Generalized symmetric ADMM for separable convex optimization
The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a generalized symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to so...
Saved in:
Published in | Computational optimization and applications Vol. 70; no. 1; pp. 129 - 170 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a generalized symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two group variables so that one group consists of
p
block variables while the other has
q
block variables, where
p
≥
1
and
q
≥
1
are two integers. The two grouped variables are updated in a
Gauss–Seidel
scheme, while the variables within each group are updated in a
Jacobi
scheme, which would make it very attractive for a big data setting. By adding proper proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that GS-ADMM is globally convergent with a worst-case
O
(
1
/
t
)
ergodic convergence rate. It turns out that our convergence domain of the stepsizes is significantly larger than other convergence domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art methods, preliminary numerical experiments on solving a sparse matrix minimization problem in the statistical learning show that our proposed method is effective and promising. |
---|---|
AbstractList | The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a generalized symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two group variables so that one group consists of p block variables while the other has q block variables, where p≥1 and q≥1 are two integers. The two grouped variables are updated in a Gauss–Seidel scheme, while the variables within each group are updated in a Jacobi scheme, which would make it very attractive for a big data setting. By adding proper proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that GS-ADMM is globally convergent with a worst-case O(1/t) ergodic convergence rate. It turns out that our convergence domain of the stepsizes is significantly larger than other convergence domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art methods, preliminary numerical experiments on solving a sparse matrix minimization problem in the statistical learning show that our proposed method is effective and promising. The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a generalized symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two group variables so that one group consists of p block variables while the other has q block variables, where p ≥ 1 and q ≥ 1 are two integers. The two grouped variables are updated in a Gauss–Seidel scheme, while the variables within each group are updated in a Jacobi scheme, which would make it very attractive for a big data setting. By adding proper proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that GS-ADMM is globally convergent with a worst-case O ( 1 / t ) ergodic convergence rate. It turns out that our convergence domain of the stepsizes is significantly larger than other convergence domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art methods, preliminary numerical experiments on solving a sparse matrix minimization problem in the statistical learning show that our proposed method is effective and promising. |
Author | Li, Jicheng Xu, Fengmin Zhang, Hongchao Bai, Jianchao |
Author_xml | – sequence: 1 givenname: Jianchao surname: Bai fullname: Bai, Jianchao organization: School of Mathematics and Statistics, Xi’an Jiaotong University – sequence: 2 givenname: Jicheng surname: Li fullname: Li, Jicheng organization: School of Mathematics and Statistics, Xi’an Jiaotong University – sequence: 3 givenname: Fengmin surname: Xu fullname: Xu, Fengmin organization: School of Economics and Finance, Xi’an Jiaotong University – sequence: 4 givenname: Hongchao surname: Zhang fullname: Zhang, Hongchao email: hozhang@math.lsu.edu organization: Department of Mathematics, Louisiana State University |
BookMark | eNp9kLFOwzAQhi1UJFrgAdgiMQfOdmzHEktVoCC1YoHZchwHuUriYKeI9ulJCQNCgumW_7v_7puhSetbi9AFhisMIK4jBpbLFLBIpRQ4hSM0xUzQlOQym6ApSMJTDkBP0CzGDQBIQckU3Sxta4Ou3d6WSdw1je2DM8n8dr1OKh-SaDsddFHbxPj23X4kvutd4_a6d749Q8eVrqM9_56n6OX-7nnxkK6elo-L-So1FPM-LTLMteRSU2ZoBlBiRqQuQFMuTYZxUZUGNMtLa1lZGcpLTXKdM0Io42JgTtHluLcL_m1rY682fhvaoVJhyYWUnFIypPCYMsHHGGyluuAaHXYKgzpIUqMkNUhSB0kKBkb8Yozrv37rg3b1vyQZyTi0tK82_LjpT-gTBsp8wg |
CitedBy_id | crossref_primary_10_1080_02331934_2019_1704754 crossref_primary_10_1007_s00186_022_00796_8 crossref_primary_10_1007_s10589_021_00321_3 crossref_primary_10_1142_S0219530521500160 crossref_primary_10_1007_s40314_019_0949_7 crossref_primary_10_1007_s10092_021_00399_5 crossref_primary_10_1016_j_sigpro_2025_109952 crossref_primary_10_1109_TITS_2024_3422214 crossref_primary_10_1063_5_0130526 crossref_primary_10_1080_02331934_2023_2230994 crossref_primary_10_1080_02331934_2023_2231005 crossref_primary_10_1016_j_apnum_2020_09_016 crossref_primary_10_1016_j_cam_2023_115469 crossref_primary_10_1007_s40305_019_00247_y crossref_primary_10_3390_math13050811 crossref_primary_10_3390_sym16020154 crossref_primary_10_1016_j_cam_2020_112772 crossref_primary_10_3934_math_2025142 crossref_primary_10_1016_j_cam_2022_114628 crossref_primary_10_12677_pm_2024_1412411 crossref_primary_10_1007_s10589_024_00643_y crossref_primary_10_1016_j_apnum_2021_03_014 crossref_primary_10_1016_j_automatica_2022_110551 crossref_primary_10_1090_mcom_4063 crossref_primary_10_1016_j_apnum_2023_09_003 crossref_primary_10_1016_j_cam_2022_114821 crossref_primary_10_1007_s40305_023_00470_8 crossref_primary_10_1016_j_apnum_2022_10_015 crossref_primary_10_3934_jimo_2025014 crossref_primary_10_1007_s10114_023_1401_x crossref_primary_10_1007_s11075_022_01491_9 crossref_primary_10_1007_s10915_024_02518_0 crossref_primary_10_1007_s11071_022_08174_z crossref_primary_10_1007_s10589_021_00338_8 crossref_primary_10_1007_s10898_022_01174_8 crossref_primary_10_1016_j_cja_2024_103337 crossref_primary_10_1007_s40305_024_00579_4 crossref_primary_10_1016_j_cam_2019_02_028 crossref_primary_10_1109_TVT_2023_3309281 crossref_primary_10_1109_TMC_2023_3262514 crossref_primary_10_1016_j_apnum_2021_09_011 crossref_primary_10_1016_j_cam_2021_113503 crossref_primary_10_1007_s10589_020_00229_4 crossref_primary_10_3934_math_2022601 crossref_primary_10_1155_2018_5358191 crossref_primary_10_1007_s10092_020_00387_1 crossref_primary_10_1109_TNNLS_2019_2927385 crossref_primary_10_1007_s40565_019_0508_7 crossref_primary_10_1007_s11590_019_01473_2 crossref_primary_10_1016_j_eswa_2023_120850 crossref_primary_10_1155_2023_8073365 crossref_primary_10_1080_02331934_2020_1728756 |
Cites_doi | 10.1137/100781894 10.1137/15M1044448 10.5802/smai-jcm.6 10.1007/b97544 10.1007/s10915-015-0150-0 10.1016/j.cam.2016.02.001 10.1007/s10915-015-0060-1 10.1007/s10107-014-0826-5 10.1007/s10665-014-9751-0 10.1137/130922793 10.1137/110836936 10.1137/13090849X 10.1214/08-EJS176 10.1214/11-AOS949 10.1007/BF00927673 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2017 Computational Optimization and Applications is a copyright of Springer, (2017). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017 – notice: Computational Optimization and Applications is a copyright of Springer, (2017). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 88I 8AL 8AO 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M2P M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U |
DOI | 10.1007/s10589-017-9971-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Science Database Engineering Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection ProQuest Central Basic |
DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Pharma Collection ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ProQuest Business Collection (Alumni Edition) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Mathematics |
EISSN | 1573-2894 |
EndPage | 170 |
ExternalDocumentID | 10_1007_s10589_017_9971_0 |
GroupedDBID | -52 -5D -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHQJS AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z81 Z83 Z86 Z88 Z8M Z8N Z8R Z8U Z8W Z92 ZL0 ZMTXR ZWQNP ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS PUEGO Q9U |
ID | FETCH-LOGICAL-c316t-b416a969a35c3400d1529ab0a369c411bfdc0a58dee5dfc36da28a852235675c3 |
IEDL.DBID | U2A |
ISSN | 0926-6003 |
IngestDate | Sat Aug 23 14:50:18 EDT 2025 Tue Jul 01 00:44:25 EDT 2025 Thu Apr 24 22:58:10 EDT 2025 Fri Feb 21 02:36:47 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Separable convex programming Alternating direction method of multipliers Global convergence 68W40 Parameter convergence domain Statistical learning Multiple blocks 90C06 65E05 65C60 Complexity |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-b416a969a35c3400d1529ab0a369c411bfdc0a58dee5dfc36da28a852235675c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1967996332 |
PQPubID | 30811 |
PageCount | 42 |
ParticipantIDs | proquest_journals_1967996332 crossref_primary_10_1007_s10589_017_9971_0 crossref_citationtrail_10_1007_s10589_017_9971_0 springer_journals_10_1007_s10589_017_9971_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180500 2018-5-00 20180501 |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 5 year: 2018 text: 20180500 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal |
PublicationTitle | Computational optimization and applications |
PublicationTitleAbbrev | Comput Optim Appl |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | HeBSYuanXMBlock-wise alternating direction method of multipliers for multiple-block convex programming and beyondSIAM J. Comput. Math.20151145174362037210.5802/smai-jcm.6 HestenesMRMultiplier and gradient methodsJ. Optim. Theory Appl.1969430332027180910.1007/BF009276730174.20705 HeBSOn the convergence properties of alternating direction method of multipliersNumer. Math. J. Chin. Univ. (Chine. Ser.)201739819606831982 DongBYuYTianDDAlternating projection method for sparse model updating problemsJ. Eng. Math.201593159173338609910.1007/s10665-014-9751-01360.65111 HeBSMaFYuanXMConvergence study on the symmetric version of ADMM with larger step sizesSIAM J. Imaging Sci.2016914671501354987810.1137/15M104444806665858 HeBSXuHKYuanXMOn the proximal Jacobian decomposition of ALM for multiple-block separable convex minimization problems and its relationship to ADMMJ. Sci. Comput.20166612041217345697010.1007/s10915-015-0060-11371.65052 ChandrasekaranVParriloPAWillskyASLatent variable graphical model selection via convex optimizationAnn. Stat.20124019351967305906710.1214/11-AOS9491257.62061 HeBSHouLSYuanXMOn full Jacobian decomposition of the augmented Lagrangian method for separable convex programmingSIAM J. Optim.20152522742312342407110.1137/1309227931327.90209 WangJJSongWAn algorithm twisted from generalized ADMM for multi-block separable convex minimization modelsJ. Comput. Appl. Math.2017309342358353978810.1016/j.cam.2016.02.00106626253 Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Ser. Oper. Res. 1, Springer, New York (2003) LiuZSLiJCLiGBaiJCLiuXNA new model for sparse and low-rank matrix decompositionJ. Appl. Anal. Comput.201776006163602440 Gu, Y., Jiang, B., Han, D.: A semi-proximal-based strictly contractive Peaceman-Rachford splitting method. arXiv:1506.02221 (2015) HeBSLiuHWangZRYuanXMA strictly contractive Peaceman–Rachford splitting method for convex programmingSIAM J. Optim.20142410111040323198810.1137/13090849X1327.90210 FortinMGlowinskiRAugmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems1983AmsterdamNorth-Holland2993310525.65045 FortinMNumerical Methods for Nonlinear Variational Problems1984New YorkSpringer TaoMYuanXMRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM J. Optim.2011215781276548910.1137/1007818941218.90115 Bai, J.C., Li, J.C., Li, J.F.: A novel parameterized proximal point algorithm with applications in statistical learning. Optimization Online, March (2017) http://www.optimization-online.org/DB_HTML/2017/03/5901.html HeBSYuanXMOn the O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O}(1/n)$$\end{document} convergence rate of the Douglas–Rachford alternating direction methodSIAM J. Numer. Anal.201250700709291428210.1137/1108369361245.90084 GlowinskiRMarroccoAApproximation paréléments finis d’rdre un et résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéairesRev. Fr. Autom. Inform. Rech. Opér. Anal. Numér.197524176 HeBSTaoMYuanXMA splitting method for separable convex programmingIMA J. Numer. Anal.201531394426333521010.1093/imanum/drt0601310.65062 MaSQAlternating proximal gradient method for convex minimizationJ. Sci. Comput.201668546572351919210.1007/s10915-015-0150-01371.65056 ChenCHHeBSYeYYYuanXMThe direct extension of ADMM for multi-block minimization problems is not necessarily convergentMath. Program.20161555779343979710.1007/s10107-014-0826-51332.90193 RothmanAJBickelPJLevinaEZhuJSparse permutation invariant covariance estimationElectron. J. Stat.20082494515241739110.1214/08-EJS1761320.62135 JJ Wang (9971_CR23) 2017; 309 9971_CR1 SQ Ma (9971_CR20) 2016; 68 M Tao (9971_CR22) 2011; 21 BS He (9971_CR18) 2017; 39 BS He (9971_CR11) 2012; 50 BS He (9971_CR14) 2015; 31 V Chandrasekaran (9971_CR2) 2012; 40 B Dong (9971_CR4) 2015; 93 R Glowinski (9971_CR8) 1975; 2 AJ Rothman (9971_CR21) 2008; 2 BS He (9971_CR13) 2015; 25 BS He (9971_CR15) 2015; 1 BS He (9971_CR16) 2016; 9 CH Chen (9971_CR3) 2016; 155 BS He (9971_CR17) 2016; 66 M Fortin (9971_CR7) 1984 M Fortin (9971_CR5) 1983 ZS Liu (9971_CR19) 2017; 7 9971_CR9 9971_CR6 BS He (9971_CR12) 2014; 24 MR Hestenes (9971_CR10) 1969; 4 |
References_xml | – reference: DongBYuYTianDDAlternating projection method for sparse model updating problemsJ. Eng. Math.201593159173338609910.1007/s10665-014-9751-01360.65111 – reference: WangJJSongWAn algorithm twisted from generalized ADMM for multi-block separable convex minimization modelsJ. Comput. Appl. Math.2017309342358353978810.1016/j.cam.2016.02.00106626253 – reference: ChenCHHeBSYeYYYuanXMThe direct extension of ADMM for multi-block minimization problems is not necessarily convergentMath. Program.20161555779343979710.1007/s10107-014-0826-51332.90193 – reference: LiuZSLiJCLiGBaiJCLiuXNA new model for sparse and low-rank matrix decompositionJ. Appl. Anal. Comput.201776006163602440 – reference: ChandrasekaranVParriloPAWillskyASLatent variable graphical model selection via convex optimizationAnn. Stat.20124019351967305906710.1214/11-AOS9491257.62061 – reference: HestenesMRMultiplier and gradient methodsJ. Optim. Theory Appl.1969430332027180910.1007/BF009276730174.20705 – reference: GlowinskiRMarroccoAApproximation paréléments finis d’rdre un et résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéairesRev. Fr. Autom. Inform. Rech. Opér. Anal. Numér.197524176 – reference: RothmanAJBickelPJLevinaEZhuJSparse permutation invariant covariance estimationElectron. J. Stat.20082494515241739110.1214/08-EJS1761320.62135 – reference: Bai, J.C., Li, J.C., Li, J.F.: A novel parameterized proximal point algorithm with applications in statistical learning. Optimization Online, March (2017) http://www.optimization-online.org/DB_HTML/2017/03/5901.html – reference: HeBSLiuHWangZRYuanXMA strictly contractive Peaceman–Rachford splitting method for convex programmingSIAM J. Optim.20142410111040323198810.1137/13090849X1327.90210 – reference: Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Ser. Oper. Res. 1, Springer, New York (2003) – reference: HeBSXuHKYuanXMOn the proximal Jacobian decomposition of ALM for multiple-block separable convex minimization problems and its relationship to ADMMJ. Sci. Comput.20166612041217345697010.1007/s10915-015-0060-11371.65052 – reference: MaSQAlternating proximal gradient method for convex minimizationJ. Sci. Comput.201668546572351919210.1007/s10915-015-0150-01371.65056 – reference: FortinMGlowinskiRAugmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems1983AmsterdamNorth-Holland2993310525.65045 – reference: HeBSOn the convergence properties of alternating direction method of multipliersNumer. Math. J. Chin. Univ. (Chine. Ser.)201739819606831982 – reference: HeBSYuanXMBlock-wise alternating direction method of multipliers for multiple-block convex programming and beyondSIAM J. Comput. Math.20151145174362037210.5802/smai-jcm.6 – reference: TaoMYuanXMRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM J. Optim.2011215781276548910.1137/1007818941218.90115 – reference: HeBSHouLSYuanXMOn full Jacobian decomposition of the augmented Lagrangian method for separable convex programmingSIAM J. Optim.20152522742312342407110.1137/1309227931327.90209 – reference: HeBSTaoMYuanXMA splitting method for separable convex programmingIMA J. Numer. Anal.201531394426333521010.1093/imanum/drt0601310.65062 – reference: Gu, Y., Jiang, B., Han, D.: A semi-proximal-based strictly contractive Peaceman-Rachford splitting method. arXiv:1506.02221 (2015) – reference: FortinMNumerical Methods for Nonlinear Variational Problems1984New YorkSpringer – reference: HeBSYuanXMOn the O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O}(1/n)$$\end{document} convergence rate of the Douglas–Rachford alternating direction methodSIAM J. Numer. Anal.201250700709291428210.1137/1108369361245.90084 – reference: HeBSMaFYuanXMConvergence study on the symmetric version of ADMM with larger step sizesSIAM J. Imaging Sci.2016914671501354987810.1137/15M104444806665858 – volume: 21 start-page: 57 year: 2011 ident: 9971_CR22 publication-title: SIAM J. Optim. doi: 10.1137/100781894 – volume: 9 start-page: 1467 year: 2016 ident: 9971_CR16 publication-title: SIAM J. Imaging Sci. doi: 10.1137/15M1044448 – volume: 1 start-page: 145 year: 2015 ident: 9971_CR15 publication-title: SIAM J. Comput. Math. doi: 10.5802/smai-jcm.6 – ident: 9971_CR6 doi: 10.1007/b97544 – volume-title: Numerical Methods for Nonlinear Variational Problems year: 1984 ident: 9971_CR7 – ident: 9971_CR9 – volume: 31 start-page: 394 year: 2015 ident: 9971_CR14 publication-title: IMA J. Numer. Anal. – volume: 68 start-page: 546 year: 2016 ident: 9971_CR20 publication-title: J. Sci. Comput. doi: 10.1007/s10915-015-0150-0 – volume: 309 start-page: 342 year: 2017 ident: 9971_CR23 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2016.02.001 – ident: 9971_CR1 – volume: 2 start-page: 41 year: 1975 ident: 9971_CR8 publication-title: Rev. Fr. Autom. Inform. Rech. Opér. Anal. Numér. – volume: 7 start-page: 600 year: 2017 ident: 9971_CR19 publication-title: J. Appl. Anal. Comput. – volume: 66 start-page: 1204 year: 2016 ident: 9971_CR17 publication-title: J. Sci. Comput. doi: 10.1007/s10915-015-0060-1 – volume: 155 start-page: 57 year: 2016 ident: 9971_CR3 publication-title: Math. Program. doi: 10.1007/s10107-014-0826-5 – volume: 93 start-page: 159 year: 2015 ident: 9971_CR4 publication-title: J. Eng. Math. doi: 10.1007/s10665-014-9751-0 – volume: 25 start-page: 2274 year: 2015 ident: 9971_CR13 publication-title: SIAM J. Optim. doi: 10.1137/130922793 – volume: 50 start-page: 700 year: 2012 ident: 9971_CR11 publication-title: SIAM J. Numer. Anal. doi: 10.1137/110836936 – volume: 24 start-page: 1011 year: 2014 ident: 9971_CR12 publication-title: SIAM J. Optim. doi: 10.1137/13090849X – volume: 2 start-page: 494 year: 2008 ident: 9971_CR21 publication-title: Electron. J. Stat. doi: 10.1214/08-EJS176 – volume: 40 start-page: 1935 year: 2012 ident: 9971_CR2 publication-title: Ann. Stat. doi: 10.1214/11-AOS949 – volume: 39 start-page: 81 year: 2017 ident: 9971_CR18 publication-title: Numer. Math. J. Chin. Univ. (Chine. Ser.) – start-page: 299 volume-title: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems year: 1983 ident: 9971_CR5 – volume: 4 start-page: 303 year: 1969 ident: 9971_CR10 publication-title: J. Optim. Theory Appl. doi: 10.1007/BF00927673 |
SSID | ssj0009732 |
Score | 2.4585378 |
Snippet | The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 129 |
SubjectTerms | Convergence Convex analysis Convex and Discrete Geometry Convexity Data management Economic models Integers Lagrange multiplier Management Science Mathematics Mathematics and Statistics Numerical methods Operations Research Operations Research/Decision Theory Optimization Statistics Variables |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaZQ-elOCm2U0TEKQ-ShFaRCz0tuS1IPSlW0H99U52s24V7HmzOXxJZr5kZr5B6CwlSplUCqxYbHEkRYqVdmk7gkdCRSkx2tU79wesN4weRvHIP7hlPq2ytIm5oTYz7d7IL2GntIGbU9q6nr9i1zXKRVd9C411VAcTzHkN1W_uB49PlexuO29RFooWw-DaaRnXLIrnYpcuBFZaiDbcqX97popu_omQ5o6nu422PGMMOsUS76A1O91Fm0s6gnvoyotHv3xZE2Sfk4lrk6WDzl2_HwApDTLrFL7V2AZ5kvlHMANDMfEVmPto2L1_vu1h3xYBa0rYAivgUFIwIWmsKRxBAy5YSBVKyoSOCFGp0aGMubE2NqmmzMgWlxyIFo3heqDpAapNZ1N7iAIgK6qVasIUJ1FsjZKunkkBieJMEkkaKCwhSbTXDHetK8ZJpXbsUEwAxcShmIQNdP7zy7wQzFg1uFninPizkyXVSjfQRYn90uf_JjtaPdkx2gCyw4tkxSaqLd7e7QkQioU69bvmG32Jxpc priority: 102 providerName: ProQuest |
Title | Generalized symmetric ADMM for separable convex optimization |
URI | https://link.springer.com/article/10.1007/s10589-017-9971-0 https://www.proquest.com/docview/1967996332 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7UXupBtCrWR8nBkxLIZrPbLHip2lrUiqiFegr7Cgi2iqmg_npn06StooKnJWSzh5nszDfMzDcA-ylRyqRS-Ioz60dSpL7SrmxHxJFQUUqMdv3OvSve7UfnAzYo-rizstq9TEnmlnqu2Y258h60qkI0MQZehArD0N3VcfXD1oxpt5lPJQtEyH305rRMZf50xFdnNEOY35Kiua_prMJKARK91kSra7BgRzVYnqMOxKfelG81q0HVYcYJ5fI6HBVU0g8f1njZ-3DohmZpr3Xa63kIUb3MOr5v9Wi9vOT8zXtCszEs-jE3oN9p3510_WJIgq8p4WNfIaKSggtJmaZ4IQ06ZCFVICkXOiJEpUYHksXGWmZSTbmRYSxjhF2UYbCg6SYsjZ5Gdgs8hC4qTDXhKiYRs0ZJ192kEFLFXBJJ6hCU0kp0wSDuBlk8JjPuYyfgBAWcOAEnQR0Opp88T-gz_tq8W6ogKW5SlqCFaGJMRmlYh8NSLXOvfzts-1-7d6CKSCieVDLuwtL45dXuIdoYqwYsxp2zBlRQS5e3bj27v2jjety-ur5p5P_eJ3Do0DY |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHxCrK6gNcQBFxnLixBEKIUgqlnEDiFrxFQqIt0CKWj-IbGWehgAS3npPM4eXF8xzPvAHYSqlSJpXCUzyyXihF6intynZEHAoVptRo1-_cvuTN6_D8JrqpwEfZC-PKKss1MVuoTU-7f-R7yJQaanPGgsOHR89NjXKnq-UIjZwWLfv2glu2_sFZHd_vdhA0Tq6Om14xVcDTjPKBp1CCSMGFZJFmyGCDGUxI5UvGhQ4pVanRvoxiY21kUs24kUEsY9QpLEJ1rRnGHYOJkGEmd53pjdOhyW8tG4jmi4B7KCRYeYqat-pFrjgJc4IQNdzB_8yDQ3H76zw2S3ONWZgp9Ck5ygk1BxXbnYfpb66FC7BfWFXfvVtD-m-djhvKpclRvd0mKIFJ3zo_cXVvSVbS_kp6uCx1in7PRbgeCVxLMN7tde0yEJRGKkg15SqmYWSNkq57SqFki7mkklbBLyFJdOFQ7gZl3CdDb2WHYoIoJg7FxK_CztcjD7k9x383r5U4J8WX2k-GvKrCbon9t8t_BVv5P9gmTDav2hfJxdllaxWmUGbFeZnkGowPnp7tOkqZgdrI-EPgdtSE_QTbHwHA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsRAEC10BNGDuOK49kEvSjCdTnrSoIg6Dm4ziCh4i70FhNl0Rlw-za-zepI4KujNc5I6vLx0vU5XvQLYSKlSJpXCUzyyXihF6intynZEHAoVptRo1-9cb_CTm_DsNrodgfeiF8aVVRZr4mChNh3t_pHvIFMqqM0ZC3bSvCzislrb7z54boKUO2ktxmlkFDm3r8-4fevtnVbxXW8GQe34-ujEyycMeJpR3vcUyhEpuJAs0gzZbDCbCal8ybjQIaUqNdqXUWysjUyqGTcyiGWMmoVFqLQ1w7ijMFZxu6ISjB0eNy6vhpa_lcF4NF8E3ENZwYoz1axxL3KlSpghhKjgfv57VhxK3R-ns4OkV5uGqVytkoOMXjMwYtuzMPnFw3AOdnPj6vs3a0jvtdVyI7o0OajW6wQFMelZ5y6umpYMCtxfSAcXqVbe_TkPN_8C2AKU2p22XQSCQkkFqaZcxTSMrFHS9VIpFHAxl1TSMvgFJInO_crd2IxmMnRadigmiGLiUEz8Mmx9PtLNzDr-unmlwDnJv9teMmRZGbYL7L9c_i3Y0t_B1mEcyZpcnDbOl2ECNVec1UyuQKn_-GRXUdf01VpOIAJ3_83ZD1GlB1I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+symmetric+ADMM+for+separable+convex+optimization&rft.jtitle=Computational+optimization+and+applications&rft.au=Bai%2C+Jianchao&rft.au=Li%2C+Jicheng&rft.au=Xu%2C+Fengmin&rft.au=Zhang%2C+Hongchao&rft.date=2018-05-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=70&rft.issue=1&rft.spage=129&rft.epage=170&rft_id=info:doi/10.1007%2Fs10589-017-9971-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_017_9971_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |