An In-Situ MRI Method for Quantifying Temperature Changes during Crystal Hydrate Growths in Porous Medium
Given the complexity of the thermo-hydro-chemically coupled phase transition process of hydrates, real-time in-situ observations are required. Thermometry maps are particularly essential in analyzing the heat transfer process during the growth and dissociation of crystal hydrates. In this study, we...
Saved in:
Published in | Journal of thermal science Vol. 31; no. 5; pp. 1542 - 1550 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Given the complexity of the thermo-hydro-chemically coupled phase transition process of hydrates, real-time in-situ observations are required. Thermometry maps are particularly essential in analyzing the heat transfer process during the growth and dissociation of crystal hydrates. In this study, we present the temporally and spatially resolved thermometry of the formation of tetrahydrofuran hydrates based on the temperature dependence of the chemical shift of the water proton. Images of temperature changes were synchronously obtained using a 9.4 T
1
H magnetic resonance imaging (MRI) system to predict the saturation level of the aqueous solution, phases of the solid hydrates, and the positive temperature anomaly of the exothermic reaction. It was observed that variations in the MRI signal decreased while the temperature rise differed significantly in space and time. The results predicted in this study could have significant implications in optimizing the phase transition process of gas hydrates. |
---|---|
AbstractList | Given the complexity of the thermo-hydro-chemically coupled phase transition process of hydrates, real-time in-situ observations are required. Thermometry maps are particularly essential in analyzing the heat transfer process during the growth and dissociation of crystal hydrates. In this study, we present the temporally and spatially resolved thermometry of the formation of tetrahydrofuran hydrates based on the temperature dependence of the chemical shift of the water proton. Images of temperature changes were synchronously obtained using a 9.4 T 1H magnetic resonance imaging (MRI) system to predict the saturation level of the aqueous solution, phases of the solid hydrates, and the positive temperature anomaly of the exothermic reaction. It was observed that variations in the MRI signal decreased while the temperature rise differed significantly in space and time. The results predicted in this study could have significant implications in optimizing the phase transition process of gas hydrates. Given the complexity of the thermo-hydro-chemically coupled phase transition process of hydrates, real-time in-situ observations are required. Thermometry maps are particularly essential in analyzing the heat transfer process during the growth and dissociation of crystal hydrates. In this study, we present the temporally and spatially resolved thermometry of the formation of tetrahydrofuran hydrates based on the temperature dependence of the chemical shift of the water proton. Images of temperature changes were synchronously obtained using a 9.4 T 1 H magnetic resonance imaging (MRI) system to predict the saturation level of the aqueous solution, phases of the solid hydrates, and the positive temperature anomaly of the exothermic reaction. It was observed that variations in the MRI signal decreased while the temperature rise differed significantly in space and time. The results predicted in this study could have significant implications in optimizing the phase transition process of gas hydrates. |
Author | Sun, Mingrui Yang, Lei Zhang, Xiaotong Zhang, Lunxiang Zhao, Jiafei Wang, Tian Song, Yongchen |
Author_xml | – sequence: 1 givenname: Lunxiang surname: Zhang fullname: Zhang, Lunxiang organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology – sequence: 2 givenname: Mingrui surname: Sun fullname: Sun, Mingrui organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology – sequence: 3 givenname: Tian surname: Wang fullname: Wang, Tian organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology – sequence: 4 givenname: Lei surname: Yang fullname: Yang, Lei organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology – sequence: 5 givenname: Xiaotong surname: Zhang fullname: Zhang, Xiaotong email: zhangxiaotong@zju.edu.cn organization: Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University – sequence: 6 givenname: Jiafei surname: Zhao fullname: Zhao, Jiafei email: jfzhao@dlut.edu.cn organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology – sequence: 7 givenname: Yongchen surname: Song fullname: Song, Yongchen organization: Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology |
BookMark | eNp9kE1LAzEQhoNUsFV_gLeA52hmsx_NUYq2BcWvCt5CupltI21Skyzaf--WCoKgpxmY95kZngHpOe-QkDPgF8B5dRkBSsEZzzIGZZWzzwPSBykF40K89rqec8EyKOURGcT4xnlZlSLvE3vl6NSxZ5taevc0pXeYlt7Qxgf62GqXbLO1bkFnuN5g0KkNSEdL7RYYqWnDbjQK25j0ik62pgsgHQf_kZaRWkcffPBt7HYa265PyGGjVxFPv-sxebm5no0m7PZ-PB1d3bJaQJmYNnMQhTHDoq4NoIFK80IKgTistR42UOU4R53NQUuT67IBOedG1ghNVgBIcUzO93s3wb-3GJN6821w3UmVVVzKXMii6FKwT9XBxxiwUZtg1zpsFXC1M6r2RlVnVO2Mqs-OqX4xtU06We9S0Hb1L5ntybjZOcPw89Pf0BcdpY6O |
CitedBy_id | crossref_primary_10_3390_en17051104 crossref_primary_10_1016_j_fuel_2023_129125 crossref_primary_10_1016_j_fuel_2023_129663 crossref_primary_10_1016_j_cej_2024_157711 crossref_primary_10_3390_en16124681 crossref_primary_10_1021_acs_energyfuels_4c01241 crossref_primary_10_1021_acs_jpcc_3c02134 crossref_primary_10_1016_j_fuel_2022_125669 crossref_primary_10_1016_j_fuel_2023_130612 crossref_primary_10_1016_j_est_2023_108279 crossref_primary_10_1021_acs_energyfuels_3c01775 crossref_primary_10_1016_j_jclepro_2023_138596 crossref_primary_10_3390_en16083576 crossref_primary_10_1021_acssuschemeng_3c02718 crossref_primary_10_1016_j_enconman_2023_117475 crossref_primary_10_3390_jmse11071350 crossref_primary_10_1016_j_molliq_2023_122793 crossref_primary_10_1021_acs_cgd_4c00304 crossref_primary_10_1021_acs_energyfuels_4c04614 crossref_primary_10_1016_j_jiec_2023_09_015 crossref_primary_10_1021_acs_energyfuels_3c04492 crossref_primary_10_1016_j_cej_2022_140325 crossref_primary_10_1016_j_heliyon_2024_e33949 crossref_primary_10_1021_acs_energyfuels_4c03212 crossref_primary_10_1038_s41598_024_68594_2 crossref_primary_10_1016_j_jclepro_2023_138305 crossref_primary_10_1016_j_desal_2023_117058 crossref_primary_10_1016_j_est_2022_105835 crossref_primary_10_1016_j_icheatmasstransfer_2025_108872 crossref_primary_10_1063_5_0161972 crossref_primary_10_1016_j_jclepro_2023_139632 crossref_primary_10_1016_j_cej_2023_142020 crossref_primary_10_1021_acs_cgd_3c00099 |
Cites_doi | 10.1016/j.cej.2021.133223 10.1007/s11630-019-1181-x 10.1002/mrm.1910340606 10.1021/ef200399a 10.1016/j.ijheatmasstransfer.2015.08.102 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S 10.1029/2006JB004484 10.1016/j.fuel.2018.01.067 10.1002/mrm.25025 10.1186/s40349-016-0067-6 10.1002/mrm.23097 10.1002/jmri.21506 10.1016/j.rser.2021.110928 10.1038/nature02135 10.1002/mrm.24976 10.1002/mrm.22361 10.1021/ja802075m 10.1002/mrm.24171 10.1002/2017JB014624 10.1016/j.ijheatmasstransfer.2018.07.016 10.1016/j.ijheatmasstransfer.2017.11.081 10.2463/mrms.10.177 10.1016/j.ijheatmasstransfer.2016.11.034 10.1029/2004GL021437 10.1063/1.5018192 10.1021/jp904994s 10.1016/j.jece.2021.106633 10.1029/2007GC001920 10.1002/mrm.22174 10.1016/j.rser.2019.109492 10.1002/nbm.3410 10.1016/j.apenergy.2018.01.072 10.1002/1522-2594(200006)43:6<901::AID-MRM18>3.0.CO;2-A 10.1029/93RG00268 10.1021/ja028537v 10.1021/jp066536+ 10.1021/jp0351371 10.1016/j.cej.2019.122357 10.1016/j.ijheatmasstransfer.2016.08.081 10.1016/j.petrol.2005.10.009 10.1016/j.earscirev.2003.11.002 10.1063/1.2190273 10.1016/j.cej.2016.09.047 10.1002/jmri.21238 10.1038/nature12568 10.1063/1.4903774 10.1016/S0022-0248(02)01576-2 10.1016/j.desal.2014.09.023 10.1007/s11630-021-1403-x 10.1021/jp0362584 10.1016/j.fluid.2015.11.022 10.1016/j.jmr.2013.02.001 10.1002/aic.16859 |
ContentType | Journal Article |
Copyright | Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022 Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
Copyright_xml | – notice: Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022 – notice: Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11630-022-1674-x |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1993-033X |
EndPage | 1550 |
ExternalDocumentID | 10_1007_s11630_022_1674_x |
GroupedDBID | -54 -5F -5G -BR -EM -SC -S~ -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 2.D 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5VR 5VS 5XA 5XD 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BGNMA CAG CAJEC CCEZO CEKLB CHBEP COF CS3 CSCUP CW9 DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- N2Q NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P9T PF0 PT4 PT5 Q-- QOK QOS R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDH SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TUC U1G U2A U5M UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z7R Z7S Z7X Z7Y Z7Z Z8N ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PB1 PB6 TGP ABRTQ |
ID | FETCH-LOGICAL-c316t-adb135dd85ccd1ed17a05933ee8caa8f174ebea2b1a9d4a6f19b0d9ce1f251193 |
IEDL.DBID | U2A |
ISSN | 1003-2169 |
IngestDate | Fri Jul 25 11:10:21 EDT 2025 Tue Jul 01 02:36:30 EDT 2025 Thu Apr 24 23:11:08 EDT 2025 Fri Feb 21 02:45:25 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | magnetic resonance imaging thermometry hydrate phase transition temperature mapping thermodynamics and molecular-scale phenomena heat transfer porous medium |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-adb135dd85ccd1ed17a05933ee8caa8f174ebea2b1a9d4a6f19b0d9ce1f251193 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2709943955 |
PQPubID | 2044453 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2709943955 crossref_primary_10_1007_s11630_022_1674_x crossref_citationtrail_10_1007_s11630_022_1674_x springer_journals_10_1007_s11630_022_1674_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Journal of thermal science |
PublicationTitleAbbrev | J. Therm. Sci |
PublicationYear | 2022 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | Kuroda, Iwabuchi, Obara, Honda, Saito, Imai (CR43) 2011; 10 Zhang, Kuang, Dai, Wang, Zhao, Song (CR28) 2020; 397 Kwon, Cho, Santamarina (CR18) 2008; 9 Seo, Lee (CR32) 2004; 108 Jarenwattananon, Glöggler, Otto, Melkonian, Morris, Burt, Yaghi, Bouchard (CR34) 2013; 502 Zhang, Zhao, Deng, Zhao, Nie, Liu (CR4) 2019; 28 Moeller, Yacoub, Olman, Auerbach, Strupp, Harel, Ugurbil (CR48) 2010; 63 Li, Peng, Liang (CR36) 2017; 104 Baron, Deckers, Knuttel, Bartels (CR40) 2015; 28 Kvenvolden (CR17) 1993; 31 Wan, Si, Li, Li (CR6) 2018; 127 Hynynen, McDannold, Mulkern, Jolesz (CR42) 2000; 43 Han, Shin, Rhee, Kang (CR14) 2014; 354 Wang, Feng, Li, Zhang, Chen (CR21) 2018; 118 Setsompop, Gagoski, Polimeni, Witzel, Wedeen, Wald (CR49) 2012; 67 Zhao, Sun, Zhang, Hu, Tang, Yang, Song (CR26) 2021; 30 Moon, Taylor, Rodger (CR53) 2003; 125 Circone, Stern, Kirby (CR9) 2004; 108 Koptyug, Khomichev, Lysova, Sagdeev (CR33) 2008; 130 Lokshin, Zhao (CR12) 2006; 88 Weinberger, Brown, Long (CR24) 2005; 32 Kuang, Zhang, Song, Yang, Zhao (CR29) 2019; 66 Zhang, Dong, Dai, Kuang, Yang, Zhao, Song (CR52) 2022; 431 Milkov (CR2) 2004; 66 Bagherzadeh, Moudrakovski, Ripmeester, Englezos (CR27) 2011; 25 Keil, Wald (CR51) 2013; 229 Pruessmann, Scheidegger, Boesiger (CR50) 1999; 42 Cheng, Wang, Tian, Wu, Zheng, Zhang, Li, Yang, Zhao (CR15) 2020; 117 Gensler, Fidler, Ehses, Warmuth, Reiter, During, Ritter, Ladd, Quick, Jakob, Bauer, Nordbeck (CR41) 2012; 68 Todd, Diakite, Payne, Parker (CR44) 2014; 72 Baron, Ries, Deckers, Greef, Tanttu, Kohler, Viergever, Moonen, Bartels (CR39) 2014; 72 Zhang, Moortele, Liu, Schmitter, He (CR25) 2014; 105 Rieke, Pauly (CR38) 2008; 27 Zhang, Yang, Wang, Zhao, Dong, Yang, Liu, Song (CR11) 2017; 308 Zhao, Zhao, Liang, Gao, Yang (CR22) 2018; 220 Oh, Webb, Neuberger, Park, Collins (CR47) 2010; 63 Smith, Babaee, Mohammadi, Naidoo, Ramjugernath (CR16) 2016; 413 Makogon, Holditch, Makogon (CR8) 2007; 56 McDannold, Tempany, Jolesz, Hynynen (CR45) 2008; 28 Sloan (CR1) 2003; 426 Song, Wang, Liu, Zhao (CR5) 2016; 92 Yun, Santamarina, Ruppel (CR35) 2007; 112 Sun, Sun, Zhao, Yang, Zhang, Dong, Yuan, Ling, Zhao, Song (CR13) 2021; 9 Odéen, Almquist, Bever, Christensen, Parker (CR46) 2016; 4 Chong, Zhao, Chan, Yin, Linga (CR23) 2018; 214 Dong, Wang, Xie, Wang, Zhang, Shi (CR10) 2021; 143 Shagapov, Khasanov, Musakaev, Duong (CR7) 2017; 107 Gupta, Dec, Koh, Sloan (CR31) 2007; 115 Lei, Santamarina (CR19) 2018; 123 Ishihara, Calderon, Watanabe, Okamoto, Suzuki, Kuroda, Suzuki (CR37) 1995; 34 Ghaani, English (CR20) 2018; 148 Seo, Kang, Jang (CR30) 2009; 113 Sloan, Koh (CR3) 2008 Kashchiev (CR54) 2002; 243 KA Lokshin (1674_CR12) 2006; 88 A Gupta (1674_CR31) 2007; 115 Y Seo (1674_CR32) 2004; 108 TS Yun (1674_CR35) 2007; 112 ED Sloan (1674_CR1) 2003; 426 P Baron (1674_CR40) 2015; 28 HS Dong (1674_CR10) 2021; 143 MR Ghaani (1674_CR20) 2018; 148 Y Seo (1674_CR30) 2009; 113 H Odéen (1674_CR46) 2016; 4 V Rieke (1674_CR38) 2008; 27 SA Bagherzadeh (1674_CR27) 2011; 25 LX Zhang (1674_CR11) 2017; 308 Y Zhang (1674_CR4) 2019; 28 VS Shagapov (1674_CR7) 2017; 107 DL Li (1674_CR36) 2017; 104 S Oh (1674_CR47) 2010; 63 YC Song (1674_CR5) 2016; 92 LX Zhang (1674_CR28) 2020; 397 L Lei (1674_CR19) 2018; 123 D F ^A Kashchiev (1674_CR54) 2002; 243 N McDannold (1674_CR45) 2008; 28 K Kuroda (1674_CR43) 2011; 10 KA Kvenvolden (1674_CR17) 1993; 31 K Hynynen (1674_CR42) 2000; 43 S Han (1674_CR14) 2014; 354 CX Cheng (1674_CR15) 2020; 117 ED Sloan (1674_CR3) 2008 AV Milkov (1674_CR2) 2004; 66 YM Kuang (1674_CR29) 2019; 66 XT Zhang (1674_CR25) 2014; 105 JF Zhao (1674_CR26) 2021; 30 Y Ishihara (1674_CR37) 1995; 34 YF Makogon (1674_CR8) 2007; 56 S Circone (1674_CR9) 2004; 108 Y Wang (1674_CR21) 2018; 118 ZR Chong (1674_CR23) 2018; 214 NN Jarenwattananon (1674_CR34) 2013; 502 A Smith (1674_CR16) 2016; 413 KP W ^M Pruessmann (1674_CR50) 1999; 42 YS Zhao (1674_CR22) 2018; 220 P Baron (1674_CR39) 2014; 72 QC Wan (1674_CR6) 2018; 127 TH Kwon (1674_CR18) 2008; 9 JL Weinberger (1674_CR24) 2005; 32 B Keil (1674_CR51) 2013; 229 K Setsompop (1674_CR49) 2012; 67 IV Koptyug (1674_CR33) 2008; 130 D Gensler (1674_CR41) 2012; 68 LX Zhang (1674_CR52) 2022; 431 S Moeller (1674_CR48) 2010; 63 CM Moon (1674_CR53) 2003; 125 HL Sun (1674_CR13) 2021; 9 N Todd (1674_CR44) 2014; 72 |
References_xml | – volume: 431 start-page: 133223 year: 2022 ident: CR52 article-title: Effects of depressurization on gas production and water performance from excess-gas and excess-water methane hydrate accumulations publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.133223 – volume: 28 start-page: 948 year: 2019 end-page: 961 ident: CR4 article-title: Effect of nanobubble evolution on hydrate process: a review publication-title: Journal of Thermal Science doi: 10.1007/s11630-019-1181-x – volume: 34 start-page: 814 issue: 6 year: 1995 end-page: 823 ident: CR37 article-title: A precise and fast temperature mapping using water proton chemical shift publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.1910340606 – volume: 25 start-page: 3803 issue: 7 year: 2011 end-page: 3092 ident: CR27 article-title: Magnetic resonance imaging of gas hydrate formation in a bed of silica sand particles publication-title: Energy & Fuels doi: 10.1021/ef200399a – volume: 92 start-page: 766 year: 2016 end-page: 773 ident: CR5 article-title: Analysis of heat transfer influences on gas production from methane hydrates using a combined method publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.08.102 – volume: 42 start-page: 952 issue: 5 year: 1999 end-page: 962 ident: CR50 article-title: SENSE: sensitivity encoding for fast MRI publication-title: Magnetic Resonance in Medicine doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 112 start-page: B4 year: 2007 ident: CR35 article-title: Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate publication-title: Journal of Geophysical Research: Solid Earth doi: 10.1029/2006JB004484 – volume: 220 start-page: 185 year: 2018 end-page: 191 ident: CR22 article-title: Semi-clathrate hydrate process of methane in porous media-microporous materials of 5A-type zeolites publication-title: Fuel doi: 10.1016/j.fuel.2018.01.067 – year: 2008 ident: CR3 publication-title: Clathrate hydrates of natural gases – volume: 72 start-page: 1057 issue: 4 year: 2014 end-page: 1064 ident: CR39 article-title: In vivo T2-based MR thermometry in adipose tissue layers for high-intensity focused ultrasoud near-field monitoring publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.25025 – volume: 4 start-page: 23 issue: 1 year: 2016 ident: CR46 article-title: MR thermometry for focused ultrasound monitoring utilizing model predivtive filtering and ultrasound beam modeling publication-title: Journal of Therapeutic Ultrasound doi: 10.1186/s40349-016-0067-6 – volume: 67 start-page: 1210 issue: 5 year: 2012 end-page: 1224 ident: CR49 article-title: Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.23097 – volume: 28 start-page: 1026 issue: 4 year: 2008 end-page: 1032 ident: CR45 article-title: Evaluation of referenceless thermometry in MRI-guided focused ultrasound surgery of uterine fibroids publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.21506 – volume: 143 start-page: 110928 year: 2021 ident: CR10 article-title: Poetntial applications based on the formation and dissociation of gas hydrates publication-title: Renewable & Sustainable Energy Reviews doi: 10.1016/j.rser.2021.110928 – volume: 426 start-page: 353 issue: 6964 year: 2003 end-page: 359 ident: CR1 article-title: Fundamental principles and applications of natural gas hydrates publication-title: Nature doi: 10.1038/nature02135 – volume: 72 start-page: 793 issue: 3 year: 2014 end-page: 799 ident: CR44 article-title: In vivo evaluation of multi-echo hybrid PRF/T1 approach for temperature monitoring during breast MR-guided focused ultrasound surgery treatments publication-title: Magnetic Resonance in Medical Sciences doi: 10.1002/mrm.24976 – volume: 63 start-page: 1144 issue: 5 year: 2010 end-page: 1153 ident: CR48 article-title: Multiband multislice GE-EPI at 7 tesla, with 16-fold acceleration using partial parallel imaging with application to high spatial and temporal whole-brain fMRI publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.22361 – volume: 66 start-page: e16859 issue: 4 year: 2019 ident: CR29 article-title: Quantitative determination of pore-structure change and permeability estimation under hydrate phyase transition by NMR publication-title: AIChE Journal – volume: 130 start-page: 10452 issue: 32 year: 2008 end-page: 10453 ident: CR33 article-title: Spatially resolved NMR thermometry of an operating fixed-bed catalytic reactor publication-title: Journal of the American Chemical Society doi: 10.1021/ja802075m – volume: 68 start-page: 1593 issue: 5 year: 2012 end-page: 1599 ident: CR41 article-title: MR safety: fast T1 thermometry of the RF-induced heating of medical devices publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.24171 – volume: 123 start-page: 2583 issue: 4 year: 2018 end-page: 2596 ident: CR19 article-title: Laboratory strategies for hydrate formation in fine-grained sediments publication-title: Journal of Geophysical Research: Solid Earth doi: 10.1002/2017JB014624 – volume: 127 start-page: 206 year: 2018 end-page: 217 ident: CR6 article-title: Heat transfer analysis of methane hydrate dissociation by depressurization and thermal stimulation publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.07.016 – volume: 118 start-page: 1115 year: 2018 end-page: 1127 ident: CR21 article-title: Fluid flow mechanisms and heat transfer characteristics of gas recovery from gas-saturated and water-saturated hydrate reservoirs publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.11.081 – volume: 10 start-page: 177 issue: 3 year: 2011 end-page: 183 ident: CR43 article-title: Temperature dependence of relaxation times in proton components of fatty acids publication-title: Magnetic Resonance in Medical Sciences doi: 10.2463/mrms.10.177 – volume: 107 start-page: 347 year: 2017 end-page: 357 ident: CR7 article-title: Theoretical research of the gas hydrate deposits development using the injection of carbon dioxide publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.11.034 – volume: 32 start-page: L04609 issue: 4 year: 2005 ident: CR24 article-title: Painting a picture of gas hydrate distribution with thermal images publication-title: Geophysical Research Letters doi: 10.1029/2004GL021437 – volume: 148 start-page: 114504 issue: 11 year: 2018 ident: CR20 article-title: Molecular-dynamics study of propane-hydrate dissociation: fluctuation-dissipation and non-equilibrium analysis publication-title: Journal of Chemical Physics doi: 10.1063/1.5018192 – volume: 113 start-page: 9641 issue: 35 year: 2009 end-page: 9649 ident: CR30 article-title: Structure and composition analysis of natural gas hydrates: 13C NMR spectroscopic and gas uptake measurements of mixed gas hydrates publication-title: Journal of Physical Chemistry A doi: 10.1021/jp904994s – volume: 9 start-page: 106633 issue: 6 year: 2021 ident: CR13 article-title: A combined hydrate-based method for removing heavy metals from simulated wastewater with high concentrations publication-title: Journal of Environmental Chemical Engineering doi: 10.1016/j.jece.2021.106633 – volume: 9 start-page: Q03019 issue: 3 year: 2008 ident: CR18 article-title: Gas hydrate dissociation in sediments: pressure-temperature evolution publication-title: Geochemistry Geophysics Geosystems doi: 10.1029/2007GC001920 – volume: 63 start-page: 218 issue: 1 year: 2010 end-page: 223 ident: CR47 article-title: Experimental and numerical assessment of MRI-induced temperature change and SAR distributions in phantoms and in vivo publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.22174 – volume: 117 start-page: 109492 year: 2020 ident: CR15 article-title: Review and prospects of hydrate cold storage technology publication-title: Renewable & Sustainable Energy Reviews doi: 10.1016/j.rser.2019.109492 – volume: 28 start-page: 1463 issue: 11 year: 2015 end-page: 1470 ident: CR40 article-title: T1 and T2 temperature dependence of female human breast adipose tissue at 1.5 T: groundwork for monitoring thermal therapies in the breast publication-title: NMR in Biomedicine doi: 10.1002/nbm.3410 – volume: 214 start-page: 117 year: 2018 end-page: 130 ident: CR23 article-title: Effect of horizontal wellbore on the production behavior from marine hydrate bearing sediment publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.01.072 – volume: 43 start-page: 901 issue: 6 year: 2000 end-page: 904 ident: CR42 article-title: Temperature monitoring in fat with MRI publication-title: Magnetic Resonance in Medicine doi: 10.1002/1522-2594(200006)43:6<901::AID-MRM18>3.0.CO;2-A – volume: 31 start-page: 173 issue: 2 year: 1993 end-page: 187 ident: CR17 article-title: Gas hydrates-geological perspective and global change publication-title: Reviews of Geophysics doi: 10.1029/93RG00268 – volume: 125 start-page: 4706 issue: 16 year: 2003 end-page: 4707 ident: CR53 article-title: Molecular dynamics study of gas hydrate formation publication-title: Journal of the American Chemical Society doi: 10.1021/ja028537v – volume: 115 start-page: 2341 issue: 5 year: 2007 end-page: 2346 ident: CR31 article-title: NMR investigation of methane hydrate dissociation publication-title: Journal of Physical Chemistry C doi: 10.1021/jp066536+ – volume: 108 start-page: 530 year: 2004 end-page: 534 ident: CR32 article-title: Structure and guest distribution of the mixed carbon dioxide and nitrogen hydrates as revealed by X-ray diffraction and 13C NMR Spectroscopy publication-title: Journal of Physical Chemistry B doi: 10.1021/jp0351371 – volume: 397 start-page: 122357 year: 2020 ident: CR28 article-title: Kinetic enhancement of capturing and storing greenhouse gas and volatile organic compound: micro-mechanism and micro-sturcture of hydrate growth publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122357 – volume: 104 start-page: 566 year: 2017 end-page: 573 ident: CR36 article-title: Thermal conductivity enhancement of clathrate hydrate with nanoparticles publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.08.081 – volume: 56 start-page: 14 issue: 1-3 year: 2007 end-page: 31 ident: CR8 article-title: Natural gas-hydrates-a potential energy source for the 21st century publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2005.10.009 – volume: 66 start-page: 183 issue: 3-4 year: 2004 end-page: 197 ident: CR2 article-title: Global estimates of hydrate-bound gas in marine sediments: how much is really out there? publication-title: Earth Science Reviews doi: 10.1016/j.earscirev.2003.11.002 – volume: 88 start-page: 131909 issue: 13 year: 2006 ident: CR12 article-title: Fast synthesis method and phase diagram of hydrogen clathrate hydrate publication-title: Applied Physics Letters doi: 10.1063/1.2190273 – volume: 308 start-page: 40 year: 2017 end-page: 49 ident: CR11 article-title: Enhanced CH recovery and CO storage via thermal stimulation in the CH /CO replacmemnt of methane hydrate publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2016.09.047 – volume: 27 start-page: 673 issue: 3 year: 2008 end-page: 677 ident: CR38 article-title: Echo combination to reduce proton resonance frequency (PRF) thermometry errors from fat publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.21238 – volume: 502 start-page: 537 issue: 7472 year: 2013 end-page: 540 ident: CR34 article-title: Thermal maps of gases in heterogeneous reactions publication-title: Nature doi: 10.1038/nature12568 – volume: 105 start-page: 244101 issue: 24 year: 2014 ident: CR25 article-title: Quantitative prediction of radio frequency induced local heating derived from measured magnetic field maps in magnetic resonance imaging: A phantom validation at 7 T publication-title: Applied Physics Letters doi: 10.1063/1.4903774 – volume: 243 start-page: 476 year: 2002 end-page: 489 ident: CR54 article-title: Nucleation of gas hydrates publication-title: Journal of Crystal Growth doi: 10.1016/S0022-0248(02)01576-2 – volume: 354 start-page: 17 year: 2014 end-page: 22 ident: CR14 article-title: Enhanced efficiency of salt removal from brine for cyclopentane hydrates by washing, centrifuging, and sweating publication-title: Desalination doi: 10.1016/j.desal.2014.09.023 – volume: 30 start-page: 363 year: 2021 end-page: 393 ident: CR26 article-title: Forced convection heat transfer in porous structure: effect of morphology on pressure drop and heat transfer coefficient publication-title: Journal of Thermal Science doi: 10.1007/s11630-021-1403-x – volume: 108 start-page: 5747 issue: 18 year: 2004 end-page: 5755 ident: CR9 article-title: The role of water in gas hydrate dissociation publication-title: Journal of Physical Chemistry B doi: 10.1021/jp0362584 – volume: 413 start-page: 99 year: 2016 end-page: 109 ident: CR16 article-title: Clathrate hydrate dissociation conditions for refrigerant+ sucrose aqueous solution: experimental measurement and thermodynamic modeling publication-title: Fluid Phase Equilibria doi: 10.1016/j.fluid.2015.11.022 – volume: 229 start-page: 75 year: 2013 end-page: 89 ident: CR51 article-title: Massively parallel MRI detector arrays publication-title: Journal of Magnetic Resonance doi: 10.1016/j.jmr.2013.02.001 – volume: 66 start-page: e16859 issue: 4 year: 2019 ident: 1674_CR29 publication-title: AIChE Journal doi: 10.1002/aic.16859 – volume: 63 start-page: 1144 issue: 5 year: 2010 ident: 1674_CR48 publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.22361 – volume: 148 start-page: 114504 issue: 11 year: 2018 ident: 1674_CR20 publication-title: Journal of Chemical Physics doi: 10.1063/1.5018192 – volume: 397 start-page: 122357 year: 2020 ident: 1674_CR28 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2019.122357 – volume: 413 start-page: 99 year: 2016 ident: 1674_CR16 publication-title: Fluid Phase Equilibria doi: 10.1016/j.fluid.2015.11.022 – volume: 117 start-page: 109492 year: 2020 ident: 1674_CR15 publication-title: Renewable & Sustainable Energy Reviews doi: 10.1016/j.rser.2019.109492 – volume: 43 start-page: 901 issue: 6 year: 2000 ident: 1674_CR42 publication-title: Magnetic Resonance in Medicine doi: 10.1002/1522-2594(200006)43:6<901::AID-MRM18>3.0.CO;2-A – volume: 127 start-page: 206 year: 2018 ident: 1674_CR6 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2018.07.016 – volume: 25 start-page: 3803 issue: 7 year: 2011 ident: 1674_CR27 publication-title: Energy & Fuels doi: 10.1021/ef200399a – volume: 229 start-page: 75 year: 2013 ident: 1674_CR51 publication-title: Journal of Magnetic Resonance doi: 10.1016/j.jmr.2013.02.001 – volume: 88 start-page: 131909 issue: 13 year: 2006 ident: 1674_CR12 publication-title: Applied Physics Letters doi: 10.1063/1.2190273 – volume: 220 start-page: 185 year: 2018 ident: 1674_CR22 publication-title: Fuel doi: 10.1016/j.fuel.2018.01.067 – volume: 66 start-page: 183 issue: 3-4 year: 2004 ident: 1674_CR2 publication-title: Earth Science Reviews doi: 10.1016/j.earscirev.2003.11.002 – volume: 32 start-page: L04609 issue: 4 year: 2005 ident: 1674_CR24 publication-title: Geophysical Research Letters doi: 10.1029/2004GL021437 – volume: 42 start-page: 952 issue: 5 year: 1999 ident: 1674_CR50 publication-title: Magnetic Resonance in Medicine doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S – volume: 4 start-page: 23 issue: 1 year: 2016 ident: 1674_CR46 publication-title: Journal of Therapeutic Ultrasound doi: 10.1186/s40349-016-0067-6 – volume: 426 start-page: 353 issue: 6964 year: 2003 ident: 1674_CR1 publication-title: Nature doi: 10.1038/nature02135 – volume: 10 start-page: 177 issue: 3 year: 2011 ident: 1674_CR43 publication-title: Magnetic Resonance in Medical Sciences doi: 10.2463/mrms.10.177 – volume: 56 start-page: 14 issue: 1-3 year: 2007 ident: 1674_CR8 publication-title: Journal of Petroleum Science and Engineering doi: 10.1016/j.petrol.2005.10.009 – volume: 92 start-page: 766 year: 2016 ident: 1674_CR5 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.08.102 – volume: 9 start-page: 106633 issue: 6 year: 2021 ident: 1674_CR13 publication-title: Journal of Environmental Chemical Engineering doi: 10.1016/j.jece.2021.106633 – volume: 125 start-page: 4706 issue: 16 year: 2003 ident: 1674_CR53 publication-title: Journal of the American Chemical Society doi: 10.1021/ja028537v – volume: 72 start-page: 1057 issue: 4 year: 2014 ident: 1674_CR39 publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.25025 – volume: 31 start-page: 173 issue: 2 year: 1993 ident: 1674_CR17 publication-title: Reviews of Geophysics doi: 10.1029/93RG00268 – volume: 112 start-page: B4 year: 2007 ident: 1674_CR35 publication-title: Journal of Geophysical Research: Solid Earth doi: 10.1029/2006JB004484 – volume: 105 start-page: 244101 issue: 24 year: 2014 ident: 1674_CR25 publication-title: Applied Physics Letters doi: 10.1063/1.4903774 – volume: 28 start-page: 948 year: 2019 ident: 1674_CR4 publication-title: Journal of Thermal Science doi: 10.1007/s11630-019-1181-x – volume: 108 start-page: 5747 issue: 18 year: 2004 ident: 1674_CR9 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp0362584 – volume: 354 start-page: 17 year: 2014 ident: 1674_CR14 publication-title: Desalination doi: 10.1016/j.desal.2014.09.023 – volume: 123 start-page: 2583 issue: 4 year: 2018 ident: 1674_CR19 publication-title: Journal of Geophysical Research: Solid Earth doi: 10.1002/2017JB014624 – volume: 214 start-page: 117 year: 2018 ident: 1674_CR23 publication-title: Applied Energy doi: 10.1016/j.apenergy.2018.01.072 – volume: 502 start-page: 537 issue: 7472 year: 2013 ident: 1674_CR34 publication-title: Nature doi: 10.1038/nature12568 – volume: 143 start-page: 110928 year: 2021 ident: 1674_CR10 publication-title: Renewable & Sustainable Energy Reviews doi: 10.1016/j.rser.2021.110928 – volume: 63 start-page: 218 issue: 1 year: 2010 ident: 1674_CR47 publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.22174 – volume: 431 start-page: 133223 year: 2022 ident: 1674_CR52 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.133223 – volume: 308 start-page: 40 year: 2017 ident: 1674_CR11 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2016.09.047 – volume: 9 start-page: Q03019 issue: 3 year: 2008 ident: 1674_CR18 publication-title: Geochemistry Geophysics Geosystems doi: 10.1029/2007GC001920 – volume: 27 start-page: 673 issue: 3 year: 2008 ident: 1674_CR38 publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.21238 – volume: 67 start-page: 1210 issue: 5 year: 2012 ident: 1674_CR49 publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.23097 – volume: 108 start-page: 530 year: 2004 ident: 1674_CR32 publication-title: Journal of Physical Chemistry B doi: 10.1021/jp0351371 – volume: 107 start-page: 347 year: 2017 ident: 1674_CR7 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.11.034 – volume: 104 start-page: 566 year: 2017 ident: 1674_CR36 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.08.081 – volume: 72 start-page: 793 issue: 3 year: 2014 ident: 1674_CR44 publication-title: Magnetic Resonance in Medical Sciences doi: 10.1002/mrm.24976 – volume: 30 start-page: 363 year: 2021 ident: 1674_CR26 publication-title: Journal of Thermal Science doi: 10.1007/s11630-021-1403-x – volume-title: Clathrate hydrates of natural gases year: 2008 ident: 1674_CR3 – volume: 28 start-page: 1026 issue: 4 year: 2008 ident: 1674_CR45 publication-title: Journal of Magnetic Resonance Imaging doi: 10.1002/jmri.21506 – volume: 130 start-page: 10452 issue: 32 year: 2008 ident: 1674_CR33 publication-title: Journal of the American Chemical Society doi: 10.1021/ja802075m – volume: 118 start-page: 1115 year: 2018 ident: 1674_CR21 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2017.11.081 – volume: 243 start-page: 476 year: 2002 ident: 1674_CR54 publication-title: Journal of Crystal Growth doi: 10.1016/S0022-0248(02)01576-2 – volume: 115 start-page: 2341 issue: 5 year: 2007 ident: 1674_CR31 publication-title: Journal of Physical Chemistry C doi: 10.1021/jp066536+ – volume: 28 start-page: 1463 issue: 11 year: 2015 ident: 1674_CR40 publication-title: NMR in Biomedicine doi: 10.1002/nbm.3410 – volume: 68 start-page: 1593 issue: 5 year: 2012 ident: 1674_CR41 publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.24171 – volume: 34 start-page: 814 issue: 6 year: 1995 ident: 1674_CR37 publication-title: Magnetic Resonance in Medicine doi: 10.1002/mrm.1910340606 – volume: 113 start-page: 9641 issue: 35 year: 2009 ident: 1674_CR30 publication-title: Journal of Physical Chemistry A doi: 10.1021/jp904994s |
SSID | ssj0067634 |
Score | 2.4403486 |
Snippet | Given the complexity of the thermo-hydro-chemically coupled phase transition process of hydrates, real-time in-situ observations are required. Thermometry maps... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1542 |
SubjectTerms | Aqueous solutions Chemical equilibrium Classical and Continuum Physics Crystal growth Engineering Fluid Dynamics Engineering Thermodynamics Exothermic reactions Gas hydrates Heat and Mass Transfer Magnetic resonance imaging Phase transitions Physics Physics and Astronomy Porous media Temperature dependence Tetrahydrofuran Thermometry |
Title | An In-Situ MRI Method for Quantifying Temperature Changes during Crystal Hydrate Growths in Porous Medium |
URI | https://link.springer.com/article/10.1007/s11630-022-1674-x https://www.proquest.com/docview/2709943955 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA7SIngRn1itJQdPSqBJd9Pm2Ja-lBYfLdTTkk2yWKhb6e6C_fdO9mFRVPC0h01ymMnj-5hvZhC6clwGpMutwxH3JXGU4ERI7hBA-r4MNGM67UM2nvDhzLmdu_M8jzsq1O5FSDK9qbfJbgAd6sSqz61yngBwLLuWusMmnrF2cf1yODBpKNmKrhjloghl_rTE18doizC_BUXTt6Z_gPZzkIjbmVcP0Y4Jj9BuKtZU0TFatEM8CsnTIk7w-HGEx2kXaAzwEz8k0qp_bO4SnhqAxFnJZJwlEUQ4y0rE3fUGUOESDzfalorAAyDj8UuEFyG-X61XSYRtACd5PUGzfm_aHZK8ZQJRDcpjIrVPG67WLVcpTY2mTWl79jWMaSkpWwHwD_CaZD6VQjuSB1T4dS2UoYHlGqJxikrhKjRnCCvKucM10CPHFsDRAGQ0cDkhAu4Lo1kF1QvbeSqvJ27bWiy9bSVka24PzO1Zc3vvFXT9OeUtK6bx1-Bq4RAvP1eRx5qAaAFDuW4F3RRO2v7-dbHzf42-QHvMbpJUSlZFpXidmEvAHrFfQ-V2v9OZ2O_g-a5XS_feB-iE02c |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iiF7EJ1ar5uBJCWyyu2lzLMXaalt8tNDbkk2yWKhb6e6C_fdO9mFRVPC82RxmMsn3Md_MIHTp-QxIl-9AiIeSeEpwIiT3CCD9UEaaMZ3PIRsMeXfs3U38SVnHnVRq9yolmd_Uq2I3gA4Osepzq5wnABw3AAs0rY5rzFrV9cshYPJUshVdMcpFlcr8aYuvj9EKYX5LiuZvTWcX7ZQgEbcKr-6hNRPvo81crKmSAzRtxbgXk-dpmuHBUw8P8inQGOAnfsykVf_Y2iU8MgCJi5bJuCgiSHBRlYjbiyWgwhnuLrVtFYFvgYynLwmexvhhvphnCbYJnOz1EI07N6N2l5QjE4hyKU-J1CF1fa2bvlKaGk0b0s7sc41pKimbEfAP8JpkIZVCe5JHVISOFsrQyHIN4R6h9Xgem2OEFeXc4xrokWcb4GgAMhq4nBARD4XRrIacynaBKvuJ27EWs2DVCdmaOwBzB9bcwXsNXX3-8lY00_hrcb1ySFDGVRKwBiBawFC-X0PXlZNWn3_d7ORfqy_QVnc06Af93vD-FG0ze2ByWVkdraeLzJwBDknD8_zcfQDFNNNK |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NTwIxEG2MRuPF-BlR1B48aRpo2S30SFAEFYIKCbdNt-1GElwIu5vIv3e6HxKNmnjebg8znfZN5s0bhC4dl0HS5VYhxH1JHCU4EZI7BJC-LwPNmE7nkPX6vDNy7sfuOJ9zGhVs96IkmfU0WJWmMK7MdVBZNb4BjKgSy0S3LHoCIHIDbmNqj_WINYurmEPwpGVlS8BilIuirPnTFl8fphXa_FYgTd-d9i7ayQEjbmYe3kNrJtxHmylxU0UHaNIMcTckL5M4wb3nLu6lE6ExQFH8lEjLBLJ9THhoAB5n8sk4ayiIcNahiFuLJSDEKe4stZWNwHeQmMevEZ6EeDBbzJII22JO8naIRu3bYatD8vEJRNUoj4nUPq25WjdcpTQ1mtalnd9XM6ahpGwEkIuAByXzqRTakTygwq9qoQwNbN4hakdoPZyF5hhhRTl3uIZUybFiOBpAjYa8ToiA-8JoVkLVwnaeyrXF7YiLqbdSRbbm9sDcnjW3915CV5-_zDNhjb8WlwuHeHmMRR6rA7oFPOW6JXRdOGn1-dfNTv61-gJtDW7a3mO3_3CKtpk9LynDrIzW40VizgCSxP55euw-ABpd14Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+In-Situ+MRI+Method+for+Quantifying+Temperature+Changes+during+Crystal+Hydrate+Growths+in+Porous+Medium&rft.jtitle=Journal+of+thermal+science&rft.au=Zhang%2C+Lunxiang&rft.au=Sun%2C+Mingrui&rft.au=Wang%2C+Tian&rft.au=Yang%2C+Lei&rft.date=2022-09-01&rft.issn=1003-2169&rft.eissn=1993-033X&rft.volume=31&rft.issue=5&rft.spage=1542&rft.epage=1550&rft_id=info:doi/10.1007%2Fs11630-022-1674-x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11630_022_1674_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1003-2169&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1003-2169&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1003-2169&client=summon |