Description of non-Newtonian bioconvective Sutterby fluid conveying tiny particles on a circular rotating disk subject to induced magnetic field
The primary goal of this study is to examine the flow of non-Newtonian Sutterby fluid conveying tiny particles as well as the induced magnetic field in the involvement of motile gyrotactic microorganisms. The flow is configured between a pair of circular disks filled with Sutterby fluid conveying ti...
Saved in:
Published in | Journal of Central South University Vol. 30; no. 8; pp. 2599 - 2615 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Changsha
Central South University
01.08.2023
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-2899 2227-5223 |
DOI | 10.1007/s11771-023-5398-1 |
Cover
Loading…
Abstract | The primary goal of this study is to examine the flow of non-Newtonian Sutterby fluid conveying tiny particles as well as the induced magnetic field in the involvement of motile gyrotactic microorganisms. The flow is configured between a pair of circular disks filled with Sutterby fluid conveying tiny particles and gyrotactic microorganisms. The impact of Arrhenius kinetics and thermal radiation is also considered in the governing flow. The presented mathematical models are modified into nonlinear ordinary differential equations using the relevant similarity transformations. To compute the numerical solutions of nonlinear ordinary differential equations, the differential transform procedure (DTM) is used. For nonlinear problems, integral transform techniques are more difficult to execute. However, a polynomial solution is obtained as an analytical solution using the differential transform method, which is based on Taylor expansion. To improve the convergence of the formulated mathematical modeling, the Padé approximation was combined with the differential transformation method. Variations of different dimensionless factors are discussed for velocity, temperature field, concentration distribution, and motile gyrotactic microorganism profile. Torque on both plates is calculated and presented through tables. |
---|---|
AbstractList | The primary goal of this study is to examine the flow of non-Newtonian Sutterby fluid conveying tiny particles as well as the induced magnetic field in the involvement of motile gyrotactic microorganisms. The flow is configured between a pair of circular disks filled with Sutterby fluid conveying tiny particles and gyrotactic microorganisms. The impact of Arrhenius kinetics and thermal radiation is also considered in the governing flow. The presented mathematical models are modified into nonlinear ordinary differential equations using the relevant similarity transformations. To compute the numerical solutions of nonlinear ordinary differential equations, the differential transform procedure (DTM) is used. For nonlinear problems, integral transform techniques are more difficult to execute. However, a polynomial solution is obtained as an analytical solution using the differential transform method, which is based on Taylor expansion. To improve the convergence of the formulated mathematical modeling, the Padé approximation was combined with the differential transformation method. Variations of different dimensionless factors are discussed for velocity, temperature field, concentration distribution, and motile gyrotactic microorganism profile. Torque on both plates is calculated and presented through tables. |
Author | Bhatti, M. M. Alhodaly, Mohammed Sh Arain, M. B. Ellahi, R. Zeeshan, A. |
Author_xml | – sequence: 1 givenname: M. B. surname: Arain fullname: Arain, M. B. organization: Department of Mathematics and Statistics, International Islamic University – sequence: 2 givenname: A. surname: Zeeshan fullname: Zeeshan, A. organization: Department of Mathematics and Statistics, International Islamic University – sequence: 3 givenname: M. M. orcidid: 0000-0002-3219-7579 surname: Bhatti fullname: Bhatti, M. M. email: mmbhatti@sdust.edu.cn, mubashirme@yahoo.com organization: College of Mathematics and Systems Science, Shandong University of Science and Technology – sequence: 4 givenname: Mohammed Sh surname: Alhodaly fullname: Alhodaly, Mohammed Sh organization: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University – sequence: 5 givenname: R. surname: Ellahi fullname: Ellahi, R. organization: Department of Mathematics and Statistics, International Islamic University |
BookMark | eNp9kE1rFTEUhoNUsK39Ae4CrlPzMZNMllI_oehCXYckc-Zy6jS5JpnK_Rf-ZHO9giDo6gTO-7wnPBfkLOUEhDwT_Fpwbl5UIYwRjEvFRmUnJh6RcymlYaOU6qy_uR2ZnKx9Qq5qxcCVkFppq8_Jj1dQY8F9w5xoXmhvZh_ge8sJfaIBc8zpAWLDB6CfttaghANd1g1n-mtzwLSjDdOB7n1pGFeotDd5GrHEbfWFltx8O6ZmrF9p3cJdr6MtU0zzFmGm936XoKN0QVjnp-Tx4tcKV7_nJfny5vXnm3fs9uPb9zcvb1lUQjfmZ22VAq1GFQYFyzBNWkyLsByUNMEEDXYIk5-8D0JGrgXERVo9jn7U8zCoS_L81Lsv-dsGtbm7vJXUTzo5mcEabbTuKXFKxZJrLbC4fcF7Xw5OcHd0707uXXfvju6d6Iz5i4l4VJBTKx7X_5LyRNZ-Je2g_PnTv6GfSqmdYQ |
CitedBy_id | crossref_primary_10_1007_s10973_024_13472_2 crossref_primary_10_1007_s41939_024_00602_4 crossref_primary_10_1080_15567036_2024_2302004 crossref_primary_10_1080_10407782_2024_2344067 crossref_primary_10_1007_s12668_024_01412_1 crossref_primary_10_1063_5_0190970 crossref_primary_10_1016_j_ijft_2024_100841 crossref_primary_10_1016_j_est_2024_112112 crossref_primary_10_1142_S0217984924504712 crossref_primary_10_1177_16878132241304609 crossref_primary_10_1007_s12668_024_01555_1 crossref_primary_10_1016_j_csite_2023_103766 crossref_primary_10_1080_10407790_2023_2296076 crossref_primary_10_1016_j_csite_2024_104520 crossref_primary_10_1088_1402_4896_ad1795 crossref_primary_10_1016_j_padiff_2024_100859 crossref_primary_10_1002_elps_202300297 crossref_primary_10_1007_s12648_024_03377_z crossref_primary_10_1016_j_jrras_2024_101197 crossref_primary_10_1007_s10973_024_13926_7 crossref_primary_10_1142_S0217979225500493 crossref_primary_10_1007_s40430_024_05131_2 crossref_primary_10_1007_s11771_023_5514_2 crossref_primary_10_1140_epjp_s13360_023_04847_9 crossref_primary_10_1177_16878132241245833 crossref_primary_10_1016_j_csite_2024_104009 crossref_primary_10_1016_j_csite_2024_104207 crossref_primary_10_1142_S0217979225501267 |
Cites_doi | 10.1016/j.csite.2021.101097 10.1007/s11771-021-4861-0 10.1002/zamm.202000349 10.1016/j.powtec.2020.07.115 10.3390/math11102284 10.1016/j.icheatmasstransfer.2020.104893 10.1007/s12043-020-1933-x 10.4283/JMAG.2019.24.4.688 10.1007/978-3-030-33774-2_8 10.1016/j.cjph.2021.02.005 10.1016/j.csite.2021.101050 10.1016/j.csite.2018.11.007 10.1007/s11771-020-4334-x 10.1016/j.aej.2017.02.014 10.1038/s41598-022-11528-7 10.1007/s10973-020-09720-w 10.1007/s10973-020-10207-x 10.1016/j.icheatmasstransfer.2022.106069 10.1016/j.icheatmasstransfer.2011.03.006 10.1016/j.cjph.2019.02.010 10.1016/j.finmec.2022.100102 10.1016/j.aej.2020.08.048 10.28919/jmcs/6049 10.1016/j.ijft.2022.100151 10.1002/htj.21403 10.1007/s13369-020-05265-0 10.1155/2020/5251804 10.1140/epjp/s13360-020-00606-2 10.1016/j.compfluid.2014.02.009 10.1007/s10973-018-7939-7 10.1007/s13204-020-01286-1 10.1016/j.physa.2019.122447 10.1016/j.ijheatmasstransfer.2016.12.103 10.1016/j.est.2021.103511 10.1016/j.icheatmasstransfer.2010.11.019 10.3390/math8091430 10.1016/j.csite.2021.101659 10.1016/j.rineng.2022.100394 10.1007/s10483-020-2599-7 10.1016/j.cmpb.2019.105294 10.1016/j.aej.2021.08.047 10.1007/s00542-019-04522-z 10.1080/02286203.2023.2204209 10.1016/j.physa.2020.124132 10.1007/s11771-021-4855-y 10.1166/jon.2020.1745 10.1016/j.jmrt.2021.08.011 |
ContentType | Journal Article |
Copyright | Central South University 2023 Central South University 2023. |
Copyright_xml | – notice: Central South University 2023 – notice: Central South University 2023. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11771-023-5398-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | 含微小颗粒的非牛顿生物Sutterby流体在感应磁场旋转圆盘上的流动性 |
EISSN | 2227-5223 |
EndPage | 2615 |
ExternalDocumentID | 10_1007_s11771_023_5398_1 |
GroupedDBID | -03 -0C -EM -SC -S~ .VR 06D 0R~ 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40E 5VR 5VS 8UJ 92H 92I 92M 92R 93N 95- 95. 95~ 96X 9D9 9DC AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFUIB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAJEC CCEZO CEKLB CHBEP CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR IKXTQ IWAJR IXD I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9J PF0 PT4 Q-- Q-2 R-C R89 ROL RPX RSV RT3 S16 S3B SAP SCL SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T8S TCJ TGT TSG TUC U1F U1G U2A U5C U5M UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-ad6933e6353b43ef488618f190e327b7b6e94b8a8aab12c061ecf29655a56d443 |
IEDL.DBID | U2A |
ISSN | 2095-2899 |
IngestDate | Fri Jul 25 10:52:21 EDT 2025 Tue Jul 01 00:29:26 EDT 2025 Thu Apr 24 23:08:47 EDT 2025 Fri Feb 21 02:42:21 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Keywords | 平行圆盘 parallel circular disks 活化能 activation energy generalized magnetic Reynolds number 广义磁雷诺数 differential transform solutions 趋旋微生物 微分变换解 gyrotactic microorganisms |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-ad6933e6353b43ef488618f190e327b7b6e94b8a8aab12c061ecf29655a56d443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-3219-7579 |
PQID | 2874976766 |
PQPubID | 2044301 |
PageCount | 17 |
ParticipantIDs | proquest_journals_2874976766 crossref_primary_10_1007_s11771_023_5398_1 crossref_citationtrail_10_1007_s11771_023_5398_1 springer_journals_10_1007_s11771_023_5398_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Changsha |
PublicationPlace_xml | – name: Changsha – name: Heidelberg |
PublicationSubtitle | Science & Technology of Mining and Metallurgy |
PublicationTitle | Journal of Central South University |
PublicationTitleAbbrev | J. Cent. South Univ |
PublicationYear | 2023 |
Publisher | Central South University Springer Nature B.V |
Publisher_xml | – name: Central South University – name: Springer Nature B.V |
References | HabibishandizMSaghirZMHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder [J]International Journal of Thermofluids20221410015110.1016/j.ijft.2022.100151 KefayatiG H RMixed convection of non-Newtonian nanofluid in an enclosure using Buongiorno’s mathematical model [J]International Journal of Heat and Mass Transfer20171081481150010.1016/j.ijheatmasstransfer.2016.12.103 WaqasHFarooqUBhattiM MMagnetized bioconvection flow of Sutterby fluid characterized by the suspension of nanoparticles across a wedge with activation energy [J]ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik202110112e202000349440715410.1002/zamm.202000349 ZhangLArainM BBhattiM MEffects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids [J]Applied Mathematics and Mechanics202041463765442438391457.7621510.1007/s10483-020-2599-7 AbdelsalamS ISohailMNumerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic micro-organisms [J]Pramana202094111210.1007/s12043-020-1933-x SAJID T, TANVEER S, SABIR Z, et al. Impact of activation energy and temperature-dependent heat source/sink on maxwell-sutterby fluid [J]. Mathematical Problems in Engineering, 2020: 1–15. DOI: https://doi.org/10.1155/2020/5251804. GholiniaMHosseinzadehKMehrzadiHInvestigation of MHD Eyring-Powell fluid flow over a rotating disk under effect of homogeneous-heterogeneous reactions [J]Case Studies in Thermal Engineering20191310035610.1016/j.csite.2018.11.007 Abo-ZaidO AMahdyAHadyF MTransport properties on mixed bioconvection flow of non-newtonian dusty nanofluid with nonlinear radiation by a moving wedge [J]Journal of Nanofluids20209320321510.1166/jon.2020.1745 HayatTAhmadM WShehzadS AThree-dimensional unsteady squeezing flow with irreversibility [J]Journal of Central South University202128113368338010.1007/s11771-021-4861-0 CaoWAnimasaunI LYookS JSimulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: Ternary-hybrid nanofluid [J]International Communications in Heat and Mass Transfer202213510606910.1016/j.icheatmasstransfer.2022.106069 HojjatMEtemadS GBagheriRRheological characteristics of non-Newtonian nanofluids: Experimental investigation [J]International Communications in Heat and Mass Transfer201138214414810.1016/j.icheatmasstransfer.2010.11.019 ReddyJ V RSugunammaVSandeepNThermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects [J]Alexandria Engineering Journal20185742465247310.1016/j.aej.2017.02.014 MajeedAZeeshanAAminNThermal analysis of radiative bioconvection magnetohydrodynamic flow comprising gyrotactic microorganism with activation energy [J]Journal of Thermal Analysis and Calorimetry202114332545255610.1007/s10973-020-10207-x ArulmozhiSSukkiramathiKSantraS SHeat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate [J]Results in Engineering20221410039410.1016/j.rineng.2022.100394 DhlaminiMMondalHSibandaPRotational nanofluids for oxytactic microorganisms with convective boundary conditions using bivariate spectral quasi-linearization method [J]Journal of Central South University202027382484110.1007/s11771-020-4334-x KothaGKolipaulaV RRaoM V SInternal heat generation on bioconvection of an MHD nanofluid flow due to gyrotactic microorganisms [J]The European Physical Journal Plus2020135760010.1140/epjp/s13360-020-00606-2 Saif-Ur-RehmanMirA NAlqarniM SAnalysis of heat generation/absorption in thermally stratified Sutterby fluid flow with Cattaneo-Christov theory [J]Microsystem Technologies20192593365337310.1007/s00542-019-04522-z AhmadSFarooqMAnjumAInvestigation of convective heat and mass conditions in squeeze flow of a hydro-magnetic sutterby fluid [J]Journal of Magnetics201924468869710.4283/JMAG.2019.24.4.688 PRAKASH J, REDDY M G, TRIPATHI D, et al. A model for electro-osmotic flow of pseudoplastic nanofluids in presence of peristaltic pumping: An application to smart pumping in energy systems [M]// Nanotechnology for Energy and Environmental Engineering. Cham: Springer, 2020: 185–213. https://doi.org/10.1007/978-3-030-33774-2_8. AkramJAkbarN STripathiDA theoretical investigation on the heat transfer ability of water-based hybrid (Ag-Au) nanofluids and Ag nanofluids flow driven by electroosmotic pumping through a microchannel [J]Arabian Journal for Science and Engineering20214632911292710.1007/s13369-020-05265-0 OkeA SAnimasaunI LMutukuW NSignificance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surface [J]Chinese Journal of Physics202171716727425686610.1016/j.cjph.2021.02.005 RanaSMehmoodRBhattiM MSwimming of motile gyrotactic microorganisms and suspension of nanoparticles in a rheological Jeffery fluid with Newtonian heating along elastic surface [J]Journal of Central South University2021283279329610.1007/s11771-021-4855-y MagyariEPantokratorasANote on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows [J]International Communications in Heat and Mass Transfer201138555455610.1016/j.icheatmasstransfer.2011.03.006 TurkyilmazogluMNanofluid flow and heat transfer due to a rotating disk [J]Computers & Fluids20149413914631783211391.7681110.1016/j.compfluid.2014.02.009 GoudarziSShekaramizMOmidvarANanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/water hybrid nanofluid natural convection [J]Powder Technology202037549350310.1016/j.powtec.2020.07.115 AmirsomN AUddinM JIsmailA I MMHD boundary layer bionanoconvective non-Newtonian flow past a needle with Stefan blowing [J]Heat Transfer—Asian Research201948272774310.1002/htj.21403 BhattiM MIshtiaqFEllahiRNovel aspects of cilia-driven flow of viscoelastic fluid through a non-darcy medium under the influence of an induced magnetic field and heat transfer [J]Mathematics20231110228410.3390/math11102284 NawazMRole of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol [J]Physica A: Statistical Mechanics and Its Applications202053712244740085870757177010.1016/j.physa.2019.122447 BhattiM MArainM BZeeshanASwimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage [J]Journal of Energy Storage20224510351110.1016/j.est.2021.103511 AldabeshAHaredyAAl-KhaledKDarcy resistance flow of Sutterby nanofluid with microorganisms with applications of nano-biofuel cells [J]Scientific Reports202212751410.1038/s41598-022-11528-7 KhanN MAbidiAKhanIDynamics of radiative Eyring-Powell MHD nanofluid containing gyrotactic microorganisms exposed to surface suction and viscosity variation [J]Case Studies in Thermal Engineering20212810165910.1016/j.csite.2021.101659 PrakashJTripathiDBégO AComparative study of hybrid nanofluids in microchannel slip flow induced by electroosmosis and peristalsis [J]Applied Nanoscience20201051693170610.1007/s13204-020-01286-1 ChuYKhanM IKhanN BSignificance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis [J]International Communications in Heat and Mass Transfer202011810489310.1016/j.icheatmasstransfer.2020.104893 GouranSMohsenianSGhasemiS ETheoretical analysis on MHD nanofluid flow between two concentric cylinders using efficient computational techniques [J]Alexandria Engineering Journal20226143237324810.1016/j.aej.2021.08.047 EASTMAN J A, CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles [C]// 1995 International Mechanical Engineering Congress and Exhibition. San Francisco, CA (United States), 1995. https://www.osti.gov/servlets/purl/196525. RameshKPrakashJThermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel [J]Journal of Thermal Analysis and Calorimetry201913821311132610.1007/s10973-018-7939-7 MaboodFYusufT AKhanW ACu-Al2O3-H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation [J]Journal of Thermal Analysis and Calorimetry2021143297398410.1007/s10973-020-09720-w KhanS UAliS SElectrical MHD Carreau nanofluid over porous oscillatory stretching surface with variable thermal conductivity: Applications of thermal extrusion system [J]Physica A: Statistical Mechanics and its Applications20205501241320752634710.1016/j.physa.2020.124132 KhanW AAnjumNWaqasMImpact of stratification phenomena on a nonlinear radiative flow of sutterby nanofluid [J]Journal of Materials Research and Technology20211530631410.1016/j.jmrt.2021.08.011 SongYObideyiB DAliS NSignificance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface [J]Case Studies in Thermal Engineering20212610105010.1016/j.csite.2021.101050 KhanUShafiqAZaibANumerical exploration of MHD falkner-skan-sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-fourier heat-flux theory [J]Alexandria Engineering Journal20205964851486410.1016/j.aej.2020.08.048 AhmedJKhanMAhmadLMHD swirling flow and heat transfer in Maxwell fluid driven by two coaxially rotating disks with variable thermal conductivity [J]Chinese Journal of Physics2019602234395308010.1016/j.cjph.2019.02.010 ZhouJ KDifferential transformation and its applications for electronic circuits [M]1986WuhanHuazhong Science & Technology University Press, China(in Chinese) DeySMukhopadhyaySMHD nanofluid flow over an absorbent plate in the company of chemical response a A Aldabesh (5398_CR13) 2022; 12 M M Bhatti (5398_CR14) 2023; 11 S Dey (5398_CR26) 2022; 7 R Muhammad (5398_CR23) 2020; 189 M M Bhatti (5398_CR39) 2022; 45 K Ramesh (5398_CR10) 2019; 138 J Ahmed (5398_CR16) 2019; 60 S Arulmozhi (5398_CR24) 2022; 14 J Akram (5398_CR36) 2021; 46 N A Amirsom (5398_CR29) 2019; 48 N M Khan (5398_CR35) 2021; 28 Y Song (5398_CR45) 2021; 26 G H R Kefayati (5398_CR5) 2017; 108 S I Abdelsalam (5398_CR30) 2020; 94 F Mabood (5398_CR7) 2021; 143 5398_CR1 W A Khan (5398_CR8) 2021; 15 5398_CR11 Y Chu (5398_CR31) 2020; 118 W Cao (5398_CR44) 2022; 135 G Kotha (5398_CR27) 2020; 135 S U Khan (5398_CR22) 2020; 550 M Turkyilmazoglu (5398_CR3) 2014; 94 M Hojjat (5398_CR2) 2011; 38 S Goudarzi (5398_CR6) 2020; 375 T Hayat (5398_CR28) 2021; 28 A Majeed (5398_CR41) 2021; 143 Saif-Ur-Rehman (5398_CR18) 2019; 25 S Gouran (5398_CR25) 2022; 61 U Khan (5398_CR15) 2020; 59 A S Oke (5398_CR46) 2021; 71 5398_CR43 M Gholinia (5398_CR17) 2019; 13 G Dharmaiah (5398_CR12) 2021; 11 M Nawaz (5398_CR20) 2020; 537 S Rana (5398_CR34) 2021; 28 M Habibishandiz (5398_CR42) 2022; 14 L Zhang (5398_CR49) 2020; 41 H Waqas (5398_CR32) 2021; 26 J K Zhou (5398_CR48) 1986 J Prakash (5398_CR38) 2020; 10 O A Abo-Zaid (5398_CR33) 2020; 9 5398_CR37 J V R Reddy (5398_CR4) 2018; 57 H Waqas (5398_CR9) 2021; 101 M Dhlamini (5398_CR40) 2020; 27 M M Fayyadh (5398_CR21) 2020; 8 S Ahmad (5398_CR19) 2019; 24 E Magyari (5398_CR47) 2011; 38 |
References_xml | – reference: SAJID T, TANVEER S, SABIR Z, et al. Impact of activation energy and temperature-dependent heat source/sink on maxwell-sutterby fluid [J]. Mathematical Problems in Engineering, 2020: 1–15. DOI: https://doi.org/10.1155/2020/5251804. – reference: FayyadhM MNaganthranKBasirM F MRadiative MHD sutterby nanofluid flow past a moving sheet: Scaling group analysis [J]Mathematics202089143010.3390/math8091430 – reference: MajeedAZeeshanAAminNThermal analysis of radiative bioconvection magnetohydrodynamic flow comprising gyrotactic microorganism with activation energy [J]Journal of Thermal Analysis and Calorimetry202114332545255610.1007/s10973-020-10207-x – reference: PRAKASH J, REDDY M G, TRIPATHI D, et al. A model for electro-osmotic flow of pseudoplastic nanofluids in presence of peristaltic pumping: An application to smart pumping in energy systems [M]// Nanotechnology for Energy and Environmental Engineering. Cham: Springer, 2020: 185–213. https://doi.org/10.1007/978-3-030-33774-2_8. – reference: EASTMAN J A, CHOI S U S. Enhancing thermal conductivity of fluids with nanoparticles [C]// 1995 International Mechanical Engineering Congress and Exhibition. San Francisco, CA (United States), 1995. https://www.osti.gov/servlets/purl/196525. – reference: KhanUShafiqAZaibANumerical exploration of MHD falkner-skan-sutterby nanofluid flow by utilizing an advanced non-homogeneous two-phase nanofluid model and non-fourier heat-flux theory [J]Alexandria Engineering Journal20205964851486410.1016/j.aej.2020.08.048 – reference: HojjatMEtemadS GBagheriRRheological characteristics of non-Newtonian nanofluids: Experimental investigation [J]International Communications in Heat and Mass Transfer201138214414810.1016/j.icheatmasstransfer.2010.11.019 – reference: AbdelsalamS ISohailMNumerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic micro-organisms [J]Pramana202094111210.1007/s12043-020-1933-x – reference: Abo-ZaidO AMahdyAHadyF MTransport properties on mixed bioconvection flow of non-newtonian dusty nanofluid with nonlinear radiation by a moving wedge [J]Journal of Nanofluids20209320321510.1166/jon.2020.1745 – reference: KhanW AAnjumNWaqasMImpact of stratification phenomena on a nonlinear radiative flow of sutterby nanofluid [J]Journal of Materials Research and Technology20211530631410.1016/j.jmrt.2021.08.011 – reference: NawazMRole of hybrid nanoparticles in thermal performance of Sutterby fluid, the ethylene glycol [J]Physica A: Statistical Mechanics and Its Applications202053712244740085870757177010.1016/j.physa.2019.122447 – reference: ArulmozhiSSukkiramathiKSantraS SHeat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate [J]Results in Engineering20221410039410.1016/j.rineng.2022.100394 – reference: AhmedJKhanMAhmadLMHD swirling flow and heat transfer in Maxwell fluid driven by two coaxially rotating disks with variable thermal conductivity [J]Chinese Journal of Physics2019602234395308010.1016/j.cjph.2019.02.010 – reference: DeySMukhopadhyaySMHD nanofluid flow over an absorbent plate in the company of chemical response and zero nanoparticle flux [J]Forces in Mechanics2022710010210.1016/j.finmec.2022.100102 – reference: GholiniaMHosseinzadehKMehrzadiHInvestigation of MHD Eyring-Powell fluid flow over a rotating disk under effect of homogeneous-heterogeneous reactions [J]Case Studies in Thermal Engineering20191310035610.1016/j.csite.2018.11.007 – reference: OBALALU A M, SALAWU S O, OLAYEMI O A, et al. Computational study of bioconvection rheological nanofluid flow containing gyrotactic microorganisms: A model for bioengineering nanofluid fuel cells [J]. International Journal of Modelling and Simulation, 2023: 1–15. DOI: https://doi.org/10.1080/02286203.2023.2204209. – reference: PrakashJTripathiDBégO AComparative study of hybrid nanofluids in microchannel slip flow induced by electroosmosis and peristalsis [J]Applied Nanoscience20201051693170610.1007/s13204-020-01286-1 – reference: DhlaminiMMondalHSibandaPRotational nanofluids for oxytactic microorganisms with convective boundary conditions using bivariate spectral quasi-linearization method [J]Journal of Central South University202027382484110.1007/s11771-020-4334-x – reference: Saif-Ur-RehmanMirA NAlqarniM SAnalysis of heat generation/absorption in thermally stratified Sutterby fluid flow with Cattaneo-Christov theory [J]Microsystem Technologies20192593365337310.1007/s00542-019-04522-z – reference: TurkyilmazogluMNanofluid flow and heat transfer due to a rotating disk [J]Computers & Fluids20149413914631783211391.7681110.1016/j.compfluid.2014.02.009 – reference: WaqasHAlghamdiMMuhammadTBioconvection transport of magnetized Walter’s B nanofluid across a cylindrical disk with nonlinear radiative heat transfer [J]Case Studies in Thermal Engineering20212610109710.1016/j.csite.2021.101097 – reference: WaqasHFarooqUBhattiM MMagnetized bioconvection flow of Sutterby fluid characterized by the suspension of nanoparticles across a wedge with activation energy [J]ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik202110112e202000349440715410.1002/zamm.202000349 – reference: MuhammadRKhanM IKhanN BMagnetohydrodynamics (MHD) radiated nanomaterial viscous material flow by a curved surface with second order slip and entropy generation [J]Computer Methods and Programs in Biomedicine202018910529410.1016/j.cmpb.2019.105294 – reference: MagyariEPantokratorasANote on the effect of thermal radiation in the linearized Rosseland approximation on the heat transfer characteristics of various boundary layer flows [J]International Communications in Heat and Mass Transfer201138555455610.1016/j.icheatmasstransfer.2011.03.006 – reference: AmirsomN AUddinM JIsmailA I MMHD boundary layer bionanoconvective non-Newtonian flow past a needle with Stefan blowing [J]Heat Transfer—Asian Research201948272774310.1002/htj.21403 – reference: GouranSMohsenianSGhasemiS ETheoretical analysis on MHD nanofluid flow between two concentric cylinders using efficient computational techniques [J]Alexandria Engineering Journal20226143237324810.1016/j.aej.2021.08.047 – reference: BhattiM MArainM BZeeshanASwimming of Gyrotactic Microorganism in MHD Williamson nanofluid flow between rotating circular plates embedded in porous medium: Application of thermal energy storage [J]Journal of Energy Storage20224510351110.1016/j.est.2021.103511 – reference: BhattiM MIshtiaqFEllahiRNovel aspects of cilia-driven flow of viscoelastic fluid through a non-darcy medium under the influence of an induced magnetic field and heat transfer [J]Mathematics20231110228410.3390/math11102284 – reference: KefayatiG H RMixed convection of non-Newtonian nanofluid in an enclosure using Buongiorno’s mathematical model [J]International Journal of Heat and Mass Transfer20171081481150010.1016/j.ijheatmasstransfer.2016.12.103 – reference: RameshKPrakashJThermal analysis for heat transfer enhancement in electroosmosis-modulated peristaltic transport of Sutterby nanofluids in a microfluidic vessel [J]Journal of Thermal Analysis and Calorimetry201913821311132610.1007/s10973-018-7939-7 – reference: MaboodFYusufT AKhanW ACu-Al2O3-H2O hybrid nanofluid flow with melting heat transfer, irreversibility analysis and nonlinear thermal radiation [J]Journal of Thermal Analysis and Calorimetry2021143297398410.1007/s10973-020-09720-w – reference: RanaSMehmoodRBhattiM MSwimming of motile gyrotactic microorganisms and suspension of nanoparticles in a rheological Jeffery fluid with Newtonian heating along elastic surface [J]Journal of Central South University2021283279329610.1007/s11771-021-4855-y – reference: GoudarziSShekaramizMOmidvarANanoparticles migration due to thermophoresis and Brownian motion and its impact on Ag-MgO/water hybrid nanofluid natural convection [J]Powder Technology202037549350310.1016/j.powtec.2020.07.115 – reference: AkramJAkbarN STripathiDA theoretical investigation on the heat transfer ability of water-based hybrid (Ag-Au) nanofluids and Ag nanofluids flow driven by electroosmotic pumping through a microchannel [J]Arabian Journal for Science and Engineering20214632911292710.1007/s13369-020-05265-0 – reference: DharmaiahGBalamuruganK SNumerical study of MHD flow and heat transfer of Sutterby nano fluid over a stretching surface with activation energy and Nield’s condition [J]Journal of Mathematical and Computational Science202111554585473 – reference: CaoWAnimasaunI LYookS JSimulation of the dynamics of colloidal mixture of water with various nanoparticles at different levels of partial slip: Ternary-hybrid nanofluid [J]International Communications in Heat and Mass Transfer202213510606910.1016/j.icheatmasstransfer.2022.106069 – reference: HabibishandizMSaghirZMHD mixed convection heat transfer of nanofluid containing oxytactic microorganisms inside a vertical annular porous cylinder [J]International Journal of Thermofluids20221410015110.1016/j.ijft.2022.100151 – reference: ChuYKhanM IKhanN BSignificance of activation energy, bio-convection and magnetohydrodynamic in flow of third grade fluid (non-Newtonian) towards stretched surface: A Buongiorno model analysis [J]International Communications in Heat and Mass Transfer202011810489310.1016/j.icheatmasstransfer.2020.104893 – reference: AldabeshAHaredyAAl-KhaledKDarcy resistance flow of Sutterby nanofluid with microorganisms with applications of nano-biofuel cells [J]Scientific Reports202212751410.1038/s41598-022-11528-7 – reference: ZhouJ KDifferential transformation and its applications for electronic circuits [M]1986WuhanHuazhong Science & Technology University Press, China(in Chinese) – reference: ReddyJ V RSugunammaVSandeepNThermophoresis and Brownian motion effects on unsteady MHD nanofluid flow over a slendering stretching surface with slip effects [J]Alexandria Engineering Journal20185742465247310.1016/j.aej.2017.02.014 – reference: KothaGKolipaulaV RRaoM V SInternal heat generation on bioconvection of an MHD nanofluid flow due to gyrotactic microorganisms [J]The European Physical Journal Plus2020135760010.1140/epjp/s13360-020-00606-2 – reference: KhanS UAliS SElectrical MHD Carreau nanofluid over porous oscillatory stretching surface with variable thermal conductivity: Applications of thermal extrusion system [J]Physica A: Statistical Mechanics and its Applications20205501241320752634710.1016/j.physa.2020.124132 – reference: HayatTAhmadM WShehzadS AThree-dimensional unsteady squeezing flow with irreversibility [J]Journal of Central South University202128113368338010.1007/s11771-021-4861-0 – reference: ZhangLArainM BBhattiM MEffects of magnetic Reynolds number on swimming of gyrotactic microorganisms between rotating circular plates filled with nanofluids [J]Applied Mathematics and Mechanics202041463765442438391457.7621510.1007/s10483-020-2599-7 – reference: KhanN MAbidiAKhanIDynamics of radiative Eyring-Powell MHD nanofluid containing gyrotactic microorganisms exposed to surface suction and viscosity variation [J]Case Studies in Thermal Engineering20212810165910.1016/j.csite.2021.101659 – reference: OkeA SAnimasaunI LMutukuW NSignificance of Coriolis force, volume fraction, and heat source/sink on the dynamics of water conveying 47 nm alumina nanoparticles over a uniform surface [J]Chinese Journal of Physics202171716727425686610.1016/j.cjph.2021.02.005 – reference: AhmadSFarooqMAnjumAInvestigation of convective heat and mass conditions in squeeze flow of a hydro-magnetic sutterby fluid [J]Journal of Magnetics201924468869710.4283/JMAG.2019.24.4.688 – reference: SongYObideyiB DAliS NSignificance of haphazard motion and thermal migration of alumina and copper nanoparticles across the dynamics of water and ethylene glycol on a convectively heated surface [J]Case Studies in Thermal Engineering20212610105010.1016/j.csite.2021.101050 – volume: 26 start-page: 101097 year: 2021 ident: 5398_CR32 publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2021.101097 – volume: 28 start-page: 3368 issue: 11 year: 2021 ident: 5398_CR28 publication-title: Journal of Central South University doi: 10.1007/s11771-021-4861-0 – volume: 101 start-page: e202000349 issue: 12 year: 2021 ident: 5398_CR9 publication-title: ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift Für Angewandte Mathematik Und Mechanik doi: 10.1002/zamm.202000349 – volume: 375 start-page: 493 year: 2020 ident: 5398_CR6 publication-title: Powder Technology doi: 10.1016/j.powtec.2020.07.115 – volume: 11 start-page: 2284 issue: 10 year: 2023 ident: 5398_CR14 publication-title: Mathematics doi: 10.3390/math11102284 – volume-title: Differential transformation and its applications for electronic circuits [M] year: 1986 ident: 5398_CR48 – volume: 118 start-page: 104893 year: 2020 ident: 5398_CR31 publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.104893 – volume: 94 start-page: 1 issue: 1 year: 2020 ident: 5398_CR30 publication-title: Pramana doi: 10.1007/s12043-020-1933-x – volume: 24 start-page: 688 issue: 4 year: 2019 ident: 5398_CR19 publication-title: Journal of Magnetics doi: 10.4283/JMAG.2019.24.4.688 – ident: 5398_CR37 doi: 10.1007/978-3-030-33774-2_8 – volume: 71 start-page: 716 year: 2021 ident: 5398_CR46 publication-title: Chinese Journal of Physics doi: 10.1016/j.cjph.2021.02.005 – volume: 26 start-page: 101050 year: 2021 ident: 5398_CR45 publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2021.101050 – volume: 13 start-page: 100356 year: 2019 ident: 5398_CR17 publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2018.11.007 – volume: 27 start-page: 824 issue: 3 year: 2020 ident: 5398_CR40 publication-title: Journal of Central South University doi: 10.1007/s11771-020-4334-x – volume: 57 start-page: 2465 issue: 4 year: 2018 ident: 5398_CR4 publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2017.02.014 – volume: 12 start-page: 7514 year: 2022 ident: 5398_CR13 publication-title: Scientific Reports doi: 10.1038/s41598-022-11528-7 – volume: 143 start-page: 973 issue: 2 year: 2021 ident: 5398_CR7 publication-title: Journal of Thermal Analysis and Calorimetry doi: 10.1007/s10973-020-09720-w – volume: 143 start-page: 2545 issue: 3 year: 2021 ident: 5398_CR41 publication-title: Journal of Thermal Analysis and Calorimetry doi: 10.1007/s10973-020-10207-x – volume: 135 start-page: 106069 year: 2022 ident: 5398_CR44 publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2022.106069 – ident: 5398_CR1 – volume: 38 start-page: 554 issue: 5 year: 2011 ident: 5398_CR47 publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2011.03.006 – volume: 60 start-page: 22 year: 2019 ident: 5398_CR16 publication-title: Chinese Journal of Physics doi: 10.1016/j.cjph.2019.02.010 – volume: 7 start-page: 100102 year: 2022 ident: 5398_CR26 publication-title: Forces in Mechanics doi: 10.1016/j.finmec.2022.100102 – volume: 59 start-page: 4851 issue: 6 year: 2020 ident: 5398_CR15 publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2020.08.048 – volume: 11 start-page: 5458 issue: 5 year: 2021 ident: 5398_CR12 publication-title: Journal of Mathematical and Computational Science doi: 10.28919/jmcs/6049 – volume: 14 start-page: 100151 year: 2022 ident: 5398_CR42 publication-title: International Journal of Thermofluids doi: 10.1016/j.ijft.2022.100151 – volume: 48 start-page: 727 issue: 2 year: 2019 ident: 5398_CR29 publication-title: Heat Transfer—Asian Research doi: 10.1002/htj.21403 – volume: 46 start-page: 2911 issue: 3 year: 2021 ident: 5398_CR36 publication-title: Arabian Journal for Science and Engineering doi: 10.1007/s13369-020-05265-0 – ident: 5398_CR11 doi: 10.1155/2020/5251804 – volume: 135 start-page: 600 issue: 7 year: 2020 ident: 5398_CR27 publication-title: The European Physical Journal Plus doi: 10.1140/epjp/s13360-020-00606-2 – volume: 94 start-page: 139 year: 2014 ident: 5398_CR3 publication-title: Computers & Fluids doi: 10.1016/j.compfluid.2014.02.009 – volume: 138 start-page: 1311 issue: 2 year: 2019 ident: 5398_CR10 publication-title: Journal of Thermal Analysis and Calorimetry doi: 10.1007/s10973-018-7939-7 – volume: 10 start-page: 1693 issue: 5 year: 2020 ident: 5398_CR38 publication-title: Applied Nanoscience doi: 10.1007/s13204-020-01286-1 – volume: 537 start-page: 122447 year: 2020 ident: 5398_CR20 publication-title: Physica A: Statistical Mechanics and Its Applications doi: 10.1016/j.physa.2019.122447 – volume: 108 start-page: 1481 year: 2017 ident: 5398_CR5 publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2016.12.103 – volume: 45 start-page: 103511 year: 2022 ident: 5398_CR39 publication-title: Journal of Energy Storage doi: 10.1016/j.est.2021.103511 – volume: 38 start-page: 144 issue: 2 year: 2011 ident: 5398_CR2 publication-title: International Communications in Heat and Mass Transfer doi: 10.1016/j.icheatmasstransfer.2010.11.019 – volume: 8 start-page: 1430 issue: 9 year: 2020 ident: 5398_CR21 publication-title: Mathematics doi: 10.3390/math8091430 – volume: 28 start-page: 101659 year: 2021 ident: 5398_CR35 publication-title: Case Studies in Thermal Engineering doi: 10.1016/j.csite.2021.101659 – volume: 14 start-page: 100394 year: 2022 ident: 5398_CR24 publication-title: Results in Engineering doi: 10.1016/j.rineng.2022.100394 – volume: 41 start-page: 637 issue: 4 year: 2020 ident: 5398_CR49 publication-title: Applied Mathematics and Mechanics doi: 10.1007/s10483-020-2599-7 – volume: 189 start-page: 105294 year: 2020 ident: 5398_CR23 publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2019.105294 – volume: 61 start-page: 3237 issue: 4 year: 2022 ident: 5398_CR25 publication-title: Alexandria Engineering Journal doi: 10.1016/j.aej.2021.08.047 – volume: 25 start-page: 3365 issue: 9 year: 2019 ident: 5398_CR18 publication-title: Microsystem Technologies doi: 10.1007/s00542-019-04522-z – ident: 5398_CR43 doi: 10.1080/02286203.2023.2204209 – volume: 550 start-page: 124132 year: 2020 ident: 5398_CR22 publication-title: Physica A: Statistical Mechanics and its Applications doi: 10.1016/j.physa.2020.124132 – volume: 28 start-page: 3279 year: 2021 ident: 5398_CR34 publication-title: Journal of Central South University doi: 10.1007/s11771-021-4855-y – volume: 9 start-page: 203 issue: 3 year: 2020 ident: 5398_CR33 publication-title: Journal of Nanofluids doi: 10.1166/jon.2020.1745 – volume: 15 start-page: 306 year: 2021 ident: 5398_CR8 publication-title: Journal of Materials Research and Technology doi: 10.1016/j.jmrt.2021.08.011 |
SSID | ssib031263696 ssib051367662 ssib026412149 ssib016993150 ssib024508231 ssj0001192107 ssib009883398 ssib016971650 |
Score | 2.4304788 |
Snippet | The primary goal of this study is to examine the flow of non-Newtonian Sutterby fluid conveying tiny particles as well as the induced magnetic field in the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2599 |
SubjectTerms | Conveying Engineering Exact solutions Integral transforms Magnetic fields Mathematical models Metallic Materials Microorganisms Nonlinear differential equations Ordinary differential equations Polynomials Rotating disks Taylor series Temperature distribution Thermal radiation |
Title | Description of non-Newtonian bioconvective Sutterby fluid conveying tiny particles on a circular rotating disk subject to induced magnetic field |
URI | https://link.springer.com/article/10.1007/s11771-023-5398-1 https://www.proquest.com/docview/2874976766 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELba5VIOVWmL2PLQHHoqsoSfWR9XaCkCtZd2JThFduygCJqg3eyBf9Gf3LE32VBEkXq04lhJZjL-xjPzDSGfTeCFtMpRFqSlUmhNrfGcBqOZDt4am6rSvn3X53N5caWuujruZZ_t3ockk6Ueit1YlqHrywVVwqDr85psKXTdo1rP-XSjRCa2zx18CKYjSdIQusOxEWwYc6lOHofCECAwzgafRDCuNz3vcKwSx1nHsZcOciKjWCrL5ghXaHRg-ujpc0_99_43gNoncdi0vZ29I287XArTtSLtkFehfk-2H7EVfiC_0UftbQw0JdRNTdFGInhEFQNXNSmDPdlP-JH6X7sHKO9WlYd0JRZUQVvVD3Dfp-MBrmShqBYpGxYWTUwMwFm-Wt7CcuXiIRG0DVS1RxX08Mve1LHqElLi3UcyP5v9PD2nXUMHWgimW2q9NkIExDjCSRFKNB6aTUrEJEHwzGVOByPdxE6sdYwXCDVCUXKjlbJKeynFLhnhu4U9AhahhrXMF2hfJIssdRPFS4POks9UZsyYnPSfOS86tvPYdOMuH3iao2RylEweJZOzMfmyueV-TfXx0uSDXnZ599cv89g7AOEdqseYHPfyHC7_c7FP_zV7n7yJPe_XWYgHZNQuVuEQkVHrjsjW9Ov15ewo_RF_AOWM-2U |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOvBELBebACeSqfmZ9rFDLQh8XtlI5RXbsVFFLUu1mD-2v6E9m7E02pQKkHi07UTKZjL_xzHxDyEcTeCGtcpQFaakUWlNrPKfBaKaDt8amqrTDIz09lt9P1ElXx73os937kGSy1EOxG8sydH25oEoYdH3ukw2JLrgakY2drz_3d9dqZGID3cGLYDrSJA3BOxwbwYYxl2r7ZjAMIQLjbPBKBON63fUOxyqxnHUse-koJ3KKpcJsjoCFRhemj5_-7bn_3AEHWHsrEps2uL0nZNaLZpXXcra1bN1WcXWLNfKOsntKHneAF3ZWGvqM3Av1c_LoBg3iC3KNzm9vvKApoW5qisYXUSnqLriqSanxyTDDj9RY211Ceb6sPKSZWKkFbVVfwkWf5wd4JwtFNU9ptjBvYsYBrvLV4gwWSxdPn6BtoKo96raHX_a0juWckDL6XpLjvd3ZlyntOkXQQjDdUuu1ESIgeBJOilCiVdJsUiLYCYJnLnM6GOkmdmKtY7xADBOKkhutlFXaSylekRG-W3hNwCKGsZb5Ag2XZJH-bqJ4adAL85nKjBmT7f7r5UVHox67eZznAwF0FHaOws6jsHM2Jp_Wl1ysOET-t3izV4m8MyeLPDYlQNyIWjcmn_svPEz_82Zv7rT6A3kwnR0e5Affjvbfkoc8qktKddwko3a-DO8QfrXuffe7_Qa5rRma |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSAgOiBZQF0o7B04gq_Vn1seqZdUWqCrBSr1FduygiDZZ7WYP_Rf9yR17k01BFImjZcdKMpPJG8_MG0I-mMALaZWjLEhLpdCaWuM5DUYzHbw1NlWlfTvXJ1N5dqkuuz6niz7bvQ9JrmoaIktT3e7PfLk_FL6xLEM3mAuqhEE36DF5gtaYxZyuKT9cK5SJrXQHf4LpSJg0hPFwbAQbxlyqg_thMQQLjLPBPxGM63X_OxyrxHfW8e2lQ53ILpZKtDlCFxqdmT6S-re7_v1fOADcP2Ky6Vc3eUledBgVDldKtUkehXqLPL_HXPiK3KK_2tsbaEqom5qivUQgieoGrmpSNnuypfA99cJ2N1BeLSsPaSYWV0Fb1Tcw61PzAHeyUFTzlBkL8yYmCeAqXy1-wWLp4oERtA1UtUd19HBtf9axAhNSEt5rMp18_nF0QrvmDrQQTLfUem2ECIh3hJMilGhINBuXiE-C4JnLnA5GurEdW-sYLxB2hKLkRitllfZSijdkA58tbBOwCDusZb5AWyNZZKwbK14adJx8pjJjRuSgf8150TGfxwYcV_nA2Rwlk6Nk8iiZnI3Ix_UlsxXtx78W7_SyyzsLsMhjHwGEeqgeI_Kpl-cw_eBmb_9r9R55enE8yb-enn95R57xqFopOXGHbLTzZXiPgKl1u-mjuAMOkgEP |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Description+of+non-Newtonian+bioconvective+Sutterby+fluid+conveying+tiny+particles+on+a+circular+rotating+disk+subject+to+induced+magnetic+field&rft.jtitle=Journal+of+Central+South+University&rft.au=Arain%2C+M+B&rft.au=Zeeshan%2C+A&rft.au=Bhatti%2C+M+M&rft.au=Alhodaly%2C+Mohammed+Sh&rft.date=2023-08-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-2899&rft.eissn=2227-5223&rft.volume=30&rft.issue=8&rft.spage=2599&rft.epage=2615&rft_id=info:doi/10.1007%2Fs11771-023-5398-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2899&client=summon |