Generalized symmetric ADMM for separable convex optimization

The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a generalized symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to so...

Full description

Saved in:
Bibliographic Details
Published inComputational optimization and applications Vol. 70; no. 1; pp. 129 - 170
Main Authors Bai, Jianchao, Li, Jicheng, Xu, Fengmin, Zhang, Hongchao
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a generalized symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two group variables so that one group consists of p block variables while the other has q block variables, where p ≥ 1 and q ≥ 1 are two integers. The two grouped variables are updated in a Gauss–Seidel scheme, while the variables within each group are updated in a Jacobi scheme, which would make it very attractive for a big data setting. By adding proper proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that GS-ADMM is globally convergent with a worst-case O ( 1 / t ) ergodic convergence rate. It turns out that our convergence domain of the stepsizes is significantly larger than other convergence domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art methods, preliminary numerical experiments on solving a sparse matrix minimization problem in the statistical learning show that our proposed method is effective and promising.
AbstractList The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a generalized symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two group variables so that one group consists of p block variables while the other has q block variables, where p≥1 and q≥1 are two integers. The two grouped variables are updated in a Gauss–Seidel scheme, while the variables within each group are updated in a Jacobi scheme, which would make it very attractive for a big data setting. By adding proper proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that GS-ADMM is globally convergent with a worst-case O(1/t) ergodic convergence rate. It turns out that our convergence domain of the stepsizes is significantly larger than other convergence domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art methods, preliminary numerical experiments on solving a sparse matrix minimization problem in the statistical learning show that our proposed method is effective and promising.
The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints. In this paper, we propose a generalized symmetric ADMM (GS-ADMM), which updates the Lagrange multiplier twice with suitable stepsizes, to solve the multi-block separable convex programming. This GS-ADMM partitions the data into two group variables so that one group consists of p block variables while the other has q block variables, where p ≥ 1 and q ≥ 1 are two integers. The two grouped variables are updated in a Gauss–Seidel scheme, while the variables within each group are updated in a Jacobi scheme, which would make it very attractive for a big data setting. By adding proper proximal terms to the subproblems, we specify the domain of the stepsizes to guarantee that GS-ADMM is globally convergent with a worst-case O ( 1 / t ) ergodic convergence rate. It turns out that our convergence domain of the stepsizes is significantly larger than other convergence domains in the literature. Hence, the GS-ADMM is more flexible and attractive on choosing and using larger stepsizes of the dual variable. Besides, two special cases of GS-ADMM, which allows using zero penalty terms, are also discussed and analyzed. Compared with several state-of-the-art methods, preliminary numerical experiments on solving a sparse matrix minimization problem in the statistical learning show that our proposed method is effective and promising.
Author Li, Jicheng
Xu, Fengmin
Zhang, Hongchao
Bai, Jianchao
Author_xml – sequence: 1
  givenname: Jianchao
  surname: Bai
  fullname: Bai, Jianchao
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
– sequence: 2
  givenname: Jicheng
  surname: Li
  fullname: Li, Jicheng
  organization: School of Mathematics and Statistics, Xi’an Jiaotong University
– sequence: 3
  givenname: Fengmin
  surname: Xu
  fullname: Xu, Fengmin
  organization: School of Economics and Finance, Xi’an Jiaotong University
– sequence: 4
  givenname: Hongchao
  surname: Zhang
  fullname: Zhang, Hongchao
  email: hozhang@math.lsu.edu
  organization: Department of Mathematics, Louisiana State University
BookMark eNp9kLFOwzAQhi1UJFrgAdgiMQfOdmzHEktVoCC1YoHZchwHuUriYKeI9ulJCQNCgumW_7v_7puhSetbi9AFhisMIK4jBpbLFLBIpRQ4hSM0xUzQlOQym6ApSMJTDkBP0CzGDQBIQckU3Sxta4Ou3d6WSdw1je2DM8n8dr1OKh-SaDsddFHbxPj23X4kvutd4_a6d749Q8eVrqM9_56n6OX-7nnxkK6elo-L-So1FPM-LTLMteRSU2ZoBlBiRqQuQFMuTYZxUZUGNMtLa1lZGcpLTXKdM0Io42JgTtHluLcL_m1rY682fhvaoVJhyYWUnFIypPCYMsHHGGyluuAaHXYKgzpIUqMkNUhSB0kKBkb8Yozrv37rg3b1vyQZyTi0tK82_LjpT-gTBsp8wg
CitedBy_id crossref_primary_10_1080_02331934_2019_1704754
crossref_primary_10_1007_s00186_022_00796_8
crossref_primary_10_1007_s10589_021_00321_3
crossref_primary_10_1142_S0219530521500160
crossref_primary_10_1007_s40314_019_0949_7
crossref_primary_10_1007_s10092_021_00399_5
crossref_primary_10_1016_j_sigpro_2025_109952
crossref_primary_10_1109_TITS_2024_3422214
crossref_primary_10_1063_5_0130526
crossref_primary_10_1080_02331934_2023_2230994
crossref_primary_10_1080_02331934_2023_2231005
crossref_primary_10_1016_j_apnum_2020_09_016
crossref_primary_10_1016_j_cam_2023_115469
crossref_primary_10_1007_s40305_019_00247_y
crossref_primary_10_3390_math13050811
crossref_primary_10_3390_sym16020154
crossref_primary_10_1016_j_cam_2020_112772
crossref_primary_10_3934_math_2025142
crossref_primary_10_1016_j_cam_2022_114628
crossref_primary_10_12677_pm_2024_1412411
crossref_primary_10_1007_s10589_024_00643_y
crossref_primary_10_1016_j_apnum_2021_03_014
crossref_primary_10_1016_j_automatica_2022_110551
crossref_primary_10_1090_mcom_4063
crossref_primary_10_1016_j_apnum_2023_09_003
crossref_primary_10_1016_j_cam_2022_114821
crossref_primary_10_1007_s40305_023_00470_8
crossref_primary_10_1016_j_apnum_2022_10_015
crossref_primary_10_3934_jimo_2025014
crossref_primary_10_1007_s10114_023_1401_x
crossref_primary_10_1007_s11075_022_01491_9
crossref_primary_10_1007_s10915_024_02518_0
crossref_primary_10_1007_s11071_022_08174_z
crossref_primary_10_1007_s10589_021_00338_8
crossref_primary_10_1007_s10898_022_01174_8
crossref_primary_10_1016_j_cja_2024_103337
crossref_primary_10_1007_s40305_024_00579_4
crossref_primary_10_1016_j_cam_2019_02_028
crossref_primary_10_1109_TVT_2023_3309281
crossref_primary_10_1109_TMC_2023_3262514
crossref_primary_10_1016_j_apnum_2021_09_011
crossref_primary_10_1016_j_cam_2021_113503
crossref_primary_10_1007_s10589_020_00229_4
crossref_primary_10_3934_math_2022601
crossref_primary_10_1155_2018_5358191
crossref_primary_10_1007_s10092_020_00387_1
crossref_primary_10_1109_TNNLS_2019_2927385
crossref_primary_10_1007_s40565_019_0508_7
crossref_primary_10_1007_s11590_019_01473_2
crossref_primary_10_1016_j_eswa_2023_120850
crossref_primary_10_1155_2023_8073365
crossref_primary_10_1080_02331934_2020_1728756
Cites_doi 10.1137/100781894
10.1137/15M1044448
10.5802/smai-jcm.6
10.1007/b97544
10.1007/s10915-015-0150-0
10.1016/j.cam.2016.02.001
10.1007/s10915-015-0060-1
10.1007/s10107-014-0826-5
10.1007/s10665-014-9751-0
10.1137/130922793
10.1137/110836936
10.1137/13090849X
10.1214/08-EJS176
10.1214/11-AOS949
10.1007/BF00927673
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2017
Computational Optimization and Applications is a copyright of Springer, (2017). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017
– notice: Computational Optimization and Applications is a copyright of Springer, (2017). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOI 10.1007/s10589-017-9971-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 170
ExternalDocumentID 10_1007_s10589_017_9971_0
GroupedDBID -52
-5D
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8U
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c316t-b416a969a35c3400d1529ab0a369c411bfdc0a58dee5dfc36da28a852235675c3
IEDL.DBID U2A
ISSN 0926-6003
IngestDate Sat Aug 23 14:50:18 EDT 2025
Tue Jul 01 00:44:25 EDT 2025
Thu Apr 24 22:58:10 EDT 2025
Fri Feb 21 02:36:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Separable convex programming
Alternating direction method of multipliers
Global convergence
68W40
Parameter convergence domain
Statistical learning
Multiple blocks
90C06
65E05
65C60
Complexity
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-b416a969a35c3400d1529ab0a369c411bfdc0a58dee5dfc36da28a852235675c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1967996332
PQPubID 30811
PageCount 42
ParticipantIDs proquest_journals_1967996332
crossref_primary_10_1007_s10589_017_9971_0
crossref_citationtrail_10_1007_s10589_017_9971_0
springer_journals_10_1007_s10589_017_9971_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180500
2018-5-00
20180501
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 5
  year: 2018
  text: 20180500
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References HeBSYuanXMBlock-wise alternating direction method of multipliers for multiple-block convex programming and beyondSIAM J. Comput. Math.20151145174362037210.5802/smai-jcm.6
HestenesMRMultiplier and gradient methodsJ. Optim. Theory Appl.1969430332027180910.1007/BF009276730174.20705
HeBSOn the convergence properties of alternating direction method of multipliersNumer. Math. J. Chin. Univ. (Chine. Ser.)201739819606831982
DongBYuYTianDDAlternating projection method for sparse model updating problemsJ. Eng. Math.201593159173338609910.1007/s10665-014-9751-01360.65111
HeBSMaFYuanXMConvergence study on the symmetric version of ADMM with larger step sizesSIAM J. Imaging Sci.2016914671501354987810.1137/15M104444806665858
HeBSXuHKYuanXMOn the proximal Jacobian decomposition of ALM for multiple-block separable convex minimization problems and its relationship to ADMMJ. Sci. Comput.20166612041217345697010.1007/s10915-015-0060-11371.65052
ChandrasekaranVParriloPAWillskyASLatent variable graphical model selection via convex optimizationAnn. Stat.20124019351967305906710.1214/11-AOS9491257.62061
HeBSHouLSYuanXMOn full Jacobian decomposition of the augmented Lagrangian method for separable convex programmingSIAM J. Optim.20152522742312342407110.1137/1309227931327.90209
WangJJSongWAn algorithm twisted from generalized ADMM for multi-block separable convex minimization modelsJ. Comput. Appl. Math.2017309342358353978810.1016/j.cam.2016.02.00106626253
Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Ser. Oper. Res. 1, Springer, New York (2003)
LiuZSLiJCLiGBaiJCLiuXNA new model for sparse and low-rank matrix decompositionJ. Appl. Anal. Comput.201776006163602440
Gu, Y., Jiang, B., Han, D.: A semi-proximal-based strictly contractive Peaceman-Rachford splitting method. arXiv:1506.02221 (2015)
HeBSLiuHWangZRYuanXMA strictly contractive Peaceman–Rachford splitting method for convex programmingSIAM J. Optim.20142410111040323198810.1137/13090849X1327.90210
FortinMGlowinskiRAugmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems1983AmsterdamNorth-Holland2993310525.65045
FortinMNumerical Methods for Nonlinear Variational Problems1984New YorkSpringer
TaoMYuanXMRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM J. Optim.2011215781276548910.1137/1007818941218.90115
Bai, J.C., Li, J.C., Li, J.F.: A novel parameterized proximal point algorithm with applications in statistical learning. Optimization Online, March (2017) http://www.optimization-online.org/DB_HTML/2017/03/5901.html
HeBSYuanXMOn the O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O}(1/n)$$\end{document} convergence rate of the Douglas–Rachford alternating direction methodSIAM J. Numer. Anal.201250700709291428210.1137/1108369361245.90084
GlowinskiRMarroccoAApproximation paréléments finis d’rdre un et résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéairesRev. Fr. Autom. Inform. Rech. Opér. Anal. Numér.197524176
HeBSTaoMYuanXMA splitting method for separable convex programmingIMA J. Numer. Anal.201531394426333521010.1093/imanum/drt0601310.65062
MaSQAlternating proximal gradient method for convex minimizationJ. Sci. Comput.201668546572351919210.1007/s10915-015-0150-01371.65056
ChenCHHeBSYeYYYuanXMThe direct extension of ADMM for multi-block minimization problems is not necessarily convergentMath. Program.20161555779343979710.1007/s10107-014-0826-51332.90193
RothmanAJBickelPJLevinaEZhuJSparse permutation invariant covariance estimationElectron. J. Stat.20082494515241739110.1214/08-EJS1761320.62135
JJ Wang (9971_CR23) 2017; 309
9971_CR1
SQ Ma (9971_CR20) 2016; 68
M Tao (9971_CR22) 2011; 21
BS He (9971_CR18) 2017; 39
BS He (9971_CR11) 2012; 50
BS He (9971_CR14) 2015; 31
V Chandrasekaran (9971_CR2) 2012; 40
B Dong (9971_CR4) 2015; 93
R Glowinski (9971_CR8) 1975; 2
AJ Rothman (9971_CR21) 2008; 2
BS He (9971_CR13) 2015; 25
BS He (9971_CR15) 2015; 1
BS He (9971_CR16) 2016; 9
CH Chen (9971_CR3) 2016; 155
BS He (9971_CR17) 2016; 66
M Fortin (9971_CR7) 1984
M Fortin (9971_CR5) 1983
ZS Liu (9971_CR19) 2017; 7
9971_CR9
9971_CR6
BS He (9971_CR12) 2014; 24
MR Hestenes (9971_CR10) 1969; 4
References_xml – reference: DongBYuYTianDDAlternating projection method for sparse model updating problemsJ. Eng. Math.201593159173338609910.1007/s10665-014-9751-01360.65111
– reference: WangJJSongWAn algorithm twisted from generalized ADMM for multi-block separable convex minimization modelsJ. Comput. Appl. Math.2017309342358353978810.1016/j.cam.2016.02.00106626253
– reference: ChenCHHeBSYeYYYuanXMThe direct extension of ADMM for multi-block minimization problems is not necessarily convergentMath. Program.20161555779343979710.1007/s10107-014-0826-51332.90193
– reference: LiuZSLiJCLiGBaiJCLiuXNA new model for sparse and low-rank matrix decompositionJ. Appl. Anal. Comput.201776006163602440
– reference: ChandrasekaranVParriloPAWillskyASLatent variable graphical model selection via convex optimizationAnn. Stat.20124019351967305906710.1214/11-AOS9491257.62061
– reference: HestenesMRMultiplier and gradient methodsJ. Optim. Theory Appl.1969430332027180910.1007/BF009276730174.20705
– reference: GlowinskiRMarroccoAApproximation paréléments finis d’rdre un et résolution, par pénalisation-dualité d’une classe de problèmes de Dirichlet non linéairesRev. Fr. Autom. Inform. Rech. Opér. Anal. Numér.197524176
– reference: RothmanAJBickelPJLevinaEZhuJSparse permutation invariant covariance estimationElectron. J. Stat.20082494515241739110.1214/08-EJS1761320.62135
– reference: Bai, J.C., Li, J.C., Li, J.F.: A novel parameterized proximal point algorithm with applications in statistical learning. Optimization Online, March (2017) http://www.optimization-online.org/DB_HTML/2017/03/5901.html
– reference: HeBSLiuHWangZRYuanXMA strictly contractive Peaceman–Rachford splitting method for convex programmingSIAM J. Optim.20142410111040323198810.1137/13090849X1327.90210
– reference: Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer Ser. Oper. Res. 1, Springer, New York (2003)
– reference: HeBSXuHKYuanXMOn the proximal Jacobian decomposition of ALM for multiple-block separable convex minimization problems and its relationship to ADMMJ. Sci. Comput.20166612041217345697010.1007/s10915-015-0060-11371.65052
– reference: MaSQAlternating proximal gradient method for convex minimizationJ. Sci. Comput.201668546572351919210.1007/s10915-015-0150-01371.65056
– reference: FortinMGlowinskiRAugmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems1983AmsterdamNorth-Holland2993310525.65045
– reference: HeBSOn the convergence properties of alternating direction method of multipliersNumer. Math. J. Chin. Univ. (Chine. Ser.)201739819606831982
– reference: HeBSYuanXMBlock-wise alternating direction method of multipliers for multiple-block convex programming and beyondSIAM J. Comput. Math.20151145174362037210.5802/smai-jcm.6
– reference: TaoMYuanXMRecovering low-rank and sparse components of matrices from incomplete and noisy observationsSIAM J. Optim.2011215781276548910.1137/1007818941218.90115
– reference: HeBSHouLSYuanXMOn full Jacobian decomposition of the augmented Lagrangian method for separable convex programmingSIAM J. Optim.20152522742312342407110.1137/1309227931327.90209
– reference: HeBSTaoMYuanXMA splitting method for separable convex programmingIMA J. Numer. Anal.201531394426333521010.1093/imanum/drt0601310.65062
– reference: Gu, Y., Jiang, B., Han, D.: A semi-proximal-based strictly contractive Peaceman-Rachford splitting method. arXiv:1506.02221 (2015)
– reference: FortinMNumerical Methods for Nonlinear Variational Problems1984New YorkSpringer
– reference: HeBSYuanXMOn the O(1/n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\cal{O}(1/n)$$\end{document} convergence rate of the Douglas–Rachford alternating direction methodSIAM J. Numer. Anal.201250700709291428210.1137/1108369361245.90084
– reference: HeBSMaFYuanXMConvergence study on the symmetric version of ADMM with larger step sizesSIAM J. Imaging Sci.2016914671501354987810.1137/15M104444806665858
– volume: 21
  start-page: 57
  year: 2011
  ident: 9971_CR22
  publication-title: SIAM J. Optim.
  doi: 10.1137/100781894
– volume: 9
  start-page: 1467
  year: 2016
  ident: 9971_CR16
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/15M1044448
– volume: 1
  start-page: 145
  year: 2015
  ident: 9971_CR15
  publication-title: SIAM J. Comput. Math.
  doi: 10.5802/smai-jcm.6
– ident: 9971_CR6
  doi: 10.1007/b97544
– volume-title: Numerical Methods for Nonlinear Variational Problems
  year: 1984
  ident: 9971_CR7
– ident: 9971_CR9
– volume: 31
  start-page: 394
  year: 2015
  ident: 9971_CR14
  publication-title: IMA J. Numer. Anal.
– volume: 68
  start-page: 546
  year: 2016
  ident: 9971_CR20
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-015-0150-0
– volume: 309
  start-page: 342
  year: 2017
  ident: 9971_CR23
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2016.02.001
– ident: 9971_CR1
– volume: 2
  start-page: 41
  year: 1975
  ident: 9971_CR8
  publication-title: Rev. Fr. Autom. Inform. Rech. Opér. Anal. Numér.
– volume: 7
  start-page: 600
  year: 2017
  ident: 9971_CR19
  publication-title: J. Appl. Anal. Comput.
– volume: 66
  start-page: 1204
  year: 2016
  ident: 9971_CR17
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-015-0060-1
– volume: 155
  start-page: 57
  year: 2016
  ident: 9971_CR3
  publication-title: Math. Program.
  doi: 10.1007/s10107-014-0826-5
– volume: 93
  start-page: 159
  year: 2015
  ident: 9971_CR4
  publication-title: J. Eng. Math.
  doi: 10.1007/s10665-014-9751-0
– volume: 25
  start-page: 2274
  year: 2015
  ident: 9971_CR13
  publication-title: SIAM J. Optim.
  doi: 10.1137/130922793
– volume: 50
  start-page: 700
  year: 2012
  ident: 9971_CR11
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/110836936
– volume: 24
  start-page: 1011
  year: 2014
  ident: 9971_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/13090849X
– volume: 2
  start-page: 494
  year: 2008
  ident: 9971_CR21
  publication-title: Electron. J. Stat.
  doi: 10.1214/08-EJS176
– volume: 40
  start-page: 1935
  year: 2012
  ident: 9971_CR2
  publication-title: Ann. Stat.
  doi: 10.1214/11-AOS949
– volume: 39
  start-page: 81
  year: 2017
  ident: 9971_CR18
  publication-title: Numer. Math. J. Chin. Univ. (Chine. Ser.)
– start-page: 299
  volume-title: Augmented Lagrangian Methods: Applications to the Numerical Solution of Boundary-Value Problems
  year: 1983
  ident: 9971_CR5
– volume: 4
  start-page: 303
  year: 1969
  ident: 9971_CR10
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00927673
SSID ssj0009732
Score 2.4585378
Snippet The alternating direction method of multipliers (ADMM) has been proved to be effective for solving separable convex optimization subject to linear constraints....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 129
SubjectTerms Convergence
Convex analysis
Convex and Discrete Geometry
Convexity
Data management
Economic models
Integers
Lagrange multiplier
Management Science
Mathematics
Mathematics and Statistics
Numerical methods
Operations Research
Operations Research/Decision Theory
Optimization
Statistics
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEA7aXvQgPrFaZQ-elOCm2U0TEKQ-ShFaRCz0tuS1IPSlW0H99U52s24V7HmzOXxJZr5kZr5B6CwlSplUCqxYbHEkRYqVdmk7gkdCRSkx2tU79wesN4weRvHIP7hlPq2ytIm5oTYz7d7IL2GntIGbU9q6nr9i1zXKRVd9C411VAcTzHkN1W_uB49PlexuO29RFooWw-DaaRnXLIrnYpcuBFZaiDbcqX97popu_omQ5o6nu422PGMMOsUS76A1O91Fm0s6gnvoyotHv3xZE2Sfk4lrk6WDzl2_HwApDTLrFL7V2AZ5kvlHMANDMfEVmPto2L1_vu1h3xYBa0rYAivgUFIwIWmsKRxBAy5YSBVKyoSOCFGp0aGMubE2NqmmzMgWlxyIFo3heqDpAapNZ1N7iAIgK6qVasIUJ1FsjZKunkkBieJMEkkaKCwhSbTXDHetK8ZJpXbsUEwAxcShmIQNdP7zy7wQzFg1uFninPizkyXVSjfQRYn90uf_JjtaPdkx2gCyw4tkxSaqLd7e7QkQioU69bvmG32Jxpc
  priority: 102
  providerName: ProQuest
Title Generalized symmetric ADMM for separable convex optimization
URI https://link.springer.com/article/10.1007/s10589-017-9971-0
https://www.proquest.com/docview/1967996332
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7UXupBtCrWR8nBkxLIZrPbLHip2lrUiqiFegr7Cgi2iqmg_npn06StooKnJWSzh5nszDfMzDcA-ylRyqRS-Ioz60dSpL7SrmxHxJFQUUqMdv3OvSve7UfnAzYo-rizstq9TEnmlnqu2Y258h60qkI0MQZehArD0N3VcfXD1oxpt5lPJQtEyH305rRMZf50xFdnNEOY35Kiua_prMJKARK91kSra7BgRzVYnqMOxKfelG81q0HVYcYJ5fI6HBVU0g8f1njZ-3DohmZpr3Xa63kIUb3MOr5v9Wi9vOT8zXtCszEs-jE3oN9p3510_WJIgq8p4WNfIaKSggtJmaZ4IQ06ZCFVICkXOiJEpUYHksXGWmZSTbmRYSxjhF2UYbCg6SYsjZ5Gdgs8hC4qTDXhKiYRs0ZJ192kEFLFXBJJ6hCU0kp0wSDuBlk8JjPuYyfgBAWcOAEnQR0Opp88T-gz_tq8W6ogKW5SlqCFaGJMRmlYh8NSLXOvfzts-1-7d6CKSCieVDLuwtL45dXuIdoYqwYsxp2zBlRQS5e3bj27v2jjety-ur5p5P_eJ3Do0DY
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB0VOAAHxCrK6gNcQBFxnLixBEKIUgqlnEDiFrxFQqIt0CKWj-IbGWehgAS3npPM4eXF8xzPvAHYSqlSJpXCUzyyXihF6intynZEHAoVptRo1-_cvuTN6_D8JrqpwEfZC-PKKss1MVuoTU-7f-R7yJQaanPGgsOHR89NjXKnq-UIjZwWLfv2glu2_sFZHd_vdhA0Tq6Om14xVcDTjPKBp1CCSMGFZJFmyGCDGUxI5UvGhQ4pVanRvoxiY21kUs24kUEsY9QpLEJ1rRnGHYOJkGEmd53pjdOhyW8tG4jmi4B7KCRYeYqat-pFrjgJc4IQNdzB_8yDQ3H76zw2S3ONWZgp9Ck5ygk1BxXbnYfpb66FC7BfWFXfvVtD-m-djhvKpclRvd0mKIFJ3zo_cXVvSVbS_kp6uCx1in7PRbgeCVxLMN7tde0yEJRGKkg15SqmYWSNkq57SqFki7mkklbBLyFJdOFQ7gZl3CdDb2WHYoIoJg7FxK_CztcjD7k9x383r5U4J8WX2k-GvKrCbon9t8t_BVv5P9gmTDav2hfJxdllaxWmUGbFeZnkGowPnp7tOkqZgdrI-EPgdtSE_QTbHwHA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JSsRAEC10BNGDuOK49kEvSjCdTnrSoIg6Dm4ziCh4i70FhNl0Rlw-za-zepI4KujNc5I6vLx0vU5XvQLYSKlSJpXCUzyyXihF6intynZEHAoVptRo1-9cb_CTm_DsNrodgfeiF8aVVRZr4mChNh3t_pHvIFMqqM0ZC3bSvCzislrb7z54boKUO2ktxmlkFDm3r8-4fevtnVbxXW8GQe34-ujEyycMeJpR3vcUyhEpuJAs0gzZbDCbCal8ybjQIaUqNdqXUWysjUyqGTcyiGWMmoVFqLQ1w7ijMFZxu6ISjB0eNy6vhpa_lcF4NF8E3ENZwYoz1axxL3KlSpghhKjgfv57VhxK3R-ns4OkV5uGqVytkoOMXjMwYtuzMPnFw3AOdnPj6vs3a0jvtdVyI7o0OajW6wQFMelZ5y6umpYMCtxfSAcXqVbe_TkPN_8C2AKU2p22XQSCQkkFqaZcxTSMrFHS9VIpFHAxl1TSMvgFJInO_crd2IxmMnRadigmiGLiUEz8Mmx9PtLNzDr-unmlwDnJv9teMmRZGbYL7L9c_i3Y0t_B1mEcyZpcnDbOl2ECNVec1UyuQKn_-GRXUdf01VpOIAJ3_83ZD1GlB1I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generalized+symmetric+ADMM+for+separable+convex+optimization&rft.jtitle=Computational+optimization+and+applications&rft.au=Bai%2C+Jianchao&rft.au=Li%2C+Jicheng&rft.au=Xu%2C+Fengmin&rft.au=Zhang%2C+Hongchao&rft.date=2018-05-01&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=70&rft.issue=1&rft.spage=129&rft.epage=170&rft_id=info:doi/10.1007%2Fs10589-017-9971-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10589_017_9971_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon