 8145_CR22 – volume: 4 start-page: 490 year: 2006 ident: 8145_CR4 publication-title: Siam Journal on Multiscale Modeling & Simulation – volume: 45 start-page: 516 year: 2017 ident: 8145_CR16 publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2017.01.009 – volume: 7 start-page: 1409 year: 2017 ident: 8145_CR23 publication-title: Inverse Problems & Imaging – volume: 25 start-page: 2620 year: 2016 ident: 8145_CR9 publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2016.2552402 – ident: 8145_CR3 – volume: 9 start-page: 55 year: 2015 ident: 8145_CR15 publication-title: Inverse Problems & Imaging doi: 10.3934/ipi.2015.9.55 – volume-title: Image Quality Metrics: PSNR vs. SSIM, International Conference on Pattern Recognition year: 2010 ident: 8145_CR26 – volume: 49 start-page: 162 year: 2016 ident: 8145_CR21 publication-title: Digital Signal Processing doi: 10.1016/j.sigpro.2015.09.026 – volume: 9 start-page: 19 year: 2016 ident: 8145_CR6 publication-title: Statistical Methodology doi: 10.1016/j.stamet.2011.04.003 – volume: 44 start-page: 1001 year: 2014 ident: 8145_CR5 publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2013.2278548 – volume: 159 start-page: 253 year: 2016 ident: 8145_CR14 publication-title: Mathematical Programming doi: 10.1007/s10107-015-0957-3 – volume: 76 start-page: 109 year: 2006 ident: 8145_CR20 publication-title: Computing doi: 10.1007/s00607-005-0119-1 – volume: 114 start-page: 188 year: 2017 ident: 8145_CR11 publication-title: Applied Numerical Mathematics doi: 10.1016/j.apnum.2016.04.011 |
SSID | ssj0000327849 |
Score | 2.1113243 |
Snippet | This paper develops a variational model for image noise removal using total curvature (TC), which is a high-order regularizer. The TC has the advantage of... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 217 |
SubjectTerms | Algorithms Computing time Curvature Image contrast Iterative methods Lasers Mathematical models Multipliers Numerical analysis Optical Devices Optics Optimization Photonics Physics Physics and Astronomy Regularization |
Title | Total curvature (TC) model and its alternating direction method of multipliers algorithm for noise removal |
URI | https://link.springer.com/article/10.1007/s11801-019-8145-y https://www.proquest.com/docview/2234549446 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7URfDiW1xf5ODBB4U-0qY9LourKHjahfVUknSqK9rKtnvw3zvJti6KCp6b5pAvyXzzyHwAp66SLrqCmFumtcNzREfFdBlKP4pFprSK0RbI3kc3I347DsfNO-6qrXZvU5L2pl48dvNi6_rasFXovC9DJyTX3ZzGkd_7DKy4gcmlGdrrRSJwyOCFbTbzp1m-2qMFyfyWF7XmZrAJ6w1PZL05sFuwhMU2bDSckTUnstqGVVvCqasdeB6WRKSZnpko62yK7GzYP2dW6YbJImOTumI2N27if8UjmxszgoXNVaRZmbOmvNDIY9PYx3I6qZ9eGfFaVpSTCtkUX0vamrswGlwN-zdOo6Tg6MCLakdxpbjgsTTyVMQh3ABzRUwrcKWnRIRG29aXoZdFArUQ2g8EQRgkeaaSmGMW7MFKURa4D8zVGXnTUiU6lDzmUkZJkkfoh-grD5OkC267nqlu2owbtYuXdNEg2UCQEgSpgSB978LF5y9v8x4bfw0-akFKm-NWpcRxODm65Np24bIFbvH518kO_jX6ENZ8s3FsueMRrNTTGR4TJanVCXR61w93Vyd2K34Aay_avg |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCMGFHVFWHziwKFIWJ06OCIHKemolbpHtTKCIJqhJD_w9YzehAgES5zg--NmeN4vnARy5SrroCmJumdYOzxEdFdNlKP0oFpnSKkZbIPsQdfv85jF8bN5xV221e5uStDf19LGbF1vX14atQud9FuaJC8RGtqDvn38GVtzA5NIM7fUiEThk8MI2m_nTLF_t0ZRkfsuLWnNztQrLDU9k5xNg12AGi3VYaTgja05ktQ4LtoRTVxvw0iuJSDM9NlHW8QjZce_ihFmlGyaLjA3qitncuIn_FU9sYswIFjZRkWZlzpryQiOPTWOfytGgfh4y4rWsKAcVshEOS9qam9C_uuxddJ1GScHRgRfVjuJKccFjaeSpiEO4AeaKmFbgSk-JCI22rS9DL4sEaiG0HwiCMEjyTCUxxyzYgrmiLHAbmKsz8qalSnQoecyljJIkj9AP0VceJkkH3HY9U920GTdqF6_ptEGygSAlCFIDQfregdPPX94mPTb-GrzXgpQ2x61KieNwcnTJte3AWQvc9POvk-38a_QhLHZ793fp3fXD7S4s-WYT2dLHPZirR2PcJ3pSqwO7HT8AAYbcHQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC2xCMRlWAY0PWw-cIBBEVmcODkioAUzCHHolrhFtlNpGg0J6qQP_D1lJ6EFAiTOcXLIK7teLa4HcOAq6aIriLllWjs8R3RUTIeh9KNYZEqrGG2D7E10OeR_78K7Vue06rrdu5Jkc6fBTGkq6pOnLD-ZXXzzYhsG2xRW6DzPwyKdxp4x9KF_-ppkcQNTVzMU2ItE4JDzC7vK5kdfeeubZoTzXY3Uup7-GvxoOSM7bUBehzksNmC15Y-s3Z3VBizZdk5d_YSHQUmkmumpybhOJ8gOB2dHzKreMFlkbFxXzNbJTS6wGLHGsRFErFGUZmXO2lZDI5VNa0flZFzfPzLiuKwoxxWyCT6WZKabMOxfDM4unVZVwdGBF9WO4kpxwWNppKqIT7gB5opYV-BKT4kIjc6tL0MviwRqIbQfCIIzSPJMJTHHLNiChaIs8BcwV2cUWUuV6FDymEsZJUkeoR-irzxMkh643f9MdTty3Chf_E9nw5INBClBkBoI0uce_Hl95amZt_HV4p0OpLTdelVKfIdT0Ethbg-OO-Bmjz_92O9vrd6H5dvzfnp9dfNvG1Z8Y0O2C3IHFurJFHeJqdRqz1rjC8dP4Fk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total+curvature+%28TC%29+model+and+its+alternating+direction+method+of+multipliers+algorithm+for+noise+removal&rft.jtitle=Optoelectronics+letters&rft.au=Yun-ping+Mu&rft.au=Bao-xiang%2C+Huang&rft.au=Yu-xi%2C+Wang&rft.au=Ming-lei%2C+Wang&rft.date=2019-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1673-1905&rft.eissn=1993-5013&rft.volume=15&rft.issue=3&rft.spage=217&rft.epage=223&rft_id=info:doi/10.1007%2Fs11801-019-8145-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1673-1905&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1673-1905&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1673-1905&client=summon |