Energy-aware fault-mitigation architecture for underwater vehicles

Energy awareness and fault tolerance are important aspects for extending the autonomy levels of today’s autonomous vehicles. With the aim of preparing the way for persistent autonomous operations of underwater vehicles this work focusses its efforts on investigating the effects of actuator failures,...

Full description

Saved in:
Bibliographic Details
Published inAutonomous robots Vol. 41; no. 5; pp. 1083 - 1105
Main Authors De Carolis, Valerio, Maurelli, Francesco, Brown, Keith E., Lane, David M.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.06.2017
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Energy awareness and fault tolerance are important aspects for extending the autonomy levels of today’s autonomous vehicles. With the aim of preparing the way for persistent autonomous operations of underwater vehicles this work focusses its efforts on investigating the effects of actuator failures, on an autonomous underwater vehicle (AUV) capable of long-term inspection missions. This paper introduces an energy-aware architecture that by observing the use of the on-board resources is capable of detecting faults and monitors the performance of the thruster subsystem in modern AUVs. The effect is an increased autonomy level in presence of unexpected events like performance degradations or sudden failures. Moreover an important contribution of this work is to process the great volume of information, collected at the lower sensor levels, into operational parameters that can be treated by higher level modules. These parameters form part of an abstract representation of concepts and capabilities that are available at a given time during the mission’s execution. Once this representation has been updated it is made available to the planning and execution components that can adapt the mission’s behaviour using the most recent knowledge about the vehicle’s state. To validate the proposed approach we evaluate our system on a real platform, Nessie VIII AUV, in both in real sea conditions and in a controlled test tank.
AbstractList Energy awareness and fault tolerance are important aspects for extending the autonomy levels of today’s autonomous vehicles. With the aim of preparing the way for persistent autonomous operations of underwater vehicles this work focusses its efforts on investigating the effects of actuator failures, on an autonomous underwater vehicle (AUV) capable of long-term inspection missions. This paper introduces an energy-aware architecture that by observing the use of the on-board resources is capable of detecting faults and monitors the performance of the thruster subsystem in modern AUVs. The effect is an increased autonomy level in presence of unexpected events like performance degradations or sudden failures. Moreover an important contribution of this work is to process the great volume of information, collected at the lower sensor levels, into operational parameters that can be treated by higher level modules. These parameters form part of an abstract representation of concepts and capabilities that are available at a given time during the mission’s execution. Once this representation has been updated it is made available to the planning and execution components that can adapt the mission’s behaviour using the most recent knowledge about the vehicle’s state. To validate the proposed approach we evaluate our system on a real platform, Nessie VIII AUV, in both in real sea conditions and in a controlled test tank.
Author Maurelli, Francesco
Lane, David M.
De Carolis, Valerio
Brown, Keith E.
Author_xml – sequence: 1
  givenname: Valerio
  surname: De Carolis
  fullname: De Carolis, Valerio
  email: valerio.decarolis@ieee.org
  organization: Ocean Systems Laboratory, Heriot-Watt University
– sequence: 2
  givenname: Francesco
  surname: Maurelli
  fullname: Maurelli, Francesco
  organization: Ocean Systems Laboratory, Heriot-Watt University
– sequence: 3
  givenname: Keith E.
  surname: Brown
  fullname: Brown, Keith E.
  organization: Ocean Systems Laboratory, Heriot-Watt University
– sequence: 4
  givenname: David M.
  surname: Lane
  fullname: Lane, David M.
  organization: Ocean Systems Laboratory, Heriot-Watt University
BookMark eNp1kE1LAzEQhoNUsK3-AG8LnqOTr83uUUv9gIIXPYc0O9tuabM1ydr237tlBU-eZmCe9x14JmTkW4-E3DK4ZwD6ITJQTFJgOS1VoejxgoyZ0oJqxfWIjKHkJVWqFFdkEuMGAEoNMCZPc49hdaL2YANmte22ie6a1Kxsalqf2eDWTUKXuvO1DVnnKwwHmzBk37hu3BbjNbms7Tbize-cks_n-cfslS7eX95mjwvqBMsTtRXnrCosumK55I6BsLVysgILQheIZcU1SiX0EgR3OS9qWYmiEohMSdUvU3I39O5D-9VhTGbTdsH3Lw3nqgTJlcx7ig2UC22MAWuzD83OhpNhYM6qzKDK9KrMWZU59hk-ZGLP-hWGv-b_Qz_2QW7e
CitedBy_id crossref_primary_10_1016_j_energy_2022_124996
crossref_primary_10_1016_j_apor_2021_102597
crossref_primary_10_3390_s21020476
crossref_primary_10_1007_s00773_022_00891_9
crossref_primary_10_3390_app10062048
crossref_primary_10_1016_j_oceaneng_2021_110290
crossref_primary_10_3390_robotics9010007
crossref_primary_10_1016_j_oceaneng_2023_115471
Cites_doi 10.1109/AUV.2012.6380746
10.1109/ICRA.2014.6907822
10.1109/ICRA.2014.6907823
10.1016/j.arcontrol.2004.12.002
10.3182/20120410-3-PT-4028.00061
10.1109/TKDE.2010.46
10.1109/48.972089
10.1109/OCEANS-TAIPEI.2014.6964490
10.1109/ROBOT.2004.1302424
10.1016/j.conengprac.2003.12.014
10.1142/6164
10.1109/IROS.2013.6696913
10.1109/48.468252
10.1162/089976605774320557
10.1109/AERO.2004.1368190
10.1299/jsmeicam.2010.5.107
10.1016/S0967-0661(98)00169-5
10.1016/j.automatica.2014.05.007
10.1109/ICRA.2014.6907825
10.1109/48.972114
10.1109/WCICA.2012.6358371
10.1109/ROBOT.2009.5152425
10.1109/ICRA.2014.6907821
10.1109/ICCA.2011.6137995
10.1109/ADPRL.2014.7010621
10.1016/j.eswa.2007.11.009
10.1109/TCST.2010.2060199
10.23919/ECC.2013.6669541
10.1109/ROBOT.2001.933116
10.1109/JOE.2012.2227540
10.1109/ROBOT.2005.1570115
10.1109/TRA.2002.999650
10.1109/ROBOT.1998.677229
10.1109/TCST.2003.821952
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
Autonomous Robots is a copyright of Springer, (2016). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: Autonomous Robots is a copyright of Springer, (2016). All Rights Reserved.
DBID AAYXX
CITATION
7SC
7SP
7TB
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PQEST
PQQKQ
PQUKI
PTHSS
S0W
DOI 10.1007/s10514-016-9585-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
DatabaseTitleList Technology Collection

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Architecture
EISSN 1573-7527
EndPage 1105
ExternalDocumentID 10_1007_s10514_016_9585_x
GrantInformation_xml – fundername: Seventh Framework Programme
  grantid: 288273
  funderid: http://dx.doi.org/10.13039/501100004963
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
_50
~02
~EX
AACDK
AAEOY
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ABQSL
ABYXP
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
7SC
7SP
7TB
8FD
DWQXO
F28
FR3
JQ2
L7M
L~C
L~D
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c316t-ad221d8aec8bb2c103af5c4d0a0378ee9d27e4537b032c628f4d38d3ee15458d3
IEDL.DBID AGYKE
ISSN 0929-5593
IngestDate Wed Nov 13 03:56:02 EST 2024
Fri Dec 06 05:29:24 EST 2024
Sat Dec 16 12:10:27 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Fault tolerance
Energy awareness
Autonomous underwater vehicle
Knowledge representation
Automatic fault-mitigation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-ad221d8aec8bb2c103af5c4d0a0378ee9d27e4537b032c628f4d38d3ee15458d3
PQID 2259042546
PQPubID 326361
PageCount 23
ParticipantIDs proquest_journals_2259042546
crossref_primary_10_1007_s10514_016_9585_x
springer_journals_10_1007_s10514_016_9585_x
PublicationCentury 2000
PublicationDate 2017-06-01
PublicationDateYYYYMMDD 2017-06-01
PublicationDate_xml – month: 06
  year: 2017
  text: 2017-06-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Autonomous robots
PublicationTitleAbbrev Auton Robot
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Ge, J., Roemer, M., & Vachtsevanos, G. (2004). An automated contingency management simulation environment for integrated health management and control. In Aerospace Conference, 2004. Proceedings. 2004 IEEE, Vol. 6, pp. 3725–3732. doi:10.1109/AERO.2004.1368190.
Valeyrie, N., Maurelli, F., Patron, P., Cartwright, J., Davis, B., & Petillot, Y. (2010). Nessie V Turbo: A new hover and power slide capable torpedo shaped AUV for survey, inspection and intervention. In AUVSI North America 2010 conference
De Carolis, V., Lane, D., & Brown, K. (2014). Low-cost energy measurement and estimation for autonomous underwater vehicle. In Proceedings of IEEE-MTS Oceans’14, Taipei, Taiwan.
IsermannRFault-diagnosis systems: An introduction from fault detection to fault tolerance2005Berlin, HeidelbergSpringer
Yang, K., Yuh, J., & Choi, S. (1998). Experimental study of fault-tolerant system design for underwater robots. In Proceedings. 1998 IEEE international conference on robotics and automation, 1998, vol 2, pp. 1051–1056. doi:10.1109/ROBOT.1998.677229
Antonelli, G., Caccavale, F., Sansone, C., & Villani, L. (2004). Fault diagnosis for auvs using support vector machines. In Proceedings of ICRA ’04. 2004 IEEE International Conference on Robotics and automation, 2004, Vol. 5, pp. 4486–4491. doi:10.1109/ROBOT.2004.1302424.
Hamilton, K., Lane, D., Taylor, N., & Brown, K. (2001). Fault diagnosis on autonomous robotic vehicles with recovery: An integrated heterogeneous-knowledge approach. In Proceedings 2001 ICRA. IEEE international conference on robotics and automation, 2001, Vol. 4, pp. 3232–3237. doi:10.1109/ROBOT.2001.933116.
FossenTGuidance and control of ocean vehicles1994Chichester, New YorkWiley
MendonçaLFSousaJda CostaJSAn architecture for fault detection and isolation based on fuzzy methodsExpert Systems with Applications20093621092110410.1016/j.eswa.2007.11.009
CorradiniMMonteriuAOrlandoGAn actuator failure tolerant control scheme for an underwater remotely operated vehicleIEEE Transactions on Control Systems Technology20111951036104610.1109/TCST.2010.2060199
Hanai, A., McLeod, C., & Rosa, K. (2008). A practical approach to the development of thruster models for underwater robots. In The eighteenth international offshore and polar engineering conference, pp. 382–388
SarkarNPodderTAntonelliGFault-accommodating thruster force allocation of an auv considering thruster redundancy and saturationIEEE Transactions on Robotics and Automation2002
Diamond, S., & Boyd, S. (2016). CVXPY: A Python-embedded modeling language for convex optimization. Journal of Machine Learning Research.
SetoMMarine robot autonomy2012BerlinBücher, Springer, SpringerLink
DeardenRErnitsJAutomated fault diagnosis for an autonomous underwater vehicleIEEE Journal of Oceanic Engineering201338348449910.1109/JOE.2012.2227540
Fagogenis, G., Flynn, D., & Lane, D. (2014). Improving underwater vehicle navigation state estimation using locally weighted projection regression. In 2014 IEEE international conference on robotics and automation (ICRA), pp. 6549–6554. doi:10.1109/ICRA.2014.6907825.
JohansenTFossenTBergeSConstrained nonlinear control allocation with singularity avoidance using sequential quadratic programmingIEEE Transactions on Control Systems Technology200412121121610.1109/TCST.2003.821952
OmerdicERobertsGThruster fault diagnosis and accommodation for open-frame underwater vehiclesControl Engineering Practice200412121575159810.1016/j.conengprac.2003.12.014
Hanai, A., Marani, G., & Choi, S. K. (2010). Automatic fault-accommodating thrust redistribution for a redundant auv. In 5th JSME/RMD international conference on advanced mechatronics
Tang, L., Zhang, B., DeCastro, J., & Hettler, E. (2011). An integrated health and contingency management case study on an autonomous ground robot. In: 2011 9th IEEE international conference on control and automation (ICCA), pp. 584–589. doi:10.1109/ICCA.2011.6137995.
Maurelli, F., Larkworthy, T., Lane, D., Karras, G., Bechlioulis, C., & Kyriakopoulos, K. (2013). Pose-based and velocity-based approaches to autonomous inspection of subsea structures. In Proceedings of IEEE-MTS Oceans’13, San Diego, USA.
Hanai, A., Choi, S., Marani, G., & Rosa, K. (2009). Experimental validation of model-based thruster fault detection for underwater vehicles. In IEEE international conference on robotics and automation, 2009, ICRA ’09, pp 194–199. doi:10.1109/ROBOT.2009.5152425.
Lane, D. M., Maurelli, F., Larkworthy, T., Caldwell, D., Salvi, J., Fox, M., & Kyriakopoulos, K. (2012) PANDORA: Persistent autonomy through learning, adaptation, observation and replanning. In Proceedings of 3rd IFAC workshop on navigation, guidance and control of underwater vehicles, pp. 367–372. doi:10.3182/20120410-3-PT-4028.00061
CristofaroAJohansenTAFault tolerant control allocation using unknown input observersAutomatica201450718911897323089110.1016/j.automatica.2014.05.0071296.93045
Wang, L., Tan, K., & Chew, C. (2006). Evolutionary robotics: From algorithms to implementations. World scientific series in robotics and intelligent systems. World Scientific Publishing.
Insaurralde, C., & Lane, D. (2012). Autonomy-assessment criteria for underwater vehicles. In: Autonomous underwater vehicles (AUV), 2012 IEEE/OES, pp 1–8. doi:10.1109/AUV.2012.6380746.
Karras, G., Bechlioulis, C., Abdella, H., Larkworthy, T., Kyriakopoulos, K., & Lane, D. (2013). A robust sonar servo control scheme for wall-following using an autonomous underwater vehicle. In: 2013 IEEE/RSJ international conference on intelligent robots and systems (IROS), pp 3893–3898. doi:10.1109/IROS.2013.6696913.
Wang, J. (2012). Fault diagnosis of underwater vehicle with fnn. In 2012 10th world congress on intelligent control and automation (WCICA), pp. 2931–2934. doi:10.1109/WCICA.2012.6358371.
Cashmore, M., Fox, M., Larkworthy, T., Long, D., & Magazzeni, D. (2014). AUV mission control via temporal planning. In 2014 IEEE international conference on robotics and automation (ICRA), pp. 6535–6541, doi:10.1109/ICRA.2014.6907823.
Vijayakumar, S., D’Souza, A., & Schaal, S. (2005). LWPR: A scalable method for incremental online learning in high dimensions.
StrangGLinear algebra and its applications2006Brooks/ColeThomson1329.15004
Caccia, M., Bono, R., Bruzzone, G., Bruzzone, G., Spirandelli, E., & Veruggio, G. (2001). Experiences on actuator fault detection, diagnosis and accomodation for rovs. In International symposiyum of unmanned untethered sub-mersible technology.
MiguelaezEPatronPBrownKPetillotYLaneDSemantic knowledge-based framework to improve the situation awareness of autonomous underwater vehiclesIEEE Transactions on Knowledge and Data Engineering201123575977310.1109/TKDE.2010.46
AlessandriACacciaMVeruggioGFault detection of actuator faults in unmanned underwater vehiclesControl Engineering Practice1999735736810.1016/S0967-0661(98)00169-5
Domahidi, A., Chu, E., & Boyd, S. (2013). ECOS: An SOCP solver for embedded systems. In: European control conference (ECC), pp. 3071–3076.
Mišković, N., & Barišić, M. (2005). Fault detection and localization on underwater vehicle propulsion systems using principal component analysis. In IEEE ISIE 2005 conference, pp. 1721–1728.
BradleyAFeezorMSinghHSorrellFPower systems for autonomous underwater vehiclesIEEE Journal of Oceanic Engineering200126452653810.1109/48.972089
AntonelliGUnderwater robots motion and force control of vehicle-manipulator systems2006BerlinSpringer1049.93001
Kim, J., Han, J., Chung, W. K., Yuh, J., & Lee, P. M. (2005). Accurate and practical thruster modelling for underwater vehicles. In: Proceedings of the 2005 IEEE international conference on robotics and automation, 2005. ICRA 2005, pp. 175–180. doi:10.1109/ROBOT.2005.1570115.
Ahmadzadeh, S. R., Carrera, A., Leonetti, M., Kormushev, P., & Caldwell, D. G. (2014a) Online discovery of auv control policies to overcome thruster failures. In Proceedings of IEEE international conference on robotics and automation (ICRA 2014), Hong Kong, China.
HealeyARockSCodySMilesDBrownJToward an improved understanding of thruster dynamics for underwater vehiclesIEEE Journal of Oceanic Engineering1995
Karras, G., Bechlioulis, C., Nagappa, S., Palomeras, N., Kyriakopoulos, K., & Carreras, M. (2014). Motion control for autonomous underwater vehicles: A robust model-free approach. In 2014 IEEE international conference on robotics and automation (ICRA), pp. 6529–6534. doi:10.1109/ICRA.2014.6907822.
Ahmadzadeh, S. R., Kormushev, P., Caldwell, D. G. (2014b) Multi-objective reinforcement learning for auv thruster failure recovery. In Proceedings of IEEE symposium series on computational intelligence (SSCI 2014), Florida, USA.
IsermannRModel-based fault-detection and diagnosis-status and applicationsAnnual Reviews in control2005291718510.1016/j.arcontrol.2004.12.002
WillcoxJBellinghamJZhangYBaggeroerAPerformance metrics for oceanographic surveys with autonomous underwater vehiclesIEEE Journal of Oceanic Engineering200126471172510.1109/48.972114
G Antonelli (9585_CR4) 2006
A Bradley (9585_CR6) 2001; 26
9585_CR2
R Dearden (9585_CR12) 2013; 38
9585_CR1
G Strang (9585_CR38) 2006
9585_CR20
R Isermann (9585_CR24) 2005
9585_CR42
9585_CR41
9585_CR40
LF Mendonça (9585_CR32) 2009; 36
9585_CR23
9585_CR45
A Cristofaro (9585_CR10) 2014; 50
9585_CR21
9585_CR43
A Healey (9585_CR22) 1995
9585_CR28
9585_CR27
9585_CR29
T Johansen (9585_CR26) 2004; 12
M Corradini (9585_CR9) 2011; 19
T Fossen (9585_CR16) 1994
M Seto (9585_CR37) 2012
9585_CR8
R Isermann (9585_CR25) 2005; 29
9585_CR31
N Sarkar (9585_CR36) 2002
9585_CR7
9585_CR30
J Willcox (9585_CR44) 2001; 26
9585_CR5
9585_CR13
A Alessandri (9585_CR3) 1999; 7
9585_CR34
E Omerdic (9585_CR35) 2004; 12
9585_CR11
9585_CR17
9585_CR39
9585_CR15
E Miguelaez (9585_CR33) 2011; 23
9585_CR14
9585_CR19
9585_CR18
References_xml – ident: 9585_CR23
  doi: 10.1109/AUV.2012.6380746
– ident: 9585_CR28
  doi: 10.1109/ICRA.2014.6907822
– ident: 9585_CR8
  doi: 10.1109/ICRA.2014.6907823
– volume: 29
  start-page: 71
  issue: 1
  year: 2005
  ident: 9585_CR25
  publication-title: Annual Reviews in control
  doi: 10.1016/j.arcontrol.2004.12.002
  contributor:
    fullname: R Isermann
– ident: 9585_CR30
  doi: 10.3182/20120410-3-PT-4028.00061
– volume: 23
  start-page: 759
  issue: 5
  year: 2011
  ident: 9585_CR33
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2010.46
  contributor:
    fullname: E Miguelaez
– ident: 9585_CR7
– volume: 26
  start-page: 526
  issue: 4
  year: 2001
  ident: 9585_CR6
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/48.972089
  contributor:
    fullname: A Bradley
– volume-title: Guidance and control of ocean vehicles
  year: 1994
  ident: 9585_CR16
  contributor:
    fullname: T Fossen
– ident: 9585_CR11
  doi: 10.1109/OCEANS-TAIPEI.2014.6964490
– volume-title: Marine robot autonomy
  year: 2012
  ident: 9585_CR37
  contributor:
    fullname: M Seto
– ident: 9585_CR5
  doi: 10.1109/ROBOT.2004.1302424
– volume: 12
  start-page: 1575
  issue: 12
  year: 2004
  ident: 9585_CR35
  publication-title: Control Engineering Practice
  doi: 10.1016/j.conengprac.2003.12.014
  contributor:
    fullname: E Omerdic
– ident: 9585_CR43
  doi: 10.1142/6164
– ident: 9585_CR27
  doi: 10.1109/IROS.2013.6696913
– volume-title: Linear algebra and its applications
  year: 2006
  ident: 9585_CR38
  contributor:
    fullname: G Strang
– year: 1995
  ident: 9585_CR22
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/48.468252
  contributor:
    fullname: A Healey
– ident: 9585_CR41
  doi: 10.1162/089976605774320557
– ident: 9585_CR17
  doi: 10.1109/AERO.2004.1368190
– ident: 9585_CR40
– ident: 9585_CR21
  doi: 10.1299/jsmeicam.2010.5.107
– volume-title: Underwater robots motion and force control of vehicle-manipulator systems
  year: 2006
  ident: 9585_CR4
  contributor:
    fullname: G Antonelli
– volume: 7
  start-page: 357
  year: 1999
  ident: 9585_CR3
  publication-title: Control Engineering Practice
  doi: 10.1016/S0967-0661(98)00169-5
  contributor:
    fullname: A Alessandri
– volume: 50
  start-page: 1891
  issue: 7
  year: 2014
  ident: 9585_CR10
  publication-title: Automatica
  doi: 10.1016/j.automatica.2014.05.007
  contributor:
    fullname: A Cristofaro
– ident: 9585_CR15
  doi: 10.1109/ICRA.2014.6907825
– volume-title: Fault-diagnosis systems: An introduction from fault detection to fault tolerance
  year: 2005
  ident: 9585_CR24
  contributor:
    fullname: R Isermann
– volume: 26
  start-page: 711
  issue: 4
  year: 2001
  ident: 9585_CR44
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/48.972114
  contributor:
    fullname: J Willcox
– ident: 9585_CR42
  doi: 10.1109/WCICA.2012.6358371
– ident: 9585_CR20
  doi: 10.1109/ROBOT.2009.5152425
– ident: 9585_CR1
  doi: 10.1109/ICRA.2014.6907821
– ident: 9585_CR31
– ident: 9585_CR19
– ident: 9585_CR39
  doi: 10.1109/ICCA.2011.6137995
– ident: 9585_CR13
– ident: 9585_CR2
  doi: 10.1109/ADPRL.2014.7010621
– volume: 36
  start-page: 1092
  issue: 2
  year: 2009
  ident: 9585_CR32
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.11.009
  contributor:
    fullname: LF Mendonça
– volume: 19
  start-page: 1036
  issue: 5
  year: 2011
  ident: 9585_CR9
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2010.2060199
  contributor:
    fullname: M Corradini
– ident: 9585_CR34
– ident: 9585_CR14
  doi: 10.23919/ECC.2013.6669541
– ident: 9585_CR18
  doi: 10.1109/ROBOT.2001.933116
– volume: 38
  start-page: 484
  issue: 3
  year: 2013
  ident: 9585_CR12
  publication-title: IEEE Journal of Oceanic Engineering
  doi: 10.1109/JOE.2012.2227540
  contributor:
    fullname: R Dearden
– ident: 9585_CR29
  doi: 10.1109/ROBOT.2005.1570115
– year: 2002
  ident: 9585_CR36
  publication-title: IEEE Transactions on Robotics and Automation
  doi: 10.1109/TRA.2002.999650
  contributor:
    fullname: N Sarkar
– ident: 9585_CR45
  doi: 10.1109/ROBOT.1998.677229
– volume: 12
  start-page: 211
  issue: 1
  year: 2004
  ident: 9585_CR26
  publication-title: IEEE Transactions on Control Systems Technology
  doi: 10.1109/TCST.2003.821952
  contributor:
    fullname: T Johansen
SSID ssj0009700
Score 2.290238
Snippet Energy awareness and fault tolerance are important aspects for extending the autonomy levels of today’s autonomous vehicles. With the aim of preparing the way...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1083
SubjectTerms Actuators
Architecture
Artificial Intelligence
Autonomous underwater vehicles
Autonomy
Computer Imaging
Control
Energy management
Engineering
Fault detection
Fault tolerance
Inspection
Level (quantity)
Mechatronics
Parameters
Pattern Recognition and Graphics
Performance degradation
Representations
Robotics
Robotics and Automation
Subsystems
Vehicles
Vision
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60XlQQrYrVKnvwpAR3k-zrJFVai6AnC70t2TxQkG27bW1_vpN9sFXQcyCEL5PMN2-Aa1QRBokvI26sFeFKKSIMGq6xEigAsY65tAXOL6_BcMSfx_64crjNq7TK-k8sPmo1kdZHfodyF1sB48H9dEbs1CgbXa1GaGzDjkfDwKb0RYOnpuluVYKCFIAgc2Z1VLMsnUOqgIY0HgsZM1n_1EsN2fwVHy3UzuAQDiq-6PTKCz6CLZ21Yb-34f5vw95GU8FjeOgX5XxErESuHSOWn2jafpStNCaZsxk5cJCxOraKLF8h5cydL_1eZMmdwGjQf3sckmpSApHMCxZEKEo9FQktozSl0nOZML7kyhUuCyOtY0VDzX0Wpi6jMqCR4YpFimldBM4UO4VWNsn0GTi-F7nMWjHCcO4bND9CGcZGhsLO6HB1B25qnJJp2RAjaVofW1ATmzRmQU3WHejWSCbV25gnzU124LZGt1n-c7Pz_ze7gF1qVW7hIelCa5Ev9SUShkV6VUjFN41-vLk
