Total curvature (TC) model and its alternating direction method of multipliers algorithm for noise removal

This paper develops a variational model for image noise removal using total curvature (TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the characteristics of nonlinear, non-convex and non-smooth. Consequently, the numerical com...

Full description

Saved in:
Bibliographic Details
Published inOptoelectronics letters Vol. 15; no. 3; pp. 217 - 223
Main Authors Mu, Yun-ping, Huang, Bao-xiang, Wang, Yu-xi, Wang, Ming-lei, Xue, Chao
Format Journal Article
LanguageEnglish
Published Tianjin Tianjin University of Technology 01.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1673-1905
1993-5013
DOI10.1007/s11801-019-8145-y

Cover

Abstract This paper develops a variational model for image noise removal using total curvature (TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the characteristics of nonlinear, non-convex and non-smooth. Consequently, the numerical computation with the curvature regularization is difficult. In order to conquer the computation problem, the proposed model is transformed into an alternating optimization problem by importing auxiliary variables. Furthermore, based on alternating direction method of multipliers, we design a fast numerical approximation iterative scheme for proposed model. Finally, numerous experiments are implemented to indicate the advantages of the proposed model in image edge preserving, image contrast and corners preserving. Meanwhile, the high computational efficiency of the designed model is verified by comparing with traditional models, including the total variation (TV) and total Laplace (TL) model.
AbstractList This paper develops a variational model for image noise removal using total curvature (TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the characteristics of nonlinear, non-convex and non-smooth. Consequently, the numerical computation with the curvature regularization is difficult. In order to conquer the computation problem, the proposed model is transformed into an alternating optimization problem by importing auxiliary variables. Furthermore, based on alternating direction method of multipliers, we design a fast numerical approximation iterative scheme for proposed model. Finally, numerous experiments are implemented to indicate the advantages of the proposed model in image edge preserving, image contrast and corners preserving. Meanwhile, the high computational efficiency of the designed model is verified by comparing with traditional models, including the total variation (TV) and total Laplace (TL) model.
Author Huang, Bao-xiang
Xue, Chao
Wang, Ming-lei
Wang, Yu-xi
Mu, Yun-ping
Author_xml – sequence: 1
  givenname: Yun-ping
  surname: Mu
  fullname: Mu, Yun-ping
  organization: School of Computer Science, Qingdao University
– sequence: 2
  givenname: Bao-xiang
  surname: Huang
  fullname: Huang, Bao-xiang
  email: hbx3726@163.com
  organization: School of Computer Science, Qingdao University
– sequence: 3
  givenname: Yu-xi
  surname: Wang
  fullname: Wang, Yu-xi
  organization: School of Computer Science, Qingdao University
– sequence: 4
  givenname: Ming-lei
  surname: Wang
  fullname: Wang, Ming-lei
  organization: School of Computer Science, Qingdao University
– sequence: 5
  givenname: Chao
  surname: Xue
  fullname: Xue, Chao
  organization: School of Computer Science, Qingdao University
BookMark eNp9kE1LxDAQhoMo-LU_wFvAix6qmSRt2qMsfsGCl_Uc0na6myVt1iQV9t_bZQVB0LnMHJ5nmHnPyfHgByTkCtgdMKbuI0DJIGNQZSXIPNsdkTOoKpHlDMTxNBdKZFCx_JTMYtywqQRXpazOyGbpk3G0GcOnSWNAerOc39Let-ioGVpqU6TGJQyDSXZY0dYGbJL1A-0xrX1LfUf70SW7dRbDnl35YNO6p50PdPA2Ig3Y-0_jLslJZ1zE2Xe_IO9Pj8v5S7Z4e36dPyyyRkCRslrWtVSyNEUuuZLABHY1ABfMQK0KhJwrbnJoC4WNUg0XyjAUVdfWVSmxFRfk-rB3G_zHiDHpjR-n-13UnAuZy0rKYqLUgWqCjzFgpxubzP6zFIx1GpjeZ6sP2eopW73PVu8mE36Z22B7E3b_OvzgxIkdVhh-bvpb-gK6BY7Z
CitedBy_id crossref_primary_10_1109_ACCESS_2019_2931581
Cites_doi 10.1007/s11801-018-8033-x
10.1023/A:1007665907178
10.1109/83.869184
10.1016/0167-2789(92)90242-F
10.1002/mma.3858
10.1016/j.dsp.2017.07.001
10.1007/s10851-016-0662-8
10.1016/j.dsp.2018.03.019
10.1016/j.jcp.2017.05.001
10.1016/j.apm.2017.01.009
10.1109/TIP.2016.2552402
10.3934/ipi.2015.9.55
10.1016/j.sigpro.2015.09.026
10.1016/j.stamet.2011.04.003
10.1109/TCYB.2013.2278548
10.1007/s10107-015-0957-3
10.1007/s00607-005-0119-1
10.1016/j.apnum.2016.04.011
ContentType Journal Article
Copyright Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s11801-019-8145-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1993-5013
EndPage 223
ExternalDocumentID 10_1007_s11801_019_8145_y
GroupedDBID -5F
-5G
-BR
-EM
-SI
-S~
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
29N
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
6NX
8TC
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CAJEI
CCEZO
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9T
PF0
PT4
Q--
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGT
TSG
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
WK8
YLTOR
Z7R
Z7X
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-b4bb4748a654274103efb11230a1b76e15272a51d67ec77c237a0e39fdb984ed3
IEDL.DBID U2A
ISSN 1673-1905
IngestDate Fri Jul 25 03:10:01 EDT 2025
Thu Apr 24 23:07:59 EDT 2025
Tue Jul 01 02:10:31 EDT 2025
Fri Feb 21 02:41:40 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords A
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-b4bb4748a654274103efb11230a1b76e15272a51d67ec77c237a0e39fdb984ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2234549446
PQPubID 2044109
PageCount 7
ParticipantIDs proquest_journals_2234549446
crossref_citationtrail_10_1007_s11801_019_8145_y
crossref_primary_10_1007_s11801_019_8145_y
springer_journals_10_1007_s11801_019_8145_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Tianjin
PublicationPlace_xml – name: Tianjin
– name: Heidelberg
PublicationTitle Optoelectronics letters
PublicationTitleAbbrev Optoelectron. Lett
PublicationYear 2019
Publisher Tianjin University of Technology
Springer Nature B.V
Publisher_xml – name: Tianjin University of Technology
– name: Springer Nature B.V
References PardoEKapolkaMJournal of Computational Physics20173443392017JCoPh.344..339P365674410.1016/j.jcp.2017.05.001
YouY LKavehMIEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society20009172310.1109/83.869184
De ReyesJ C LSchönliebC BValkonenTJournal of Mathematical Imaging & Vision2017571359284010.1007/s10851-016-0662-8
JinmingDZhaowenQWenqiLGuodongWZhenkuanPLiBDigital Signal Processing20164916210.1016/j.sigpro.2015.09.026
GillesAPierreKApplied Intelligence200640291
AntoniBColl Bartomeu and Morel Jean MichelSiam Journal on Multiscale Modeling & Simulation20064490
AntoninCThomasPMathematical Programming2016159253353592510.1007/s10107-015-0957-3
WeiZChengT XTonyCInverse Problems & Imaging201771409
AlainHDjemelZImage Quality Metrics: PSNR vs. SSIM, International Conference on Pattern Recognition2010
ZhuS MSongQ HXiangZ GPingT SGuangJOptoelectronics Letters2018142262018OptEL..14..276Z10.1007/s11801-018-8033-x
Bardeji SomayehGhFigueiredo IsabelNErciliaSApplied Numerical Mathematics2017114188360164110.1016/j.apnum.2016.04.011
Raymond HCHaixiaLSuhuaWMilaNChengT XInverse Problems & Imaging2015955330588610.3934/ipi.2015.9.55
Zhang K., Zuo W., Chen Y., Meng D. and Zhang L., IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society PP, 1 (2017).
ZhiyuanZXinLZihengZXiaohuaHJingangSZhenhongSLanTYechaoBQiongWXingganZImage Denoising via group Sparsity Residual Constraint2017
VegaMMateosJMolinaRKatsaggelos AggelosKStatistical Methodology201691910.1016/j.stamet.2011.04.003
Jordan MichaelIGhahramaniZJaakkola TommiSSaul LawrenceKMachine Learning19993718310.1023/A:1007665907178
HinterbergerWScherzerOComputing200676109217467410.1007/s00607-005-0119-1
LingSRuomeiYXuelongLLiuYIEEE Transactions on Cybernetics201444100110.1109/TCYB.2013.2278548
XiangliNHongQBoZXiayuanHIEEE Transactions on Image Processing2016252620349365310.1109/TIP.2016.2552402
YangLChuanjiangHYongfeiWDigital Signal Processing20187842379570110.1016/j.dsp.2018.03.019
Prasath V. BSKalavathiPMixed Noise Removal Using Hybrid Fourth Order Mean Curvature Motion, Springer International Publishing2016
WenqiLJinmingDZhaowenQZhenkuanPWenL RLiBMathematical Methods in the Applied Sciences2016394208353653210.1002/mma.3858
JunLZhuH TGuangL XSiWApplied Mathematical Modelling201745516365467710.1016/j.apm.2017.01.009
Rudin LeonidIOsherSFatemiEPhysicaDNonlinear Phenomena19926025910.1016/0167-2789(92)90242-F
JinmingDWard WilO CLukeSZhenkuanPLiBDigital Signal Processing20176932310.1016/j.dsp.2017.07.001
MarkNDavidMThe 2.1-D Sketch, International Conference on Computer Vision1990
E Pardo (8145_CR8) 2017; 344
L Wenqi (8145_CR25) 2016; 39
C Raymond H (8145_CR15) 2015; 9
Z Wei (8145_CR23) 2017; 7
B Antoni (8145_CR4) 2006; 4
Z Zhiyuan (8145_CR2) 2017
L Yang (8145_CR12) 2018; 78
L Jun (8145_CR16) 2017; 45
Y L You (8145_CR18) 2000; 9
M Vega (8145_CR6) 2016; 9
H Alain (8145_CR26) 2010
D Jinming (8145_CR17) 2017; 69
S Ling (8145_CR5) 2014; 44
I Rudin Leonid (8145_CR13) 1992; 60
I Jordan Michael (8145_CR7) 1999; 37
W Hinterberger (8145_CR20) 2006; 76
Gh Bardeji Somayeh (8145_CR11) 2017; 114
S M Zhu (8145_CR1) 2018; 14
A Gilles (8145_CR10) 2006; 40
N Xiangli (8145_CR9) 2016; 25
J C L De Reyes (8145_CR19) 2017; 57
N Mark (8145_CR24) 1990
S Prasath V. B (8145_CR22) 2016
C Antonin (8145_CR14) 2016; 159
8145_CR3
D Jinming (8145_CR21) 2016; 49
References_xml – reference: WeiZChengT XTonyCInverse Problems & Imaging201771409
– reference: ZhuS MSongQ HXiangZ GPingT SGuangJOptoelectronics Letters2018142262018OptEL..14..276Z10.1007/s11801-018-8033-x
– reference: LingSRuomeiYXuelongLLiuYIEEE Transactions on Cybernetics201444100110.1109/TCYB.2013.2278548
– reference: Rudin LeonidIOsherSFatemiEPhysicaDNonlinear Phenomena19926025910.1016/0167-2789(92)90242-F
– reference: GillesAPierreKApplied Intelligence200640291
– reference: YangLChuanjiangHYongfeiWDigital Signal Processing20187842379570110.1016/j.dsp.2018.03.019
– reference: JinmingDZhaowenQWenqiLGuodongWZhenkuanPLiBDigital Signal Processing20164916210.1016/j.sigpro.2015.09.026
– reference: Raymond HCHaixiaLSuhuaWMilaNChengT XInverse Problems & Imaging2015955330588610.3934/ipi.2015.9.55
– reference: ZhiyuanZXinLZihengZXiaohuaHJingangSZhenhongSLanTYechaoBQiongWXingganZImage Denoising via group Sparsity Residual Constraint2017
– reference: Zhang K., Zuo W., Chen Y., Meng D. and Zhang L., IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society PP, 1 (2017).
– reference: YouY LKavehMIEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society20009172310.1109/83.869184
– reference: VegaMMateosJMolinaRKatsaggelos AggelosKStatistical Methodology201691910.1016/j.stamet.2011.04.003
– reference: Jordan MichaelIGhahramaniZJaakkola TommiSSaul LawrenceKMachine Learning19993718310.1023/A:1007665907178
– reference: AlainHDjemelZImage Quality Metrics: PSNR vs. SSIM, International Conference on Pattern Recognition2010
– reference: De ReyesJ C LSchönliebC BValkonenTJournal of Mathematical Imaging & Vision2017571359284010.1007/s10851-016-0662-8
– reference: JunLZhuH TGuangL XSiWApplied Mathematical Modelling201745516365467710.1016/j.apm.2017.01.009
– reference: Bardeji SomayehGhFigueiredo IsabelNErciliaSApplied Numerical Mathematics2017114188360164110.1016/j.apnum.2016.04.011
– reference: AntoninCThomasPMathematical Programming2016159253353592510.1007/s10107-015-0957-3
– reference: WenqiLJinmingDZhaowenQZhenkuanPWenL RLiBMathematical Methods in the Applied Sciences2016394208353653210.1002/mma.3858
– reference: AntoniBColl Bartomeu and Morel Jean MichelSiam Journal on Multiscale Modeling & Simulation20064490
– reference: JinmingDWard WilO CLukeSZhenkuanPLiBDigital Signal Processing20176932310.1016/j.dsp.2017.07.001
– reference: Prasath V. BSKalavathiPMixed Noise Removal Using Hybrid Fourth Order Mean Curvature Motion, Springer International Publishing2016
– reference: PardoEKapolkaMJournal of Computational Physics20173443392017JCoPh.344..339P365674410.1016/j.jcp.2017.05.001
– reference: HinterbergerWScherzerOComputing200676109217467410.1007/s00607-005-0119-1
– reference: XiangliNHongQBoZXiayuanHIEEE Transactions on Image Processing2016252620349365310.1109/TIP.2016.2552402
– reference: MarkNDavidMThe 2.1-D Sketch, International Conference on Computer Vision1990
– volume: 14
  start-page: 226
  year: 2018
  ident: 8145_CR1
  publication-title: Optoelectronics Letters
  doi: 10.1007/s11801-018-8033-x
– volume-title: Image Denoising via group Sparsity Residual Constraint
  year: 2017
  ident: 8145_CR2
– volume: 37
  start-page: 183
  year: 1999
  ident: 8145_CR7
  publication-title: Machine Learning
  doi: 10.1023/A:1007665907178
– volume: 9
  start-page: 1723
  year: 2000
  ident: 8145_CR18
  publication-title: IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society
  doi: 10.1109/83.869184
– volume: 60
  start-page: 259
  year: 1992
  ident: 8145_CR13
  publication-title: Nonlinear Phenomena
  doi: 10.1016/0167-2789(92)90242-F
– volume: 39
  start-page: 4208
  year: 2016
  ident: 8145_CR25
  publication-title: Mathematical Methods in the Applied Sciences
  doi: 10.1002/mma.3858
– volume: 69
  start-page: 323
  year: 2017
  ident: 8145_CR17
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2017.07.001
– volume: 40
  start-page: 291
  year: 2006
  ident: 8145_CR10
  publication-title: Applied Intelligence
– volume: 57
  start-page: 1
  year: 2017
  ident: 8145_CR19
  publication-title: Journal of Mathematical Imaging & Vision
  doi: 10.1007/s10851-016-0662-8
– volume-title: The 2.1-D Sketch, International Conference on Computer Vision
  year: 1990
  ident: 8145_CR24
– volume: 78
  start-page: 42
  year: 2018
  ident: 8145_CR12
  publication-title: Digital Signal Processing
  doi: 10.1016/j.dsp.2018.03.019
– volume: 344
  start-page: 339
  year: 2017
  ident: 8145_CR8
  publication-title: Journal of Computational Physics
  doi: 10.1016/j.jcp.2017.05.001
– volume-title: Mixed Noise Removal Using Hybrid Fourth Order Mean Curvature Motion, Springer International Publishing
  year: 2016
  ident: 8145_CR22
– volume: 4
  start-page: 490
  year: 2006
  ident: 8145_CR4
  publication-title: Siam Journal on Multiscale Modeling & Simulation
– volume: 45
  start-page: 516
  year: 2017
  ident: 8145_CR16
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2017.01.009
– volume: 7
  start-page: 1409
  year: 2017
  ident: 8145_CR23
  publication-title: Inverse Problems & Imaging
– volume: 25
  start-page: 2620
  year: 2016
  ident: 8145_CR9
  publication-title: IEEE Transactions on Image Processing
  doi: 10.1109/TIP.2016.2552402
– ident: 8145_CR3
– volume: 9
  start-page: 55
  year: 2015
  ident: 8145_CR15
  publication-title: Inverse Problems & Imaging
  doi: 10.3934/ipi.2015.9.55
– volume-title: Image Quality Metrics: PSNR vs. SSIM, International Conference on Pattern Recognition
  year: 2010
  ident: 8145_CR26
– volume: 49
  start-page: 162
  year: 2016
  ident: 8145_CR21
  publication-title: Digital Signal Processing
  doi: 10.1016/j.sigpro.2015.09.026
– volume: 9
  start-page: 19
  year: 2016
  ident: 8145_CR6
  publication-title: Statistical Methodology
  doi: 10.1016/j.stamet.2011.04.003
– volume: 44
  start-page: 1001
  year: 2014
  ident: 8145_CR5
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2013.2278548
– volume: 159
  start-page: 253
  year: 2016
  ident: 8145_CR14
  publication-title: Mathematical Programming
  doi: 10.1007/s10107-015-0957-3
– volume: 76
  start-page: 109
  year: 2006
  ident: 8145_CR20
  publication-title: Computing
  doi: 10.1007/s00607-005-0119-1
– volume: 114
  start-page: 188
  year: 2017
  ident: 8145_CR11
  publication-title: Applied Numerical Mathematics
  doi: 10.1016/j.apnum.2016.04.011
SSID ssj0000327849
Score 2.1113243
Snippet This paper develops a variational model for image noise removal using total curvature (TC), which is a high-order regularizer. The TC has the advantage of...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 217
SubjectTerms Algorithms
Computing time
Curvature
Image contrast
Iterative methods
Lasers
Mathematical models
Multipliers
Numerical analysis
Optical Devices
Optics
Optimization
Photonics
Physics
Physics and Astronomy
Regularization
Title Total curvature (TC) model and its alternating direction method of multipliers algorithm for noise removal
URI https://link.springer.com/article/10.1007/s11801-019-8145-y
https://www.proquest.com/docview/2234549446
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB7URfDiW1xf5ODBB4U-0qY9LourKHjahfVUknSqK9rKtnvw3zvJti6KCp6b5pAvyXzzyHwAp66SLrqCmFumtcNzREfFdBlKP4pFprSK0RbI3kc3I347DsfNO-6qrXZvU5L2pl48dvNi6_rasFXovC9DJyTX3ZzGkd_7DKy4gcmlGdrrRSJwyOCFbTbzp1m-2qMFyfyWF7XmZrAJ6w1PZL05sFuwhMU2bDSckTUnstqGVVvCqasdeB6WRKSZnpko62yK7GzYP2dW6YbJImOTumI2N27if8UjmxszgoXNVaRZmbOmvNDIY9PYx3I6qZ9eGfFaVpSTCtkUX0vamrswGlwN-zdOo6Tg6MCLakdxpbjgsTTyVMQh3ABzRUwrcKWnRIRG29aXoZdFArUQ2g8EQRgkeaaSmGMW7MFKURa4D8zVGXnTUiU6lDzmUkZJkkfoh-grD5OkC267nqlu2owbtYuXdNEg2UCQEgSpgSB978LF5y9v8x4bfw0-akFKm-NWpcRxODm65Np24bIFbvH518kO_jX6ENZ8s3FsueMRrNTTGR4TJanVCXR61w93Vyd2K34Aay_avg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwEB2xCMGFHVFWHziwKFIWJ06OCIHKemolbpHtTKCIJqhJD_w9YzehAgES5zg--NmeN4vnARy5SrroCmJumdYOzxEdFdNlKP0oFpnSKkZbIPsQdfv85jF8bN5xV221e5uStDf19LGbF1vX14atQud9FuaJC8RGtqDvn38GVtzA5NIM7fUiEThk8MI2m_nTLF_t0ZRkfsuLWnNztQrLDU9k5xNg12AGi3VYaTgja05ktQ4LtoRTVxvw0iuJSDM9NlHW8QjZce_ihFmlGyaLjA3qitncuIn_FU9sYswIFjZRkWZlzpryQiOPTWOfytGgfh4y4rWsKAcVshEOS9qam9C_uuxddJ1GScHRgRfVjuJKccFjaeSpiEO4AeaKmFbgSk-JCI22rS9DL4sEaiG0HwiCMEjyTCUxxyzYgrmiLHAbmKsz8qalSnQoecyljJIkj9AP0VceJkkH3HY9U920GTdqF6_ptEGygSAlCFIDQfregdPPX94mPTb-GrzXgpQ2x61KieNwcnTJte3AWQvc9POvk-38a_QhLHZ793fp3fXD7S4s-WYT2dLHPZirR2PcJ3pSqwO7HT8AAYbcHQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTuQwEC2xCMRlWAY0PWw-cIBBEVmcODkioAUzCHHolrhFtlNpGg0J6qQP_D1lJ6EFAiTOcXLIK7teLa4HcOAq6aIriLllWjs8R3RUTIeh9KNYZEqrGG2D7E10OeR_78K7Vue06rrdu5Jkc6fBTGkq6pOnLD-ZXXzzYhsG2xRW6DzPwyKdxp4x9KF_-ppkcQNTVzMU2ItE4JDzC7vK5kdfeeubZoTzXY3Uup7-GvxoOSM7bUBehzksNmC15Y-s3Z3VBizZdk5d_YSHQUmkmumpybhOJ8gOB2dHzKreMFlkbFxXzNbJTS6wGLHGsRFErFGUZmXO2lZDI5VNa0flZFzfPzLiuKwoxxWyCT6WZKabMOxfDM4unVZVwdGBF9WO4kpxwWNppKqIT7gB5opYV-BKT4kIjc6tL0MviwRqIbQfCIIzSPJMJTHHLNiChaIs8BcwV2cUWUuV6FDymEsZJUkeoR-irzxMkh643f9MdTty3Chf_E9nw5INBClBkBoI0uce_Hl95amZt_HV4p0OpLTdelVKfIdT0Ethbg-OO-Bmjz_92O9vrd6H5dvzfnp9dfNvG1Z8Y0O2C3IHFurJFHeJqdRqz1rjC8dP4Fk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Total+curvature+%28TC%29+model+and+its+alternating+direction+method+of+multipliers+algorithm+for+noise+removal&rft.jtitle=Optoelectronics+letters&rft.au=Yun-ping+Mu&rft.au=Bao-xiang%2C+Huang&rft.au=Yu-xi%2C+Wang&rft.au=Ming-lei%2C+Wang&rft.date=2019-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1673-1905&rft.eissn=1993-5013&rft.volume=15&rft.issue=3&rft.spage=217&rft.epage=223&rft_id=info:doi/10.1007%2Fs11801-019-8145-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1673-1905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1673-1905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1673-1905&client=summon