Synthesis of nanocrystalline molybdenum by hydrogen reduction of mechanically activated MoO3

Nanocrystalline molybdenum with a mean crystallite size of 50nm was synthesized by mechanical activation of MoO3 powder and its subsequent hydrogen reduction. MoO3 powder was severely activated in a high energy planetary ball mill under a pure argon atmosphere. Temperature-programmed reduction (TPR)...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of refractory metals & hard materials Vol. 30; no. 1; pp. 128 - 132
Main Authors Saghafi, M, Heshmati-Manesh, S, Ataie, A, Khodadadi, A A
Format Journal Article
LanguageEnglish
Published 01.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanocrystalline molybdenum with a mean crystallite size of 50nm was synthesized by mechanical activation of MoO3 powder and its subsequent hydrogen reduction. MoO3 powder was severely activated in a high energy planetary ball mill under a pure argon atmosphere. Temperature-programmed reduction (TPR) by hydrogen was used to investigate hydrogen reduction behavior of the powder samples activated for 5 and 20h. It was found that by increasing the activation time, the peak temperature for the reduction was shifted slightly to lower temperatures and the peak for the reduction of MoO3 to MoO2 was completely separated from the one for the reduction of MoO2 to molybdenum. In order to evaluate the effect of mechanical activation on the reduction behavior of MoO3, the initial micron-sized powder and the sample activated for 20h were reduced at similar conditions. It was found that the activated sample with finer particles was reduced faster than the un-milled sample. Hydrogen reduction of the non-activated MoO3 produced a very fine grained molybdenum powder but the crystallite size changes of the sample activated for 20h was negligible during reduction.
AbstractList Nanocrystalline molybdenum with a mean crystallite size of 50nm was synthesized by mechanical activation of MoO3 powder and its subsequent hydrogen reduction. MoO3 powder was severely activated in a high energy planetary ball mill under a pure argon atmosphere. Temperature-programmed reduction (TPR) by hydrogen was used to investigate hydrogen reduction behavior of the powder samples activated for 5 and 20h. It was found that by increasing the activation time, the peak temperature for the reduction was shifted slightly to lower temperatures and the peak for the reduction of MoO3 to MoO2 was completely separated from the one for the reduction of MoO2 to molybdenum. In order to evaluate the effect of mechanical activation on the reduction behavior of MoO3, the initial micron-sized powder and the sample activated for 20h were reduced at similar conditions. It was found that the activated sample with finer particles was reduced faster than the un-milled sample. Hydrogen reduction of the non-activated MoO3 produced a very fine grained molybdenum powder but the crystallite size changes of the sample activated for 20h was negligible during reduction.
Author Ataie, A
Saghafi, M
Khodadadi, A A
Heshmati-Manesh, S
Author_xml – sequence: 1
  givenname: M
  surname: Saghafi
  fullname: Saghafi, M
– sequence: 2
  givenname: S
  surname: Heshmati-Manesh
  fullname: Heshmati-Manesh, S
– sequence: 3
  givenname: A
  surname: Ataie
  fullname: Ataie, A
– sequence: 4
  givenname: A
  surname: Khodadadi
  middlename: A
  fullname: Khodadadi, A A
BookMark eNp9kE1LxDAURbMYwZnRf-CiO920Jk0mbZYy-AXKLNSdENLXV9vSJmPSCv33toxrVw8u514eZ0NW1lkk5IrRhFEmb9ukaX1f90lKGUtollAmVmRNU8ljwWV-TjYhtJRSqSRbk8-3yQ41hiZEroqssQ78FAbTdY3FqHfdVJRoxz4qpqieSu--0EYeyxGGxtml0yPUxjYwV6bIzPGPGbCMXt2BX5CzynQBL__ulnw83L_vn-KXw-Pz_u4lBs7kEBccVG6AmczkgGkmBZQoJUcldqwURUoVcMpVqZAXRioQWQUARpkUTc4l35Lr0-7Ru-8Rw6D7JgB2nbHoxqCV5LngQqYzefMvybKMLg_s8hkVJxS8C8FjpY--6Y2fNKN6Ua1bfVKtF9WaZnpWzX8Brf56Bg
CitedBy_id crossref_primary_10_1039_C9TC05241K
crossref_primary_10_4150_KPMI_2023_30_5_436
crossref_primary_10_1016_j_ijrmhm_2019_04_015
crossref_primary_10_1016_j_ijrmhm_2021_105480
crossref_primary_10_1016_j_ijrmhm_2023_106112
crossref_primary_10_1016_j_ijrmhm_2023_106210
crossref_primary_10_1088_1742_6596_1459_1_012009
crossref_primary_10_1016_j_ijrmhm_2016_06_001
crossref_primary_10_1016_j_ijrmhm_2018_12_019
crossref_primary_10_4028_www_scientific_net_AMR_622_623_965
crossref_primary_10_1007_s40831_021_00486_5
crossref_primary_10_1016_j_corsci_2017_09_006
crossref_primary_10_1016_j_ijrmhm_2018_08_014
crossref_primary_10_1016_j_apcatb_2014_08_001
crossref_primary_10_1039_D2YA00050D
crossref_primary_10_1080_08827508_2015_1055626
crossref_primary_10_1007_s11663_017_1083_9
crossref_primary_10_1134_S1061933X21060144
crossref_primary_10_1134_S0040579523050123
crossref_primary_10_1016_j_ijrmhm_2019_105039
crossref_primary_10_1016_j_matchemphys_2023_128631
crossref_primary_10_1016_S1003_6326_15_64067_5
crossref_primary_10_3390_pr8070843
crossref_primary_10_1016_j_ijrmhm_2021_105491
crossref_primary_10_1016_j_cattod_2019_03_073
crossref_primary_10_1007_s11663_015_0439_2
crossref_primary_10_7763_IJCEA_2016_V7_534
crossref_primary_10_1016_j_ijrmhm_2018_04_002
crossref_primary_10_1016_j_ijhydene_2020_08_214
crossref_primary_10_1016_j_seppur_2022_123088
crossref_primary_10_1016_j_mtchem_2019_100196
crossref_primary_10_1007_s11837_018_3062_2
crossref_primary_10_3390_ma15062019
crossref_primary_10_1016_j_ijrmhm_2015_08_011
crossref_primary_10_1016_j_wear_2023_204944
crossref_primary_10_4028_www_scientific_net_AMR_1087_64
crossref_primary_10_1016_j_ijrmhm_2013_04_002
crossref_primary_10_4150_KPMI_2020_27_5_394
crossref_primary_10_1016_j_ijhydene_2020_07_069
crossref_primary_10_4028_www_scientific_net_SSP_317_173
crossref_primary_10_1016_j_jcat_2019_09_021
crossref_primary_10_1021_acs_jpcc_8b01236
crossref_primary_10_1016_j_corsci_2023_111239
crossref_primary_10_1016_j_jallcom_2018_12_349
crossref_primary_10_1021_acssuschemeng_6b01675
Cites_doi 10.1016/j.jallcom.2008.01.149
10.1016/j.jallcom.2006.12.039
10.1016/j.ijrmhm.2005.10.014
10.1016/S0263-4368(02)00029-X
10.1016/S0254-0584(99)00007-3
10.1016/j.ijrmhm.2010.12.012
10.1007/s11661-002-0127-0
10.1016/0040-6031(72)87008-4
10.1007/s11663-008-9152-8
10.1007/BF02676054
ContentType Journal Article
DBID AAYXX
CITATION
7QQ
8BQ
8FD
JG9
DOI 10.1016/j.ijrmhm.2011.07.014
DatabaseName CrossRef
Ceramic Abstracts
METADEX
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Ceramic Abstracts
Technology Research Database
METADEX
DatabaseTitleList Materials Research Database
Materials Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 132
ExternalDocumentID 10_1016_j_ijrmhm_2011_07_014
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
AAYXX
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ACDAQ
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
UHS
WUQ
~G-
7QQ
8BQ
8FD
JG9
ID FETCH-LOGICAL-c316t-b3c98ac1a7a8ce2764cde663e9451d4b209c3039d9e3ba69c47fccca9a2ea8363
ISSN 0263-4368
IngestDate Fri Aug 16 20:25:39 EDT 2024
Thu Aug 15 22:28:39 EDT 2024
Thu Sep 26 17:28:04 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c316t-b3c98ac1a7a8ce2764cde663e9451d4b209c3039d9e3ba69c47fccca9a2ea8363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1770276458
PQPubID 23500
PageCount 5
ParticipantIDs proquest_miscellaneous_963843462
proquest_miscellaneous_1770276458
crossref_primary_10_1016_j_ijrmhm_2011_07_014
PublicationCentury 2000
PublicationDate 2012-1-00
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – month: 01
  year: 2012
  text: 20120101
  day: 01
PublicationDecade 2010
PublicationTitle International journal of refractory metals & hard materials
PublicationYear 2012
References Liu (10.1016/j.ijrmhm.2011.07.014_bb0005) 1999; 59
Saghafi (10.1016/j.ijrmhm.2011.07.014_bb0035) 2011; 29
Garg (10.1016/j.ijrmhm.2011.07.014_bb0025) 2007; 25
Schulmeyer (10.1016/j.ijrmhm.2011.07.014_bb0055) 2002; 20
Radchenko (10.1016/j.ijrmhm.2011.07.014_bb0060) 1999; 38
Majumdar (10.1016/j.ijrmhm.2011.07.014_bb0045) 2008; 39
Kim (10.1016/j.ijrmhm.2011.07.014_bb0015) 2008; 454
Kirshenbaum (10.1016/j.ijrmhm.2011.07.014_bb0030) 1972; 4
Gupta (10.1016/j.ijrmhm.2011.07.014_bb0050) 2003
Kim (10.1016/j.ijrmhm.2011.07.014_bb0020) 2009; 469
Cullity (10.1016/j.ijrmhm.2011.07.014_bb0040) 2001
Huang (10.1016/j.ijrmhm.2011.07.014_bb0010) 2002; 33
References_xml – volume: 469
  start-page: 401
  year: 2009
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0020
  article-title: Densification behavior of Mo nanopowders prepared by mechanochemical processing
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2008.01.149
  contributor:
    fullname: Kim
– volume: 454
  start-page: 327
  year: 2008
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0015
  article-title: Consolidation behavior of Mo powder fabricated from milled Mo oxide by hydrogen-reduction
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2006.12.039
  contributor:
    fullname: Kim
– volume: 25
  start-page: 16
  year: 2007
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0025
  article-title: Effect of die compaction pressure on densification behavior of molybdenum powders
  publication-title: Int J Refract Met Hard Mater
  doi: 10.1016/j.ijrmhm.2005.10.014
  contributor:
    fullname: Garg
– volume: 20
  start-page: 261
  year: 2002
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0055
  article-title: Mechanisms of the hydrogen reduction of molybdenum oxides
  publication-title: Int J Refract Met Hard Mater
  doi: 10.1016/S0263-4368(02)00029-X
  contributor:
    fullname: Schulmeyer
– year: 2001
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0040
  contributor:
    fullname: Cullity
– volume: 59
  start-page: 204
  year: 1999
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0005
  article-title: Preparation of nanosized Mo powder by microwave plasma chemical vapor deposition method
  publication-title: Mater Chem Phys
  doi: 10.1016/S0254-0584(99)00007-3
  contributor:
    fullname: Liu
– volume: 29
  start-page: 419
  year: 2011
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0035
  article-title: Effects of mechanical activation of MoO3/C powder mixture in the processing of nano-crystalline molybdenum
  publication-title: Int J Refract Met Hard Mater
  doi: 10.1016/j.ijrmhm.2010.12.012
  contributor:
    fullname: Saghafi
– volume: 33
  start-page: 657
  year: 2002
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0010
  article-title: Deoxidation of molybdenum during vacuum sintering
  publication-title: Metall Mater Trans A
  doi: 10.1007/s11661-002-0127-0
  contributor:
    fullname: Huang
– volume: 4
  start-page: 239
  year: 1972
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0030
  article-title: Thermal analysis of the reaction of molybdenum trioxide with various metals
  publication-title: Thermochim Acta
  doi: 10.1016/0040-6031(72)87008-4
  contributor:
    fullname: Kirshenbaum
– volume: 39
  start-page: 431
  year: 2008
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0045
  article-title: Kinetic studies on hydrogen reduction of MoO3 and morphological analysis of reduced Mo powder
  publication-title: Metall Mater Trans B
  doi: 10.1007/s11663-008-9152-8
  contributor:
    fullname: Majumdar
– year: 2003
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0050
  contributor:
    fullname: Gupta
– volume: 38
  start-page: 429
  year: 1999
  ident: 10.1016/j.ijrmhm.2011.07.014_bb0060
  article-title: Properties of molybdenum powders obtained by reduction in moving beds
  publication-title: Powder Metall Met Ceram
  doi: 10.1007/BF02676054
  contributor:
    fullname: Radchenko
SSID ssj0006961
Score 2.2057745
Snippet Nanocrystalline molybdenum with a mean crystallite size of 50nm was synthesized by mechanical activation of MoO3 powder and its subsequent hydrogen reduction....
SourceID proquest
crossref
SourceType Aggregation Database
StartPage 128
SubjectTerms Activated
Crystallites
Hydrogen reduction
Mechanical activation
Molybdenum
Nanocrystals
Reduction
Refractory metals
Title Synthesis of nanocrystalline molybdenum by hydrogen reduction of mechanically activated MoO3
URI https://search.proquest.com/docview/1770276458
https://search.proquest.com/docview/963843462
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Ni9swEBVhe2kPpZ80_UKF3hYb25Il-xhKy9KS9rC7sIeCkW253pDYxesseA_9Nf2hnZFsx9ltS7cETJATxfE8Rs-jmTeEvC18HQiZh07uaeHwXBVOFKEyYgH0GstCPCP2vPwsjk75x7PwbDb7Ocla2rapm139tq7kf6wKY2BXrJK9hWXHSWEA3oN94QgWhuM_2fi4q4C_9ZIilarqrOmA7a0NddzU6y7NTaY7UMyyy5saJjpsUKt1oIkbjYW_aKd1Z2Q1LhUy0GX9hU1Z637YcCI2ActrYxr2dNiKGpWYEUlYyHUITNjegjGGo76VqjDJA0t3F4K9KJEzO0sFPteEeI7Hk4tW2d2TxTj0qaxzBa9zO9yf6KMWJv1jiFpY5xYI5qD6_dQT9zs0U8RZt-r3BeR2hfZtRPSG87dxiJV7vmo25aaXZ5WuZ6tU97W2r62BY2bikPS2SuwsCc6SeDLxsFv6nUDGISaOuj92iUQiNqq84z8aCjRNFuHNa9knQPvrvyE1Jw_I_f5phC4stB6Sma4ekXsTjcrH5OsIMloX9BrI6A5kNO3oADI6ggy_MwUZHUFGEWRPyOmH9yfvjpy-JYeTMV-0TsqyOFKZr6SKMh1IwbNcA2nVMQ_9nKeBF2dAiuI81ixVIs64LDJwErEKtIqYYE_JQVVX-hmhaSGZUoLJNAo5YxIfVLDFZcDDHNuczYkz3Kfku1VeSf5mnTl5M9zMBFwk7nsBcuvtReJL6eGlhtGc0D98BtchzrgInt_yZ1-Quzt8vyQHbbPVr4CntulrA5NfQt6XdQ
link.rule.ids 315,786,790,27955,27956
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synthesis+of+nanocrystalline+molybdenum+by+hydrogen+reduction+of+mechanically+activated+MoO3&rft.jtitle=International+journal+of+refractory+metals+%26+hard+materials&rft.au=Saghafi%2C+M.&rft.au=Heshmati-Manesh%2C+S.&rft.au=Ataie%2C+A.&rft.au=Khodadadi%2C+A.A.&rft.date=2012-01-01&rft.issn=0263-4368&rft.volume=30&rft.issue=1&rft.spage=128&rft.epage=132&rft_id=info:doi/10.1016%2Fj.ijrmhm.2011.07.014&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijrmhm_2011_07_014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-4368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-4368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-4368&client=summon