Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle

Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry. Erosion wear (EW) remains the main cause of failure in tailings slurry pipeline systems, particularly at bends. EW is...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of minerals, metallurgy and materials Vol. 30; no. 8; pp. 1608 - 1620
Main Authors Chen, Qiusong, Zhou, Hailong, Wang, Yunmin, Wang, Daolin, Zhang, Qinli, Liu, Yikai
Format Journal Article
LanguageEnglish
Published Beijing University of Science and Technology Beijing 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry. Erosion wear (EW) remains the main cause of failure in tailings slurry pipeline systems, particularly at bends. EW is a complex phenomenon influenced by numerous factors, but research in this area has been limited. This study performs numerical simulations of slurry transport at the bend by combining computational fluid dynamics and fluid particle tracking using a wear model. Based on the validation of the feasibility of the model, this work focuses on the effects of coupled inlet velocity (IV) ranging from 1.5 to 3.0 m·s −1 , particle size (PS) ranging from 50 to 650 µm, and bend angle (BA) ranging from 45° to 90° on EW at the bend in terms of particle kinetic energy and incidence angle. The results show that the maximum EW rate of the slurry at the bend increases exponentially with IV and PS and first increases and then decreases with the increase in BA with the inflection point at 60° within these parameter ranges. Further comprehensive analysis reveals that the sensitivity level of the three factors to the maximum EW rate is PS > IV > BA, and when IV is 3.0 m/s, PS is 650 µm, and BA is 60°, the bend EW is the most severe, and the maximum EW rate is 5.68 × 10 −6 kg·m −2 ·s −1 . In addition, When PS is below or equal to 450 µm, the maximum EW position is mainly at the outlet of the bend. When PS is greater than 450 µm, the maximum EW position shifts toward the center of the bend with the increase in BA. Therefore, EW at the bend can be reduced in practice by reducing IV as much as possible and using small particles.
AbstractList Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry. Erosion wear (EW) remains the main cause of failure in tailings slurry pipeline systems, particularly at bends. EW is a complex phenomenon influenced by numerous factors, but research in this area has been limited. This study performs numerical simulations of slurry transport at the bend by combining computational fluid dynamics and fluid particle tracking using a wear model. Based on the validation of the feasibility of the model, this work focuses on the effects of coupled inlet velocity (IV) ranging from 1.5 to 3.0 m·s−1, particle size (PS) ranging from 50 to 650 µm, and bend angle (BA) ranging from 45° to 90° on EW at the bend in terms of particle kinetic energy and incidence angle. The results show that the maximum EW rate of the slurry at the bend increases exponentially with IV and PS and first increases and then decreases with the increase in BA with the inflection point at 60° within these parameter ranges. Further comprehensive analysis reveals that the sensitivity level of the three factors to the maximum EW rate is PS > IV > BA, and when IV is 3.0 m/s, PS is 650 µm, and BA is 60°, the bend EW is the most severe, and the maximum EW rate is 5.68 × 10−6 kg·m−2·s−1. In addition, When PS is below or equal to 450 µm, the maximum EW position is mainly at the outlet of the bend. When PS is greater than 450 µm, the maximum EW position shifts toward the center of the bend with the increase in BA. Therefore, EW at the bend can be reduced in practice by reducing IV as much as possible and using small particles.
Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport in the mining industry. Erosion wear (EW) remains the main cause of failure in tailings slurry pipeline systems, particularly at bends. EW is a complex phenomenon influenced by numerous factors, but research in this area has been limited. This study performs numerical simulations of slurry transport at the bend by combining computational fluid dynamics and fluid particle tracking using a wear model. Based on the validation of the feasibility of the model, this work focuses on the effects of coupled inlet velocity (IV) ranging from 1.5 to 3.0 m·s −1 , particle size (PS) ranging from 50 to 650 µm, and bend angle (BA) ranging from 45° to 90° on EW at the bend in terms of particle kinetic energy and incidence angle. The results show that the maximum EW rate of the slurry at the bend increases exponentially with IV and PS and first increases and then decreases with the increase in BA with the inflection point at 60° within these parameter ranges. Further comprehensive analysis reveals that the sensitivity level of the three factors to the maximum EW rate is PS > IV > BA, and when IV is 3.0 m/s, PS is 650 µm, and BA is 60°, the bend EW is the most severe, and the maximum EW rate is 5.68 × 10 −6 kg·m −2 ·s −1 . In addition, When PS is below or equal to 450 µm, the maximum EW position is mainly at the outlet of the bend. When PS is greater than 450 µm, the maximum EW position shifts toward the center of the bend with the increase in BA. Therefore, EW at the bend can be reduced in practice by reducing IV as much as possible and using small particles.
Author Wang, Yunmin
Liu, Yikai
Chen, Qiusong
Zhou, Hailong
Wang, Daolin
Zhang, Qinli
Author_xml – sequence: 1
  givenname: Qiusong
  surname: Chen
  fullname: Chen, Qiusong
  organization: School of Resources and Safety Engineering, Central South University, Sinosteel Maanshan General Institute of Mining Research Co., Ltd
– sequence: 2
  givenname: Hailong
  surname: Zhou
  fullname: Zhou, Hailong
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 3
  givenname: Yunmin
  surname: Wang
  fullname: Wang, Yunmin
  organization: School of Resources and Safety Engineering, Central South University, Sinosteel Maanshan General Institute of Mining Research Co., Ltd
– sequence: 4
  givenname: Daolin
  surname: Wang
  fullname: Wang, Daolin
  email: daolinw@csu.edu.cn
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 5
  givenname: Qinli
  surname: Zhang
  fullname: Zhang, Qinli
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 6
  givenname: Yikai
  surname: Liu
  fullname: Liu, Yikai
  organization: Department of Geosciences, University of Padova
BookMark eNp9kMFu1DAQhi1UJNrSB-htJK6k2M5uJuFWVaUgVeUCEjfLccbFlWuntgPafQoeGe8uElIlOI0P883v_zthRyEGYuxc8AvBOb7LQnaibbhsG9mhbLYv2LHou6ERvP12VN8drpoVDsMrdpLzA-cdIsdj9us6xexigJ-kE-gC5TvBSGGCaGF2M8G0JBfuoWjn68yQ_ZLSBkrSIc8xFV0q_h7ulkdKzmgPuSzTBkwM2U20Z13wVOAH-Whc2byFWafijCfIbkuga9g-UYd7T6_ZS6t9prM_85R9_XD95epjc_v55tPV5W1jWtGVZhRTO66mobeaEFe0HnAaLXK5RlxrY9uOD1ZYYwyhFb3o7dRTjwJHYXvddu0pe3O4O6f4tFAu6iEuKdRIJQdZPfaDXNctPGyZqiknsqo22Deu_Z1XgqudfnXQryqmdvrVtpLiGTkn96jT5r-MPDB53nmj9PdP_4Z-A83PniE
CitedBy_id crossref_primary_10_1016_j_powtec_2024_119417
crossref_primary_10_1007_s12613_023_2799_y
crossref_primary_10_1016_j_scitotenv_2023_168320
crossref_primary_10_3390_app14114771
crossref_primary_10_1007_s12613_023_2806_3
crossref_primary_10_1007_s13369_024_09951_1
crossref_primary_10_3390_min14030227
crossref_primary_10_3390_su151612492
crossref_primary_10_1007_s11771_024_5648_x
crossref_primary_10_3390_min13081045
crossref_primary_10_1016_j_jmrt_2023_09_032
crossref_primary_10_1063_5_0170072
crossref_primary_10_1007_s12613_023_2686_6
crossref_primary_10_1007_s11356_024_35327_x
crossref_primary_10_1016_j_jenvman_2023_119406
crossref_primary_10_1016_j_powtec_2023_118850
crossref_primary_10_1038_s41598_024_81849_2
crossref_primary_10_1155_2024_8659304
crossref_primary_10_1016_j_conbuildmat_2023_134170
Cites_doi 10.1016/j.scitotenv.2022.158516
10.1016/j.wear.2006.11.018
10.1016/j.engfailanal.2022.106081
10.1016/j.powtec.2015.11.028
10.1007/s11771-021-4728-4
10.1038/s41467-021-23009-y
10.1016/j.wear.2020.203572
10.1016/j.corsci.2014.04.045
10.1016/j.jngse.2015.06.054
10.1038/s41467-019-13643-y
10.1007/s12613-022-2423-6
10.1016/j.matpr.2017.12.080
10.1016/j.compfluid.2020.104710
10.1016/j.ceramint.2020.09.240
10.1016/j.ijheatfluidflow.2013.07.012
10.1016/j.wear.2007.03.016
10.1016/j.wear.2006.01.022
10.1038/s41467-021-26128-8
10.1016/j.wear.2009.01.052
10.1016/0094-4548(74)90150-7
10.1016/j.powtec.2020.11.059
10.1016/j.powtec.2011.11.003
10.1016/j.matdes.2021.110312
10.1016/j.cherd.2013.05.022
10.1016/j.powtec.2021.07.052
10.1016/j.jngse.2016.04.056
10.1016/j.wear.2014.10.010
10.1016/j.powtec.2016.12.087
10.1016/j.matdes.2021.110376
10.1016/j.engfailanal.2021.105779
10.1016/j.wear.2015.03.013
10.1016/j.powtec.2016.09.048
10.1016/j.jngse.2015.09.003
10.1016/j.jallcom.2021.161629
10.1016/j.chemosphere.2022.137412
10.1016/j.matpr.2020.11.541
10.1016/j.cmpb.2022.106756
10.1016/j.wear.2018.03.007
10.1016/j.powtec.2014.12.057
10.1007/s12613-020-2022-3
10.1007/s12613-022-2587-0
ContentType Journal Article
Copyright University of Science and Technology Beijing 2023
University of Science and Technology Beijing 2023.
Copyright_xml – notice: University of Science and Technology Beijing 2023
– notice: University of Science and Technology Beijing 2023.
DBID AAYXX
CITATION
8FE
8FG
ABJCF
AEUYN
AFKRA
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
D1I
DWQXO
HCIFZ
KB.
PCBAR
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12613-023-2672-z
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection (ProQuest)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central (New)
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection (ProQuest)
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Science Database
Earth, Atmospheric & Aquatic Science Database
Materials Science Collection (ProQuest)
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
ProQuest Materials Science Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Materials Science Collection
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Materials Science & Engineering Collection
Materials Science Database
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList ProQuest Materials Science Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-103X
EndPage 1620
ExternalDocumentID 10_1007_s12613_023_2672_z
GroupedDBID --K
-EM
-SB
-S~
06D
0R~
0VY
188
1B1
1N0
1~5
2B.
2C0
2KG
2LR
2VQ
30V
4.4
406
408
40D
4G.
67Z
7-5
71M
8RM
92H
92I
96X
AACDK
AAEDT
AAHNG
AAIAL
AAJBT
AAJKR
AALRI
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAXUO
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABDZT
ABECU
ABFTV
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AXYYD
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
CAG
CAJEB
CCPQU
COF
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FDB
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
H13
HCIFZ
HF~
HMJXF
HRMNR
HVGLF
HZ~
IKXTQ
IWAJR
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LLZTM
M41
M4Y
NPVJJ
NQJWS
NU0
O9-
O9J
OZT
P2P
P9N
PCBAR
PDBOC
PT4
Q--
R9I
RIG
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TCJ
TGT
TSG
U1G
U2A
U5L
UG4
UGNYK
UOJIU
UTJUX
UZ4
UZXMN
VC2
VFIZW
W48
WK8
Z5O
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z85
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACMFV
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
ABRTQ
D1I
DWQXO
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-b1d3b4d98fae774e597dbf7025775acf3609f1fccce7f1818fd8e8717b1f8a363
IEDL.DBID BENPR
ISSN 1674-4799
IngestDate Fri Jul 25 11:02:41 EDT 2025
Tue Jul 01 01:18:47 EDT 2025
Thu Apr 24 23:10:51 EDT 2025
Fri Feb 21 02:41:57 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords CFD
pipe wear
tailings transportation
erosion wear
numerical simulation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-b1d3b4d98fae774e597dbf7025775acf3609f1fccce7f1818fd8e8717b1f8a363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2920238925
PQPubID 2043631
PageCount 13
ParticipantIDs proquest_journals_2920238925
crossref_citationtrail_10_1007_s12613_023_2672_z
crossref_primary_10_1007_s12613_023_2672_z
springer_journals_10_1007_s12613_023_2672_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230800
2023-08-00
20230801
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 8
  year: 2023
  text: 20230800
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle International journal of minerals, metallurgy and materials
PublicationTitleAbbrev Int J Miner Metall Mater
PublicationYear 2023
Publisher University of Science and Technology Beijing
Springer Nature B.V
Publisher_xml – name: University of Science and Technology Beijing
– name: Springer Nature B.V
References WuAXRuanZWangJDRheological behavior of paste in metal minesInt. J. Miner. Metall. Mater.20222947171:CAS:528:DC%2BB38XhsVehtb7P10.1007/s12613-022-2423-6
ZengLZhangGAGuoXPErosion-corrosion at different locations of X65 carbon steel elbowCorros. Sci.2014853181:CAS:528:DC%2BC2cXotlWlt70%3D10.1016/j.corsci.2014.04.045
ChenJKWangYSLiXFHeRYHanSChenYLErosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD–DEM coupling methodPowder Technol.20152751821:CAS:528:DC%2BC2MXivVeqsL0%3D10.1016/j.powtec.2014.12.057
ParsiMAgrawalMSrinivasanVCFD simulation of sand particle erosion in gas-dominant multiphase flowJ. Nat. Gas Sci. Eng.2015277061:CAS:528:DC%2BC2MXhsFWmt7nM10.1016/j.jngse.2015.09.003
VieiraREMansouriAMcLauryBSShiraziSAExperimental and computational study of erosion in elbows due to sand particles in air flowPowder Technol.20162883391:CAS:528:DC%2BC2MXhvVOmurvM10.1016/j.powtec.2015.11.028
H. Zhou, Q.F. Ji, W. Liu, H.Y. Ma, Y. Lei, and K.Q. Zhu, Experimental study on erosion-corrosion behavior of liquid–solid swirling flow in pipeline, Mater. Des., 214(2022), art. No. 110376.
TanYQZhangHYangDMJiangSQSongJHShengYNumerical simulation of concrete pumping process and investigation of wear mechanism of the piping wallTribol. Int.2012461137
RathoreRKGuptaPKKumarNNumerical investigation of zinc tailings slurry flow field in a horizontal pipelineMater. Today Proc.202145270210.1016/j.matpr.2020.11.541
TarodiyaRGandhiBKHydraulic performance and erosive wear of centrifugal slurry pumps - A reviewPowder Technol.2017305271:CAS:528:DC%2BC28Xhs1Srs7zN10.1016/j.powtec.2016.09.048
WangDLZhangQLChenQSQiCCFengYXiaoCCTemperature variation characteristics in flocculation settlement of tailings and its mechanismInt. J. Miner. Metall. Mater.20202711143810.1007/s12613-020-2022-3
BlanchardDJGriffithPRabinowiczEErosion of a pipe bend by solid particles entrained in waterJ. Manuf. Sci. Eng.19841063213
ZhangQLLiYTChenQSLiuYKFengYWangDLEffects of temperatures and pH values on rheological properties of cemented paste backfillJ. Cent. South Univ.202128617071:CAS:528:DC%2BB3MXisFWlurnE10.1007/s11771-021-4728-4
LinNLanHQXuYGDongSHBarberGEffect of the gas-solid two-phase flow velocity on elbow erosionJ. Nat. Gas Sci. Eng.20152658110.1016/j.jngse.2015.06.054
RafieeMSimmonsMJHIngramAStittEHDevelopment of positron emission particle tracking for studying laminar mixing in Kenics static mixerChem. Eng. Res. Des.2013911121061:CAS:528:DC%2BC3sXhtVKnsb7N10.1016/j.cherd.2013.05.022
Q.M. Nguyen, J. Abouezzi, and L. Ristroph, Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve, Nat. Commun., 12(2021), No. 1, art. No. 2884.
RajahramSSHarveyTJWoodRJKErosion–corrosion resistance of engineering materials in various test conditionsWear20092671–42441:CAS:528:DC%2BD1MXmtlajsL4%3D10.1016/j.wear.2009.01.052
ZhouMMKuangSBXiaoFLuoKYuABCFD-DEM analysis of hydraulic conveying bends: Interaction between pipe orientation and flow regimePowder Technol.20213926191:CAS:528:DC%2BB3MXhs1KhurbJ10.1016/j.powtec.2021.07.052
ZolfagharnasabMHSalimiMZolfagharnasabHAlimoradiHShamsMAghanajafiCA novel numerical investigation of erosion wear over various 90-degree elbow duct sectionsPowder Technol.202138011:CAS:528:DC%2BB3cXis12ht7%2FL10.1016/j.powtec.2020.11.059
SinghGKumarSMohapatraSKErosion wear in a slurry pipe with multisized coal and bottom-ash slurriesMater. Today2017423565
Q.S. Chen, S.Y. Sun, Y.M. Wang, Q.L. Zhang, L.M. Zhu, and Y.K. Liu, In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment, Chemosphere, 313(2023), art. No. 137412.
R. Camassa, D.M. Harris, R. Hunt, Z. Kilic, and R.M. McLaughlin, A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids, Nat. Commun., 10(2019), No. 1, art. No. 5804.
Al-BukhaitiMAAhmedSMBadranFMFEmaraKMEffect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast ironWear20072629–1011871:CAS:528:DC%2BD2sXjt1SitLs%3D10.1016/j.wear.2006.11.018
Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516.
LaunderBESharmaBIApplication of the energy-dissipation model of turbulence to the calculation of flow near a spinning discLett. Heat Mass Transf.19741213110.1016/0094-4548(74)90150-7
UziALevyAEnergy absorption by the particle and the surface during impactWear2018404–4059210.1016/j.wear.2018.03.007
Q.C. Wang, Q.Y. Huang, N.R. Wang, et al., An experimental and numerical study of slurry erosion behavior in a horizontal elbow and elbows in series, Eng. Fail. Anal., 130(2021), art. No. 105779.
M.E. Ibrahim and M. Medraj, Prediction and experimental evaluation of the threshold velocity in water droplet erosion, Mater. Des., 213(2022), art. No. 110312.
ZhangJXKangJAFanJCGaoJCStudy on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industryJ. Nat. Gas Sci. Eng.2016323341:CAS:528:DC%2BC2sXivVGgs7w%3D10.1016/j.jngse.2016.04.056
ParsiMVieiraREKesanaNMcLauryBSShiraziSAUltrasonic measurements of sand particle erosion in gas dominant multiphase churn flow in vertical pipesWear2015328–32940110.1016/j.wear.2015.03.013
ShahSNJainSCoiled tubing erosion during hydraulic fracturing slurry flowWear20082643–42791:CAS:528:DC%2BD2sXhtlyns7%2FJ10.1016/j.wear.2007.03.016
Y. Sun, M.L. Liu, Y. Xiao, and Y.F. Chen, A novel molecular communication inspired detection method for the evolution of atherosclerosis, Comput. Meth. Programs Biomed., 219(2022), art. No. 106756.
Q. Li, Z.Y. Peng, W.B. Jiang, et al., Optimization of Ti−Zr−Cr−Fe alloys for 45 MPa metal hydride hydrogen compressors using orthogonal analysis, J. Alloys Compd., 889(2021), art. No. 161629.
WangJHZhangTFWangSGHeterogeneous ice slurry flow and concentration distribution in horizontal pipesInt. J. Heat Fluid Flow2013444251:CAS:528:DC%2BC2cXhtVGkurfK10.1016/j.ijheatfluidflow.2013.07.012
JiaoHZYangWBRuanZEYuJXLiuJHYangYXMicroscale mechanism of tailing thickening in metal minesInt. J. Miner. Metall. Mater.20233081538
ChenXHMcLauryBSShiraziSANumerical and experimental investigation of the relative erosion severity between plugged Tees and elbows in dilute gas/solid two-phase flowWear20062617–87151:CAS:528:DC%2BD28XpvF2gtbo%3D10.1016/j.wear.2006.01.022
KangPCZhaoQQGuoSQOptimisation of the spark plasma sintering process for high volume fraction SiCp/Al composites by orthogonal experimental designCeram. Int.202147338161:CAS:528:DC%2BB3cXhvFOgs7fN10.1016/j.ceramint.2020.09.240
B.Q. Wu, X.D. Wang, X.X. Liu, G.G. Xu, and S.B. Zhu, Numerical simulation of erosion and fatigue failure the coal gangue paste filling caused to pumping pipes, Eng. Fail. Anal., 134(2022), art. No. 106081.
KannojiyaVDeshwalMDeshwalDNumerical analysis of solid particle erosion in pipe elbowMater. Today Proc.20185250211:CAS:528:DC%2BC1MXmslSku7c%3D10.1016/j.matpr.2017.12.080
MansouriADevelopment of Erosion Equations for Slurry Flows2015TulsaAdvis. Board Rep. Erosion/Corrosion Res. Center, Univ. Tulsa48
DhodapkarSSoltPKlinzingGUnderstanding bends in pneumatic conveying systemsChem. Eng.2009116531:CAS:528:DC%2BD1MXltFygtLg%3D
UziABen AmiYLevyAErosion prediction of industrial conveying pipelinesPowder Technol.2017309491:CAS:528:DC%2BC2sXkvFKlsQ%3D%3D10.1016/j.powtec.2016.12.087
M. Tiberga, A. Hennink, J.L. Kloosterman, and D. Lathouwers, A high-order discontinuous Galerkin solver for the incompressible RANS equations coupled to the k−ϵ, Comput. Fluids, 212(2020), art. No. 104710.
NguyenQBNguyenVBLimCYHEffect of impact angle and testing time on erosion of stainless steel at higher velocitiesWear2014321871:CAS:528:DC%2BC2cXhvVygsbrI10.1016/j.wear.2014.10.010
Y.F. Liu, Y.L. Zhao, and J. Yao, Synergistic erosion-corrosion behavior of X80 pipeline steel at various impingement angles in two-phase flow impingement, Wear, 466–467(2021), art. No. 203572.
I. Marusic, D. Chandran, A. Rouhi, et al., An energy-efficient pathway to turbulent drag reduction, Nat. Commun., 12(2021), art. No. 5805.
ZhangHTanYQYangDMNumerical investigation of the location of maximum erosive wear damage in elbow: Effect of slurry velocity, bend orientation and angle of elbowPowder Technol.20122174671:CAS:528:DC%2BC38XhtlKmtA%3D%3D10.1016/j.powtec.2011.11.003
SN Shah (2672_CR30) 2008; 264
MH Zolfagharnasab (2672_CR40) 2021; 380
N Lin (2672_CR31) 2015; 26
YQ Tan (2672_CR22) 2012; 46
AX Wu (2672_CR7) 2022; 29
G Singh (2672_CR6) 2017; 4
M Parsi (2672_CR29) 2015; 328–329
2672_CR1
2672_CR23
M Parsi (2672_CR27) 2015; 27
V Kannojiya (2672_CR24) 2018; 5
2672_CR46
2672_CR25
2672_CR5
MM Zhou (2672_CR26) 2021; 392
2672_CR3
2672_CR4
JK Chen (2672_CR33) 2015; 275
PC Kang (2672_CR45) 2021; 47
L Zeng (2672_CR39) 2014; 85
A Uzi (2672_CR9) 2017; 309
JX Zhang (2672_CR28) 2016; 32
QB Nguyen (2672_CR32) 2014; 321
BE Launder (2672_CR35) 1974; 1
QL Zhang (2672_CR15) 2021; 28
HZ Jiao (2672_CR10) 2023; 30
JH Wang (2672_CR20) 2013; 44
SS Rajahram (2672_CR17) 2009; 267
H Zhang (2672_CR21) 2012; 217
S Dhodapkar (2672_CR16) 2009; 116
M Rafiee (2672_CR37) 2013; 91
2672_CR11
2672_CR34
DL Wang (2672_CR8) 2020; 27
2672_CR14
2672_CR36
2672_CR18
MA Al-Bukhaiti (2672_CR41) 2007; 262
2672_CR19
A Uzi (2672_CR13) 2018; 404–405
XH Chen (2672_CR43) 2006; 261
RE Vieira (2672_CR42) 2016; 288
RK Rathore (2672_CR12) 2021; 45
DJ Blanchard (2672_CR44) 1984; 106
R Tarodiya (2672_CR2) 2017; 305
A Mansouri (2672_CR38) 2015
References_xml – reference: RajahramSSHarveyTJWoodRJKErosion–corrosion resistance of engineering materials in various test conditionsWear20092671–42441:CAS:528:DC%2BD1MXmtlajsL4%3D10.1016/j.wear.2009.01.052
– reference: H. Zhou, Q.F. Ji, W. Liu, H.Y. Ma, Y. Lei, and K.Q. Zhu, Experimental study on erosion-corrosion behavior of liquid–solid swirling flow in pipeline, Mater. Des., 214(2022), art. No. 110376.
– reference: VieiraREMansouriAMcLauryBSShiraziSAExperimental and computational study of erosion in elbows due to sand particles in air flowPowder Technol.20162883391:CAS:528:DC%2BC2MXhvVOmurvM10.1016/j.powtec.2015.11.028
– reference: TarodiyaRGandhiBKHydraulic performance and erosive wear of centrifugal slurry pumps - A reviewPowder Technol.2017305271:CAS:528:DC%2BC28Xhs1Srs7zN10.1016/j.powtec.2016.09.048
– reference: KannojiyaVDeshwalMDeshwalDNumerical analysis of solid particle erosion in pipe elbowMater. Today Proc.20185250211:CAS:528:DC%2BC1MXmslSku7c%3D10.1016/j.matpr.2017.12.080
– reference: ZolfagharnasabMHSalimiMZolfagharnasabHAlimoradiHShamsMAghanajafiCA novel numerical investigation of erosion wear over various 90-degree elbow duct sectionsPowder Technol.202138011:CAS:528:DC%2BB3cXis12ht7%2FL10.1016/j.powtec.2020.11.059
– reference: SinghGKumarSMohapatraSKErosion wear in a slurry pipe with multisized coal and bottom-ash slurriesMater. Today2017423565
– reference: LaunderBESharmaBIApplication of the energy-dissipation model of turbulence to the calculation of flow near a spinning discLett. Heat Mass Transf.19741213110.1016/0094-4548(74)90150-7
– reference: JiaoHZYangWBRuanZEYuJXLiuJHYangYXMicroscale mechanism of tailing thickening in metal minesInt. J. Miner. Metall. Mater.20233081538
– reference: M.E. Ibrahim and M. Medraj, Prediction and experimental evaluation of the threshold velocity in water droplet erosion, Mater. Des., 213(2022), art. No. 110312.
– reference: ShahSNJainSCoiled tubing erosion during hydraulic fracturing slurry flowWear20082643–42791:CAS:528:DC%2BD2sXhtlyns7%2FJ10.1016/j.wear.2007.03.016
– reference: UziALevyAEnergy absorption by the particle and the surface during impactWear2018404–4059210.1016/j.wear.2018.03.007
– reference: ZengLZhangGAGuoXPErosion-corrosion at different locations of X65 carbon steel elbowCorros. Sci.2014853181:CAS:528:DC%2BC2cXotlWlt70%3D10.1016/j.corsci.2014.04.045
– reference: ChenXHMcLauryBSShiraziSANumerical and experimental investigation of the relative erosion severity between plugged Tees and elbows in dilute gas/solid two-phase flowWear20062617–87151:CAS:528:DC%2BD28XpvF2gtbo%3D10.1016/j.wear.2006.01.022
– reference: Q.C. Wang, Q.Y. Huang, N.R. Wang, et al., An experimental and numerical study of slurry erosion behavior in a horizontal elbow and elbows in series, Eng. Fail. Anal., 130(2021), art. No. 105779.
– reference: NguyenQBNguyenVBLimCYHEffect of impact angle and testing time on erosion of stainless steel at higher velocitiesWear2014321871:CAS:528:DC%2BC2cXhvVygsbrI10.1016/j.wear.2014.10.010
– reference: Al-BukhaitiMAAhmedSMBadranFMFEmaraKMEffect of impingement angle on slurry erosion behaviour and mechanisms of 1017 steel and high-chromium white cast ironWear20072629–1011871:CAS:528:DC%2BD2sXjt1SitLs%3D10.1016/j.wear.2006.11.018
– reference: I. Marusic, D. Chandran, A. Rouhi, et al., An energy-efficient pathway to turbulent drag reduction, Nat. Commun., 12(2021), art. No. 5805.
– reference: ParsiMVieiraREKesanaNMcLauryBSShiraziSAUltrasonic measurements of sand particle erosion in gas dominant multiphase churn flow in vertical pipesWear2015328–32940110.1016/j.wear.2015.03.013
– reference: Q. Li, Z.Y. Peng, W.B. Jiang, et al., Optimization of Ti−Zr−Cr−Fe alloys for 45 MPa metal hydride hydrogen compressors using orthogonal analysis, J. Alloys Compd., 889(2021), art. No. 161629.
– reference: Y.F. Liu, Y.L. Zhao, and J. Yao, Synergistic erosion-corrosion behavior of X80 pipeline steel at various impingement angles in two-phase flow impingement, Wear, 466–467(2021), art. No. 203572.
– reference: DhodapkarSSoltPKlinzingGUnderstanding bends in pneumatic conveying systemsChem. Eng.2009116531:CAS:528:DC%2BD1MXltFygtLg%3D
– reference: WangJHZhangTFWangSGHeterogeneous ice slurry flow and concentration distribution in horizontal pipesInt. J. Heat Fluid Flow2013444251:CAS:528:DC%2BC2cXhtVGkurfK10.1016/j.ijheatfluidflow.2013.07.012
– reference: R. Camassa, D.M. Harris, R. Hunt, Z. Kilic, and R.M. McLaughlin, A first-principle mechanism for particulate aggregation and self-assembly in stratified fluids, Nat. Commun., 10(2019), No. 1, art. No. 5804.
– reference: RathoreRKGuptaPKKumarNNumerical investigation of zinc tailings slurry flow field in a horizontal pipelineMater. Today Proc.202145270210.1016/j.matpr.2020.11.541
– reference: ZhangHTanYQYangDMNumerical investigation of the location of maximum erosive wear damage in elbow: Effect of slurry velocity, bend orientation and angle of elbowPowder Technol.20122174671:CAS:528:DC%2BC38XhtlKmtA%3D%3D10.1016/j.powtec.2011.11.003
– reference: ZhangJXKangJAFanJCGaoJCStudy on erosion wear of fracturing pipeline under the action of multiphase flow in oil & gas industryJ. Nat. Gas Sci. Eng.2016323341:CAS:528:DC%2BC2sXivVGgs7w%3D10.1016/j.jngse.2016.04.056
– reference: MansouriADevelopment of Erosion Equations for Slurry Flows2015TulsaAdvis. Board Rep. Erosion/Corrosion Res. Center, Univ. Tulsa48
– reference: BlanchardDJGriffithPRabinowiczEErosion of a pipe bend by solid particles entrained in waterJ. Manuf. Sci. Eng.19841063213
– reference: Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516.
– reference: Q.M. Nguyen, J. Abouezzi, and L. Ristroph, Early turbulence and pulsatile flows enhance diodicity of Tesla’s macrofluidic valve, Nat. Commun., 12(2021), No. 1, art. No. 2884.
– reference: Q.S. Chen, S.Y. Sun, Y.M. Wang, Q.L. Zhang, L.M. Zhu, and Y.K. Liu, In-situ remediation of phosphogypsum in a cement-free pathway: Utilization of ground granulated blast furnace slag and NaOH pretreatment, Chemosphere, 313(2023), art. No. 137412.
– reference: Y. Sun, M.L. Liu, Y. Xiao, and Y.F. Chen, A novel molecular communication inspired detection method for the evolution of atherosclerosis, Comput. Meth. Programs Biomed., 219(2022), art. No. 106756.
– reference: ChenJKWangYSLiXFHeRYHanSChenYLErosion prediction of liquid-particle two-phase flow in pipeline elbows via CFD–DEM coupling methodPowder Technol.20152751821:CAS:528:DC%2BC2MXivVeqsL0%3D10.1016/j.powtec.2014.12.057
– reference: M. Tiberga, A. Hennink, J.L. Kloosterman, and D. Lathouwers, A high-order discontinuous Galerkin solver for the incompressible RANS equations coupled to the k−ϵ, Comput. Fluids, 212(2020), art. No. 104710.
– reference: WuAXRuanZWangJDRheological behavior of paste in metal minesInt. J. Miner. Metall. Mater.20222947171:CAS:528:DC%2BB38XhsVehtb7P10.1007/s12613-022-2423-6
– reference: ZhangQLLiYTChenQSLiuYKFengYWangDLEffects of temperatures and pH values on rheological properties of cemented paste backfillJ. Cent. South Univ.202128617071:CAS:528:DC%2BB3MXisFWlurnE10.1007/s11771-021-4728-4
– reference: UziABen AmiYLevyAErosion prediction of industrial conveying pipelinesPowder Technol.2017309491:CAS:528:DC%2BC2sXkvFKlsQ%3D%3D10.1016/j.powtec.2016.12.087
– reference: ZhouMMKuangSBXiaoFLuoKYuABCFD-DEM analysis of hydraulic conveying bends: Interaction between pipe orientation and flow regimePowder Technol.20213926191:CAS:528:DC%2BB3MXhs1KhurbJ10.1016/j.powtec.2021.07.052
– reference: WangDLZhangQLChenQSQiCCFengYXiaoCCTemperature variation characteristics in flocculation settlement of tailings and its mechanismInt. J. Miner. Metall. Mater.20202711143810.1007/s12613-020-2022-3
– reference: LinNLanHQXuYGDongSHBarberGEffect of the gas-solid two-phase flow velocity on elbow erosionJ. Nat. Gas Sci. Eng.20152658110.1016/j.jngse.2015.06.054
– reference: RafieeMSimmonsMJHIngramAStittEHDevelopment of positron emission particle tracking for studying laminar mixing in Kenics static mixerChem. Eng. Res. Des.2013911121061:CAS:528:DC%2BC3sXhtVKnsb7N10.1016/j.cherd.2013.05.022
– reference: TanYQZhangHYangDMJiangSQSongJHShengYNumerical simulation of concrete pumping process and investigation of wear mechanism of the piping wallTribol. Int.2012461137
– reference: B.Q. Wu, X.D. Wang, X.X. Liu, G.G. Xu, and S.B. Zhu, Numerical simulation of erosion and fatigue failure the coal gangue paste filling caused to pumping pipes, Eng. Fail. Anal., 134(2022), art. No. 106081.
– reference: ParsiMAgrawalMSrinivasanVCFD simulation of sand particle erosion in gas-dominant multiphase flowJ. Nat. Gas Sci. Eng.2015277061:CAS:528:DC%2BC2MXhsFWmt7nM10.1016/j.jngse.2015.09.003
– reference: KangPCZhaoQQGuoSQOptimisation of the spark plasma sintering process for high volume fraction SiCp/Al composites by orthogonal experimental designCeram. Int.202147338161:CAS:528:DC%2BB3cXhvFOgs7fN10.1016/j.ceramint.2020.09.240
– ident: 2672_CR11
  doi: 10.1016/j.scitotenv.2022.158516
– volume: 262
  start-page: 1187
  issue: 9–10
  year: 2007
  ident: 2672_CR41
  publication-title: Wear
  doi: 10.1016/j.wear.2006.11.018
– volume: 106
  start-page: 213
  issue: 3
  year: 1984
  ident: 2672_CR44
  publication-title: J. Manuf. Sci. Eng.
– ident: 2672_CR23
  doi: 10.1016/j.engfailanal.2022.106081
– volume: 288
  start-page: 339
  year: 2016
  ident: 2672_CR42
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2015.11.028
– volume: 4
  start-page: 3565
  issue: 2
  year: 2017
  ident: 2672_CR6
  publication-title: Mater. Today
– volume: 28
  start-page: 1707
  issue: 6
  year: 2021
  ident: 2672_CR15
  publication-title: J. Cent. South Univ.
  doi: 10.1007/s11771-021-4728-4
– ident: 2672_CR1
  doi: 10.1038/s41467-021-23009-y
– volume: 116
  start-page: 53
  year: 2009
  ident: 2672_CR16
  publication-title: Chem. Eng.
– ident: 2672_CR18
  doi: 10.1016/j.wear.2020.203572
– volume: 85
  start-page: 318
  year: 2014
  ident: 2672_CR39
  publication-title: Corros. Sci.
  doi: 10.1016/j.corsci.2014.04.045
– volume: 26
  start-page: 581
  year: 2015
  ident: 2672_CR31
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.06.054
– ident: 2672_CR14
  doi: 10.1038/s41467-019-13643-y
– volume: 29
  start-page: 717
  issue: 4
  year: 2022
  ident: 2672_CR7
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-022-2423-6
– volume: 5
  start-page: 5021
  issue: 2
  year: 2018
  ident: 2672_CR24
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2017.12.080
– ident: 2672_CR34
  doi: 10.1016/j.compfluid.2020.104710
– volume: 47
  start-page: 3816
  issue: 3
  year: 2021
  ident: 2672_CR45
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.09.240
– volume: 44
  start-page: 425
  year: 2013
  ident: 2672_CR20
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2013.07.012
– volume: 264
  start-page: 279
  issue: 3–4
  year: 2008
  ident: 2672_CR30
  publication-title: Wear
  doi: 10.1016/j.wear.2007.03.016
– volume: 261
  start-page: 715
  issue: 7–8
  year: 2006
  ident: 2672_CR43
  publication-title: Wear
  doi: 10.1016/j.wear.2006.01.022
– ident: 2672_CR5
  doi: 10.1038/s41467-021-26128-8
– volume: 267
  start-page: 244
  issue: 1–4
  year: 2009
  ident: 2672_CR17
  publication-title: Wear
  doi: 10.1016/j.wear.2009.01.052
– volume: 1
  start-page: 131
  issue: 2
  year: 1974
  ident: 2672_CR35
  publication-title: Lett. Heat Mass Transf.
  doi: 10.1016/0094-4548(74)90150-7
– volume: 380
  start-page: 1
  year: 2021
  ident: 2672_CR40
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2020.11.059
– volume: 217
  start-page: 467
  year: 2012
  ident: 2672_CR21
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2011.11.003
– ident: 2672_CR4
  doi: 10.1016/j.matdes.2021.110312
– volume: 91
  start-page: 2106
  issue: 11
  year: 2013
  ident: 2672_CR37
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2013.05.022
– volume: 392
  start-page: 619
  year: 2021
  ident: 2672_CR26
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2021.07.052
– volume: 32
  start-page: 334
  year: 2016
  ident: 2672_CR28
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.04.056
– volume: 321
  start-page: 87
  year: 2014
  ident: 2672_CR32
  publication-title: Wear
  doi: 10.1016/j.wear.2014.10.010
– start-page: 48
  volume-title: Development of Erosion Equations for Slurry Flows
  year: 2015
  ident: 2672_CR38
– volume: 309
  start-page: 49
  year: 2017
  ident: 2672_CR9
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.12.087
– ident: 2672_CR19
  doi: 10.1016/j.matdes.2021.110376
– ident: 2672_CR25
  doi: 10.1016/j.engfailanal.2021.105779
– volume: 328–329
  start-page: 401
  year: 2015
  ident: 2672_CR29
  publication-title: Wear
  doi: 10.1016/j.wear.2015.03.013
– volume: 305
  start-page: 27
  year: 2017
  ident: 2672_CR2
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2016.09.048
– volume: 27
  start-page: 706
  year: 2015
  ident: 2672_CR27
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2015.09.003
– ident: 2672_CR46
  doi: 10.1016/j.jallcom.2021.161629
– ident: 2672_CR3
  doi: 10.1016/j.chemosphere.2022.137412
– volume: 45
  start-page: 2702
  year: 2021
  ident: 2672_CR12
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2020.11.541
– ident: 2672_CR36
  doi: 10.1016/j.cmpb.2022.106756
– volume: 46
  start-page: 137
  issue: 1
  year: 2012
  ident: 2672_CR22
  publication-title: Tribol. Int.
– volume: 404–405
  start-page: 92
  year: 2018
  ident: 2672_CR13
  publication-title: Wear
  doi: 10.1016/j.wear.2018.03.007
– volume: 275
  start-page: 182
  year: 2015
  ident: 2672_CR33
  publication-title: Powder Technol.
  doi: 10.1016/j.powtec.2014.12.057
– volume: 27
  start-page: 1438
  issue: 11
  year: 2020
  ident: 2672_CR8
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-020-2022-3
– volume: 30
  start-page: 1538
  issue: 8
  year: 2023
  ident: 2672_CR10
  publication-title: Int. J. Miner. Metall. Mater.
  doi: 10.1007/s12613-022-2587-0
SSID ssj0067707
Score 2.3959663
Snippet Pipeline hydraulic transport is a highly efficient and low energy-consumption method for transporting solids and is commonly used for tailing slurry transport...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1608
SubjectTerms Bends
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Composites
Computational fluid dynamics
Corrosion and Coatings
Fluid dynamics
Glass
Hydrodynamics
Incidence angle
Kinetic energy
Materials Science
Mathematical models
Metallic Materials
Mine tailings
Mining industry
Natural Materials
Parameter sensitivity
Particle size
Particle tracking
Slurries
Slurry pipelines
Surfaces and Interfaces
Tailings
Thin Films
Tribology
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSxxBFC7i5KIHMVFx1IR3yClaYG-1eBNRJJA5ZWBuTS2vZGBoh5keJPMr8pN91YujEgO59KVrgfpeVX2v3sbYN-UKoVViuC8QOd14yE1QjguXmzzxStrGXPBzJO7G-Y9JMeniuJe9t3tvkmxO6k2wG5H9aHPMeCpkytdb7GNBqnv04xqnV_3xK6RsYqSjd318NtK9KfNvQ7y-jDYM841RtLlrbvfYbkcS4apF9RP7gNVntvMideA--3NDI9KawiOJKpgaiMiBxcrDQ4D5dI7QBiBC9BCNr-GwnK0Wi99Q99nMG0guYbRqbTYzaDLNgusqeMa-04pQhehV5Iisn8O8kzNYTtcIhiZrZjTV_QwP2Pj25tf1He-qK3CXJaLmNvGZzb1WwSBxQCTNwtsgiQNJWRgXMnGhQxKccygD8QAVvEJSr6RNgjKZyA7ZoHqo8IhBmgjvdK4t2pCnpHMIgfRBlXurtU2H7KJf5tJ1qcdjBYxZuUmaHJEpCZkyIlOuh-z7c5d5m3fjX41Pe-zKbgsuy1iGi_iIToshO-vx3Px-d7Dj_2p9wrbjNK1L4Ckb1IsVfiGaUtuvjVg-AWTE4t4
  priority: 102
  providerName: Springer Nature
Title Erosion wear at the bend of pipe during tailings slurry transportation: Numerical study considering inlet velocity, particle size and bend angle
URI https://link.springer.com/article/10.1007/s12613-023-2672-z
https://www.proquest.com/docview/2920238925
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LixNBEG7c5KIHcX1gdA118KQ27rz6sReJS7KLYhAxsJ6Gfi6BMBmTCWJ-xf5kq2d6jAruZRhmpruhq6bqq0dXEfJSmIJJkShqC-coajxHlReGMpOrPLGC6zZc8GnOLhf5h6viKjrctjGtspeJraC2axN85G9DVyVULzIt3tXfaegaFaKrsYXGERmiCBZiQIbvp_PPX3pZzDhvD0yHVPvgQ5J9XLM9PIfGQ4hhZjRlPKX7vzXTAW7-EyFtFc_sAbkfESNMOhIfkzuuekju_VFH8BG5meKMuMHwA_kWVAOI6kC7ysLaQ72sHXSnESGkiwbXOGxXu83mJzR9afOWPmcw33UBnBW0ZWfBxHaeYeyyQhJDSDEyiNzfQB2ZDrbLvQOFi7Urqup65R6TxWz69fySxlYL1GQJa6hObKZzK4VXDgGhQzPDas8REHFeKOMzdip94o0xjnsEBcJb4dDW4jrxQmUse0IG1bpyTwmkCbNG5lI77fMUDRDGHF6cyK2WUqcjctpvc2liHfLQDmNVHiooB8qUSJkyUKbcj8ir30PqrgjHbR-f9LQr4_-4LQ_cMyKve3oeXv93sme3T_ac3A23XULgCRk0m517gSCl0WNyJGYXYzKcXHz7OB1HvsSni3TyC18K6p4
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOUAPiKe60MIc4AJYNC_HRqoQgi5b2u6plXoLflYrrbJhN6uq-yv4JfxGxk7MAhK99ZJDEo8lf2PPjOdFyEuuCyZ4IqkprKUo8SyVjmvKdC7zxPBSBXfByZiNzvKv58X5BvkZc2F8WGU8E8NBbWba35G_812VULyItPjQfKe-a5T3rsYWGh1bHNmrSzTZFvuHnxHfV2k6PDj9NKJ9VwGqs4S1VCUmU7kR3EmLuo9FjdooV6LsL8tCapexPeESp7W2pUP5x53hFs2KUiWOy4xlSPcWuZ1nKMl9ZvrwSzz5WVmG9Gwf2O9vrET0ooZUPTRVvMc0oykrU7r6Ww6uldt__LFBzA3vk3u9fgofO4Z6QDZs_ZBs_VG18BH5cYAUEU64xOUA2QLqkKBsbWDmoJk0FrrcR_DBqf4iHhbT5Xx-BW0spB644T2Ml527aAqhyC3ovnmoHzupkaHABzRptBPeQtOzOCwmKwsSJwszyvpiah-TsxuB4AnZrGe13SaQJsxokQtllctTNHcYs_iwPDdKCJUOyF5c5kr3Vc99841pta7X7JGpEJnKI1OtBuT17yFNV_Ljup93InZVv_sX1ZpXB-RNxHP9-b_Enl5P7AW5Mzo9Oa6OD8dHz8hd_7oLRdwhm-18aXdRPWrV88CTQL7d9Cb4BQzJI_Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtRAEC2FICE4IFYxEKAOcAFaidt2L0gcIpJRQmDEgZFyM-4NjTRyrBmPosxX8Cf8ItVeGECAxCEXX9yL1a_a9bprA3imbC60Skrmcu8ZaTzPyqAsEzYrs8QpaVpzwYeJOJpm707z0y34NsTCtN7ug0myi2mIWZqqZrd2YXcT-EbEP9ofU8aF5Gzde1We-ItzOrMt3xwfEMDPOR8ffnp7xPqyAsymiWiYSVxqMqdVKD2RH0-U2pkgSflLmZc2pGJPhyRYa70MpABVcMrTuUKaJKgyFSmNewWuZjH4mDbQlO8Pv34hZRufHT3745WVHsyof_rkXxXhht3-ZpBt9dz4FtzsCSrudxJ1G7Z8dQdu_JS28C58PaQRCU88p-XAskEikWh85fAsYD2rPXbBjxi9U-NNPC7nq8XiApshk3orDq9xsursRXNss9yi7auHxr6ziiQKo0eTpYPCK6x7GcflbO2xpMnaGcvqy9zfg-mlQHAftquzyj8A5IlwVmfaeBMyTucdITw9vMqc0drwEewNy1zYPu15rL4xLzYJmyMyBSFTRGSK9Qhe_OhSdzk__tV4Z8Cu6Lf_soglwIgLaZ6P4OWA5-b1Xwd7-F-tn8K1jwfj4v3x5OQRXI8zdp6JO7DdLFb-MbGlxjxpJRTh82Vvie9__yVP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Erosion+wear+at+the+bend+of+pipe+during+tailings+slurry+transportation%3A+Numerical+study+considering+inlet+velocity%2C+particle+size+and+bend+angle&rft.jtitle=International+journal+of+minerals%2C+metallurgy+and+materials&rft.au=Chen%2C+Qiusong&rft.au=Zhou%2C+Hailong&rft.au=Wang%2C+Yunmin&rft.au=Wang%2C+Daolin&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-4799&rft.eissn=1869-103X&rft.volume=30&rft.issue=8&rft.spage=1608&rft.epage=1620&rft_id=info:doi/10.1007%2Fs12613-023-2672-z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-4799&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-4799&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-4799&client=summon