A general alternate loading technique and its applications in the inverse designs of centrifugal and mixed-flow pump impellers

For the inverse designs of centrifugal and mixed-flow pump impellers, clarifying the generation process of secondary flows and putting forward corresponding suppression measures is an important approach to improve the impeller performance. In this paper, to provide a better qualitative insight into...

Full description

Saved in:
Bibliographic Details
Published inScience China. Technological sciences Vol. 64; no. 4; pp. 898 - 918
Main Authors Wang, ChaoYue, Wang, FuJun, An, DongSen, Yao, ZhiFeng, Xiao, RuoFu, Lu, Li, He, ChengLian, Zou, ZhiChao
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.04.2021
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For the inverse designs of centrifugal and mixed-flow pump impellers, clarifying the generation process of secondary flows and putting forward corresponding suppression measures is an important approach to improve the impeller performance. In this paper, to provide a better qualitative insight into the generation mechanism of secondary flows in the impeller, a simple kinematic equation is derived based on the ideal assumptions, which indicates that the potential rothalpy gradient (PRG) is the most important dynamic source that actively induces secondary vortical flows. Induced by the natural adverse PRG on the S1 and S2 stream surfaces, two typical secondary flows, H - S and P - S secondary flows, are clearly presented. To specially suppress these typical secondary flows, a general alternate loading technique (GALT) is proposed, aiming to adjust the real blade loading δp to control the PRG features. At the blade fore part, the δp on the hub streamline should be slowly increased to avoid breakneck growth of the potential rothalpy to reduce adverse streamwise PRG on the S2 streamsurface. At the blade middle part, the δp should be moderately decreased to reduce adverse streamwise PRG on the S1 streamsurface. At the blade aft part, the difference in the δp between the shroud and hub streamlines should be decreased faster to control the exit uniformity. By applying the GALT to the impeller designs of three typical pump types in hydraulic engineering, the organizational effect of the PRG on fundamental flow structures is proven. The GALT can effectively control the PRG distributions and suppress the secondary flows, thereby widening the pump’s high-efficiency zone, improving flow uniformity and suppressing pressure fluctuations. Compared with the current Z-G method and the ALT, the GALT can meet the requirements of “de-experience” better, thereby enabling the designers to obtain good products explicitly and quickly.
AbstractList For the inverse designs of centrifugal and mixed-flow pump impellers, clarifying the generation process of secondary flows and putting forward corresponding suppression measures is an important approach to improve the impeller performance. In this paper, to provide a better qualitative insight into the generation mechanism of secondary flows in the impeller, a simple kinematic equation is derived based on the ideal assumptions, which indicates that the potential rothalpy gradient (PRG) is the most important dynamic source that actively induces secondary vortical flows. Induced by the natural adverse PRG on the S1 and S2 stream surfaces, two typical secondary flows, H-S and P-S secondary flows, are clearly presented. To specially suppress these typical secondary flows, a general alternate loading technique (GALT) is proposed, aiming to adjust the real blade loading δp to control the PRG features. At the blade fore part, the δp on the hub streamline should be slowly increased to avoid breakneck growth of the potential rothalpy to reduce adverse streamwise PRG on the S2 streamsurface. At the blade middle part, the δp should be moderately decreased to reduce adverse streamwise PRG on the S1 streamsurface. At the blade aft part, the difference in the δp between the shroud and hub streamlines should be decreased faster to control the exit uniformity. By applying the GALT to the impeller designs of three typical pump types in hydraulic engineering, the organizational effect of the PRG on fundamental flow structures is proven. The GALT can effectively control the PRG distributions and suppress the secondary flows, thereby widening the pump’s high-efficiency zone, improving flow uniformity and suppressing pressure fluctuations. Compared with the current Z-G method and the ALT, the GALT can meet the requirements of “de-experience” better, thereby enabling the designers to obtain good products explicitly and quickly.
For the inverse designs of centrifugal and mixed-flow pump impellers, clarifying the generation process of secondary flows and putting forward corresponding suppression measures is an important approach to improve the impeller performance. In this paper, to provide a better qualitative insight into the generation mechanism of secondary flows in the impeller, a simple kinematic equation is derived based on the ideal assumptions, which indicates that the potential rothalpy gradient (PRG) is the most important dynamic source that actively induces secondary vortical flows. Induced by the natural adverse PRG on the S1 and S2 stream surfaces, two typical secondary flows, H - S and P - S secondary flows, are clearly presented. To specially suppress these typical secondary flows, a general alternate loading technique (GALT) is proposed, aiming to adjust the real blade loading δp to control the PRG features. At the blade fore part, the δp on the hub streamline should be slowly increased to avoid breakneck growth of the potential rothalpy to reduce adverse streamwise PRG on the S2 streamsurface. At the blade middle part, the δp should be moderately decreased to reduce adverse streamwise PRG on the S1 streamsurface. At the blade aft part, the difference in the δp between the shroud and hub streamlines should be decreased faster to control the exit uniformity. By applying the GALT to the impeller designs of three typical pump types in hydraulic engineering, the organizational effect of the PRG on fundamental flow structures is proven. The GALT can effectively control the PRG distributions and suppress the secondary flows, thereby widening the pump’s high-efficiency zone, improving flow uniformity and suppressing pressure fluctuations. Compared with the current Z-G method and the ALT, the GALT can meet the requirements of “de-experience” better, thereby enabling the designers to obtain good products explicitly and quickly.
Author Yao, ZhiFeng
Wang, FuJun
He, ChengLian
Wang, ChaoYue
Xiao, RuoFu
Zou, ZhiChao
An, DongSen
Lu, Li
Author_xml – sequence: 1
  givenname: ChaoYue
  surname: Wang
  fullname: Wang, ChaoYue
  organization: College of Water Resources and Civil Engineering, China Agricultural University
– sequence: 2
  givenname: FuJun
  surname: Wang
  fullname: Wang, FuJun
  email: wangfj@cau.edu.cn
  organization: College of Water Resources and Civil Engineering, China Agricultural University, Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System
– sequence: 3
  givenname: DongSen
  surname: An
  fullname: An, DongSen
  organization: College of Water Resources and Civil Engineering, China Agricultural University
– sequence: 4
  givenname: ZhiFeng
  surname: Yao
  fullname: Yao, ZhiFeng
  organization: College of Water Resources and Civil Engineering, China Agricultural University, Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System
– sequence: 5
  givenname: RuoFu
  surname: Xiao
  fullname: Xiao, RuoFu
  organization: College of Water Resources and Civil Engineering, China Agricultural University, Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System
– sequence: 6
  givenname: Li
  surname: Lu
  fullname: Lu, Li
  organization: Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Institute of Water Resources and Hydropower Research
– sequence: 7
  givenname: ChengLian
  surname: He
  fullname: He, ChengLian
  organization: China Water Resources Beifang Investigation, Design and Research Co. Ltd
– sequence: 8
  givenname: ZhiChao
  surname: Zou
  fullname: Zou, ZhiChao
  organization: China Institute of Water Resources and Hydropower Research
BookMark eNp1kM1LxDAQxYMouK77B3gLeI5mmjZtj4v4BYIXPYc0ndZINq1J1o-Lf7tZVvDkXGYY3u_Beyfk0E8eCTkDfgGc15cRoBTAeMEZyKZm5QFZQCNbBi3nh_mWdclqUcAxWcX4yvOIpuVQLsj3mo7oMWhHtUsYvE5I3aR760ea0Lx4-7ZFqn1PbYpUz7OzRic7-Uitp-kF83rHEJH2GO2Y39NADfoU7LAdd7YZ3dhP7Nngpg86bzcztZsZncvUKTkatIu4-t1L8nxz_XR1xx4eb--v1g_MCJCJdZxLkMUAdV2Upupb0zbY5R_HSlYoSpCiqjvTd1KaVjQae10CyKEzoitMI5bkfO87hynniUm9Ttsc1kVVVLwVhZB8p4K9yoQpxoCDmoPd6PClgKtd02rftMpNq13TqsxMsWdi1voRw5_z_9APvbiD4w
CitedBy_id crossref_primary_10_1016_j_compfluid_2022_105613
crossref_primary_10_1016_j_renene_2022_12_086
crossref_primary_10_3390_w15142619
crossref_primary_10_1016_j_est_2022_105079
crossref_primary_10_1063_5_0158612
crossref_primary_10_1007_s11431_021_1867_2
crossref_primary_10_1007_s11431_023_2437_7
crossref_primary_10_1007_s42241_022_0046_z
crossref_primary_10_1016_j_oceaneng_2023_116291
crossref_primary_10_1177_09576509231181933
crossref_primary_10_1007_s42241_023_0089_9
crossref_primary_10_1002_ese3_1812
crossref_primary_10_1063_5_0169031
crossref_primary_10_1080_19942060_2021_2006091
crossref_primary_10_1080_19942060_2021_1938685
crossref_primary_10_3390_math12040607
crossref_primary_10_1088_1755_1315_1079_1_012040
crossref_primary_10_1115_1_4051386
Cites_doi 10.1063/1.5084739
10.5293/IJFMS.2016.9.1.075
10.1115/1.2950065
10.1063/1.5144424
10.1016/j.amc.2018.08.027
10.1007/s11431-010-4261-4
10.1007/s11431-013-5308-0
10.1115/1.2841783
10.1007/s42241-019-0032-2
10.1088/1755-1315/240/3/032030
10.1007/s11431-015-5865-5
10.1115/AJKFluids2019-4676
10.1115/1.2841399
10.1146/annurev.fl.05.010173.001335
10.1115/1.2836701
10.1115/1.1645868
10.1007/s42241-019-0066-5
10.1115/1.4016114
10.1115/1.4038021
10.1115/1.2928362
10.1115/1.2836700
10.1002/fld.1650130505
10.1017/jfm.2020.109
10.1115/1.2960953
10.3390/en12173210
10.1115/1.3636613
10.1533/978081000342.399
10.1007/s42241-019-0022-4
10.3390/en11123348
10.1115/1.1471362
10.1017/CBO9780511760396
10.1063/1.5040112
10.1115/1.4037787
10.1115/1.1625690
10.1017/jfm.2018.406
10.1016/j.rser.2017.05.058
10.1007/s10494-017-9828-8
10.1115/1.4028216
10.1016/S0262-1762(07)70221-3
10.1115/1.2927666
10.1063/1.5023001
10.2514/2.879
ContentType Journal Article
Copyright Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
DOI 10.1007/s11431-020-1687-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-1900
EndPage 918
ExternalDocumentID 10_1007_s11431_020_1687_4
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
29~
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BDATZ
CAG
CCEZO
CEKLB
CHBEP
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
MA-
N2Q
NB0
NPVJJ
NQJWS
O9J
P9P
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TR2
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
-SC
-S~
0R~
AACDK
AAJBT
AASML
AAXDM
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
CAJEC
CITATION
CJPJV
H13
Q--
U1G
U5M
ID FETCH-LOGICAL-c316t-b006162f17724c5d9c98eb0610e565e3416357bcdb66c938aeda4116fbc3b2c83
IEDL.DBID AGYKE
ISSN 1674-7321
IngestDate Fri Sep 13 08:49:37 EDT 2024
Thu Sep 12 17:02:43 EDT 2024
Sat Dec 16 12:10:13 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords alternate loading technique
potential rothalpy gradient
mixed-flow pump
centrifugal pump
inverse design
impeller
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-b006162f17724c5d9c98eb0610e565e3416357bcdb66c938aeda4116fbc3b2c83
PQID 2509323608
PQPubID 2043625
PageCount 21
ParticipantIDs proquest_journals_2509323608
crossref_primary_10_1007_s11431_020_1687_4
springer_journals_10_1007_s11431_020_1687_4
PublicationCentury 2000
PublicationDate 2021-04-01
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Technological sciences
PublicationTitleAbbrev Sci. China Technol. Sci
PublicationYear 2021
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References TianSGaoYDongXDefinitions ofvortex vector and vortexJ Fluid Mech201884931233938154781415.76102
SchleerMHongS SZangenehMInvestigation ofan inversely designed centrifugal compressor stage—Part II: Experimental investigationsJ Turbomach20041268290
WenH PWuRLiY DApplication of alternate loading technique for double-suction centrifugal pumps in increasing flow reconstruction of Guhai pumping stationsChina Rural Water Hydropower20199153156
RayS RZangenehMA robust mixing plane and its application in three-dimensional inverse design of transonic turbine stagesJ Turbomach2015137011004
ShenT YTheoretical Foundations of Inner Flow of Centrifugal Impeller1986HangzhouZhejiang University Press
WuYZhangWWangYEnergy dissipation analysis based on velocity gradient tensor decompositionPhys Fluids202032035114
LiuCGaoYDongXThird generation of vortex identification methods: Omega and Liutex/Rortex based systemsJ Hydrodyn201931205223
DemeulenaereAVan den BraembusscheRThree-dimensional inverse method for turbomachinery blading designJ Turbomach1998120247255
JinF YApplication research of alternate loading technique for double-suction centrifugal pumps2017BeijingChina Agricultural University
WangPZangenehMRichardsBRedesign of a compressor stage for a high-performance electric supercharger in a heavily downsized engineJ Eng Gas Turbines Power2018140042602
Zangeneh M, Dawes W N, Hawthorne W R. Three dimensional flow in radial-inflow turbines. In: ASME 1988 International Gas Turbine and Aeroengine Congress. Amsterdam, 1988
GotoAHistorical perspective on fluid machinery flow optimization in an industryInt J Fluid Mach Syst201697584
LiD MLiuZ YSongS LRenovation techniques ofhigh-lift Yellow River irrigation pumping stationChina Rural Water Hydropower201612185189
Lighthill M J. A new method of two-dimensional aerodynamic design. Aeronautical Research Council R&M 2104, 1945
Zhang J, Zangeneh M, Eynon P. A 3D inverse design based multi-disciplinary optimization on the radial and mixed-inflow turbines for turbochargers. In: Proceedings of the 11th International Conference on Turbochargers and Turbocharging. London, 2014
LuJ LXiGQiD TBlade optimization of mixed-flow pump using inverse design method and neural networkJ Xi’an Jiaotong Univ200438308312
XuHCaiXLiuCLiutex (vortex) core definition and automatic identification for turbulence vortex structuresJ Hydrodyn201931857863
TaoRStudy of the influence of blade leading-edge geometry on the inception cavitation of reversible pump-turbine2018BeijingChina Agricultural University
YangWXiaoRMultiobjective optimization design of a pump-turbine impeller based on an inverse design using a combination optimization strategyJ Fluids Eng2014136249256
WuD RJingS RFluid Mechanics in Centrifugal Pump1998BeijingChina Electric Power Press
OberkampfW LRoyC JVerification and Validation in Scientific Computing2010CambridgeCambridge University Press1211.68499
DangTDamleSQiuXEuler-based inverse method for turbomachine blades, part 2: Three-dimensional flowsAIAA J20003820072013
ChaouatBThe state of the art of hybrid RANS/LES modeling for the simulation of turbulent flowsFlow Turbulence Combust201799279327
WangC YWangF JZouZ CEffect of lean mode of blade trailing edge on hydraulic performance for double-suction centrifugal pumpIOP Conf Ser-Earth Environ Sci2019240032030
HorlockJ HLakshminarayanaBSecondary flows: Theory, experiment, and application in turbomachinery aerodynamicsAnnu Rev Fluid Mech197352472800279.76018
GotoANohmiMSakuraiTHydrodynamic design system for pumps based on 3-D CAD, CFD, and inverse design methodJ Fluids Eng2002124329335
BorgesJ EA three-dimensional inverse method for turbomachinery: Part I—TheoryJ Turbomach1990112346354
StepanoffA JCentrifugal and Axial Flow Pumps: Theory, Design and Application1957HobokenJohn Wiley and Sons
GaoYLiuCRortex based velocity gradient tensor decompositionPhys Fluids201931011704
YangWLeiXLiuBThree-dimensional inverse design of low specific speed turbine for energy recovery in cooling tower systemEnergies2018113348
ZhuDComprehensive optimization design and analysis of vaned mixed-flow pump2019BeijingChina Agricultural University
ZangenehMInviscid-viscous interaction method for three-dimensional inverse design of centrifugal impellersJ Turbomach1994116280290
MarrisA WThe generation of secondary vorticity in an incompressible fluidJ Appl Mech1963305255310129.19904
He C L, Jiang Y H, Zhang Z B, et al. Double-suction centrifugal pump model test report for China Agricultural University. China Water Beifang Investigation, Design and Research Co. Ltd., 2015
ZangenehMGotoATakemuraTSuppression ofsecondary flows in a mixed-flow pump impeller by application of three-dimensional inverse design method: Part 1—Design and numerical validationJ Turbomach1996118536543
Wu C H. A general theory of three-dimensional flow in subsonic and supersonic turbomachines of axial-, radial-, and mixed-flow types. NASA Technical Reports Server NACA-TN-2604, 1952
HuangXYangWLiYReview on the sensitization of turbulence models to rotation/curvature and the application to rotating machineryAppl Math Computation2019341466938617391428.76072
LiuCGaoYTianSRortex—A new vortex vector definition and vorticity tensor and vector decompositionsPhys Fluids201830035103
YangWWuY LLiuS HAn optimization method on runner blades in bulb turbine based on CFD analysisSci China Tech Sci2011543383441278.76040
ZangenehMA compressible three-dimensional design method for radial and mixed flow turbomachinery bladesInt J Numer Meth Fluids1991135996240729.76613
ZangenehMSchleerMPlegerFInvestigation of an inversely designed centrifugal compressor stage—Part I: Design and numerical verificationJ Turbomach20041267381
GaoYLiuCRortex and comparison with eigenvalue-based vortex identification criteriaPhys Fluids201830085107
BonaiutiDZangenehMOn the coupling of inverse design and optimization techniques for the multiobjective, multipoint design of turbomachinery bladesJ Turbomach2009131021014
Lu L, Meng X C. Pump model test report of Niulan River-Tien Lake Water Supplement Project. China Institute of Water Resources and Hydropower Research, 2010
LiD MZhangYXiaoR FResearch on the application of large-scale irrigation and drainage pump stationChina Rural Water Hydropower20202111
ZangenehMAdvanced design software for pumpsWorld Pumps200720072831
WangF JYaoZ FYangWImpeller design with alternate loading technique for double-suction centrifugal pumpsTrans Chin Soc Agricul Mach2015468491
YangWLiuBXiaoRThree-dimensional inverse design method for hydraulic machineryEnergies2019123210
HuangR FLuoX WJiBMulti-objective optimization of a mixed-flow pump impeller using modified NSGA-II algorithmSci China Tech Sci20155821222130
GotoATakemuraTZangenehMSuppression ofsecondary flows in a mixed-flow pump impeller by application of three-dimensional inverse design method: Part 2—Experimental validationJ Turbomach1996118544551
ZhuBTanLWangXInvestigation on flow characteristics of pump-turbine runners with large blade leanJ Fluids Eng2018140031101
WangYGaoYLiuJExplicit formula for the Liutex vector and physical meaning of vorticity based on the Liutex-Shear decompositionJ Hydrodyn201931464474
BingHCaoS LMulti-parameter optimization design, numerical simulation and performance test of mixed-flow pump impellerSci China Tech Sci20135621942206
ZhangYLiuKXianHA review of methods for vortex identification in hydroturbinesRenew Sustain Energy Rev20188112691285
CelikI BGhiaURoacheP JProcedure for estimation and reporting of uncertainty due to discretization in CFD applicationsJ Fluid Eng2008130078001
Zhang L Y, Davila G, Zangeneh M. Multi-objective optimization of a high specific speed centrifugal volute pump using 3D inverse design coupled with CFD simulations. In: Proceedings of the AJK 2019 & 8th Joint Fluids Engineering Conference. San Francisco, 2019
BronsJ AThomasP JPothératAMean flow anisotropy without waves in rotating turbulenceJ Fluid Mech2020889A37407124907193463
YaoZ FLuLGaoZ XExperimental investigation of pressure fluctuation and cavitation for a centrifugal pump with different impeller configurationsJ Hydraul Eng20154614441452
GuanX FModern Pumps Theory and Design2011BeijingChina Aerospace Publishing House
ZangenehMGotoAHaradaHOn the design criteria for suppression of secondary flows in centrifugal and mixed flow impellersJ Turbomach1998120723735
1687_CR43
F J Wang (1687_CR26) 2015; 46
Y Wu (1687_CR54) 2020; 32
Y Zhang (1687_CR40) 2018; 81
W Yang (1687_CR23) 2018; 11
M Zangeneh (1687_CR24) 2007; 2007
M Zangeneh (1687_CR16) 1996; 118
W L Oberkampf (1687_CR48) 2010
R F Huang (1687_CR60) 2015; 58
A J Stepanoff (1687_CR1) 1957
A Goto (1687_CR41) 2016; 9
I B Celik (1687_CR47) 2008; 130
H Xu (1687_CR53) 2019; 31
Z F Yao (1687_CR44) 2015; 46
D M Li (1687_CR29) 2020; 2
M Schleer (1687_CR19) 2004; 126
1687_CR3
S Tian (1687_CR38) 2018; 849
1687_CR4
B Zhu (1687_CR33) 2018; 140
1687_CR36
T Dang (1687_CR8) 2000; 38
D M Li (1687_CR27) 2016; 12
Y Gao (1687_CR50) 2019; 31
A Demeulenaere (1687_CR7) 1998; 120
W Yang (1687_CR25) 2019; 12
W Yang (1687_CR11) 2014; 136
A Goto (1687_CR17) 1996; 118
H Bing (1687_CR59) 2013; 56
X Huang (1687_CR46) 2019; 341
1687_CR21
Y Wang (1687_CR51) 2019; 31
J A Brons (1687_CR39) 2020; 889
R Tao (1687_CR56) 2018
B Chaouat (1687_CR45) 2017; 99
D R Wu (1687_CR32) 1998
F Y Jin (1687_CR42) 2017
S R Ray (1687_CR22) 2015; 137
Y Gao (1687_CR49) 2018; 30
J E Borges (1687_CR5) 1990; 112
P Wang (1687_CR20) 2018; 140
M Zangeneh (1687_CR14) 1998; 120
1687_CR55
1687_CR12
H P Wen (1687_CR28) 2019; 9
D Bonaiuti (1687_CR10) 2009; 131
J L Lu (1687_CR9) 2004; 38
A Goto (1687_CR15) 2002; 124
C Y Wang (1687_CR30) 2019; 240
T Y Shen (1687_CR31) 1986
D Zhu (1687_CR57) 2019
C Liu (1687_CR52) 2019; 31
M Zangeneh (1687_CR13) 1994; 116
J H Horlock (1687_CR35) 1973; 5
C Liu (1687_CR37) 2018; 30
W Yang (1687_CR58) 2011; 54
M Zangeneh (1687_CR18) 2004; 126
M Zangeneh (1687_CR6) 1991; 13
A W Marris (1687_CR34) 1963; 30
X F Guan (1687_CR2) 2011
References_xml – volume: 31
  start-page: 011704
  year: 2019
  ident: 1687_CR50
  publication-title: Phys Fluids
  doi: 10.1063/1.5084739
  contributor:
    fullname: Y Gao
– ident: 1687_CR3
– volume: 12
  start-page: 185
  year: 2016
  ident: 1687_CR27
  publication-title: China Rural Water Hydropower
  contributor:
    fullname: D M Li
– volume: 9
  start-page: 75
  year: 2016
  ident: 1687_CR41
  publication-title: Int J Fluid Mach Syst
  doi: 10.5293/IJFMS.2016.9.1.075
  contributor:
    fullname: A Goto
– volume: 131
  start-page: 021014
  year: 2009
  ident: 1687_CR10
  publication-title: J Turbomach
  doi: 10.1115/1.2950065
  contributor:
    fullname: D Bonaiuti
– volume-title: Study of the influence of blade leading-edge geometry on the inception cavitation of reversible pump-turbine
  year: 2018
  ident: 1687_CR56
  contributor:
    fullname: R Tao
– volume: 32
  start-page: 035114
  year: 2020
  ident: 1687_CR54
  publication-title: Phys Fluids
  doi: 10.1063/1.5144424
  contributor:
    fullname: Y Wu
– volume: 341
  start-page: 46
  year: 2019
  ident: 1687_CR46
  publication-title: Appl Math Computation
  doi: 10.1016/j.amc.2018.08.027
  contributor:
    fullname: X Huang
– volume-title: Theoretical Foundations of Inner Flow of Centrifugal Impeller
  year: 1986
  ident: 1687_CR31
  contributor:
    fullname: T Y Shen
– volume-title: Application research of alternate loading technique for double-suction centrifugal pumps
  year: 2017
  ident: 1687_CR42
  contributor:
    fullname: F Y Jin
– volume: 54
  start-page: 338
  year: 2011
  ident: 1687_CR58
  publication-title: Sci China Tech Sci
  doi: 10.1007/s11431-010-4261-4
  contributor:
    fullname: W Yang
– volume-title: Modern Pumps Theory and Design
  year: 2011
  ident: 1687_CR2
  contributor:
    fullname: X F Guan
– ident: 1687_CR43
– volume: 56
  start-page: 2194
  year: 2013
  ident: 1687_CR59
  publication-title: Sci China Tech Sci
  doi: 10.1007/s11431-013-5308-0
  contributor:
    fullname: H Bing
– volume: 120
  start-page: 723
  year: 1998
  ident: 1687_CR14
  publication-title: J Turbomach
  doi: 10.1115/1.2841783
  contributor:
    fullname: M Zangeneh
– volume: 31
  start-page: 464
  year: 2019
  ident: 1687_CR51
  publication-title: J Hydrodyn
  doi: 10.1007/s42241-019-0032-2
  contributor:
    fullname: Y Wang
– volume: 240
  start-page: 032030
  year: 2019
  ident: 1687_CR30
  publication-title: IOP Conf Ser-Earth Environ Sci
  doi: 10.1088/1755-1315/240/3/032030
  contributor:
    fullname: C Y Wang
– ident: 1687_CR55
– volume: 58
  start-page: 2122
  year: 2015
  ident: 1687_CR60
  publication-title: Sci China Tech Sci
  doi: 10.1007/s11431-015-5865-5
  contributor:
    fullname: R F Huang
– ident: 1687_CR12
  doi: 10.1115/AJKFluids2019-4676
– volume: 120
  start-page: 247
  year: 1998
  ident: 1687_CR7
  publication-title: J Turbomach
  doi: 10.1115/1.2841399
  contributor:
    fullname: A Demeulenaere
– volume: 5
  start-page: 247
  year: 1973
  ident: 1687_CR35
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fl.05.010173.001335
  contributor:
    fullname: J H Horlock
– volume: 118
  start-page: 544
  year: 1996
  ident: 1687_CR17
  publication-title: J Turbomach
  doi: 10.1115/1.2836701
  contributor:
    fullname: A Goto
– volume: 126
  start-page: 73
  year: 2004
  ident: 1687_CR18
  publication-title: J Turbomach
  doi: 10.1115/1.1645868
  contributor:
    fullname: M Zangeneh
– volume: 38
  start-page: 308
  year: 2004
  ident: 1687_CR9
  publication-title: J Xi’an Jiaotong Univ
  contributor:
    fullname: J L Lu
– volume: 31
  start-page: 857
  year: 2019
  ident: 1687_CR53
  publication-title: J Hydrodyn
  doi: 10.1007/s42241-019-0066-5
  contributor:
    fullname: H Xu
– volume-title: Fluid Mechanics in Centrifugal Pump
  year: 1998
  ident: 1687_CR32
  contributor:
    fullname: D R Wu
– ident: 1687_CR4
  doi: 10.1115/1.4016114
– volume: 140
  start-page: 042602
  year: 2018
  ident: 1687_CR20
  publication-title: J Eng Gas Turbines Power
  doi: 10.1115/1.4038021
  contributor:
    fullname: P Wang
– volume: 116
  start-page: 280
  year: 1994
  ident: 1687_CR13
  publication-title: J Turbomach
  doi: 10.1115/1.2928362
  contributor:
    fullname: M Zangeneh
– volume: 118
  start-page: 536
  year: 1996
  ident: 1687_CR16
  publication-title: J Turbomach
  doi: 10.1115/1.2836700
  contributor:
    fullname: M Zangeneh
– volume: 13
  start-page: 599
  year: 1991
  ident: 1687_CR6
  publication-title: Int J Numer Meth Fluids
  doi: 10.1002/fld.1650130505
  contributor:
    fullname: M Zangeneh
– volume: 889
  start-page: A37
  year: 2020
  ident: 1687_CR39
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2020.109
  contributor:
    fullname: J A Brons
– volume: 130
  start-page: 078001
  year: 2008
  ident: 1687_CR47
  publication-title: J Fluid Eng
  doi: 10.1115/1.2960953
  contributor:
    fullname: I B Celik
– volume: 12
  start-page: 3210
  year: 2019
  ident: 1687_CR25
  publication-title: Energies
  doi: 10.3390/en12173210
  contributor:
    fullname: W Yang
– volume-title: Centrifugal and Axial Flow Pumps: Theory, Design and Application
  year: 1957
  ident: 1687_CR1
  contributor:
    fullname: A J Stepanoff
– volume: 30
  start-page: 525
  year: 1963
  ident: 1687_CR34
  publication-title: J Appl Mech
  doi: 10.1115/1.3636613
  contributor:
    fullname: A W Marris
– ident: 1687_CR21
  doi: 10.1533/978081000342.399
– volume: 31
  start-page: 205
  year: 2019
  ident: 1687_CR52
  publication-title: J Hydrodyn
  doi: 10.1007/s42241-019-0022-4
  contributor:
    fullname: C Liu
– volume: 46
  start-page: 1444
  year: 2015
  ident: 1687_CR44
  publication-title: J Hydraul Eng
  contributor:
    fullname: Z F Yao
– volume: 11
  start-page: 3348
  year: 2018
  ident: 1687_CR23
  publication-title: Energies
  doi: 10.3390/en11123348
  contributor:
    fullname: W Yang
– volume: 46
  start-page: 84
  year: 2015
  ident: 1687_CR26
  publication-title: Trans Chin Soc Agricul Mach
  contributor:
    fullname: F J Wang
– volume: 124
  start-page: 329
  year: 2002
  ident: 1687_CR15
  publication-title: J Fluids Eng
  doi: 10.1115/1.1471362
  contributor:
    fullname: A Goto
– volume-title: Comprehensive optimization design and analysis of vaned mixed-flow pump
  year: 2019
  ident: 1687_CR57
  contributor:
    fullname: D Zhu
– volume-title: Verification and Validation in Scientific Computing
  year: 2010
  ident: 1687_CR48
  doi: 10.1017/CBO9780511760396
  contributor:
    fullname: W L Oberkampf
– ident: 1687_CR36
– volume: 30
  start-page: 085107
  year: 2018
  ident: 1687_CR49
  publication-title: Phys Fluids
  doi: 10.1063/1.5040112
  contributor:
    fullname: Y Gao
– volume: 140
  start-page: 031101
  year: 2018
  ident: 1687_CR33
  publication-title: J Fluids Eng
  doi: 10.1115/1.4037787
  contributor:
    fullname: B Zhu
– volume: 126
  start-page: 82
  year: 2004
  ident: 1687_CR19
  publication-title: J Turbomach
  doi: 10.1115/1.1625690
  contributor:
    fullname: M Schleer
– volume: 849
  start-page: 312
  year: 2018
  ident: 1687_CR38
  publication-title: J Fluid Mech
  doi: 10.1017/jfm.2018.406
  contributor:
    fullname: S Tian
– volume: 81
  start-page: 1269
  year: 2018
  ident: 1687_CR40
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2017.05.058
  contributor:
    fullname: Y Zhang
– volume: 99
  start-page: 279
  year: 2017
  ident: 1687_CR45
  publication-title: Flow Turbulence Combust
  doi: 10.1007/s10494-017-9828-8
  contributor:
    fullname: B Chaouat
– volume: 137
  start-page: 011004
  year: 2015
  ident: 1687_CR22
  publication-title: J Turbomach
  doi: 10.1115/1.4028216
  contributor:
    fullname: S R Ray
– volume: 9
  start-page: 153
  year: 2019
  ident: 1687_CR28
  publication-title: China Rural Water Hydropower
  contributor:
    fullname: H P Wen
– volume: 2007
  start-page: 28
  year: 2007
  ident: 1687_CR24
  publication-title: World Pumps
  doi: 10.1016/S0262-1762(07)70221-3
  contributor:
    fullname: M Zangeneh
– volume: 112
  start-page: 346
  year: 1990
  ident: 1687_CR5
  publication-title: J Turbomach
  doi: 10.1115/1.2927666
  contributor:
    fullname: J E Borges
– volume: 30
  start-page: 035103
  year: 2018
  ident: 1687_CR37
  publication-title: Phys Fluids
  doi: 10.1063/1.5023001
  contributor:
    fullname: C Liu
– volume: 38
  start-page: 2007
  year: 2000
  ident: 1687_CR8
  publication-title: AIAA J
  doi: 10.2514/2.879
  contributor:
    fullname: T Dang
– volume: 136
  start-page: 249
  year: 2014
  ident: 1687_CR11
  publication-title: J Fluids Eng
  contributor:
    fullname: W Yang
– volume: 2
  start-page: 1
  year: 2020
  ident: 1687_CR29
  publication-title: China Rural Water Hydropower
  contributor:
    fullname: D M Li
SSID ssj0000389014
Score 2.3872163
Snippet For the inverse designs of centrifugal and mixed-flow pump impellers, clarifying the generation process of secondary flows and putting forward corresponding...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 898
SubjectTerms Centrifugal pumps
Design
Engineering
Hydraulic engineering
Impellers
Kinematic equations
Pump impellers
Secondary flow
Title A general alternate loading technique and its applications in the inverse designs of centrifugal and mixed-flow pump impellers
URI https://link.springer.com/article/10.1007/s11431-020-1687-4
https://www.proquest.com/docview/2509323608/abstract/
Volume 64
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BWWDgjSiPygMTKFWTOK4zVgioQGKiEkxR_aqilgTRVCAGfjtnt2nKa-iUKIktxXf2ffZ9_gxwhmHHICpue8JELY_SUHlCMuVpzoxRODz62ql93rNuj94-Ro8rEMyXLrJhs8xIuoG62uuGkR1nvjjb8Rl2DLoKa5E9lboGa52bp7tqZcVKxrWcqLdl2HvtMPDLdOZf9XwPSBXK_JEYdfHmemu6B3DsZAotzWTYnBSiKT9-izgu8SvbsDmDn6Qz9ZcdWNHZLmwsiBLuwWeHDKZa1MSl0jNEo2SUO649mUu-kn6mSFqMyWIGnKQZQUCJF0v20EQ5esiY5IY4EmhqJgNbLRZ9Tt-18swofyMv6FEkfbZpICy1D73rq4fLrjc7pcGToc8Ke4IP81lgfMTpVEYqljHXAp-1NIJFHVrEF7WFVIIxGYe8r1Wf-j4zQoYikDw8gFqWZ_oQCNOcxiLmbcUiarjgLMbYifeCxjht1XU4L02VvEzFOJJKdtk2aoKNmthGTWgdTkpjJrN-OU4Q8CFgDVmL1-GiNE71-t_Kjpb6-hjWA0t9cQSfE6gVrxN9itilEI2ZszZgtRd0vgB6xOXN
link.rule.ids 315,786,790,27957,27958,41116,41558,42185,42627,52146,52269
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MoEh5OI4zVoiqQOnUSt2i-lVFapOKpIKJ387ZTdqCYGBKlMQ3-GLfd77PnxG6hbCjARVHDteh6xASSIcLKh3FqNYSpkdPWbXPPu0OyfMoHFX7uIua7V6XJO1Mvd7sBqEdUl9IdzwKI4Nsox0jp24yrqHfXi2sGMU412p6G4K9EwW-V1czf7PyPR6tQeaPuqgNN51DdFDhRNxeOvYIbansGO1vqAeeoM82nixFo7GteWcAG_E0t6R4vNJmxeNM4rQs8GapGqcZBuQHF8PKUFhaHkeBc40tWzPVi4kxC01n6YeSjp7m73gOrsfpzNRroNUpGnYeBw9dpzpOwRGBR0tz1A71qK89ANREhDIWMVMcnrkKUJ0KDDQLIy4kp1TEARsrOSaeRzUXAfcFC85QI8szdY4wVYzEPGaRpCHRjDMaQ5CDe05iyC9VE93VnZrMl6oZyVof2XggAQ8kxgMJaaJW3e1JNYCKBJAZIMuAuqyJ7mtXrF__aeziX1_foN3u4LWX9J76L5dozzd8FcvKaaFG-bZQVwA4Sn5tf7Av4eLL-w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSAgO7Iiy-sAJFGgax3WOFVBWIQ4gwSnUWxXRphVNBeLAtzPOQkoFB8QpURJbjmecec48PwPsYdgxiIrrjjB-1aHUU46QTDmaM2MUfh5dnap93rDze3r54D_k-5wOCrZ7kZLM1jRYlaY4Oeorc1QufMMwj9NgnPq4DEcJnYRpiqMWXXy6cfZ4Vf5msfpx1VTh29LtnbpXc4vc5k_1fI9OJeQcy5Kmwae5AE9FszPOyfPhMBGH8n1M0fEf77UI8zkwJY3Mk5ZgQsfLMDciV7gCHw3SzlSqSZpkjxGnkk4vZeGTLzFY0ooViZIBGc2NkygmCDXxYGkgmqiUODIgPUNSemhkhm1bLRbtRm9aOabTeyV99DUSdW2CCEutwn3z9O743Mn3b3Ck57LE7u3DXFYzLiJ4Kn0VyIBrgdeqGmGk9iwW9OtCKsGYDDze0qqFVmRGSE_UJPfWYCruxXodCNOcBiLgdcV8arjgLMCoiueCBjih1RXYL-wW9jOZjrAUZLadGmKnhrZTQ1qBrcKyYT5iByFCQYSyHqvyChwUhipv_1rZxp-e3oWZ25NmeH1xc7UJszXLj0lZQFswlbwM9TYCnETs5E78CZiB8ZM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+general+alternate+loading+technique+and+its+applications+in+the+inverse+designs+of+centrifugal+and+mixed-flow+pump+impellers&rft.jtitle=Science+China.+Technological+sciences&rft.au=Wang%2C+ChaoYue&rft.au=Wang%2C+FuJun&rft.au=An%2C+DongSen&rft.au=Yao%2C+ZhiFeng&rft.date=2021-04-01&rft.pub=Science+China+Press&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=64&rft.issue=4&rft.spage=898&rft.epage=918&rft_id=info:doi/10.1007%2Fs11431-020-1687-4&rft.externalDocID=10_1007_s11431_020_1687_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7321&client=summon