Fast Pedestrian Detection Based on the Selective Window Differential Filter

Following the recent progress of the pixel-level filtering for pedestrian detection, we propose a window differential feature (WDF) based on the multiple channel maps. More specifically, WDF encodes first-order statistics between artitary two pixels in the whole detection window, thus obtaining larg...

Full description

Saved in:
Bibliographic Details
Published inNeural processing letters Vol. 48; no. 1; pp. 403 - 417
Main Authors Zuo, Xin, Shen, Jifeng, Yu, Hualong, Xu, Dan, Qian, Chengshan, Shan, Yongwei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Following the recent progress of the pixel-level filtering for pedestrian detection, we propose a window differential feature (WDF) based on the multiple channel maps. More specifically, WDF encodes first-order statistics between artitary two pixels in the whole detection window, thus obtaining larger receptive field for achor pixel than other filtering methods. Despite obtaining more discriminative information for pedestrian, WDF suffers expensive space complexity due to the high feature dimensionality. Quantitive analysis for the arbitrary pairwise elements in the WDF vector demonstrates the weak correlations existing in the proposed feature, thus motivate dimension reduction with feature selection to be the top choice. Three different dimension reduction methods for the WDF demonstrate that feature selection with mutual information achieves superior result. In addition, we find the complementary characteristics between the baseline feature and selective window differential feature, thus combining both can obtain further performance improvement. Extensive experiments on the INRIA, Caltech, ETH, and TUD-Brussel datasets consistently show superior performance of the proposed method to state-of-the-art methods with a 22 fps running speed for 640 × 480 images.
AbstractList Following the recent progress of the pixel-level filtering for pedestrian detection, we propose a window differential feature (WDF) based on the multiple channel maps. More specifically, WDF encodes first-order statistics between artitary two pixels in the whole detection window, thus obtaining larger receptive field for achor pixel than other filtering methods. Despite obtaining more discriminative information for pedestrian, WDF suffers expensive space complexity due to the high feature dimensionality. Quantitive analysis for the arbitrary pairwise elements in the WDF vector demonstrates the weak correlations existing in the proposed feature, thus motivate dimension reduction with feature selection to be the top choice. Three different dimension reduction methods for the WDF demonstrate that feature selection with mutual information achieves superior result. In addition, we find the complementary characteristics between the baseline feature and selective window differential feature, thus combining both can obtain further performance improvement. Extensive experiments on the INRIA, Caltech, ETH, and TUD-Brussel datasets consistently show superior performance of the proposed method to state-of-the-art methods with a 22 fps running speed for 640 × 480 images.
Following the recent progress of the pixel-level filtering for pedestrian detection, we propose a window differential feature (WDF) based on the multiple channel maps. More specifically, WDF encodes first-order statistics between artitary two pixels in the whole detection window, thus obtaining larger receptive field for achor pixel than other filtering methods. Despite obtaining more discriminative information for pedestrian, WDF suffers expensive space complexity due to the high feature dimensionality. Quantitive analysis for the arbitrary pairwise elements in the WDF vector demonstrates the weak correlations existing in the proposed feature, thus motivate dimension reduction with feature selection to be the top choice. Three different dimension reduction methods for the WDF demonstrate that feature selection with mutual information achieves superior result. In addition, we find the complementary characteristics between the baseline feature and selective window differential feature, thus combining both can obtain further performance improvement. Extensive experiments on the INRIA, Caltech, ETH, and TUD-Brussel datasets consistently show superior performance of the proposed method to state-of-the-art methods with a 22 fps running speed for 640 × 480 images.
Author Qian, Chengshan
Shen, Jifeng
Yu, Hualong
Zuo, Xin
Shan, Yongwei
Xu, Dan
Author_xml – sequence: 1
  givenname: Xin
  surname: Zuo
  fullname: Zuo, Xin
  organization: School of Computer Science and Engineering, Jiangsu University of Science and Technology
– sequence: 2
  givenname: Jifeng
  surname: Shen
  fullname: Shen, Jifeng
  email: shenjifeng1980@hotmail.com
  organization: School of Electronic and Informatics Engineering, Jiangsu University
– sequence: 3
  givenname: Hualong
  surname: Yu
  fullname: Yu, Hualong
  organization: School of Computer Science and Engineering, Jiangsu University of Science and Technology
– sequence: 4
  givenname: Dan
  surname: Xu
  fullname: Xu, Dan
  organization: School of Computer Science and Engineering, Jiangsu University of Science and Technology
– sequence: 5
  givenname: Chengshan
  surname: Qian
  fullname: Qian, Chengshan
  organization: School of Computer and Software, Nanjing University of Information Science and Technology
– sequence: 6
  givenname: Yongwei
  surname: Shan
  fullname: Shan, Yongwei
  organization: School of Civil and Environmental Engineering, Oklahoma State University
BookMark eNp9kEFLAzEQhYNUsK3-AG8Bz9Fks7vZPWprVSwoqOgtTDeJpqzZmqSK_94sKwiCnmaYvG_m5U3QyHVOI3TI6DGjVJwExmjJCWWC1CIvSbWDxqwQnAjBn0ap54KSvMzYHpqEsKY0URkdo-sFhIhvtdIhegsOz3XUTbSdw2cQtMKpiS8a3-m2H79r_Gid6j7w3BqjvXbRQosXto3a76NdA23QB991ih4W5_ezS7K8ubianS5Jw1kZCagGmqJWKyHyShUKDGs45BXPIVcVr5gpINkVGVcrQxVVoqoLMKBXOUsvwKfoaNi78d3bNhmX627rXTops5qlPVkhqqQSg6rxXQheG9nYCP3PogfbSkZln5wckpMpOdknJ3uS_SI33r6C__yXyQYmJK171v7H09_QFyovgpA
CitedBy_id crossref_primary_10_1007_s11063_019_10046_4
Cites_doi 10.1109/CVPR.2009.5206638
10.1016/j.patcog.2016.09.010
10.1214/aos/1016218223
10.1109/TPAMI.2015.2474388
10.1109/TPAMI.2009.167
10.5244/C.23.91
10.5244/C.29.176
10.1109/CVPR.2015.7298784
10.1145/2508037.2508039
10.1016/j.neucom.2017.03.007
10.1007/978-3-319-46475-6_28
10.1109/TPAMI.2014.2300479
10.1016/j.image.2016.06.002
10.1145/1961189.1961199
10.1007/s00521-012-1153-5
10.1109/TPAMI.2015.2469276
10.5244/C.29.32
10.1016/j.neucom.2015.08.107
10.1162/neco.2006.18.7.1527
10.1109/ICCV.2015.18
10.1109/TPAMI.2009.109
10.1109/TPAMI.2011.155
10.1109/CVPR.2005.177
10.1016/j.ins.2014.10.040
10.1109/TSMC.2016.2629509
10.1109/CVPR.2014.126
10.1007/s11263-016-0880-y
10.1109/ICCV.2009.5459207
10.1016/j.neucom.2011.03.032
10.1109/ICCV.2015.312
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2017
Copyright Springer Nature B.V. Aug 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017
– notice: Copyright Springer Nature B.V. Aug 2018
DBID AAYXX
CITATION
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
DOI 10.1007/s11063-017-9746-8
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Advanced Technologies & Aerospace Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-773X
EndPage 417
ExternalDocumentID 10_1007_s11063_017_9746_8
GrantInformation_xml – fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20140566; BK20150470
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 61305058
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Jiangsu University
  grantid: 13JDG093
  funderid: http://dx.doi.org/10.13039/501100002703
– fundername: Basic Research Program of Jiangsu Education Department
  grantid: 15KJB520008; 16KJB520009
  funderid: http://dx.doi.org/10.13039/501100005144
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c316t-adcac59db7748d5daf1c3a4834a4d8381f5a137723dbf0d0d7895afaeb415a1a3
IEDL.DBID BENPR
ISSN 1370-4621
IngestDate Wed Aug 13 10:40:14 EDT 2025
Thu Apr 24 23:08:58 EDT 2025
Tue Jul 01 01:09:30 EDT 2025
Fri Feb 21 02:36:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Feature selection
Windows differential feature
Pedestrian detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-adcac59db7748d5daf1c3a4834a4d8381f5a137723dbf0d0d7895afaeb415a1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2918342578
PQPubID 2043838
PageCount 15
ParticipantIDs proquest_journals_2918342578
crossref_citationtrail_10_1007_s11063_017_9746_8
crossref_primary_10_1007_s11063_017_9746_8
springer_journals_10_1007_s11063_017_9746_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180800
2018-8-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 8
  year: 2018
  text: 20180800
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ShengBHuQLiJYangWZhangBSunCFiltered shallow-deep feature channels for pedestrian detectionNeurocomputing2017249192710.1016/j.neucom.2017.03.007
Dollar P, Tu Z, Perona P, Belongie S (2009) Integral channel features. In: British machine vision conference, vol 91, pp 1–11
WenXShaoLXueYFangWA rapid learning algorithm for vehicle classificationInf Sci201529539540610.1016/j.ins.2014.10.040
GuBShengVSA robust regularization path algorithm for v-support vector classificationIEEE Trans Neural Netw Learn Syst20169918
ZhangBLiZCaoXYeQChenCShenLPerinaAJillROutput constraint transfer for kernelized correlation filter in trackingIEEE Trans Syst Man Cybern Syst201747469370310.1109/TSMC.2016.2629509
NamWDollarPHanJHLocal decorrelation for improved pedestrian detectionAdv Neural Inf Process Syst201427424432
ZhangBPerinaALiZMurinoVLiuJJiRBounding multiple Gaussians uncertainty with application to object trackingInt J Comput Vis20161183364379351067510.1007/s11263-016-0880-y
ChangCLinCLIBSVM: a library for support vector machinesACM Trans Intell Syst Technol20112312710.1145/1961189.1961199
Yang B, Yan J, Lei Z, Li SZ (2015) Convolutional channel features. In: IEEE international conference on computer vision, pp 82–90
ShenJYangWSunCReal-time human detection based on gentle MILBoost with variable granularity HOG-CSLBPNeural Comput Appl2013237–81937194810.1007/s00521-012-1153-5
Zhang S, Bauckhage C, Cremers AB (2014) Informed haar-like features improve pedestrian detection. In: IEEE conference on computer vision and pattern recognition, pp 947–954
FelzenszwalbPGirshickRMcAllesterDRamananDObject detection with discriminatively trained part based modelsIEEE Trans Pattern Anal Mach Intell20093291627164510.1109/TPAMI.2009.167
LiXShenCDickAZhangZZhuangYOnline metric-weighted linear representations for robust visual trackingIEEE Trans Pattern Anal Mach Intell201638593195010.1109/TPAMI.2015.2469276
DollárPWojekCSchieleBPeronaPPedestrian detection: an evaluation of the state of the artIEEE Trans Pattern Anal Mach Intell201234474376110.1109/TPAMI.2011.155
Gu B, Sun X, Sheng VS (2016) Structural minimax probability machine. IEEE Trans Neural Netw Learn Syst 28(7):1646–1656
Zhu Q, Yeh MC, Cheng KT, Avidan S (2006) Fast human detection using a cascade of histograms of oriented gradients. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, vol 2, pp 1491–1498
ShenJSunCYangWWangZSunZA novel distribution-based feature for rapid object detectionNeurocomputing201174172767277910.1016/j.neucom.2011.03.032
ShenJZuoXYangWYuHLiuGLearning discriminative shape statistics distribution features for pedestrian detectionNeurocomputing2016184667710.1016/j.neucom.2015.08.107
HintonGEOsinderoSTehYA fast learning algorithm for deep belief netsNeural Comput2006182006222448510.1162/neco.2006.18.7.15271106.68094
Wang X, Han T, Yan S (2009) An HOG-LBP human detector with partial occlusion handling. In: IEEE international conference on computer vision, pp 32–39
ShenJZuoXLiJYangWLingHA novel pixel neighborhood differential statistic feature for pedestrian and face detectionPattern Recogn20176312713810.1016/j.patcog.2016.09.010
Wojek C, Walk S, Schiele B (2009) Multi-cue onboard pedestrian detection. In: IEEE conference on computer vision and pattern recognition, pp 794–801
Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceeding of IEEE conference on computer vision and pattern recognition, vol 1, pp 886–893
WangLZhangBHanJShenLQianCRobust object representation by boosting-like deep learning architectureSig Process Image Commun20164749049910.1016/j.image.2016.06.002
Yang Y, Wang Z, Wu F (2015) Exploring prior knowledge for pedestrian detection. In: Proceedings of the British machine vision conference, pp 176.1–176.12
Zhang S, Benenson R, Schiele B (2015) Filtered channel features for pedestrian detection. In: IEEE conference on computer vision and pattern recognition, pp 1751–1760
Zhang L, Lin L, Liang X, He K (2016) Is faster R-CNN doing well for pedestrian detection? In: Proceedings of 14th european conference computer vision, pp 443–457
EssALeibeBSchindlerKvan GoolLRobust multiperson tracking from a mobile platformIEEE Trans Pattern Anal Mach Intell200931101831184610.1109/TPAMI.2009.109
Chen C, Seff A, Kornhauser A, Xiao J (2015) DeepDriving: learning affordance for direct perception in autonomous driving. In: IEEE international conference on computer vision (ICCV), pp 2722–2730
BilalMKhanAKhanMUKKyungCMA low complexity pedestrian detection framework for smart video surveillance systemsIEEE Trans Circuits Syst Video Technol20169911
LiXHuWShenCZhangZDickAHengelAVDA survey of appearance models in visual object trackingACM Trans Intell Syst Technol20134414810.1145/2508037.2508039
Angelova A, Krizhevsky A, Vanhoucke V, Ogale A, Fergusonn D (2015) Real-time pedestrian detection with deep network cascades. In: British machine vision conference, vol 32, pp 1–12
PaisitkriangkraiSShenCHengelAVDPedestrian detection with spatially pooled features and structured ensemble learningIEEE Trans Pattern Anal Mach Intell20163861243125710.1109/TPAMI.2015.2474388
DollárPAppelRBelongieSPeronaPFast feature pyramids for object detectionIEEE Trans Pattern Anal Mach Intell20143681532154510.1109/TPAMI.2014.2300479
Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–407
B Zhang (9746_CR3) 2017; 47
B Sheng (9746_CR12) 2017; 249
W Nam (9746_CR20) 2014; 27
9746_CR21
9746_CR22
9746_CR25
9746_CR26
9746_CR28
S Paisitkriangkrai (9746_CR33) 2016; 38
C Chang (9746_CR13) 2011; 2
B Zhang (9746_CR4) 2016; 118
J Shen (9746_CR35) 2011; 74
L Wang (9746_CR11) 2016; 47
J Shen (9746_CR24) 2017; 63
P Dollár (9746_CR29) 2012; 34
P Dollár (9746_CR10) 2014; 36
X Li (9746_CR6) 2013; 4
J Shen (9746_CR19) 2013; 23
9746_CR32
9746_CR31
9746_CR34
9746_CR8
9746_CR9
9746_CR16
GE Hinton (9746_CR27) 2006; 18
X Li (9746_CR5) 2016; 38
9746_CR15
X Wen (9746_CR7) 2015; 295
B Gu (9746_CR14) 2016; 99
9746_CR18
9746_CR1
A Ess (9746_CR30) 2009; 31
P Felzenszwalb (9746_CR17) 2009; 32
M Bilal (9746_CR2) 2016; 99
J Shen (9746_CR23) 2016; 184
References_xml – reference: Wang X, Han T, Yan S (2009) An HOG-LBP human detector with partial occlusion handling. In: IEEE international conference on computer vision, pp 32–39
– reference: Zhang L, Lin L, Liang X, He K (2016) Is faster R-CNN doing well for pedestrian detection? In: Proceedings of 14th european conference computer vision, pp 443–457
– reference: ShenJSunCYangWWangZSunZA novel distribution-based feature for rapid object detectionNeurocomputing201174172767277910.1016/j.neucom.2011.03.032
– reference: Zhu Q, Yeh MC, Cheng KT, Avidan S (2006) Fast human detection using a cascade of histograms of oriented gradients. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, vol 2, pp 1491–1498
– reference: Zhang S, Benenson R, Schiele B (2015) Filtered channel features for pedestrian detection. In: IEEE conference on computer vision and pattern recognition, pp 1751–1760
– reference: ShenJZuoXYangWYuHLiuGLearning discriminative shape statistics distribution features for pedestrian detectionNeurocomputing2016184667710.1016/j.neucom.2015.08.107
– reference: NamWDollarPHanJHLocal decorrelation for improved pedestrian detectionAdv Neural Inf Process Syst201427424432
– reference: EssALeibeBSchindlerKvan GoolLRobust multiperson tracking from a mobile platformIEEE Trans Pattern Anal Mach Intell200931101831184610.1109/TPAMI.2009.109
– reference: Zhang S, Bauckhage C, Cremers AB (2014) Informed haar-like features improve pedestrian detection. In: IEEE conference on computer vision and pattern recognition, pp 947–954
– reference: ShenJZuoXLiJYangWLingHA novel pixel neighborhood differential statistic feature for pedestrian and face detectionPattern Recogn20176312713810.1016/j.patcog.2016.09.010
– reference: Wojek C, Walk S, Schiele B (2009) Multi-cue onboard pedestrian detection. In: IEEE conference on computer vision and pattern recognition, pp 794–801
– reference: ZhangBPerinaALiZMurinoVLiuJJiRBounding multiple Gaussians uncertainty with application to object trackingInt J Comput Vis20161183364379351067510.1007/s11263-016-0880-y
– reference: BilalMKhanAKhanMUKKyungCMA low complexity pedestrian detection framework for smart video surveillance systemsIEEE Trans Circuits Syst Video Technol20169911
– reference: HintonGEOsinderoSTehYA fast learning algorithm for deep belief netsNeural Comput2006182006222448510.1162/neco.2006.18.7.15271106.68094
– reference: Dollar P, Tu Z, Perona P, Belongie S (2009) Integral channel features. In: British machine vision conference, vol 91, pp 1–11
– reference: WangLZhangBHanJShenLQianCRobust object representation by boosting-like deep learning architectureSig Process Image Commun20164749049910.1016/j.image.2016.06.002
– reference: GuBShengVSA robust regularization path algorithm for v-support vector classificationIEEE Trans Neural Netw Learn Syst20169918
– reference: Angelova A, Krizhevsky A, Vanhoucke V, Ogale A, Fergusonn D (2015) Real-time pedestrian detection with deep network cascades. In: British machine vision conference, vol 32, pp 1–12
– reference: ShengBHuQLiJYangWZhangBSunCFiltered shallow-deep feature channels for pedestrian detectionNeurocomputing2017249192710.1016/j.neucom.2017.03.007
– reference: ShenJYangWSunCReal-time human detection based on gentle MILBoost with variable granularity HOG-CSLBPNeural Comput Appl2013237–81937194810.1007/s00521-012-1153-5
– reference: Dalal N, Triggs B (2005) Histograms of oriented gradients for human detection. In: Proceeding of IEEE conference on computer vision and pattern recognition, vol 1, pp 886–893
– reference: ChangCLinCLIBSVM: a library for support vector machinesACM Trans Intell Syst Technol20112312710.1145/1961189.1961199
– reference: Chen C, Seff A, Kornhauser A, Xiao J (2015) DeepDriving: learning affordance for direct perception in autonomous driving. In: IEEE international conference on computer vision (ICCV), pp 2722–2730
– reference: WenXShaoLXueYFangWA rapid learning algorithm for vehicle classificationInf Sci201529539540610.1016/j.ins.2014.10.040
– reference: DollárPAppelRBelongieSPeronaPFast feature pyramids for object detectionIEEE Trans Pattern Anal Mach Intell20143681532154510.1109/TPAMI.2014.2300479
– reference: DollárPWojekCSchieleBPeronaPPedestrian detection: an evaluation of the state of the artIEEE Trans Pattern Anal Mach Intell201234474376110.1109/TPAMI.2011.155
– reference: FelzenszwalbPGirshickRMcAllesterDRamananDObject detection with discriminatively trained part based modelsIEEE Trans Pattern Anal Mach Intell20093291627164510.1109/TPAMI.2009.167
– reference: LiXShenCDickAZhangZZhuangYOnline metric-weighted linear representations for robust visual trackingIEEE Trans Pattern Anal Mach Intell201638593195010.1109/TPAMI.2015.2469276
– reference: PaisitkriangkraiSShenCHengelAVDPedestrian detection with spatially pooled features and structured ensemble learningIEEE Trans Pattern Anal Mach Intell20163861243125710.1109/TPAMI.2015.2474388
– reference: LiXHuWShenCZhangZDickAHengelAVDA survey of appearance models in visual object trackingACM Trans Intell Syst Technol20134414810.1145/2508037.2508039
– reference: Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–407
– reference: Gu B, Sun X, Sheng VS (2016) Structural minimax probability machine. IEEE Trans Neural Netw Learn Syst 28(7):1646–1656
– reference: ZhangBLiZCaoXYeQChenCShenLPerinaAJillROutput constraint transfer for kernelized correlation filter in trackingIEEE Trans Syst Man Cybern Syst201747469370310.1109/TSMC.2016.2629509
– reference: Yang B, Yan J, Lei Z, Li SZ (2015) Convolutional channel features. In: IEEE international conference on computer vision, pp 82–90
– reference: Yang Y, Wang Z, Wu F (2015) Exploring prior knowledge for pedestrian detection. In: Proceedings of the British machine vision conference, pp 176.1–176.12
– ident: 9746_CR31
  doi: 10.1109/CVPR.2009.5206638
– volume: 63
  start-page: 127
  year: 2017
  ident: 9746_CR24
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2016.09.010
– ident: 9746_CR15
  doi: 10.1214/aos/1016218223
– volume: 38
  start-page: 1243
  issue: 6
  year: 2016
  ident: 9746_CR33
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2474388
– volume: 32
  start-page: 1627
  issue: 9
  year: 2009
  ident: 9746_CR17
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.167
– ident: 9746_CR28
  doi: 10.5244/C.23.91
– volume: 27
  start-page: 424
  year: 2014
  ident: 9746_CR20
  publication-title: Adv Neural Inf Process Syst
– ident: 9746_CR34
  doi: 10.5244/C.29.176
– ident: 9746_CR22
  doi: 10.1109/CVPR.2015.7298784
– volume: 4
  start-page: 1
  issue: 4
  year: 2013
  ident: 9746_CR6
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/2508037.2508039
– volume: 249
  start-page: 19
  year: 2017
  ident: 9746_CR12
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.03.007
– ident: 9746_CR26
  doi: 10.1007/978-3-319-46475-6_28
– volume: 36
  start-page: 1532
  issue: 8
  year: 2014
  ident: 9746_CR10
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2300479
– volume: 47
  start-page: 490
  year: 2016
  ident: 9746_CR11
  publication-title: Sig Process Image Commun
  doi: 10.1016/j.image.2016.06.002
– ident: 9746_CR18
– ident: 9746_CR16
– volume: 2
  start-page: 1
  issue: 3
  year: 2011
  ident: 9746_CR13
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 23
  start-page: 1937
  issue: 7–8
  year: 2013
  ident: 9746_CR19
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1153-5
– volume: 38
  start-page: 931
  issue: 5
  year: 2016
  ident: 9746_CR5
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2469276
– ident: 9746_CR32
  doi: 10.5244/C.29.32
– volume: 184
  start-page: 66
  year: 2016
  ident: 9746_CR23
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.107
– volume: 18
  start-page: 2006
  year: 2006
  ident: 9746_CR27
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.7.1527
– ident: 9746_CR25
  doi: 10.1109/ICCV.2015.18
– volume: 99
  start-page: 1
  year: 2016
  ident: 9746_CR14
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 31
  start-page: 1831
  issue: 10
  year: 2009
  ident: 9746_CR30
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2009.109
– volume: 34
  start-page: 743
  issue: 4
  year: 2012
  ident: 9746_CR29
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2011.155
– ident: 9746_CR8
  doi: 10.1109/CVPR.2005.177
– volume: 295
  start-page: 395
  year: 2015
  ident: 9746_CR7
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.10.040
– volume: 99
  start-page: 1
  year: 2016
  ident: 9746_CR2
  publication-title: IEEE Trans Circuits Syst Video Technol
– volume: 47
  start-page: 693
  issue: 4
  year: 2017
  ident: 9746_CR3
  publication-title: IEEE Trans Syst Man Cybern Syst
  doi: 10.1109/TSMC.2016.2629509
– ident: 9746_CR21
  doi: 10.1109/CVPR.2014.126
– volume: 118
  start-page: 364
  issue: 3
  year: 2016
  ident: 9746_CR4
  publication-title: Int J Comput Vis
  doi: 10.1007/s11263-016-0880-y
– ident: 9746_CR9
  doi: 10.1109/ICCV.2009.5459207
– volume: 74
  start-page: 2767
  issue: 17
  year: 2011
  ident: 9746_CR35
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.03.032
– ident: 9746_CR1
  doi: 10.1109/ICCV.2015.312
SSID ssj0010020
Score 2.1455681
Snippet Following the recent progress of the pixel-level filtering for pedestrian detection, we propose a window differential feature (WDF) based on the multiple...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 403
SubjectTerms Accuracy
Artificial Intelligence
Complex Systems
Computational Intelligence
Computer Science
Deep learning
Feature selection
Filtration
Pixels
Random variables
Reduction
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEA26Xrz4La6ukoMnJdCvpOlxdS2Logi6uLeSdBIQpCtuxb_vJNtuUVTwVmiawySZ96YzmUfIqS2zyIaJZVIEJUtsxJlClsF4xsFIi6DtxWBu78R4klxP-bS5xz1vq93blKT31N1lN4xeXO1PypADCyZXyRrH0N3VcU2i4TJ14AiQj7LSgCUiCttU5k9TfAWjjmF-S4p6rMm3yEZDEulwsarbZMVUO2SzFWCgzXncJTe5mtf03oDx6hsVHZnal1ZV9ALRCSg-IMGjD17sBv0afcIQfPZBR40sCh7vF5o_u4z5HpnkV4-XY9aoI7AyDkXNFJSq5BloNK0EDsqGZazcv0GVgEQgtly5doJRDNoGEEAqM66sMhoxW4Uq3ie9alaZA0K1CECDlEmYiiTNRCZB2Fi7zvNagIz6JGjNVJRN63CnYPFSdE2PnWULtGzhLFvIPjlbfvK66Jvx1-BBa_uiOULzIsrQ23iP0ifn7Xp0r3-d7PBfo4_IOlIguSjpG5Be_fZujpFm1PrEb6tPGuTHrQ
  priority: 102
  providerName: Springer Nature
Title Fast Pedestrian Detection Based on the Selective Window Differential Filter
URI https://link.springer.com/article/10.1007/s11063-017-9746-8
https://www.proquest.com/docview/2918342578
Volume 48
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vXjxLVZr2YMnZTHPzeYkrW0URRG1qKewyWZBKGm1Ef--s9uNQcHeQh57mNmd-eaR-QCOVR57yg0U5czJaaC8kApEGTSMQ1lwhU7bkMHc3rGrcXD9Er7YhNvctlXWNtEYajnNdY78zItx85kNdj57p5o1SldXLYXGKrTRBHPegvZgdHf_8FNH0GjIhFyRQwPmuXVd0_w8h9GQ7iWKKGJqRvlvz9TAzT8VUuN4kk1Yt4iR9Bcq3oKVotyGjZqNgdjDuQM3iZhX5L6QhaHiKMmwqEyfVUkG6KokwQtEe-TRMN-gkSPPGI9Pv8jQcqTgWZ-Q5E2Xz3dhnIyeLq6opUqgue-yigqZizyMZYZy5jKUQrm5L3SiUASSo1dWodCzBT1fZsqRjox4HAoligwduHCFvwetcloW-0Ay5shMch64EQuimMVcMuVnegx9xiT3OuDUYkpzO0dc01lM0mYCspZsipJNtWRT3oGTn09miyEay17u1rJP7Xmap432O3Ba66N5_O9iB8sXO4Q1BEB80dDXhVb18VkcIciosh6s8uSyB-3-5evNqGf3Fd4de_1v9-TP6w
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58HPTiW1xdNQe9KME-0_Qgoq51dVUEFb3VtElAWLrqVhb_lL_RSbZ1UdCbt0LbUCbTmW8yjw9gS-exp91AU86cnAbaC6lAlEHDOJSKa3Talgzm8oq174Lzh_BhDD7qXhhTVlnbRGuoZS83Z-R7XozKZxXs4PmFGtYok12tKTSGatFR7wMM2fr7Zy3c323PS05uj9u0YhWgue-ykgqZizyMZYafxGUohXZzX5gzNRFIjg5Mh8KM4fN8mWlHOjLicSi0UBn6OuEKH9cdh8nAR09uOtOT06-shcFeNsCLHBowz62zqLZVD2MvU7kUUUTwjPLvfnAEbn_kY62bS-ZgpsKn5HCoUPMwpooFmK25H0hlChahk4h-Sa6VVJb4oyAtVdqqroIcoWOUBC8QW5Iby7ODJpXcY_TfG5BWxciClqVLkieTrF-Cu38R4TJMFL1CrQDJmCMzyXngRiyIYhZzybSfmaH3GZPca4BTiynNq6nlhjyjm47mLRvJpijZ1Eg25Q3Y-XrleTiy46-Hm7Xs0-rv7acjXWvAbr0fo9u_Lrb692KbMNW-vbxIL86uOmswjdCLD0sJmzBRvr6pdYQ3ZbZhdYrA438r8SexlAmb
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB58gHjxLa7PHPSiBNu0TdODB3Ut6qoIuuitpk0CwlLFrYi_yr_oJNu6KCp48FZoGsIkmfmm8_gANk2RMOOHhgruFTQ0LKISUQaNkkhpYdBoOzKY8wt-3A1Pb6PbEXhramFctnsTkhzUNNguTWW1-6jM7rDwDT0ZmwcUU8TDnIo6q7KjX1_QZ-vvnbRxg7cYS4-uD49pTStAi8DnFZWqkEWUqBzXJFSkpPGLQNqfajJUAi2YiaTtw8cClRtPeSoWSSSN1DkaO-nLAOcdhfHQFh_jBeqy_Y-whQVfzsOLPRpy5jdh1O-W_NkQDtHtl4Css3PpDEzVAJXsD07ULIzocg6mG_IHUuuCeeiksl-RS620Y_4oSVtXLq2rJAdoGRXBBwSX5MoR7aBOJTfo_j-8kHZNyYKqpUfSexutX4Duv4hwEcbKh1IvAcm5p3IlROjHPIwTngjFTZDbrvc5V4K1wGvElBV123LLntHLhg2XrWQzlGxmJZuJFmx_fPI46Nnx2-DVRvZZfX37GUtQ0zlt1oKdZj-Gr3-cbPlPozdg4rKdZmcnF50VmEQkJgaZhaswVj096zVEO1W-7k4Ygbv_PtLvYbcKeA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Pedestrian+Detection+Based+on+the+Selective+Window+Differential+Filter&rft.jtitle=Neural+processing+letters&rft.date=2018-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=48&rft.issue=1&rft.spage=403&rft.epage=417&rft_id=info:doi/10.1007%2Fs11063-017-9746-8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon