Description of non-Newtonian bioconvective Sutterby fluid conveying tiny particles on a circular rotating disk subject to induced magnetic field

The primary goal of this study is to examine the flow of non-Newtonian Sutterby fluid conveying tiny particles as well as the induced magnetic field in the involvement of motile gyrotactic microorganisms. The flow is configured between a pair of circular disks filled with Sutterby fluid conveying ti...

Full description

Saved in:
Bibliographic Details
Published inJournal of Central South University Vol. 30; no. 8; pp. 2599 - 2615
Main Authors Arain, M. B., Zeeshan, A., Bhatti, M. M., Alhodaly, Mohammed Sh, Ellahi, R.
Format Journal Article
LanguageEnglish
Published Changsha Central South University 01.08.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-2899
2227-5223
DOI10.1007/s11771-023-5398-1

Cover

Loading…
Abstract The primary goal of this study is to examine the flow of non-Newtonian Sutterby fluid conveying tiny particles as well as the induced magnetic field in the involvement of motile gyrotactic microorganisms. The flow is configured between a pair of circular disks filled with Sutterby fluid conveying tiny particles and gyrotactic microorganisms. The impact of Arrhenius kinetics and thermal radiation is also considered in the governing flow. The presented mathematical models are modified into nonlinear ordinary differential equations using the relevant similarity transformations. To compute the numerical solutions of nonlinear ordinary differential equations, the differential transform procedure (DTM) is used. For nonlinear problems, integral transform techniques are more difficult to execute. However, a polynomial solution is obtained as an analytical solution using the differential transform method, which is based on Taylor expansion. To improve the convergence of the formulated mathematical modeling, the Padé approximation was combined with the differential transformation method. Variations of different dimensionless factors are discussed for velocity, temperature field, concentration distribution, and motile gyrotactic microorganism profile. Torque on both plates is calculated and presented through tables.
AbstractList The primary goal of this study is to examine the flow of non-Newtonian Sutterby fluid conveying tiny particles as well as the induced magnetic field in the involvement of motile gyrotactic microorganisms. The flow is configured between a pair of circular disks filled with Sutterby fluid conveying tiny particles and gyrotactic microorganisms. The impact of Arrhenius kinetics and thermal radiation is also considered in the governing flow. The presented mathematical models are modified into nonlinear ordinary differential equations using the relevant similarity transformations. To compute the numerical solutions of nonlinear ordinary differential equations, the differential transform procedure (DTM) is used. For nonlinear problems, integral transform techniques are more difficult to execute. However, a polynomial solution is obtained as an analytical solution using the differential transform method, which is based on Taylor expansion. To improve the convergence of the formulated mathematical modeling, the Padé approximation was combined with the differential transformation method. Variations of different dimensionless factors are discussed for velocity, temperature field, concentration distribution, and motile gyrotactic microorganism profile. Torque on both plates is calculated and presented through tables.
Author Bhatti, M. M.
Alhodaly, Mohammed Sh
Arain, M. B.
Ellahi, R.
Zeeshan, A.
Author_xml – sequence: 1
  givenname: M. B.
  surname: Arain
  fullname: Arain, M. B.
  organization: Department of Mathematics and Statistics, International Islamic University
– sequence: 2
  givenname: A.
  surname: Zeeshan
  fullname: Zeeshan, A.
  organization: Department of Mathematics and Statistics, International Islamic University
– sequence: 3
  givenname: M. M.
  orcidid: 0000-0002-3219-7579
  surname: Bhatti
  fullname: Bhatti, M. M.
  email: mmbhatti@sdust.edu.cn, mubashirme@yahoo.com
  organization: College of Mathematics and Systems Science, Shandong University of Science and Technology
– sequence: 4
  givenname: Mohammed Sh
  surname: Alhodaly
  fullname: Alhodaly, Mohammed Sh
  organization: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University
– sequence: 5
  givenname: R.
  surname: Ellahi
  fullname: Ellahi, R.
  organization: Department of Mathematics and Statistics, International Islamic University
BookMark eNp9kE1rFTEUhoNUsK39Ae4CrlPzMZNMllI_oehCXYckc-Zy6jS5JpnK_Rf-ZHO9giDo6gTO-7wnPBfkLOUEhDwT_Fpwbl5UIYwRjEvFRmUnJh6RcymlYaOU6qy_uR2ZnKx9Qq5qxcCVkFppq8_Jj1dQY8F9w5xoXmhvZh_ge8sJfaIBc8zpAWLDB6CfttaghANd1g1n-mtzwLSjDdOB7n1pGFeotDd5GrHEbfWFltx8O6ZmrF9p3cJdr6MtU0zzFmGm936XoKN0QVjnp-Tx4tcKV7_nJfny5vXnm3fs9uPb9zcvb1lUQjfmZ22VAq1GFQYFyzBNWkyLsByUNMEEDXYIk5-8D0JGrgXERVo9jn7U8zCoS_L81Lsv-dsGtbm7vJXUTzo5mcEabbTuKXFKxZJrLbC4fcF7Xw5OcHd0707uXXfvju6d6Iz5i4l4VJBTKx7X_5LyRNZ-Je2g_PnTv6GfSqmdYQ
CitedBy_id crossref_primary_10_1007_s10973_024_13472_2
crossref_primary_10_1007_s41939_024_00602_4
crossref_primary_10_1080_15567036_2024_2302004
crossref_primary_10_1080_10407782_2024_2344067
crossref_primary_10_1007_s12668_024_01412_1
crossref_primary_10_1063_5_0190970
crossref_primary_10_1016_j_ijft_2024_100841
crossref_primary_10_1016_j_est_2024_112112
crossref_primary_10_1142_S0217984924504712
crossref_primary_10_1177_16878132241304609
crossref_primary_10_1007_s12668_024_01555_1
crossref_primary_10_1016_j_csite_2023_103766
crossref_primary_10_1080_10407790_2023_2296076
crossref_primary_10_1016_j_csite_2024_104520
crossref_primary_10_1088_1402_4896_ad1795
crossref_primary_10_1016_j_padiff_2024_100859
crossref_primary_10_1002_elps_202300297
crossref_primary_10_1007_s12648_024_03377_z
crossref_primary_10_1016_j_jrras_2024_101197
crossref_primary_10_1007_s10973_024_13926_7
crossref_primary_10_1142_S0217979225500493
crossref_primary_10_1007_s40430_024_05131_2
crossref_primary_10_1007_s11771_023_5514_2
crossref_primary_10_1140_epjp_s13360_023_04847_9
crossref_primary_10_1177_16878132241245833
crossref_primary_10_1016_j_csite_2024_104009
crossref_primary_10_1016_j_csite_2024_104207
crossref_primary_10_1142_S0217979225501267
Cites_doi 10.1016/j.csite.2021.101097
10.1007/s11771-021-4861-0
10.1002/zamm.202000349
10.1016/j.powtec.2020.07.115
10.3390/math11102284
10.1016/j.icheatmasstransfer.2020.104893
10.1007/s12043-020-1933-x
10.4283/JMAG.2019.24.4.688
10.1007/978-3-030-33774-2_8
10.1016/j.cjph.2021.02.005
10.1016/j.csite.2021.101050
10.1016/j.csite.2018.11.007
10.1007/s11771-020-4334-x
10.1016/j.aej.2017.02.014
10.1038/s41598-022-11528-7
10.1007/s10973-020-09720-w
10.1007/s10973-020-10207-x
10.1016/j.icheatmasstransfer.2022.106069
10.1016/j.icheatmasstransfer.2011.03.006
10.1016/j.cjph.2019.02.010
10.1016/j.finmec.2022.100102
10.1016/j.aej.2020.08.048
10.28919/jmcs/6049
10.1016/j.ijft.2022.100151
10.1002/htj.21403
10.1007/s13369-020-05265-0
10.1155/2020/5251804
10.1140/epjp/s13360-020-00606-2
10.1016/j.compfluid.2014.02.009
10.1007/s10973-018-7939-7
10.1007/s13204-020-01286-1
10.1016/j.physa.2019.122447
10.1016/j.ijheatmasstransfer.2016.12.103
10.1016/j.est.2021.103511
10.1016/j.icheatmasstransfer.2010.11.019
10.3390/math8091430
10.1016/j.csite.2021.101659
10.1016/j.rineng.2022.100394
10.1007/s10483-020-2599-7
10.1016/j.cmpb.2019.105294
10.1016/j.aej.2021.08.047
10.1007/s00542-019-04522-z
10.1080/02286203.2023.2204209
10.1016/j.physa.2020.124132
10.1007/s11771-021-4855-y
10.1166/jon.2020.1745
10.1016/j.jmrt.2021.08.011
ContentType Journal Article
Copyright Central South University 2023
Central South University 2023.
Copyright_xml – notice: Central South University 2023
– notice: Central South University 2023.
DBID AAYXX
CITATION
DOI 10.1007/s11771-023-5398-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL 含微小颗粒的非牛顿生物Sutterby流体在感应磁场旋转圆盘上的流动性
EISSN 2227-5223
EndPage 2615
ExternalDocumentID 10_1007_s11771_023_5398_1
GroupedDBID -03
-0C
-EM
-SC
-S~
.VR
06D
0R~
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
40E
5VR
5VS
8UJ
92H
92I
92M
92R
93N
95-
95.
95~
96X
9D9
9DC
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFUIB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAJEC
CCEZO
CEKLB
CHBEP
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9J
PF0
PT4
Q--
Q-2
R-C
R89
ROL
RPX
RSV
RT3
S16
S3B
SAP
SCL
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T8S
TCJ
TGT
TSG
TUC
U1F
U1G
U2A
U5C
U5M
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-ad6933e6353b43ef488618f190e327b7b6e94b8a8aab12c061ecf29655a56d443
IEDL.DBID U2A
ISSN 2095-2899
IngestDate Fri Jul 25 10:52:21 EDT 2025
Tue Jul 01 00:29:26 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Fri Feb 21 02:42:21 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords 平行圆盘
parallel circular disks
活化能
activation energy
generalized magnetic Reynolds number
广义磁雷诺数
differential transform solutions
趋旋微生物
微分变换解
gyrotactic microorganisms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-ad6933e6353b43ef488618f190e327b7b6e94b8a8aab12c061ecf29655a56d443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3219-7579
PQID 2874976766
PQPubID 2044301
PageCount 17
ParticipantIDs proquest_journals_2874976766
crossref_primary_10_1007_s11771_023_5398_1
crossref_citationtrail_10_1007_s11771_023_5398_1
springer_journals_10_1007_s11771_023_5398_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Changsha
PublicationPlace_xml – name: Changsha
– name: Heidelberg
PublicationSubtitle Science & Technology of Mining and Metallurgy
PublicationTitle Journal of Central South University
PublicationTitleAbbrev J. Cent. South Univ
PublicationYear 2023
Publisher Central South University
Springer Nature B.V
Publisher_xml – name: Central South University
– name: Springer Nature B.V
References HabibishandizMSaghirZMHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder [J]International Journal of Thermofluids20221410015110.1016/j.ijft.2022.100151
KefayatiG H RMixed convection of non-Newtonian nanofluid in an enclosure using Buongiorno’s mathematical model [J]International Journal of Heat and Mass Transfer20171081481150010.1016/j.ijheatmasstransfer.2016.12.103
WaqasHFarooqUBhattiM MMagnetized bioconvection flow of Sutterby fluid characterized by the suspension of nanoparticles across a wedge with activation energy [J]ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik202110112e202000349440715410.1002/zamm.202000349
ZhangLArainM BBhattiM MEffects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids [J]Applied Mathematics and Mechanics202041463765442438391457.7621510.1007/s10483-020-2599-7
AbdelsalamS ISohailMNumerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic micro-organisms [J]Pramana202094111210.1007/s12043-020-1933-x
SAJID T, TANVEER S, SABIR Z, et al. Impact of activation energy and temperature-dependent heat source/sink on maxwell-sutterby fluid [J]. Mathematical Problems in Engineering, 2020: 1–15. DOI: https://doi.org/10.1155/2020/5251804.
GholiniaMHosseinzadehKMehrzadiHInvestigation of MHD Eyring-Powell fluid flow over a rotating disk under effect of homogeneous-heterogeneous reactions [J]Case Studies in Thermal Engineering20191310035610.1016/j.csite.2018.11.007
Abo-ZaidO AMahdyAHadyF MTransport properties on mixed bioconvection flow of non-newtonian dusty nanofluid with nonlinear radiation by a moving wedge [J]Journal of Nanofluids20209320321510.1166/jon.2020.1745
HayatTAhmadM WShehzadS AThree-dimensional unsteady squeezing flow with irreversibility [J]Journal of Central South University202128113368338010.1007/s11771-021-4861-0
CaoWAnimasaunI LYookS JSimulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: Ternary-hybrid nanofluid [J]International Communications in Heat and Mass Transfer202213510606910.1016/j.icheatmasstransfer.2022.106069
HojjatMEtemadS GBagheriRRheological characteristics of non-Newtonian nanofluids: Experimental investigation [J]International Communications in Heat and Mass Transfer201138214414810.1016/j.icheatmasstransfer.2010.11.019
ReddyJ V RSugunammaVSandeepNThermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects [J]Alexandria Engineering Journal20185742465247310.1016/j.aej.2017.02.014
MajeedAZeeshanAAminNThermal analysis of radiative bioconvection magnetohydrodynamic flow comprising gyrotactic microorganism with activation energy [J]Journal of Thermal Analysis and Calorimetry202114332545255610.1007/s10973-020-10207-x
ArulmozhiSSukkiramathiKSantraS SHeat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate [J]Results in Engineering20221410039410.1016/j.rineng.2022.100394
DhlaminiMMondalHSibandaPRotational nanofluids for oxytactic microorganisms with convective boundary conditions using bivariate spectral quasi-linearization method [J]Journal of Central South University202027382484110.1007/s11771-020-4334-x
KothaGKolipaulaV RRaoM V SInternal heat generation on bioconvection of an MHD nanofluid flow due to gyrotactic microorganisms [J]The European Physical Journal Plus2020135760010.1140/epjp/s13360-020-00606-2
Saif-Ur-RehmanMirA NAlqarniM SAnalysis of heat generation/absorption in thermally stratified Sutterby fluid flow with Cattaneo-Christov theory [J]Microsystem Technologies20192593365337310.1007/s00542-019-04522-z
AhmadSFarooqMAnjumAInvestigation of convective heat and mass conditions in squeeze flow of a hydro-magnetic sutterby fluid [J]Journal of Magnetics201924468869710.4283/JMAG.2019.24.4.688
PRAKASH J, REDDY M G, TRIPATHI D, et al. A model for electro-osmotic flow of pseudoplastic nanofluids in presence of peristaltic pumping: An application to smart pumping in energy systems [M]// Nanotechnology for Energy and Environmental Engineering. Cham: Springer, 2020: 185–213. https://doi.org/10.1007/978-3-030-33774-2_8.
AkramJAkbarN STripathiDA theoretical investigation on the heat transfer ability of water-based hybrid (Ag-Au) nanofluids and Ag nanofluids flow driven by electroosmotic pumping through a microchannel [J]Arabian Journal for Science and Engineering20214632911292710.1007/s13369-020-05265-0
OkeA SAnimasaunI LMutukuW NSignificance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surface [J]Chinese Journal of Physics202171716727425686610.1016/j.cjph.2021.02.005
RanaSMehmoodRBhattiM MSwimming of motile gyrotactic microorganisms and suspension of nanoparticles in a rheological Jeffery fluid with Newtonian heating along elastic surface [J]Journal of Central South University2021283279329610.1007/s11771-021-4855-y
MagyariEPantokratorasANote on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows [J]International Communications in Heat and Mass Transfer201138555455610.1016/j.icheatmasstransfer.2011.03.006
TurkyilmazogluMNanofluid flow and heat transfer due to a rotating disk [J]Computers & Fluids20149413914631783211391.7681110.1016/j.compfluid.2014.02.009
GoudarziSShekaramizMOmidvarANanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/water hybrid nanofluid natural convection [J]Powder Technology202037549350310.1016/j.powtec.2020.07.115
AmirsomN AUddinM JIsmailA I MMHD boundary layer bionanoconvective non-Newtonian flow past a needle with Stefan blowing [J]Heat Transfer—Asian Research201948272774310.1002/htj.21403
BhattiM MIshtiaqFEllahiRNovel aspects of cilia-driven flow of viscoelastic fluid through a non-darcy medium under the influence of an induced magnetic field and heat transfer [J]Mathematics20231110228410.3390/math11102284
NawazMRole of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol [J]Physica A: Statistical Mechanics and Its Applications202053712244740085870757177010.1016/j.physa.2019.122447
BhattiM MArainM BZeeshanASwimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage [J]Journal of Energy Storage20224510351110.1016/j.est.2021.103511
AldabeshAHaredyAAl-KhaledKDarcy resistance flow of Sutterby nanofluid with microorganisms with applications of nano-biofuel cells [J]Scientific Reports202212751410.1038/s41598-022-11528-7
KhanN MAbidiAKhanIDynamics of radiative Eyring-Powell MHD nanofluid containing gyrotactic microorganisms exposed to surface suction and viscosity variation [J]Case Studies in Thermal Engineering20212810165910.1016/j.csite.2021.101659
PrakashJTripathiDBégO AComparative study of hybrid nanofluids in microchannel slip flow induced by electroosmosis and peristalsis [J]Applied Nanoscience20201051693170610.1007/s13204-020-01286-1
ChuYKhanM IKhanN BSignificance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis [J]International Communications in Heat and Mass Transfer202011810489310.1016/j.icheatmasstransfer.2020.104893
GouranSMohsenianSGhasemiS ETheoretical analysis on MHD nanofluid flow between two concentric cylinders using efficient computational techniques [J]Alexandria Engineering Journal20226143237324810.1016/j.aej.2021.08.047
EASTMAN J A, CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles [C]// 1995 International Mechanical Engineering Congress and Exhibition. San Francisco, CA (United States), 1995. https://www.osti.gov/servlets/purl/196525.
RameshKPrakashJThermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel [J]Journal of Thermal Analysis and Calorimetry201913821311132610.1007/s10973-018-7939-7
MaboodFYusufT AKhanW ACu-Al2O3-H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation [J]Journal of Thermal Analysis and Calorimetry2021143297398410.1007/s10973-020-09720-w
KhanS UAliS SElectrical MHD Carreau nanofluid over porous oscillatory stretching surface with variable thermal conductivity: Applications of thermal extrusion system [J]Physica A: Statistical Mechanics and its Applications20205501241320752634710.1016/j.physa.2020.124132
KhanW AAnjumNWaqasMImpact of stratification phenomena on a nonlinear radiative flow of sutterby nanofluid [J]Journal of Materials Research and Technology20211530631410.1016/j.jmrt.2021.08.011
SongYObideyiB DAliS NSignificance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface [J]Case Studies in Thermal Engineering20212610105010.1016/j.csite.2021.101050
KhanUShafiqAZaibANumerical exploration of MHD falkner-skan-sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-fourier heat-flux theory [J]Alexandria Engineering Journal20205964851486410.1016/j.aej.2020.08.048
AhmedJKhanMAhmadLMHD swirling flow and heat transfer in Maxwell fluid driven by two coaxially rotating disks with variable thermal conductivity [J]Chinese Journal of Physics2019602234395308010.1016/j.cjph.2019.02.010
ZhouJ KDifferential transformation and its applications for electronic circuits [M]1986WuhanHuazhong Science & Technology University Press, China(in Chinese)
DeySMukhopadhyaySMHD nanofluid flow over an absorbent plate in the company of chemical response a
A Aldabesh (5398_CR13) 2022; 12
M M Bhatti (5398_CR14) 2023; 11
S Dey (5398_CR26) 2022; 7
R Muhammad (5398_CR23) 2020; 189
M M Bhatti (5398_CR39) 2022; 45
K Ramesh (5398_CR10) 2019; 138
J Ahmed (5398_CR16) 2019; 60
S Arulmozhi (5398_CR24) 2022; 14
J Akram (5398_CR36) 2021; 46
N A Amirsom (5398_CR29) 2019; 48
N M Khan (5398_CR35) 2021; 28
Y Song (5398_CR45) 2021; 26
G H R Kefayati (5398_CR5) 2017; 108
S I Abdelsalam (5398_CR30) 2020; 94
F Mabood (5398_CR7) 2021; 143
5398_CR1
W A Khan (5398_CR8) 2021; 15
5398_CR11
Y Chu (5398_CR31) 2020; 118
W Cao (5398_CR44) 2022; 135
G Kotha (5398_CR27) 2020; 135
S U Khan (5398_CR22) 2020; 550
M Turkyilmazoglu (5398_CR3) 2014; 94
M Hojjat (5398_CR2) 2011; 38
S Goudarzi (5398_CR6) 2020; 375
T Hayat (5398_CR28) 2021; 28
A Majeed (5398_CR41) 2021; 143
Saif-Ur-Rehman (5398_CR18) 2019; 25
S Gouran (5398_CR25) 2022; 61
U Khan (5398_CR15) 2020; 59
A S Oke (5398_CR46) 2021; 71
5398_CR43
M Gholinia (5398_CR17) 2019; 13
G Dharmaiah (5398_CR12) 2021; 11
M Nawaz (5398_CR20) 2020; 537
S Rana (5398_CR34) 2021; 28
M Habibishandiz (5398_CR42) 2022; 14
L Zhang (5398_CR49) 2020; 41
H Waqas (5398_CR32) 2021; 26
J K Zhou (5398_CR48) 1986
J Prakash (5398_CR38) 2020; 10
O A Abo-Zaid (5398_CR33) 2020; 9
5398_CR37
J V R Reddy (5398_CR4) 2018; 57
H Waqas (5398_CR9) 2021; 101
M Dhlamini (5398_CR40) 2020; 27
M M Fayyadh (5398_CR21) 2020; 8
S Ahmad (5398_CR19) 2019; 24
E Magyari (5398_CR47) 2011; 38
References_xml – reference: SAJID T, TANVEER S, SABIR Z, et al. Impact of activation energy and temperature-dependent heat source/sink on maxwell-sutterby fluid [J]. Mathematical Problems in Engineering, 2020: 1–15. DOI: https://doi.org/10.1155/2020/5251804.
– reference: FayyadhM MNaganthranKBasirM F MRadiative MHD sutterby nanofluid flow past a moving sheet: Scaling group analysis [J]Mathematics202089143010.3390/math8091430
– reference: MajeedAZeeshanAAminNThermal analysis of radiative bioconvection magnetohydrodynamic flow comprising gyrotactic microorganism with activation energy [J]Journal of Thermal Analysis and Calorimetry202114332545255610.1007/s10973-020-10207-x
– reference: PRAKASH J, REDDY M G, TRIPATHI D, et al. A model for electro-osmotic flow of pseudoplastic nanofluids in presence of peristaltic pumping: An application to smart pumping in energy systems [M]// Nanotechnology for Energy and Environmental Engineering. Cham: Springer, 2020: 185–213. https://doi.org/10.1007/978-3-030-33774-2_8.
– reference: EASTMAN J A, CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles [C]// 1995 International Mechanical Engineering Congress and Exhibition. San Francisco, CA (United States), 1995. https://www.osti.gov/servlets/purl/196525.
– reference: KhanUShafiqAZaibANumerical exploration of MHD falkner-skan-sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-fourier heat-flux theory [J]Alexandria Engineering Journal20205964851486410.1016/j.aej.2020.08.048
– reference: HojjatMEtemadS GBagheriRRheological characteristics of non-Newtonian nanofluids: Experimental investigation [J]International Communications in Heat and Mass Transfer201138214414810.1016/j.icheatmasstransfer.2010.11.019
– reference: AbdelsalamS ISohailMNumerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic micro-organisms [J]Pramana202094111210.1007/s12043-020-1933-x
– reference: Abo-ZaidO AMahdyAHadyF MTransport properties on mixed bioconvection flow of non-newtonian dusty nanofluid with nonlinear radiation by a moving wedge [J]Journal of Nanofluids20209320321510.1166/jon.2020.1745
– reference: KhanW AAnjumNWaqasMImpact of stratification phenomena on a nonlinear radiative flow of sutterby nanofluid [J]Journal of Materials Research and Technology20211530631410.1016/j.jmrt.2021.08.011
– reference: NawazMRole of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol [J]Physica A: Statistical Mechanics and Its Applications202053712244740085870757177010.1016/j.physa.2019.122447
– reference: ArulmozhiSSukkiramathiKSantraS SHeat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate [J]Results in Engineering20221410039410.1016/j.rineng.2022.100394
– reference: AhmedJKhanMAhmadLMHD swirling flow and heat transfer in Maxwell fluid driven by two coaxially rotating disks with variable thermal conductivity [J]Chinese Journal of Physics2019602234395308010.1016/j.cjph.2019.02.010
– reference: DeySMukhopadhyaySMHD nanofluid flow over an absorbent plate in the company of chemical response and zero nanoparticle flux [J]Forces in Mechanics2022710010210.1016/j.finmec.2022.100102
– reference: GholiniaMHosseinzadehKMehrzadiHInvestigation of MHD Eyring-Powell fluid flow over a rotating disk under effect of homogeneous-heterogeneous reactions [J]Case Studies in Thermal Engineering20191310035610.1016/j.csite.2018.11.007
– reference: OBALALU A M, SALAWU S O, OLAYEMI O A, et al. Computational study of bioconvection rheological nanofluid flow containing gyrotactic microorganisms: A model for bioengineering nanofluid fuel cells [J]. International Journal of Modelling and Simulation, 2023: 1–15. DOI: https://doi.org/10.1080/02286203.2023.2204209.
– reference: PrakashJTripathiDBégO AComparative study of hybrid nanofluids in microchannel slip flow induced by electroosmosis and peristalsis [J]Applied Nanoscience20201051693170610.1007/s13204-020-01286-1
– reference: DhlaminiMMondalHSibandaPRotational nanofluids for oxytactic microorganisms with convective boundary conditions using bivariate spectral quasi-linearization method [J]Journal of Central South University202027382484110.1007/s11771-020-4334-x
– reference: Saif-Ur-RehmanMirA NAlqarniM SAnalysis of heat generation/absorption in thermally stratified Sutterby fluid flow with Cattaneo-Christov theory [J]Microsystem Technologies20192593365337310.1007/s00542-019-04522-z
– reference: TurkyilmazogluMNanofluid flow and heat transfer due to a rotating disk [J]Computers & Fluids20149413914631783211391.7681110.1016/j.compfluid.2014.02.009
– reference: WaqasHAlghamdiMMuhammadTBioconvection transport of magnetized Walter’s B nanofluid across a cylindrical disk with nonlinear radiative heat transfer [J]Case Studies in Thermal Engineering20212610109710.1016/j.csite.2021.101097
– reference: WaqasHFarooqUBhattiM MMagnetized bioconvection flow of Sutterby fluid characterized by the suspension of nanoparticles across a wedge with activation energy [J]ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik202110112e202000349440715410.1002/zamm.202000349
– reference: MuhammadRKhanM IKhanN BMagnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation [J]Computer Methods and Programs in Biomedicine202018910529410.1016/j.cmpb.2019.105294
– reference: MagyariEPantokratorasANote on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows [J]International Communications in Heat and Mass Transfer201138555455610.1016/j.icheatmasstransfer.2011.03.006
– reference: AmirsomN AUddinM JIsmailA I MMHD boundary layer bionanoconvective non-Newtonian flow past a needle with Stefan blowing [J]Heat Transfer—Asian Research201948272774310.1002/htj.21403
– reference: GouranSMohsenianSGhasemiS ETheoretical analysis on MHD nanofluid flow between two concentric cylinders using efficient computational techniques [J]Alexandria Engineering Journal20226143237324810.1016/j.aej.2021.08.047
– reference: BhattiM MArainM BZeeshanASwimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage [J]Journal of Energy Storage20224510351110.1016/j.est.2021.103511
– reference: BhattiM MIshtiaqFEllahiRNovel aspects of cilia-driven flow of viscoelastic fluid through a non-darcy medium under the influence of an induced magnetic field and heat transfer [J]Mathematics20231110228410.3390/math11102284
– reference: KefayatiG H RMixed convection of non-Newtonian nanofluid in an enclosure using Buongiorno’s mathematical model [J]International Journal of Heat and Mass Transfer20171081481150010.1016/j.ijheatmasstransfer.2016.12.103
– reference: RameshKPrakashJThermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel [J]Journal of Thermal Analysis and Calorimetry201913821311132610.1007/s10973-018-7939-7
– reference: MaboodFYusufT AKhanW ACu-Al2O3-H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation [J]Journal of Thermal Analysis and Calorimetry2021143297398410.1007/s10973-020-09720-w
– reference: RanaSMehmoodRBhattiM MSwimming of motile gyrotactic microorganisms and suspension of nanoparticles in a rheological Jeffery fluid with Newtonian heating along elastic surface [J]Journal of Central South University2021283279329610.1007/s11771-021-4855-y
– reference: GoudarziSShekaramizMOmidvarANanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/water hybrid nanofluid natural convection [J]Powder Technology202037549350310.1016/j.powtec.2020.07.115
– reference: AkramJAkbarN STripathiDA theoretical investigation on the heat transfer ability of water-based hybrid (Ag-Au) nanofluids and Ag nanofluids flow driven by electroosmotic pumping through a microchannel [J]Arabian Journal for Science and Engineering20214632911292710.1007/s13369-020-05265-0
– reference: DharmaiahGBalamuruganK SNumerical study of MHD flow and heat transfer of Sutterby nano fluid over a stretching surface with activation energy and Nield’s condition [J]Journal of Mathematical and Computational Science202111554585473
– reference: CaoWAnimasaunI LYookS JSimulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: Ternary-hybrid nanofluid [J]International Communications in Heat and Mass Transfer202213510606910.1016/j.icheatmasstransfer.2022.106069
– reference: HabibishandizMSaghirZMHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder [J]International Journal of Thermofluids20221410015110.1016/j.ijft.2022.100151
– reference: ChuYKhanM IKhanN BSignificance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis [J]International Communications in Heat and Mass Transfer202011810489310.1016/j.icheatmasstransfer.2020.104893
– reference: AldabeshAHaredyAAl-KhaledKDarcy resistance flow of Sutterby nanofluid with microorganisms with applications of nano-biofuel cells [J]Scientific Reports202212751410.1038/s41598-022-11528-7
– reference: ZhouJ KDifferential transformation and its applications for electronic circuits [M]1986WuhanHuazhong Science & Technology University Press, China(in Chinese)
– reference: ReddyJ V RSugunammaVSandeepNThermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects [J]Alexandria Engineering Journal20185742465247310.1016/j.aej.2017.02.014
– reference: KothaGKolipaulaV RRaoM V SInternal heat generation on bioconvection of an MHD nanofluid flow due to gyrotactic microorganisms [J]The European Physical Journal Plus2020135760010.1140/epjp/s13360-020-00606-2
– reference: KhanS UAliS SElectrical MHD Carreau nanofluid over porous oscillatory stretching surface with variable thermal conductivity: Applications of thermal extrusion system [J]Physica A: Statistical Mechanics and its Applications20205501241320752634710.1016/j.physa.2020.124132
– reference: HayatTAhmadM WShehzadS AThree-dimensional unsteady squeezing flow with irreversibility [J]Journal of Central South University202128113368338010.1007/s11771-021-4861-0
– reference: ZhangLArainM BBhattiM MEffects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids [J]Applied Mathematics and Mechanics202041463765442438391457.7621510.1007/s10483-020-2599-7
– reference: KhanN MAbidiAKhanIDynamics of radiative Eyring-Powell MHD nanofluid containing gyrotactic microorganisms exposed to surface suction and viscosity variation [J]Case Studies in Thermal Engineering20212810165910.1016/j.csite.2021.101659
– reference: OkeA SAnimasaunI LMutukuW NSignificance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surface [J]Chinese Journal of Physics202171716727425686610.1016/j.cjph.2021.02.005
– reference: AhmadSFarooqMAnjumAInvestigation of convective heat and mass conditions in squeeze flow of a hydro-magnetic sutterby fluid [J]Journal of Magnetics201924468869710.4283/JMAG.2019.24.4.688
– reference: SongYObideyiB DAliS NSignificance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface [J]Case Studies in Thermal Engineering20212610105010.1016/j.csite.2021.101050
– volume: 26
  start-page: 101097
  year: 2021
  ident: 5398_CR32
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2021.101097
– volume: 28
  start-page: 3368
  issue: 11
  year: 2021
  ident: 5398_CR28
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-021-4861-0
– volume: 101
  start-page: e202000349
  issue: 12
  year: 2021
  ident: 5398_CR9
  publication-title: ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik
  doi: 10.1002/zamm.202000349
– volume: 375
  start-page: 493
  year: 2020
  ident: 5398_CR6
  publication-title: Powder Technology
  doi: 10.1016/j.powtec.2020.07.115
– volume: 11
  start-page: 2284
  issue: 10
  year: 2023
  ident: 5398_CR14
  publication-title: Mathematics
  doi: 10.3390/math11102284
– volume-title: Differential transformation and its applications for electronic circuits [M]
  year: 1986
  ident: 5398_CR48
– volume: 118
  start-page: 104893
  year: 2020
  ident: 5398_CR31
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2020.104893
– volume: 94
  start-page: 1
  issue: 1
  year: 2020
  ident: 5398_CR30
  publication-title: Pramana
  doi: 10.1007/s12043-020-1933-x
– volume: 24
  start-page: 688
  issue: 4
  year: 2019
  ident: 5398_CR19
  publication-title: Journal of Magnetics
  doi: 10.4283/JMAG.2019.24.4.688
– ident: 5398_CR37
  doi: 10.1007/978-3-030-33774-2_8
– volume: 71
  start-page: 716
  year: 2021
  ident: 5398_CR46
  publication-title: Chinese Journal of Physics
  doi: 10.1016/j.cjph.2021.02.005
– volume: 26
  start-page: 101050
  year: 2021
  ident: 5398_CR45
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2021.101050
– volume: 13
  start-page: 100356
  year: 2019
  ident: 5398_CR17
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2018.11.007
– volume: 27
  start-page: 824
  issue: 3
  year: 2020
  ident: 5398_CR40
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-020-4334-x
– volume: 57
  start-page: 2465
  issue: 4
  year: 2018
  ident: 5398_CR4
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2017.02.014
– volume: 12
  start-page: 7514
  year: 2022
  ident: 5398_CR13
  publication-title: Scientific Reports
  doi: 10.1038/s41598-022-11528-7
– volume: 143
  start-page: 973
  issue: 2
  year: 2021
  ident: 5398_CR7
  publication-title: Journal of Thermal Analysis and Calorimetry
  doi: 10.1007/s10973-020-09720-w
– volume: 143
  start-page: 2545
  issue: 3
  year: 2021
  ident: 5398_CR41
  publication-title: Journal of Thermal Analysis and Calorimetry
  doi: 10.1007/s10973-020-10207-x
– volume: 135
  start-page: 106069
  year: 2022
  ident: 5398_CR44
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2022.106069
– ident: 5398_CR1
– volume: 38
  start-page: 554
  issue: 5
  year: 2011
  ident: 5398_CR47
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2011.03.006
– volume: 60
  start-page: 22
  year: 2019
  ident: 5398_CR16
  publication-title: Chinese Journal of Physics
  doi: 10.1016/j.cjph.2019.02.010
– volume: 7
  start-page: 100102
  year: 2022
  ident: 5398_CR26
  publication-title: Forces in Mechanics
  doi: 10.1016/j.finmec.2022.100102
– volume: 59
  start-page: 4851
  issue: 6
  year: 2020
  ident: 5398_CR15
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2020.08.048
– volume: 11
  start-page: 5458
  issue: 5
  year: 2021
  ident: 5398_CR12
  publication-title: Journal of Mathematical and Computational Science
  doi: 10.28919/jmcs/6049
– volume: 14
  start-page: 100151
  year: 2022
  ident: 5398_CR42
  publication-title: International Journal of Thermofluids
  doi: 10.1016/j.ijft.2022.100151
– volume: 48
  start-page: 727
  issue: 2
  year: 2019
  ident: 5398_CR29
  publication-title: Heat Transfer—Asian Research
  doi: 10.1002/htj.21403
– volume: 46
  start-page: 2911
  issue: 3
  year: 2021
  ident: 5398_CR36
  publication-title: Arabian Journal for Science and Engineering
  doi: 10.1007/s13369-020-05265-0
– ident: 5398_CR11
  doi: 10.1155/2020/5251804
– volume: 135
  start-page: 600
  issue: 7
  year: 2020
  ident: 5398_CR27
  publication-title: The European Physical Journal Plus
  doi: 10.1140/epjp/s13360-020-00606-2
– volume: 94
  start-page: 139
  year: 2014
  ident: 5398_CR3
  publication-title: Computers & Fluids
  doi: 10.1016/j.compfluid.2014.02.009
– volume: 138
  start-page: 1311
  issue: 2
  year: 2019
  ident: 5398_CR10
  publication-title: Journal of Thermal Analysis and Calorimetry
  doi: 10.1007/s10973-018-7939-7
– volume: 10
  start-page: 1693
  issue: 5
  year: 2020
  ident: 5398_CR38
  publication-title: Applied Nanoscience
  doi: 10.1007/s13204-020-01286-1
– volume: 537
  start-page: 122447
  year: 2020
  ident: 5398_CR20
  publication-title: Physica A: Statistical Mechanics and Its Applications
  doi: 10.1016/j.physa.2019.122447
– volume: 108
  start-page: 1481
  year: 2017
  ident: 5398_CR5
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.12.103
– volume: 45
  start-page: 103511
  year: 2022
  ident: 5398_CR39
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2021.103511
– volume: 38
  start-page: 144
  issue: 2
  year: 2011
  ident: 5398_CR2
  publication-title: International Communications in Heat and Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2010.11.019
– volume: 8
  start-page: 1430
  issue: 9
  year: 2020
  ident: 5398_CR21
  publication-title: Mathematics
  doi: 10.3390/math8091430
– volume: 28
  start-page: 101659
  year: 2021
  ident: 5398_CR35
  publication-title: Case Studies in Thermal Engineering
  doi: 10.1016/j.csite.2021.101659
– volume: 14
  start-page: 100394
  year: 2022
  ident: 5398_CR24
  publication-title: Results in Engineering
  doi: 10.1016/j.rineng.2022.100394
– volume: 41
  start-page: 637
  issue: 4
  year: 2020
  ident: 5398_CR49
  publication-title: Applied Mathematics and Mechanics
  doi: 10.1007/s10483-020-2599-7
– volume: 189
  start-page: 105294
  year: 2020
  ident: 5398_CR23
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2019.105294
– volume: 61
  start-page: 3237
  issue: 4
  year: 2022
  ident: 5398_CR25
  publication-title: Alexandria Engineering Journal
  doi: 10.1016/j.aej.2021.08.047
– volume: 25
  start-page: 3365
  issue: 9
  year: 2019
  ident: 5398_CR18
  publication-title: Microsystem Technologies
  doi: 10.1007/s00542-019-04522-z
– ident: 5398_CR43
  doi: 10.1080/02286203.2023.2204209
– volume: 550
  start-page: 124132
  year: 2020
  ident: 5398_CR22
  publication-title: Physica A: Statistical Mechanics and its Applications
  doi: 10.1016/j.physa.2020.124132
– volume: 28
  start-page: 3279
  year: 2021
  ident: 5398_CR34
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-021-4855-y
– volume: 9
  start-page: 203
  issue: 3
  year: 2020
  ident: 5398_CR33
  publication-title: Journal of Nanofluids
  doi: 10.1166/jon.2020.1745
– volume: 15
  start-page: 306
  year: 2021
  ident: 5398_CR8
  publication-title: Journal of Materials Research and Technology
  doi: 10.1016/j.jmrt.2021.08.011
SSID ssib031263696
ssib051367662
ssib026412149
ssib016993150
ssib024508231
ssj0001192107
ssib009883398
ssib016971650
Score 2.4304788
Snippet The primary goal of this study is to examine the flow of non-Newtonian Sutterby fluid conveying tiny particles as well as the induced magnetic field in the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2599
SubjectTerms Conveying
Engineering
Exact solutions
Integral transforms
Magnetic fields
Mathematical models
Metallic Materials
Microorganisms
Nonlinear differential equations
Ordinary differential equations
Polynomials
Rotating disks
Taylor series
Temperature distribution
Thermal radiation
Title Description of non-Newtonian bioconvective Sutterby fluid conveying tiny particles on a circular rotating disk subject to induced magnetic field
URI https://link.springer.com/article/10.1007/s11771-023-5398-1
https://www.proquest.com/docview/2874976766
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELba5VIOVWmL2PLQHHoqsoSfWR9XaCkCtZd2JThFduygCJqg3eyBf9Gf3LE32VBEkXq04lhJZjL-xjPzDSGfTeCFtMpRFqSlUmhNrfGcBqOZDt4am6rSvn3X53N5caWuujruZZ_t3ockk6Ueit1YlqHrywVVwqDr85psKXTdo1rP-XSjRCa2zx18CKYjSdIQusOxEWwYc6lOHofCECAwzgafRDCuNz3vcKwSx1nHsZcOciKjWCrL5ghXaHRg-ujpc0_99_43gNoncdi0vZ29I287XArTtSLtkFehfk-2H7EVfiC_0UftbQw0JdRNTdFGInhEFQNXNSmDPdlP-JH6X7sHKO9WlYd0JRZUQVvVD3Dfp-MBrmShqBYpGxYWTUwMwFm-Wt7CcuXiIRG0DVS1RxX08Mve1LHqElLi3UcyP5v9PD2nXUMHWgimW2q9NkIExDjCSRFKNB6aTUrEJEHwzGVOByPdxE6sdYwXCDVCUXKjlbJKeynFLhnhu4U9AhahhrXMF2hfJIssdRPFS4POks9UZsyYnPSfOS86tvPYdOMuH3iao2RylEweJZOzMfmyueV-TfXx0uSDXnZ599cv89g7AOEdqseYHPfyHC7_c7FP_zV7n7yJPe_XWYgHZNQuVuEQkVHrjsjW9Ov15ewo_RF_AOWM-2U
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOvBELBebACeSqfmZ9rFDLQh8XtlI5RXbsVFFLUu1mD-2v6E9m7E02pQKkHi07UTKZjL_xzHxDyEcTeCGtcpQFaakUWlNrPKfBaKaDt8amqrTDIz09lt9P1ElXx73os937kGSy1EOxG8sydH25oEoYdH3ukw2JLrgakY2drz_3d9dqZGID3cGLYDrSJA3BOxwbwYYxl2r7ZjAMIQLjbPBKBON63fUOxyqxnHUse-koJ3KKpcJsjoCFRhemj5_-7bn_3AEHWHsrEps2uL0nZNaLZpXXcra1bN1WcXWLNfKOsntKHneAF3ZWGvqM3Av1c_LoBg3iC3KNzm9vvKApoW5qisYXUSnqLriqSanxyTDDj9RY211Ceb6sPKSZWKkFbVVfwkWf5wd4JwtFNU9ptjBvYsYBrvLV4gwWSxdPn6BtoKo96raHX_a0juWckDL6XpLjvd3ZlyntOkXQQjDdUuu1ESIgeBJOilCiVdJsUiLYCYJnLnM6GOkmdmKtY7xADBOKkhutlFXaSylekRG-W3hNwCKGsZb5Ag2XZJH-bqJ4adAL85nKjBmT7f7r5UVHox67eZznAwF0FHaOws6jsHM2Jp_Wl1ysOET-t3izV4m8MyeLPDYlQNyIWjcmn_svPEz_82Zv7rT6A3kwnR0e5Affjvbfkoc8qktKddwko3a-DO8QfrXuffe7_Qa5rRma
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSAgOiBZQF0o7B04gq_Vn1seqZdUWqCrBSr1FduygiDZZ7WYP_Rf9yR17k01BFImjZcdKMpPJG8_MG0I-mMALaZWjLEhLpdCaWuM5DUYzHbw1NlWlfTvXJ1N5dqkuuz6niz7bvQ9JrmoaIktT3e7PfLk_FL6xLEM3mAuqhEE36DF5gtaYxZyuKT9cK5SJrXQHf4LpSJg0hPFwbAQbxlyqg_thMQQLjLPBPxGM63X_OxyrxHfW8e2lQ53ILpZKtDlCFxqdmT6S-re7_v1fOADcP2Ky6Vc3eUledBgVDldKtUkehXqLPL_HXPiK3KK_2tsbaEqom5qivUQgieoGrmpSNnuypfA99cJ2N1BeLSsPaSYWV0Fb1Tcw61PzAHeyUFTzlBkL8yYmCeAqXy1-wWLp4oERtA1UtUd19HBtf9axAhNSEt5rMp18_nF0QrvmDrQQTLfUem2ECIh3hJMilGhINBuXiE-C4JnLnA5GurEdW-sYLxB2hKLkRitllfZSijdkA58tbBOwCDusZb5AWyNZZKwbK14adJx8pjJjRuSgf8150TGfxwYcV_nA2Rwlk6Nk8iiZnI3Ix_UlsxXtx78W7_SyyzsLsMhjHwGEeqgeI_Kpl-cw_eBmb_9r9R55enE8yb-enn95R57xqFopOXGHbLTzZXiPgKl1u-mjuAMOkgEP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Description+of+non-Newtonian+bioconvective+Sutterby+fluid+conveying+tiny+particles+on+a+circular+rotating+disk+subject+to+induced+magnetic+field&rft.jtitle=Journal+of+Central+South+University&rft.au=Arain%2C+M+B&rft.au=Zeeshan%2C+A&rft.au=Bhatti%2C+M+M&rft.au=Alhodaly%2C+Mohammed+Sh&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-2899&rft.eissn=2227-5223&rft.volume=30&rft.issue=8&rft.spage=2599&rft.epage=2615&rft_id=info:doi/10.1007%2Fs11771-023-5398-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2899&client=summon