Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle
Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry. Erosion wear (EW) remains the main cause of failure in tailings slurry pipeline systems, particularly at bends. EW is...
Saved in:
Published in | International journal of minerals, metallurgy and materials Vol. 30; no. 8; pp. 1608 - 1620 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
University of Science and Technology Beijing
01.08.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry. Erosion wear (EW) remains the main cause of failure in tailings slurry pipeline systems, particularly at bends. EW is a complex phenomenon influenced by numerous factors, but research in this area has been limited. This study performs numerical simulations of slurry transport at the bend by combining computational fluid dynamics and fluid particle tracking using a wear model. Based on the validation of the feasibility of the model, this work focuses on the effects of coupled inlet velocity (IV) ranging from 1.5 to 3.0 m·s
−1
, particle size (PS) ranging from 50 to 650 µm, and bend angle (BA) ranging from 45° to 90° on EW at the bend in terms of particle kinetic energy and incidence angle. The results show that the maximum EW rate of the slurry at the bend increases exponentially with IV and PS and first increases and then decreases with the increase in BA with the inflection point at 60° within these parameter ranges. Further comprehensive analysis reveals that the sensitivity level of the three factors to the maximum EW rate is PS > IV > BA, and when IV is 3.0 m/s, PS is 650 µm, and BA is 60°, the bend EW is the most severe, and the maximum EW rate is 5.68 × 10
−6
kg·m
−2
·s
−1
. In addition, When PS is below or equal to 450 µm, the maximum EW position is mainly at the outlet of the bend. When PS is greater than 450 µm, the maximum EW position shifts toward the center of the bend with the increase in BA. Therefore, EW at the bend can be reduced in practice by reducing IV as much as possible and using small particles. |
---|---|
AbstractList | Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry. Erosion wear (EW) remains the main cause of failure in tailings slurry pipeline systems, particularly at bends. EW is a complex phenomenon influenced by numerous factors, but research in this area has been limited. This study performs numerical simulations of slurry transport at the bend by combining computational fluid dynamics and fluid particle tracking using a wear model. Based on the validation of the feasibility of the model, this work focuses on the effects of coupled inlet velocity (IV) ranging from 1.5 to 3.0 m·s−1, particle size (PS) ranging from 50 to 650 µm, and bend angle (BA) ranging from 45° to 90° on EW at the bend in terms of particle kinetic energy and incidence angle. The results show that the maximum EW rate of the slurry at the bend increases exponentially with IV and PS and first increases and then decreases with the increase in BA with the inflection point at 60° within these parameter ranges. Further comprehensive analysis reveals that the sensitivity level of the three factors to the maximum EW rate is PS > IV > BA, and when IV is 3.0 m/s, PS is 650 µm, and BA is 60°, the bend EW is the most severe, and the maximum EW rate is 5.68 × 10−6 kg·m−2·s−1. In addition, When PS is below or equal to 450 µm, the maximum EW position is mainly at the outlet of the bend. When PS is greater than 450 µm, the maximum EW position shifts toward the center of the bend with the increase in BA. Therefore, EW at the bend can be reduced in practice by reducing IV as much as possible and using small particles. Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry. Erosion wear (EW) remains the main cause of failure in tailings slurry pipeline systems, particularly at bends. EW is a complex phenomenon influenced by numerous factors, but research in this area has been limited. This study performs numerical simulations of slurry transport at the bend by combining computational fluid dynamics and fluid particle tracking using a wear model. Based on the validation of the feasibility of the model, this work focuses on the effects of coupled inlet velocity (IV) ranging from 1.5 to 3.0 m·s −1 , particle size (PS) ranging from 50 to 650 µm, and bend angle (BA) ranging from 45° to 90° on EW at the bend in terms of particle kinetic energy and incidence angle. The results show that the maximum EW rate of the slurry at the bend increases exponentially with IV and PS and first increases and then decreases with the increase in BA with the inflection point at 60° within these parameter ranges. Further comprehensive analysis reveals that the sensitivity level of the three factors to the maximum EW rate is PS > IV > BA, and when IV is 3.0 m/s, PS is 650 µm, and BA is 60°, the bend EW is the most severe, and the maximum EW rate is 5.68 × 10 −6 kg·m −2 ·s −1 . In addition, When PS is below or equal to 450 µm, the maximum EW position is mainly at the outlet of the bend. When PS is greater than 450 µm, the maximum EW position shifts toward the center of the bend with the increase in BA. Therefore, EW at the bend can be reduced in practice by reducing IV as much as possible and using small particles. |
Author | Wang, Yunmin Liu, Yikai Chen, Qiusong Zhou, Hailong Wang, Daolin Zhang, Qinli |
Author_xml | – sequence: 1 givenname: Qiusong surname: Chen fullname: Chen, Qiusong organization: School of Resources and Safety Engineering, Central South University, Sinosteel Maanshan General Institute of Mining Research Co., Ltd – sequence: 2 givenname: Hailong surname: Zhou fullname: Zhou, Hailong organization: School of Resources and Safety Engineering, Central South University – sequence: 3 givenname: Yunmin surname: Wang fullname: Wang, Yunmin organization: School of Resources and Safety Engineering, Central South University, Sinosteel Maanshan General Institute of Mining Research Co., Ltd – sequence: 4 givenname: Daolin surname: Wang fullname: Wang, Daolin email: daolinw@csu.edu.cn organization: School of Resources and Safety Engineering, Central South University – sequence: 5 givenname: Qinli surname: Zhang fullname: Zhang, Qinli organization: School of Resources and Safety Engineering, Central South University – sequence: 6 givenname: Yikai surname: Liu fullname: Liu, Yikai organization: Department of Geosciences, University of Padova |
BookMark | eNp9kMFu1DAQhi1UJNrSB-htJK6k2M5uJuFWVaUgVeUCEjfLccbFlWuntgPafQoeGe8uElIlOI0P883v_zthRyEGYuxc8AvBOb7LQnaibbhsG9mhbLYv2LHou6ERvP12VN8drpoVDsMrdpLzA-cdIsdj9us6xexigJ-kE-gC5TvBSGGCaGF2M8G0JBfuoWjn68yQ_ZLSBkrSIc8xFV0q_h7ulkdKzmgPuSzTBkwM2U20Z13wVOAH-Whc2byFWafijCfIbkuga9g-UYd7T6_ZS6t9prM_85R9_XD95epjc_v55tPV5W1jWtGVZhRTO66mobeaEFe0HnAaLXK5RlxrY9uOD1ZYYwyhFb3o7dRTjwJHYXvddu0pe3O4O6f4tFAu6iEuKdRIJQdZPfaDXNctPGyZqiknsqo22Deu_Z1XgqudfnXQryqmdvrVtpLiGTkn96jT5r-MPDB53nmj9PdP_4Z-A83PniE |
CitedBy_id | crossref_primary_10_1016_j_powtec_2024_119417 crossref_primary_10_1007_s12613_023_2799_y crossref_primary_10_1016_j_scitotenv_2023_168320 crossref_primary_10_3390_app14114771 crossref_primary_10_1007_s12613_023_2806_3 crossref_primary_10_1007_s13369_024_09951_1 crossref_primary_10_3390_min14030227 crossref_primary_10_3390_su151612492 crossref_primary_10_1007_s11771_024_5648_x crossref_primary_10_3390_min13081045 crossref_primary_10_1016_j_jmrt_2023_09_032 crossref_primary_10_1063_5_0170072 crossref_primary_10_1007_s12613_023_2686_6 crossref_primary_10_1007_s11356_024_35327_x crossref_primary_10_1016_j_jenvman_2023_119406 crossref_primary_10_1016_j_powtec_2023_118850 crossref_primary_10_1038_s41598_024_81849_2 crossref_primary_10_1155_2024_8659304 crossref_primary_10_1016_j_conbuildmat_2023_134170 |
Cites_doi | 10.1016/j.scitotenv.2022.158516 10.1016/j.wear.2006.11.018 10.1016/j.engfailanal.2022.106081 10.1016/j.powtec.2015.11.028 10.1007/s11771-021-4728-4 10.1038/s41467-021-23009-y 10.1016/j.wear.2020.203572 10.1016/j.corsci.2014.04.045 10.1016/j.jngse.2015.06.054 10.1038/s41467-019-13643-y 10.1007/s12613-022-2423-6 10.1016/j.matpr.2017.12.080 10.1016/j.compfluid.2020.104710 10.1016/j.ceramint.2020.09.240 10.1016/j.ijheatfluidflow.2013.07.012 10.1016/j.wear.2007.03.016 10.1016/j.wear.2006.01.022 10.1038/s41467-021-26128-8 10.1016/j.wear.2009.01.052 10.1016/0094-4548(74)90150-7 10.1016/j.powtec.2020.11.059 10.1016/j.powtec.2011.11.003 10.1016/j.matdes.2021.110312 10.1016/j.cherd.2013.05.022 10.1016/j.powtec.2021.07.052 10.1016/j.jngse.2016.04.056 10.1016/j.wear.2014.10.010 10.1016/j.powtec.2016.12.087 10.1016/j.matdes.2021.110376 10.1016/j.engfailanal.2021.105779 10.1016/j.wear.2015.03.013 10.1016/j.powtec.2016.09.048 10.1016/j.jngse.2015.09.003 10.1016/j.jallcom.2021.161629 10.1016/j.chemosphere.2022.137412 10.1016/j.matpr.2020.11.541 10.1016/j.cmpb.2022.106756 10.1016/j.wear.2018.03.007 10.1016/j.powtec.2014.12.057 10.1007/s12613-020-2022-3 10.1007/s12613-022-2587-0 |
ContentType | Journal Article |
Copyright | University of Science and Technology Beijing 2023 University of Science and Technology Beijing 2023. |
Copyright_xml | – notice: University of Science and Technology Beijing 2023 – notice: University of Science and Technology Beijing 2023. |
DBID | AAYXX CITATION 8FE 8FG ABJCF AEUYN AFKRA BENPR BGLVJ BHPHI BKSAR CCPQU D1I DWQXO HCIFZ KB. PCBAR PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s12613-023-2672-z |
DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection (ProQuest) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central (New) Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection (ProQuest) ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection (ProQuest) ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef ProQuest Materials Science Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition Materials Science Collection Earth, Atmospheric & Aquatic Science Database SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Materials Science & Engineering Collection Materials Science Database ProQuest One Academic ProQuest Central (New) ProQuest One Academic (New) |
DatabaseTitleList | ProQuest Materials Science Collection |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-103X |
EndPage | 1620 |
ExternalDocumentID | 10_1007_s12613_023_2672_z |
GroupedDBID | --K -EM -SB -S~ 06D 0R~ 0VY 188 1B1 1N0 1~5 2B. 2C0 2KG 2LR 2VQ 30V 4.4 406 408 40D 4G. 67Z 7-5 71M 8RM 92H 92I 96X AACDK AAEDT AAHNG AAIAL AAJBT AAJKR AALRI AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAXUO AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABDZT ABECU ABFTV ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETCA AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR ANMIH AOCGG AXYYD BENPR BGLVJ BGNMA BHPHI BKSAR CAG CAJEB CCPQU COF CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FDB FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 H13 HCIFZ HF~ HMJXF HRMNR HVGLF HZ~ IKXTQ IWAJR IXD J-C JBSCW JZLTJ KB. KOV LLZTM M41 M4Y NPVJJ NQJWS NU0 O9- O9J OZT P2P P9N PCBAR PDBOC PT4 Q-- R9I RIG ROL RSV S1Z S27 S3B SCL SCM SDG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TCJ TGT TSG U1G U2A U5L UG4 UGNYK UOJIU UTJUX UZ4 UZXMN VC2 VFIZW W48 WK8 Z5O Z7R Z7V Z7X Z7Y Z7Z Z85 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 8FE 8FG ABRTQ D1I DWQXO PKEHL PQEST PQGLB PQQKQ PQUKI |
ID | FETCH-LOGICAL-c316t-b1d3b4d98fae774e597dbf7025775acf3609f1fccce7f1818fd8e8717b1f8a363 |
IEDL.DBID | BENPR |
ISSN | 1674-4799 |
IngestDate | Fri Jul 25 11:02:41 EDT 2025 Tue Jul 01 01:18:47 EDT 2025 Thu Apr 24 23:10:51 EDT 2025 Fri Feb 21 02:41:57 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | CFD pipe wear tailings transportation erosion wear numerical simulation |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-b1d3b4d98fae774e597dbf7025775acf3609f1fccce7f1818fd8e8717b1f8a363 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2920238925 |
PQPubID | 2043631 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2920238925 crossref_citationtrail_10_1007_s12613_023_2672_z crossref_primary_10_1007_s12613_023_2672_z springer_journals_10_1007_s12613_023_2672_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230800 2023-08-00 20230801 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 8 year: 2023 text: 20230800 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | International journal of minerals, metallurgy and materials |
PublicationTitleAbbrev | Int J Miner Metall Mater |
PublicationYear | 2023 |
Publisher | University of Science and Technology Beijing Springer Nature B.V |
Publisher_xml | – name: University of Science and Technology Beijing – name: Springer Nature B.V |
References | WuAXRuanZWangJDRheological behavior of paste in metal minesInt. J. Miner. Metall. Mater.20222947171:CAS:528:DC%2BB38XhsVehtb7P10.1007/s12613-022-2423-6 ZengLZhangGAGuoXPErosion-corrosion at different locations of X65 carbon steel elbowCorros. Sci.2014853181:CAS:528:DC%2BC2cXotlWlt70%3D10.1016/j.corsci.2014.04.045 ChenJKWangYSLiXFHeRYHanSChenYLErosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD–DEM coupling methodPowder Technol.20152751821:CAS:528:DC%2BC2MXivVeqsL0%3D10.1016/j.powtec.2014.12.057 ParsiMAgrawalMSrinivasanVCFD simulation of sand particle erosion in gas-dominant multiphase flowJ. Nat. Gas Sci. Eng.2015277061:CAS:528:DC%2BC2MXhsFWmt7nM10.1016/j.jngse.2015.09.003 VieiraREMansouriAMcLauryBSShiraziSAExperimental and computational study of erosion in elbows due to sand particles in air flowPowder Technol.20162883391:CAS:528:DC%2BC2MXhvVOmurvM10.1016/j.powtec.2015.11.028 H. Zhou, Q.F. Ji, W. Liu, H.Y. Ma, Y. Lei, and K.Q. Zhu, Experimental study on erosion-corrosion behavior of liquid–solid swirling flow in pipeline, Mater. Des., 214(2022), art. No. 110376. TanYQZhangHYangDMJiangSQSongJHShengYNumerical simulation of concrete pumping process and investigation of wear mechanism of the piping wallTribol. Int.2012461137 RathoreRKGuptaPKKumarNNumerical investigation of zinc tailings slurry flow field in a horizontal pipelineMater. Today Proc.202145270210.1016/j.matpr.2020.11.541 TarodiyaRGandhiBKHydraulic performance and erosive wear of centrifugal slurry pumps - A reviewPowder Technol.2017305271:CAS:528:DC%2BC28Xhs1Srs7zN10.1016/j.powtec.2016.09.048 WangDLZhangQLChenQSQiCCFengYXiaoCCTemperature variation characteristics in flocculation settlement of tailings and its mechanismInt. J. Miner. Metall. Mater.20202711143810.1007/s12613-020-2022-3 BlanchardDJGriffithPRabinowiczEErosion of a pipe bend by solid particles entrained in waterJ. Manuf. Sci. Eng.19841063213 ZhangQLLiYTChenQSLiuYKFengYWangDLEffects of temperatures and pH values on rheological properties of cemented paste backfillJ. Cent. South Univ.202128617071:CAS:528:DC%2BB3MXisFWlurnE10.1007/s11771-021-4728-4 LinNLanHQXuYGDongSHBarberGEffect of the gas-solid two-phase flow velocity on elbow erosionJ. Nat. Gas Sci. Eng.20152658110.1016/j.jngse.2015.06.054 RafieeMSimmonsMJHIngramAStittEHDevelopment of positron emission particle tracking for studying laminar mixing in Kenics static mixerChem. Eng. Res. Des.2013911121061:CAS:528:DC%2BC3sXhtVKnsb7N10.1016/j.cherd.2013.05.022 Q.M. Nguyen, J. Abouezzi, and L. Ristroph, Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve, Nat. Commun., 12(2021), No. 1, art. No. 2884. RajahramSSHarveyTJWoodRJKErosion–corrosion resistance of engineering materials in various test conditionsWear20092671–42441:CAS:528:DC%2BD1MXmtlajsL4%3D10.1016/j.wear.2009.01.052 ZhouMMKuangSBXiaoFLuoKYuABCFD-DEM analysis of hydraulic conveying bends: Interaction between pipe orientation and flow regimePowder Technol.20213926191:CAS:528:DC%2BB3MXhs1KhurbJ10.1016/j.powtec.2021.07.052 ZolfagharnasabMHSalimiMZolfagharnasabHAlimoradiHShamsMAghanajafiCA novel numerical investigation of erosion wear over various 90-degree elbow duct sectionsPowder Technol.202138011:CAS:528:DC%2BB3cXis12ht7%2FL10.1016/j.powtec.2020.11.059 SinghGKumarSMohapatraSKErosion wear in a slurry pipe with multisized coal and bottom-ash slurriesMater. Today2017423565 Q.S. Chen, S.Y. Sun, Y.M. Wang, Q.L. Zhang, L.M. Zhu, and Y.K. Liu, In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment, Chemosphere, 313(2023), art. No. 137412. R. Camassa, D.M. Harris, R. Hunt, Z. Kilic, and R.M. McLaughlin, A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids, Nat. Commun., 10(2019), No. 1, art. No. 5804. Al-BukhaitiMAAhmedSMBadranFMFEmaraKMEffect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast ironWear20072629–1011871:CAS:528:DC%2BD2sXjt1SitLs%3D10.1016/j.wear.2006.11.018 Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516. LaunderBESharmaBIApplication of the energy-dissipation model of turbulence to the calculation of flow near a spinning discLett. Heat Mass Transf.19741213110.1016/0094-4548(74)90150-7 UziALevyAEnergy absorption by the particle and the surface during impactWear2018404–4059210.1016/j.wear.2018.03.007 Q.C. Wang, Q.Y. Huang, N.R. Wang, et al., An experimental and numerical study of slurry erosion behavior in a horizontal elbow and elbows in series, Eng. Fail. Anal., 130(2021), art. No. 105779. M.E. Ibrahim and M. Medraj, Prediction and experimental evaluation of the threshold velocity in water droplet erosion, Mater. Des., 213(2022), art. No. 110312. ZhangJXKangJAFanJCGaoJCStudy on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industryJ. Nat. Gas Sci. Eng.2016323341:CAS:528:DC%2BC2sXivVGgs7w%3D10.1016/j.jngse.2016.04.056 ParsiMVieiraREKesanaNMcLauryBSShiraziSAUltrasonic measurements of sand particle erosion in gas dominant multiphase churn flow in vertical pipesWear2015328–32940110.1016/j.wear.2015.03.013 ShahSNJainSCoiled tubing erosion during hydraulic fracturing slurry flowWear20082643–42791:CAS:528:DC%2BD2sXhtlyns7%2FJ10.1016/j.wear.2007.03.016 Y. Sun, M.L. Liu, Y. Xiao, and Y.F. Chen, A novel molecular communication inspired detection method for the evolution of atherosclerosis, Comput. Meth. Programs Biomed., 219(2022), art. No. 106756. Q. Li, Z.Y. Peng, W.B. Jiang, et al., Optimization of Ti−Zr−Cr−Fe alloys for 45 MPa metal hydride hydrogen compressors using orthogonal analysis, J. Alloys Compd., 889(2021), art. No. 161629. WangJHZhangTFWangSGHeterogeneous ice slurry flow and concentration distribution in horizontal pipesInt. J. Heat Fluid Flow2013444251:CAS:528:DC%2BC2cXhtVGkurfK10.1016/j.ijheatfluidflow.2013.07.012 JiaoHZYangWBRuanZEYuJXLiuJHYangYXMicroscale mechanism of tailing thickening in metal minesInt. J. Miner. Metall. Mater.20233081538 ChenXHMcLauryBSShiraziSANumerical and experimental investigation of the relative erosion severity between plugged Tees and elbows in dilute gas/solid two-phase flowWear20062617–87151:CAS:528:DC%2BD28XpvF2gtbo%3D10.1016/j.wear.2006.01.022 KangPCZhaoQQGuoSQOptimisation of the spark plasma sintering process for high volume fraction SiCp/Al composites by orthogonal experimental designCeram. Int.202147338161:CAS:528:DC%2BB3cXhvFOgs7fN10.1016/j.ceramint.2020.09.240 B.Q. Wu, X.D. Wang, X.X. Liu, G.G. Xu, and S.B. Zhu, Numerical simulation of erosion and fatigue failure the coal gangue paste filling caused to pumping pipes, Eng. Fail. Anal., 134(2022), art. No. 106081. KannojiyaVDeshwalMDeshwalDNumerical analysis of solid particle erosion in pipe elbowMater. Today Proc.20185250211:CAS:528:DC%2BC1MXmslSku7c%3D10.1016/j.matpr.2017.12.080 MansouriADevelopment of Erosion Equations for Slurry Flows2015TulsaAdvis. Board Rep. Erosion/Corrosion Res. Center, Univ. Tulsa48 DhodapkarSSoltPKlinzingGUnderstanding bends in pneumatic conveying systemsChem. Eng.2009116531:CAS:528:DC%2BD1MXltFygtLg%3D UziABen AmiYLevyAErosion prediction of industrial conveying pipelinesPowder Technol.2017309491:CAS:528:DC%2BC2sXkvFKlsQ%3D%3D10.1016/j.powtec.2016.12.087 M. Tiberga, A. Hennink, J.L. Kloosterman, and D. Lathouwers, A high-order discontinuous Galerkin solver for the incompressible RANS equations coupled to the k−ϵ, Comput. Fluids, 212(2020), art. No. 104710. NguyenQBNguyenVBLimCYHEffect of impact angle and testing time on erosion of stainless steel at higher velocitiesWear2014321871:CAS:528:DC%2BC2cXhvVygsbrI10.1016/j.wear.2014.10.010 Y.F. Liu, Y.L. Zhao, and J. Yao, Synergistic erosion-corrosion behavior of X80 pipeline steel at various impingement angles in two-phase flow impingement, Wear, 466–467(2021), art. No. 203572. I. Marusic, D. Chandran, A. Rouhi, et al., An energy-efficient pathway to turbulent drag reduction, Nat. Commun., 12(2021), art. No. 5805. ZhangHTanYQYangDMNumerical investigation of the location of maximum erosive wear damage in elbow: Effect of slurry velocity, bend orientation and angle of elbowPowder Technol.20122174671:CAS:528:DC%2BC38XhtlKmtA%3D%3D10.1016/j.powtec.2011.11.003 SN Shah (2672_CR30) 2008; 264 MH Zolfagharnasab (2672_CR40) 2021; 380 N Lin (2672_CR31) 2015; 26 YQ Tan (2672_CR22) 2012; 46 AX Wu (2672_CR7) 2022; 29 G Singh (2672_CR6) 2017; 4 M Parsi (2672_CR29) 2015; 328–329 2672_CR1 2672_CR23 M Parsi (2672_CR27) 2015; 27 V Kannojiya (2672_CR24) 2018; 5 2672_CR46 2672_CR25 2672_CR5 MM Zhou (2672_CR26) 2021; 392 2672_CR3 2672_CR4 JK Chen (2672_CR33) 2015; 275 PC Kang (2672_CR45) 2021; 47 L Zeng (2672_CR39) 2014; 85 A Uzi (2672_CR9) 2017; 309 JX Zhang (2672_CR28) 2016; 32 QB Nguyen (2672_CR32) 2014; 321 BE Launder (2672_CR35) 1974; 1 QL Zhang (2672_CR15) 2021; 28 HZ Jiao (2672_CR10) 2023; 30 JH Wang (2672_CR20) 2013; 44 SS Rajahram (2672_CR17) 2009; 267 H Zhang (2672_CR21) 2012; 217 S Dhodapkar (2672_CR16) 2009; 116 M Rafiee (2672_CR37) 2013; 91 2672_CR11 2672_CR34 DL Wang (2672_CR8) 2020; 27 2672_CR14 2672_CR36 2672_CR18 MA Al-Bukhaiti (2672_CR41) 2007; 262 2672_CR19 A Uzi (2672_CR13) 2018; 404–405 XH Chen (2672_CR43) 2006; 261 RE Vieira (2672_CR42) 2016; 288 RK Rathore (2672_CR12) 2021; 45 DJ Blanchard (2672_CR44) 1984; 106 R Tarodiya (2672_CR2) 2017; 305 A Mansouri (2672_CR38) 2015 |
References_xml | – reference: RajahramSSHarveyTJWoodRJKErosion–corrosion resistance of engineering materials in various test conditionsWear20092671–42441:CAS:528:DC%2BD1MXmtlajsL4%3D10.1016/j.wear.2009.01.052 – reference: H. Zhou, Q.F. Ji, W. Liu, H.Y. Ma, Y. Lei, and K.Q. Zhu, Experimental study on erosion-corrosion behavior of liquid–solid swirling flow in pipeline, Mater. Des., 214(2022), art. No. 110376. – reference: VieiraREMansouriAMcLauryBSShiraziSAExperimental and computational study of erosion in elbows due to sand particles in air flowPowder Technol.20162883391:CAS:528:DC%2BC2MXhvVOmurvM10.1016/j.powtec.2015.11.028 – reference: TarodiyaRGandhiBKHydraulic performance and erosive wear of centrifugal slurry pumps - A reviewPowder Technol.2017305271:CAS:528:DC%2BC28Xhs1Srs7zN10.1016/j.powtec.2016.09.048 – reference: KannojiyaVDeshwalMDeshwalDNumerical analysis of solid particle erosion in pipe elbowMater. Today Proc.20185250211:CAS:528:DC%2BC1MXmslSku7c%3D10.1016/j.matpr.2017.12.080 – reference: ZolfagharnasabMHSalimiMZolfagharnasabHAlimoradiHShamsMAghanajafiCA novel numerical investigation of erosion wear over various 90-degree elbow duct sectionsPowder Technol.202138011:CAS:528:DC%2BB3cXis12ht7%2FL10.1016/j.powtec.2020.11.059 – reference: SinghGKumarSMohapatraSKErosion wear in a slurry pipe with multisized coal and bottom-ash slurriesMater. Today2017423565 – reference: LaunderBESharmaBIApplication of the energy-dissipation model of turbulence to the calculation of flow near a spinning discLett. Heat Mass Transf.19741213110.1016/0094-4548(74)90150-7 – reference: JiaoHZYangWBRuanZEYuJXLiuJHYangYXMicroscale mechanism of tailing thickening in metal minesInt. J. Miner. Metall. Mater.20233081538 – reference: M.E. Ibrahim and M. Medraj, Prediction and experimental evaluation of the threshold velocity in water droplet erosion, Mater. Des., 213(2022), art. No. 110312. – reference: ShahSNJainSCoiled tubing erosion during hydraulic fracturing slurry flowWear20082643–42791:CAS:528:DC%2BD2sXhtlyns7%2FJ10.1016/j.wear.2007.03.016 – reference: UziALevyAEnergy absorption by the particle and the surface during impactWear2018404–4059210.1016/j.wear.2018.03.007 – reference: ZengLZhangGAGuoXPErosion-corrosion at different locations of X65 carbon steel elbowCorros. Sci.2014853181:CAS:528:DC%2BC2cXotlWlt70%3D10.1016/j.corsci.2014.04.045 – reference: ChenXHMcLauryBSShiraziSANumerical and experimental investigation of the relative erosion severity between plugged Tees and elbows in dilute gas/solid two-phase flowWear20062617–87151:CAS:528:DC%2BD28XpvF2gtbo%3D10.1016/j.wear.2006.01.022 – reference: Q.C. Wang, Q.Y. Huang, N.R. Wang, et al., An experimental and numerical study of slurry erosion behavior in a horizontal elbow and elbows in series, Eng. Fail. Anal., 130(2021), art. No. 105779. – reference: NguyenQBNguyenVBLimCYHEffect of impact angle and testing time on erosion of stainless steel at higher velocitiesWear2014321871:CAS:528:DC%2BC2cXhvVygsbrI10.1016/j.wear.2014.10.010 – reference: Al-BukhaitiMAAhmedSMBadranFMFEmaraKMEffect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast ironWear20072629–1011871:CAS:528:DC%2BD2sXjt1SitLs%3D10.1016/j.wear.2006.11.018 – reference: I. Marusic, D. Chandran, A. Rouhi, et al., An energy-efficient pathway to turbulent drag reduction, Nat. Commun., 12(2021), art. No. 5805. – reference: ParsiMVieiraREKesanaNMcLauryBSShiraziSAUltrasonic measurements of sand particle erosion in gas dominant multiphase churn flow in vertical pipesWear2015328–32940110.1016/j.wear.2015.03.013 – reference: Q. Li, Z.Y. Peng, W.B. Jiang, et al., Optimization of Ti−Zr−Cr−Fe alloys for 45 MPa metal hydride hydrogen compressors using orthogonal analysis, J. Alloys Compd., 889(2021), art. No. 161629. – reference: Y.F. Liu, Y.L. Zhao, and J. Yao, Synergistic erosion-corrosion behavior of X80 pipeline steel at various impingement angles in two-phase flow impingement, Wear, 466–467(2021), art. No. 203572. – reference: DhodapkarSSoltPKlinzingGUnderstanding bends in pneumatic conveying systemsChem. Eng.2009116531:CAS:528:DC%2BD1MXltFygtLg%3D – reference: WangJHZhangTFWangSGHeterogeneous ice slurry flow and concentration distribution in horizontal pipesInt. J. Heat Fluid Flow2013444251:CAS:528:DC%2BC2cXhtVGkurfK10.1016/j.ijheatfluidflow.2013.07.012 – reference: R. Camassa, D.M. Harris, R. Hunt, Z. Kilic, and R.M. McLaughlin, A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids, Nat. Commun., 10(2019), No. 1, art. No. 5804. – reference: RathoreRKGuptaPKKumarNNumerical investigation of zinc tailings slurry flow field in a horizontal pipelineMater. Today Proc.202145270210.1016/j.matpr.2020.11.541 – reference: ZhangHTanYQYangDMNumerical investigation of the location of maximum erosive wear damage in elbow: Effect of slurry velocity, bend orientation and angle of elbowPowder Technol.20122174671:CAS:528:DC%2BC38XhtlKmtA%3D%3D10.1016/j.powtec.2011.11.003 – reference: ZhangJXKangJAFanJCGaoJCStudy on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industryJ. Nat. Gas Sci. Eng.2016323341:CAS:528:DC%2BC2sXivVGgs7w%3D10.1016/j.jngse.2016.04.056 – reference: MansouriADevelopment of Erosion Equations for Slurry Flows2015TulsaAdvis. Board Rep. Erosion/Corrosion Res. Center, Univ. Tulsa48 – reference: BlanchardDJGriffithPRabinowiczEErosion of a pipe bend by solid particles entrained in waterJ. Manuf. Sci. Eng.19841063213 – reference: Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516. – reference: Q.M. Nguyen, J. Abouezzi, and L. Ristroph, Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve, Nat. Commun., 12(2021), No. 1, art. No. 2884. – reference: Q.S. Chen, S.Y. Sun, Y.M. Wang, Q.L. Zhang, L.M. Zhu, and Y.K. Liu, In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment, Chemosphere, 313(2023), art. No. 137412. – reference: Y. Sun, M.L. Liu, Y. Xiao, and Y.F. Chen, A novel molecular communication inspired detection method for the evolution of atherosclerosis, Comput. Meth. Programs Biomed., 219(2022), art. No. 106756. – reference: ChenJKWangYSLiXFHeRYHanSChenYLErosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD–DEM coupling methodPowder Technol.20152751821:CAS:528:DC%2BC2MXivVeqsL0%3D10.1016/j.powtec.2014.12.057 – reference: M. Tiberga, A. Hennink, J.L. Kloosterman, and D. Lathouwers, A high-order discontinuous Galerkin solver for the incompressible RANS equations coupled to the k−ϵ, Comput. Fluids, 212(2020), art. No. 104710. – reference: WuAXRuanZWangJDRheological behavior of paste in metal minesInt. J. Miner. Metall. Mater.20222947171:CAS:528:DC%2BB38XhsVehtb7P10.1007/s12613-022-2423-6 – reference: ZhangQLLiYTChenQSLiuYKFengYWangDLEffects of temperatures and pH values on rheological properties of cemented paste backfillJ. Cent. South Univ.202128617071:CAS:528:DC%2BB3MXisFWlurnE10.1007/s11771-021-4728-4 – reference: UziABen AmiYLevyAErosion prediction of industrial conveying pipelinesPowder Technol.2017309491:CAS:528:DC%2BC2sXkvFKlsQ%3D%3D10.1016/j.powtec.2016.12.087 – reference: ZhouMMKuangSBXiaoFLuoKYuABCFD-DEM analysis of hydraulic conveying bends: Interaction between pipe orientation and flow regimePowder Technol.20213926191:CAS:528:DC%2BB3MXhs1KhurbJ10.1016/j.powtec.2021.07.052 – reference: WangDLZhangQLChenQSQiCCFengYXiaoCCTemperature variation characteristics in flocculation settlement of tailings and its mechanismInt. J. Miner. Metall. Mater.20202711143810.1007/s12613-020-2022-3 – reference: LinNLanHQXuYGDongSHBarberGEffect of the gas-solid two-phase flow velocity on elbow erosionJ. Nat. Gas Sci. Eng.20152658110.1016/j.jngse.2015.06.054 – reference: RafieeMSimmonsMJHIngramAStittEHDevelopment of positron emission particle tracking for studying laminar mixing in Kenics static mixerChem. Eng. Res. Des.2013911121061:CAS:528:DC%2BC3sXhtVKnsb7N10.1016/j.cherd.2013.05.022 – reference: TanYQZhangHYangDMJiangSQSongJHShengYNumerical simulation of concrete pumping process and investigation of wear mechanism of the piping wallTribol. Int.2012461137 – reference: B.Q. Wu, X.D. Wang, X.X. Liu, G.G. Xu, and S.B. Zhu, Numerical simulation of erosion and fatigue failure the coal gangue paste filling caused to pumping pipes, Eng. Fail. Anal., 134(2022), art. No. 106081. – reference: ParsiMAgrawalMSrinivasanVCFD simulation of sand particle erosion in gas-dominant multiphase flowJ. Nat. Gas Sci. Eng.2015277061:CAS:528:DC%2BC2MXhsFWmt7nM10.1016/j.jngse.2015.09.003 – reference: KangPCZhaoQQGuoSQOptimisation of the spark plasma sintering process for high volume fraction SiCp/Al composites by orthogonal experimental designCeram. Int.202147338161:CAS:528:DC%2BB3cXhvFOgs7fN10.1016/j.ceramint.2020.09.240 – ident: 2672_CR11 doi: 10.1016/j.scitotenv.2022.158516 – volume: 262 start-page: 1187 issue: 9–10 year: 2007 ident: 2672_CR41 publication-title: Wear doi: 10.1016/j.wear.2006.11.018 – volume: 106 start-page: 213 issue: 3 year: 1984 ident: 2672_CR44 publication-title: J. Manuf. Sci. Eng. – ident: 2672_CR23 doi: 10.1016/j.engfailanal.2022.106081 – volume: 288 start-page: 339 year: 2016 ident: 2672_CR42 publication-title: Powder Technol. doi: 10.1016/j.powtec.2015.11.028 – volume: 4 start-page: 3565 issue: 2 year: 2017 ident: 2672_CR6 publication-title: Mater. Today – volume: 28 start-page: 1707 issue: 6 year: 2021 ident: 2672_CR15 publication-title: J. Cent. South Univ. doi: 10.1007/s11771-021-4728-4 – ident: 2672_CR1 doi: 10.1038/s41467-021-23009-y – volume: 116 start-page: 53 year: 2009 ident: 2672_CR16 publication-title: Chem. Eng. – ident: 2672_CR18 doi: 10.1016/j.wear.2020.203572 – volume: 85 start-page: 318 year: 2014 ident: 2672_CR39 publication-title: Corros. Sci. doi: 10.1016/j.corsci.2014.04.045 – volume: 26 start-page: 581 year: 2015 ident: 2672_CR31 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.06.054 – ident: 2672_CR14 doi: 10.1038/s41467-019-13643-y – volume: 29 start-page: 717 issue: 4 year: 2022 ident: 2672_CR7 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-022-2423-6 – volume: 5 start-page: 5021 issue: 2 year: 2018 ident: 2672_CR24 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2017.12.080 – ident: 2672_CR34 doi: 10.1016/j.compfluid.2020.104710 – volume: 47 start-page: 3816 issue: 3 year: 2021 ident: 2672_CR45 publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.09.240 – volume: 44 start-page: 425 year: 2013 ident: 2672_CR20 publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2013.07.012 – volume: 264 start-page: 279 issue: 3–4 year: 2008 ident: 2672_CR30 publication-title: Wear doi: 10.1016/j.wear.2007.03.016 – volume: 261 start-page: 715 issue: 7–8 year: 2006 ident: 2672_CR43 publication-title: Wear doi: 10.1016/j.wear.2006.01.022 – ident: 2672_CR5 doi: 10.1038/s41467-021-26128-8 – volume: 267 start-page: 244 issue: 1–4 year: 2009 ident: 2672_CR17 publication-title: Wear doi: 10.1016/j.wear.2009.01.052 – volume: 1 start-page: 131 issue: 2 year: 1974 ident: 2672_CR35 publication-title: Lett. Heat Mass Transf. doi: 10.1016/0094-4548(74)90150-7 – volume: 380 start-page: 1 year: 2021 ident: 2672_CR40 publication-title: Powder Technol. doi: 10.1016/j.powtec.2020.11.059 – volume: 217 start-page: 467 year: 2012 ident: 2672_CR21 publication-title: Powder Technol. doi: 10.1016/j.powtec.2011.11.003 – ident: 2672_CR4 doi: 10.1016/j.matdes.2021.110312 – volume: 91 start-page: 2106 issue: 11 year: 2013 ident: 2672_CR37 publication-title: Chem. Eng. Res. Des. doi: 10.1016/j.cherd.2013.05.022 – volume: 392 start-page: 619 year: 2021 ident: 2672_CR26 publication-title: Powder Technol. doi: 10.1016/j.powtec.2021.07.052 – volume: 32 start-page: 334 year: 2016 ident: 2672_CR28 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.04.056 – volume: 321 start-page: 87 year: 2014 ident: 2672_CR32 publication-title: Wear doi: 10.1016/j.wear.2014.10.010 – start-page: 48 volume-title: Development of Erosion Equations for Slurry Flows year: 2015 ident: 2672_CR38 – volume: 309 start-page: 49 year: 2017 ident: 2672_CR9 publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.12.087 – ident: 2672_CR19 doi: 10.1016/j.matdes.2021.110376 – ident: 2672_CR25 doi: 10.1016/j.engfailanal.2021.105779 – volume: 328–329 start-page: 401 year: 2015 ident: 2672_CR29 publication-title: Wear doi: 10.1016/j.wear.2015.03.013 – volume: 305 start-page: 27 year: 2017 ident: 2672_CR2 publication-title: Powder Technol. doi: 10.1016/j.powtec.2016.09.048 – volume: 27 start-page: 706 year: 2015 ident: 2672_CR27 publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2015.09.003 – ident: 2672_CR46 doi: 10.1016/j.jallcom.2021.161629 – ident: 2672_CR3 doi: 10.1016/j.chemosphere.2022.137412 – volume: 45 start-page: 2702 year: 2021 ident: 2672_CR12 publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2020.11.541 – ident: 2672_CR36 doi: 10.1016/j.cmpb.2022.106756 – volume: 46 start-page: 137 issue: 1 year: 2012 ident: 2672_CR22 publication-title: Tribol. Int. – volume: 404–405 start-page: 92 year: 2018 ident: 2672_CR13 publication-title: Wear doi: 10.1016/j.wear.2018.03.007 – volume: 275 start-page: 182 year: 2015 ident: 2672_CR33 publication-title: Powder Technol. doi: 10.1016/j.powtec.2014.12.057 – volume: 27 start-page: 1438 issue: 11 year: 2020 ident: 2672_CR8 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-020-2022-3 – volume: 30 start-page: 1538 issue: 8 year: 2023 ident: 2672_CR10 publication-title: Int. J. Miner. Metall. Mater. doi: 10.1007/s12613-022-2587-0 |
SSID | ssj0067707 |
Score | 2.3959663 |
Snippet | Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1608 |
SubjectTerms | Bends Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Composites Computational fluid dynamics Corrosion and Coatings Fluid dynamics Glass Hydrodynamics Incidence angle Kinetic energy Materials Science Mathematical models Metallic Materials Mine tailings Mining industry Natural Materials Parameter sensitivity Particle size Particle tracking Slurries Slurry pipelines Surfaces and Interfaces Tailings Thin Films Tribology |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSxxBFC7i5KIHMVFx1IR3yClaYG-1eBNRJJA5ZWBuTS2vZGBoh5keJPMr8pN91YujEgO59KVrgfpeVX2v3sbYN-UKoVViuC8QOd14yE1QjguXmzzxStrGXPBzJO7G-Y9JMeniuJe9t3tvkmxO6k2wG5H9aHPMeCpkytdb7GNBqnv04xqnV_3xK6RsYqSjd318NtK9KfNvQ7y-jDYM841RtLlrbvfYbkcS4apF9RP7gNVntvMideA--3NDI9KawiOJKpgaiMiBxcrDQ4D5dI7QBiBC9BCNr-GwnK0Wi99Q99nMG0guYbRqbTYzaDLNgusqeMa-04pQhehV5Iisn8O8kzNYTtcIhiZrZjTV_QwP2Pj25tf1He-qK3CXJaLmNvGZzb1WwSBxQCTNwtsgiQNJWRgXMnGhQxKccygD8QAVvEJSr6RNgjKZyA7ZoHqo8IhBmgjvdK4t2pCnpHMIgfRBlXurtU2H7KJf5tJ1qcdjBYxZuUmaHJEpCZkyIlOuh-z7c5d5m3fjX41Pe-zKbgsuy1iGi_iIToshO-vx3Px-d7Dj_2p9wrbjNK1L4Ckb1IsVfiGaUtuvjVg-AWTE4t4 priority: 102 providerName: Springer Nature |
Title | Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle |
URI | https://link.springer.com/article/10.1007/s12613-023-2672-z https://www.proquest.com/docview/2920238925 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LixNBEG7c5KIHcX1gdA118KQ27rz6sReJS7KLYhAxsJ6Gfi6BMBmTCWJ-xf5kq2d6jAruZRhmpruhq6bqq0dXEfJSmIJJkShqC-coajxHlReGMpOrPLGC6zZc8GnOLhf5h6viKjrctjGtspeJraC2axN85G9DVyVULzIt3tXfaegaFaKrsYXGERmiCBZiQIbvp_PPX3pZzDhvD0yHVPvgQ5J9XLM9PIfGQ4hhZjRlPKX7vzXTAW7-EyFtFc_sAbkfESNMOhIfkzuuekju_VFH8BG5meKMuMHwA_kWVAOI6kC7ysLaQ72sHXSnESGkiwbXOGxXu83mJzR9afOWPmcw33UBnBW0ZWfBxHaeYeyyQhJDSDEyiNzfQB2ZDrbLvQOFi7Urqup65R6TxWz69fySxlYL1GQJa6hObKZzK4VXDgGhQzPDas8REHFeKOMzdip94o0xjnsEBcJb4dDW4jrxQmUse0IG1bpyTwmkCbNG5lI77fMUDRDGHF6cyK2WUqcjctpvc2liHfLQDmNVHiooB8qUSJkyUKbcj8ir30PqrgjHbR-f9LQr4_-4LQ_cMyKve3oeXv93sme3T_ac3A23XULgCRk0m517gSCl0WNyJGYXYzKcXHz7OB1HvsSni3TyC18K6p4 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiKe60MIc4AJYNC_HRqoQgi5b2u6plXoLflYrrbJhN6uq-yv4JfxGxk7MAhK99ZJDEo8lf2PPjOdFyEuuCyZ4IqkprKUo8SyVjmvKdC7zxPBSBXfByZiNzvKv58X5BvkZc2F8WGU8E8NBbWba35G_812VULyItPjQfKe-a5T3rsYWGh1bHNmrSzTZFvuHnxHfV2k6PDj9NKJ9VwGqs4S1VCUmU7kR3EmLuo9FjdooV6LsL8tCapexPeESp7W2pUP5x53hFs2KUiWOy4xlSPcWuZ1nKMl9ZvrwSzz5WVmG9Gwf2O9vrET0ooZUPTRVvMc0oykrU7r6Ww6uldt__LFBzA3vk3u9fgofO4Z6QDZs_ZBs_VG18BH5cYAUEU64xOUA2QLqkKBsbWDmoJk0FrrcR_DBqf4iHhbT5Xx-BW0spB644T2Ml527aAqhyC3ovnmoHzupkaHABzRptBPeQtOzOCwmKwsSJwszyvpiah-TsxuB4AnZrGe13SaQJsxokQtllctTNHcYs_iwPDdKCJUOyF5c5kr3Vc99841pta7X7JGpEJnKI1OtBuT17yFNV_Ljup93InZVv_sX1ZpXB-RNxHP9-b_Enl5P7AW5Mzo9Oa6OD8dHz8hd_7oLRdwhm-18aXdRPWrV88CTQL7d9Cb4BQzJI_Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FICE4IFYxEKAOcAFaidt2L0gcIpJRQmDEgZFyM-4NjTRyrBmPosxX8Cf8ItVeGECAxCEXX9yL1a_a9bprA3imbC60Skrmcu8ZaTzPyqAsEzYrs8QpaVpzwYeJOJpm707z0y34NsTCtN7ug0myi2mIWZqqZrd2YXcT-EbEP9ofU8aF5Gzde1We-ItzOrMt3xwfEMDPOR8ffnp7xPqyAsymiWiYSVxqMqdVKD2RH0-U2pkgSflLmZc2pGJPhyRYa70MpABVcMrTuUKaJKgyFSmNewWuZjH4mDbQlO8Pv34hZRufHT3745WVHsyof_rkXxXhht3-ZpBt9dz4FtzsCSrudxJ1G7Z8dQdu_JS28C58PaQRCU88p-XAskEikWh85fAsYD2rPXbBjxi9U-NNPC7nq8XiApshk3orDq9xsursRXNss9yi7auHxr6ziiQKo0eTpYPCK6x7GcflbO2xpMnaGcvqy9zfg-mlQHAftquzyj8A5IlwVmfaeBMyTucdITw9vMqc0drwEewNy1zYPu15rL4xLzYJmyMyBSFTRGSK9Qhe_OhSdzk__tV4Z8Cu6Lf_soglwIgLaZ6P4OWA5-b1Xwd7-F-tn8K1jwfj4v3x5OQRXI8zdp6JO7DdLFb-MbGlxjxpJRTh82Vvie9__yVP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Erosion+wear+at+the+bend+of+pipe+during+tailings+slurry+transportation%3A+Numerical+study+considering+inlet+velocity%2C+particle+size+and+bend+angle&rft.jtitle=International+journal+of+minerals%2C+metallurgy+and+materials&rft.au=Chen%2C+Qiusong&rft.au=Zhou%2C+Hailong&rft.au=Wang%2C+Yunmin&rft.au=Wang%2C+Daolin&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-4799&rft.eissn=1869-103X&rft.volume=30&rft.issue=8&rft.spage=1608&rft.epage=1620&rft_id=info:doi/10.1007%2Fs12613-023-2672-z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-4799&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-4799&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-4799&client=summon |