  priority: 102
  providerName: ProQuest
Title Energy-aware fault-mitigation architecture for underwater vehicles
URI https://link.springer.com/article/10.1007/s10514-016-9585-x
https://www.proquest.com/docview/2259042546
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5qe9GDb7FaSw6elC3J7uZ1bKUPFIuIhXoKm32gVFLpw4q_3tk0MfV16CmQhIFMduf7ZmfnW4TOASI0EF-K7VBJzKSUmGtIXEPJYQCEKmTCNDjf9r3egF0P3WEJka-li2TUyCuSaaBe6XUDbIfMF-wAxcXAGysAPWYyVprdx5t2IbWbNZ4A8GPgyzSvZf5l5DsaFRTzR1U0BZvOzrIBcJpqFJo9JqPGfBY3xMdvBcc1vmMXbWfc02ouB8seKqlkH22tKBIeoFY77QXEfMEnytJ8_gJ58fNSh2OcWKtlBwvormVa0CYL4KsT6009pVvsDtGg03646uHsmAUsqOPNMJeEODLgSgRxTIRjU65dwaTNbeoHSoWS-Iq51I9tSoRHAs0kDSRVKq26SXqEysk4UcfIcp3ApiYF4poxV0Pu4gs_1MLn5oAPW1XRRe7u6HWpphEVusnGMZHZcWYcE71XUS3_IVE2saYRhJ_QxBnmVdFl7uDi8b_GTtZ6-xRtEgPf6WpLDZVnk7k6A_Ixi-toI-h069mYg2ur3b-7h7sD0vwEMSzUXw
link.rule.ids 314,780,784,12765,21388,27924,27925,33373,33744,41081,41523,42150,42592,43600,43805,52111,52234,74035,74302
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60HnyAaFWsVt2DJyW4u8m-TlKltWrbUwu9Ldkki4Js67a1_flO9sFWQc-BECaTzDePbwbgGk1EjMCXEjNQkjApJeExOq6B5KgAgQqY0ATn_sDtjtjL2BkXAbdZUVZZ_onZRy0nQsfI71DvAq1gzL2ffhI9NUpnV4sRGpuwxSiabs0U7zxVTXcLCgpCAILImZZZzZw6h1ABHWk8FiJmsvpplyqw-Ss_mpmdzgHsF3jRaOUXfAgbKqnDXmst_F-H3bWmgkfw0M7ofIQveaqMmC8-0LV9z1tpTBJjPXNgIGI1NIssXSLkTI0v9ZZVyR3DqNMePnZJMSmBCGq5c8KlbVvS50r4UWQLy6Q8dgSTJjep5ysVSNtTzKFeZFJbuLYfM0l9SZXKEmeSnkAtmSTqFAzH8k2qvRgeM-bE6H54wgti4XE9o8NUDbgp5RRO84YYYdX6WAs11EVjWqjhqgHNUpJh8TZmYXWTDbgtpVst_7nZ2f-bXcF2d9jvhb3nwes57Nja_GbRkibU5ulCXSB4mEeXmYZ8A3dKv5s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60BVFBtCpWq-bgSVlMspsmOUmrLfVViljoLWz3gYK0tQ_bn-9suiFV0HNgCbOzO9_sN98MwAWGCI3AlxI3VpIwKSXhGhPXWHJ0gFjFTBiB83O72uqyh17Qs_VPE1tWmd2J6UUth8K8kV-j38XGwVj1WtuyiM5d82b0ScwEKcO02nEa61DEqOj6BSjWG-3OS96C1wpSEBAQxNE04ziXQjoEDphW408ifiaLn1Eqh56_2NI0CDV3YceiR6e23O49WFODEmzXVsiAEmyttBjch3ojFfcRPudj5Wg--8BE933ZWGM4cFZ5BAfxq2M0ZeM5AtCx86Xe0pq5A-g2G6-3LWLnJhBBveqUcOn7noy4ElG_7wvPpVwHgkmXuzSMlIqlHyoW0LDvUl9U_UgzSSNJlUppNEkPoTAYDtQROIEXudTkNFwzFmhMRkIRxlqE3EzscFUZLjM7JaNle4wkb4RsjJqYEjJj1GRRhkpmycSelEmS72sZrjLr5p__XOz4_8XOYQPdI3m6bz-ewKZvYnH6dFKBwnQ8U6eIJKb9M-si38gfxTc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy-aware+fault-mitigation+architecture+for+underwater+vehicles&rft.jtitle=Autonomous+robots&rft.au=De%C2%A0Carolis%2C+Valerio&rft.au=Maurelli%2C+Francesco&rft.au=Brown%2C+Keith+E.&rft.au=Lane%2C+David+M.&rft.date=2017-06-01&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=41&rft.issue=5&rft.spage=1083&rft.epage=1105&rft_id=info:doi/10.1007%2Fs10514-016-9585-x&rft.externalDocID=10_1007_s10514_016_9585_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon