Incorporation of model accuracy in gravitational wave Bayesian inference

Inferring the properties of colliding black holes from gravitational wave observations is subject to systematic errors arising from modelling uncertainties. Although the accuracy of each model can be calculated through comparison to theoretical expectations from general relativity, Bayesian analyses...

Full description

Saved in:
Bibliographic Details
Published inNature astronomy Vol. 9; no. 8; pp. 1256 - 1267
Main Authors Hoy, Charlie, Akçay, Sarp, Mac Uilliam, Jake, Thompson, Jonathan E.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.08.2025
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2397-3366
2397-3366
DOI10.1038/s41550-025-02579-7

Cover

Loading…
Abstract Inferring the properties of colliding black holes from gravitational wave observations is subject to systematic errors arising from modelling uncertainties. Although the accuracy of each model can be calculated through comparison to theoretical expectations from general relativity, Bayesian analyses are yet to incorporate this information. As such, a mixture model is typically used where results obtained with different gravitational wave models are combined with either equal weight or based on their relative Bayesian evidence. In this work we present a new method for incorporating the accuracy of several models into gravitational wave Bayesian analyses. By analysing simulated gravitational wave signals in zero noise, we show that our technique uses 30% less computational resources and more faithfully recovers the true parameters than existing techniques. We further apply our method to a real gravitational wave signal and, when assuming the binary black hole hypothesis, demonstrated that the source of GW191109_010717 has unequal component masses, with a 69% probability for the primary being above the maximum black hole mass from stellar collapse. We envisage that this method will become an essential tool for ground-based gravitational wave astronomy. The inclusion of model mismatch information in gravitational wave parameter estimation improves on current model-averaging methods, allowing higher-accuracy inferences about the properties of merging black holes.
AbstractList Inferring the properties of colliding black holes from gravitational wave observations is subject to systematic errors arising from modelling uncertainties. Although the accuracy of each model can be calculated through comparison to theoretical expectations from general relativity, Bayesian analyses are yet to incorporate this information. As such, a mixture model is typically used where results obtained with different gravitational wave models are combined with either equal weight or based on their relative Bayesian evidence. In this work we present a new method for incorporating the accuracy of several models into gravitational wave Bayesian analyses. By analysing simulated gravitational wave signals in zero noise, we show that our technique uses 30% less computational resources and more faithfully recovers the true parameters than existing techniques. We further apply our method to a real gravitational wave signal and, when assuming the binary black hole hypothesis, demonstrated that the source of GW191109_010717 has unequal component masses, with a 69% probability for the primary being above the maximum black hole mass from stellar collapse. We envisage that this method will become an essential tool for ground-based gravitational wave astronomy.The inclusion of model mismatch information in gravitational wave parameter estimation improves on current model-averaging methods, allowing higher-accuracy inferences about the properties of merging black holes.
Inferring the properties of colliding black holes from gravitational wave observations is subject to systematic errors arising from modelling uncertainties. Although the accuracy of each model can be calculated through comparison to theoretical expectations from general relativity, Bayesian analyses are yet to incorporate this information. As such, a mixture model is typically used where results obtained with different gravitational wave models are combined with either equal weight or based on their relative Bayesian evidence. In this work we present a new method for incorporating the accuracy of several models into gravitational wave Bayesian analyses. By analysing simulated gravitational wave signals in zero noise, we show that our technique uses 30% less computational resources and more faithfully recovers the true parameters than existing techniques. We further apply our method to a real gravitational wave signal and, when assuming the binary black hole hypothesis, demonstrated that the source of GW191109_010717 has unequal component masses, with a 69% probability for the primary being above the maximum black hole mass from stellar collapse. We envisage that this method will become an essential tool for ground-based gravitational wave astronomy. The inclusion of model mismatch information in gravitational wave parameter estimation improves on current model-averaging methods, allowing higher-accuracy inferences about the properties of merging black holes.
Inferring the properties of colliding black holes from gravitational wave observations is subject to systematic errors arising from modelling uncertainties. Although the accuracy of each model can be calculated through comparison to theoretical expectations from general relativity, Bayesian analyses are yet to incorporate this information. As such, a mixture model is typically used where results obtained with different gravitational wave models are combined with either equal weight or based on their relative Bayesian evidence. In this work we present a new method for incorporating the accuracy of several models into gravitational wave Bayesian analyses. By analysing simulated gravitational wave signals in zero noise, we show that our technique uses 30% less computational resources and more faithfully recovers the true parameters than existing techniques. We further apply our method to a real gravitational wave signal and, when assuming the binary black hole hypothesis, demonstrated that the source of GW191109_010717 has unequal component masses, with a 69% probability for the primary being above the maximum black hole mass from stellar collapse. We envisage that this method will become an essential tool for ground-based gravitational wave astronomy.
Author Thompson, Jonathan E.
Hoy, Charlie
Akçay, Sarp
Mac Uilliam, Jake
Author_xml – sequence: 1
  givenname: Charlie
  orcidid: 0000-0002-8843-6719
  surname: Hoy
  fullname: Hoy, Charlie
  email: charlie.hoy@port.ac.uk
  organization: Institute of Cosmology and Gravitation, University of Portsmouth
– sequence: 2
  givenname: Sarp
  orcidid: 0000-0003-2216-421X
  surname: Akçay
  fullname: Akçay, Sarp
  organization: School of Mathematics & Statistics, University College Dublin
– sequence: 3
  givenname: Jake
  orcidid: 0009-0003-5172-2126
  surname: Mac Uilliam
  fullname: Mac Uilliam, Jake
  organization: School of Mathematics & Statistics, University College Dublin
– sequence: 4
  givenname: Jonathan E.
  orcidid: 0000-0002-0419-5517
  surname: Thompson
  fullname: Thompson, Jonathan E.
  organization: Theoretical Astrophysics Group, California Institute of Technology, Mathematical Sciences & STAG Research Centre, University of Southampton
BookMark eNp9kEFLAzEQhYNUsNb-AU8Bz6tJJtndHLWoLRS89B5m02zZ0iY12Vb237vtCnryMMzAvPeY-W7JyAfvCLnn7JEzKJ-S5EqxjAl1rkJnxRUZC9BFBpDnoz_zDZmmtGWMCa04cD4m84W3IR5CxLYJnoaa7sPa7Shae4xoO9p4uol4atqLAHf0C0-OvmDnUoO-X9cuOm_dHbmucZfc9KdPyOrtdTWbZ8uP98XseZlZ4HmboVZSyIrxvORoC25LKyvNcsy5U1qKtQZW1QgWqsqC46VUXFVMKajXIBVMyMMQe4jh8-hSa7bhGPu7kgEhmcqL82cTIgaVjSGl6GpziM0eY2c4M2dmZmBmel7mwswUvQkGU-rFfuPib_Q_rm85R2_9
Cites_doi 10.1103/PhysRevD.99.064045
10.1103/PhysRevD.106.024020
10.1103/PhysRevLett.106.241101
10.1038/s41586-022-05212-z
10.1103/PhysRevD.106.083003
10.1103/PhysRevD.111.024050
10.1103/PhysRevD.103.083022
10.1038/s41592-019-0686-2
10.48550/arXiv.2404.05811
10.1103/PhysRevD.109.084077
10.1103/PhysRevD.109.104045
10.1103/PhysRevD.109.024061
10.1103/PhysRevResearch.1.033015
10.1103/PhysRevD.101.063011
10.1103/PhysRevD.111.104019
10.1103/PhysRevD.102.064001
10.1103/PhysRevD.89.084006
10.1088/1361-6382/ab34e2
10.1103/PhysRevD.101.064037
10.1103/PhysRevLett.113.151101
10.1103/PhysRevD.102.104018
10.1103/PhysRevD.102.024055
10.1103/PhysRevD.109.104043
10.1103/PhysRevLett.111.241104
10.1103/PhysRevD.111.023037
10.1103/PhysRevD.95.024010
10.1103/PhysRevD.93.044006
10.48550/arXiv.2506.19990
10.1103/PhysRevD.105.084040
10.1103/PhysRevD.64.124013
10.1103/PhysRevD.101.124040
10.1103/PhysRevLett.120.161102
10.1103/PhysRevD.77.124047
10.1103/PhysRevD.78.044021
10.3847/1538-4365/ab06fc
10.1103/PhysRevD.80.124015
10.1103/PhysRevD.98.104052
10.1088/0264-9381/32/11/115012
10.1103/PhysRevD.94.024012
10.1063/1.1705135
10.1093/mnras/staa278
10.1088/1361-6382/acd29b
10.1103/PhysRevD.88.064007
10.48550/arXiv.2309.14473
10.1103/PhysRevD.91.024043
10.1038/s41550-022-01707-x
10.1103/PhysRevD.93.084042
10.48550/arXiv.1703.01076
10.1103/PhysRevD.102.044055
10.1103/PhysRevD.103.064067
10.1016/j.isci.2021.102577
10.1103/PhysRevD.105.124010
10.1103/PhysRevD.53.6749
10.1103/PhysRevD.93.044007
10.1103/PhysRevD.101.024056
10.1103/PhysRevD.105.084039
10.1103/PhysRevD.91.042003
10.1103/PhysRevD.109.063012
10.1103/PhysRevD.105.084025
10.1103/PhysRevD.95.044028
10.1109/18.61115
10.1103/PhysRevD.84.084037
10.1103/PhysRevD.103.104056
10.1103/PhysRevD.98.084028
10.1103/PhysRevResearch.2.023151
10.1088/0264-9381/33/20/204001
10.1103/PhysRevD.103.124060
10.1093/ptep/ptaa125
10.48550/arXiv.2401.06845
10.1103/PhysRevD.110.064024
10.1088/1361-6382/aa91b1
10.1103/PhysRevD.102.124069
10.1103/PhysRevD.96.024058
10.1088/0264-9381/32/2/024001
10.1214/06-BA127
10.1103/PhysRevD.49.6274
10.1103/PhysRevD.100.024059
10.1103/RevModPhys.74.1015
10.1103/PhysRevD.108.124037
10.1103/PhysRevD.103.024024
10.1103/PhysRevD.108.124018
10.48550/arXiv.1705.01845
10.1103/PhysRevD.101.103014
10.1103/PhysRevD.109.044032
10.1103/PhysRevD.87.024035
10.1103/PhysRevD.104.124027
10.1103/PhysRevD.102.064002
10.1103/PhysRevD.103.024014
10.1103/PhysRevLett.113.251101
10.1103/PhysRevD.100.024021
10.1103/PhysRevD.96.123011
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1038/s41550-025-02579-7
DatabaseName Springer Nature OA Free Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 2397-3366
EndPage 1267
ExternalDocumentID 10_1038_s41550_025_02579_7
GrantInformation_xml – fundername: University College Dublin Ad Astra Fellowship
– fundername: NASA LISA Preparatory Science grant 20-LPS20-0005
– fundername: UKRI Future Leaders Fellowship. Grant Number MR/T01881X/1
GroupedDBID 0R~
AARCD
AAYZH
ABJNI
ABLJU
ACBWK
ACGFS
ADBBV
AEUYN
AFANA
AFBBN
AFKRA
AFSHS
AFWHJ
AHSBF
AIBTJ
ALFFA
ALMA_UNASSIGNED_HOLDINGS
ARMCB
ATHPR
AXYYD
BENPR
BHPHI
BKKNO
BKSAR
C6C
CCPQU
EBS
EJD
FSGXE
FZEXT
HCIFZ
NFIDA
NNMJJ
O9-
ODYON
PCBAR
PHGZM
PHGZT
RNT
SHXYY
SIXXV
SNYQT
SOJ
TAOOD
TBHMF
TDRGL
AAYXX
CITATION
ID FETCH-LOGICAL-c316t-a95424b01681ac71c8c4b906a61e5942d930bfa3c3bbc3e184515b0553fd3453
IEDL.DBID C6C
ISSN 2397-3366
IngestDate Wed Aug 20 03:12:53 EDT 2025
Thu Aug 21 00:20:50 EDT 2025
Tue Aug 19 01:10:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a95424b01681ac71c8c4b906a61e5942d930bfa3c3bbc3e184515b0553fd3453
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8843-6719
0009-0003-5172-2126
0000-0002-0419-5517
0000-0003-2216-421X
OpenAccessLink https://www.nature.com/articles/s41550-025-02579-7
PQID 3240567951
PQPubID 4669719
PageCount 12
ParticipantIDs proquest_journals_3240567951
crossref_primary_10_1038_s41550_025_02579_7
springer_journals_10_1038_s41550_025_02579_7
PublicationCentury 2000
PublicationDate 20250800
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Nature astronomy
PublicationTitleAbbrev Nat Astron
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References 2579_CR7
2579_CR6
E Hamilton (2579_CR14) 2024; 109
V Varma (2579_CR28) 2019; 99
LM Thomas (2579_CR94) 2021; 103
BJ Owen (2579_CR29) 1996; 53
A Albertini (2579_CR24) 2022; 105
Z Doctor (2579_CR36) 2017; 96
J Healy (2579_CR19) 2020; 102
SE Woosley (2579_CR55) 2002; 74
J Aasi (2579_CR11) 2015; 32
BP Abbott (2579_CR87) 2019; 9
H Estellés (2579_CR23) 2022; 105
R Gamba (2579_CR59) 2022; 106
G Ashton (2579_CR33) 2022; 6
JN Goldberg (2579_CR45) 1967; 8
TA Apostolatos (2579_CR42) 1994; 49
V Varma (2579_CR27) 2019; 1
J Skilling (2579_CR68) 2006; 1
2579_CR26
D Williams (2579_CR37) 2020; 101
2579_CR69
V Kapil (2579_CR10) 2024; 109
S Fairhurst (2579_CR43) 2020; 102
H Estellés (2579_CR85) 2022; 105
AB Yelikar (2579_CR4) 2024; 110
E Racine (2579_CR92) 2008; 78
A Nagar (2579_CR25) 2023; 108
F Acernese (2579_CR12) 2014; 32
M Pürrer (2579_CR49) 2016; 93
G Pratten (2579_CR82) 2020; 102
M Pürrer (2579_CR8) 2020; 2
P Ajith (2579_CR50) 2011; 106
J Blackman (2579_CR41) 2017; 96
S Khan (2579_CR81) 2020; 101
J Veitch (2579_CR1) 2015; 91
L London (2579_CR78) 2018; 120
C García-Quirós (2579_CR83) 2020; 102
K Jani (2579_CR21) 2016; 33
R Cotesta (2579_CR72) 2020; 101
CJ Moore (2579_CR9) 2021; 24
M Boyle (2579_CR16) 2019; 36
CJ Moore (2579_CR35) 2014; 113
P Virtanen (2579_CR57) 2020; 17
J Mac Uilliam (2579_CR5) 2024; 109
J Lin (2579_CR86) 1991; 37
J Healy (2579_CR18) 2019; 100
S Khan (2579_CR39) 2024; 109
B Bruegmann (2579_CR62) 2008; 77
A Ramos-Buades (2579_CR2) 2023; 108
C Kalaghatgi (2579_CR64) 2021; 103
H Estellés (2579_CR84) 2021; 103
P Schmidt (2579_CR90) 2015; 91
J Healy (2579_CR20) 2022; 105
AH Mroue (2579_CR15) 2013; 111
S Ghosh (2579_CR66) 2024; 109
A Nagar (2579_CR80) 2018; 98
2579_CR40
C Hoy (2579_CR34) 2022; 106
J Healy (2579_CR17) 2017; 34
Y Pan (2579_CR75) 2014; 89
M Hannam (2579_CR79) 2014; 113
JS Read (2579_CR38) 2023; 40
P Kolitsidou (2579_CR67) 2025; 111
2579_CR46
A Ramos-Buades (2579_CR65) 2020; 101
2579_CR89
S Babak (2579_CR74) 2017; 95
R Abbott (2579_CR88) 2021; 11
2579_CR47
S Husa (2579_CR76) 2016; 93
I Harry (2579_CR58) 2016; 94
P Ajith (2579_CR51) 2011; 84
A Bohé (2579_CR70) 2017; 95
M Hannam (2579_CR54) 2022; 610
JE Thompson (2579_CR3) 2024; 109
G Ashton (2579_CR31) 2020; 101
D Keppel (2579_CR63) 2009; 80
S Akcay (2579_CR95) 2021; 103
M Pürrer (2579_CR93) 2013; 88
G Pratten (2579_CR22) 2021; 103
C Hoy (2579_CR44) 2025; 111
R Cotesta (2579_CR71) 2018; 98
G Ashton (2579_CR48) 2019; 241
AZ Jan (2579_CR32) 2020; 102
2579_CR53
T Damour (2579_CR91) 2001; 64
T Akutsu (2579_CR13) 2021; 2021
D Gerosa (2579_CR96) 2021; 103
E Baird (2579_CR52) 2013; 87
E Hamilton (2579_CR61) 2021; 104
S Ossokine (2579_CR73) 2020; 102
2579_CR56
S Khan (2579_CR60) 2019; 100
S Khan (2579_CR77) 2016; 93
R Abbott (2579_CR30) 2023; 13
References_xml – ident: 2579_CR46
– volume: 99
  start-page: 064045
  year: 2019
  ident: 2579_CR28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.064045
– volume: 106
  start-page: 024020
  year: 2022
  ident: 2579_CR59
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.024020
– volume: 106
  start-page: 241101
  year: 2011
  ident: 2579_CR50
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.241101
– volume: 610
  start-page: 652
  year: 2022
  ident: 2579_CR54
  publication-title: Nature
  doi: 10.1038/s41586-022-05212-z
– volume: 106
  start-page: 083003
  year: 2022
  ident: 2579_CR34
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.083003
– volume: 111
  start-page: 024050
  year: 2025
  ident: 2579_CR67
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.111.024050
– volume: 103
  start-page: 083022
  year: 2021
  ident: 2579_CR94
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.083022
– volume: 17
  start-page: 261
  year: 2020
  ident: 2579_CR57
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– ident: 2579_CR6
  doi: 10.48550/arXiv.2404.05811
– volume: 109
  start-page: 084077
  year: 2024
  ident: 2579_CR5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.084077
– volume: 109
  start-page: 104045
  year: 2024
  ident: 2579_CR39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.104045
– volume: 109
  start-page: 024061
  year: 2024
  ident: 2579_CR66
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.024061
– volume: 1
  start-page: 033015
  year: 2019
  ident: 2579_CR27
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.1.033015
– volume: 101
  start-page: 063011
  year: 2020
  ident: 2579_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.063011
– ident: 2579_CR26
  doi: 10.1103/PhysRevD.111.104019
– volume: 102
  start-page: 064001
  year: 2020
  ident: 2579_CR82
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.064001
– volume: 89
  start-page: 084006
  year: 2014
  ident: 2579_CR75
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.084006
– volume: 36
  start-page: 195006
  year: 2019
  ident: 2579_CR16
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/ab34e2
– volume: 101
  start-page: 064037
  year: 2020
  ident: 2579_CR31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.064037
– volume: 113
  start-page: 151101
  year: 2014
  ident: 2579_CR79
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.151101
– volume: 102
  start-page: 104018
  year: 2020
  ident: 2579_CR19
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.104018
– volume: 102
  start-page: 024055
  year: 2020
  ident: 2579_CR43
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.024055
– volume: 109
  start-page: 104043
  year: 2024
  ident: 2579_CR10
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.104043
– volume: 111
  start-page: 241104
  year: 2013
  ident: 2579_CR15
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.241104
– volume: 111
  start-page: 023037
  year: 2025
  ident: 2579_CR44
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.111.023037
– volume: 95
  start-page: 024010
  year: 2017
  ident: 2579_CR74
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.024010
– volume: 93
  start-page: 044006
  year: 2016
  ident: 2579_CR76
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.044006
– ident: 2579_CR40
  doi: 10.48550/arXiv.2506.19990
– volume: 105
  start-page: 084040
  year: 2022
  ident: 2579_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.084040
– volume: 64
  start-page: 124013
  year: 2001
  ident: 2579_CR91
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.64.124013
– volume: 101
  start-page: 124040
  year: 2020
  ident: 2579_CR72
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.124040
– volume: 120
  start-page: 161102
  year: 2018
  ident: 2579_CR78
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.161102
– volume: 9
  start-page: 031040
  year: 2019
  ident: 2579_CR87
  publication-title: Phys. Rev. X
– volume: 77
  start-page: 124047
  year: 2008
  ident: 2579_CR62
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.77.124047
– volume: 78
  start-page: 044021
  year: 2008
  ident: 2579_CR92
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.044021
– volume: 241
  start-page: 27
  year: 2019
  ident: 2579_CR48
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.3847/1538-4365/ab06fc
– volume: 80
  start-page: 124015
  year: 2009
  ident: 2579_CR63
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.80.124015
– volume: 98
  start-page: 104052
  year: 2018
  ident: 2579_CR80
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.104052
– volume: 32
  start-page: 074001
  year: 2015
  ident: 2579_CR11
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/32/11/115012
– volume: 11
  start-page: 021053
  year: 2021
  ident: 2579_CR88
  publication-title: Phys. Rev. X
– volume: 94
  start-page: 024012
  year: 2016
  ident: 2579_CR58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.024012
– volume: 8
  start-page: 2155
  year: 1967
  ident: 2579_CR45
  publication-title: J. Math. Phys.
  doi: 10.1063/1.1705135
– ident: 2579_CR47
  doi: 10.1093/mnras/staa278
– volume: 40
  start-page: 135002
  year: 2023
  ident: 2579_CR38
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/acd29b
– volume: 88
  start-page: 064007
  year: 2013
  ident: 2579_CR93
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.88.064007
– ident: 2579_CR56
  doi: 10.48550/arXiv.2309.14473
– volume: 91
  start-page: 024043
  year: 2015
  ident: 2579_CR90
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.024043
– volume: 6
  start-page: 961
  year: 2022
  ident: 2579_CR33
  publication-title: Nat. Astron.
  doi: 10.1038/s41550-022-01707-x
– volume: 93
  start-page: 084042
  year: 2016
  ident: 2579_CR49
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.084042
– ident: 2579_CR89
  doi: 10.48550/arXiv.1703.01076
– volume: 102
  start-page: 044055
  year: 2020
  ident: 2579_CR73
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.044055
– volume: 103
  start-page: 064067
  year: 2021
  ident: 2579_CR96
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.064067
– volume: 24
  start-page: 102577
  year: 2021
  ident: 2579_CR9
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102577
– volume: 105
  start-page: 124010
  year: 2022
  ident: 2579_CR20
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.124010
– volume: 53
  start-page: 6749
  year: 1996
  ident: 2579_CR29
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.53.6749
– volume: 93
  start-page: 044007
  year: 2016
  ident: 2579_CR77
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.044007
– volume: 101
  start-page: 024056
  year: 2020
  ident: 2579_CR81
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.024056
– volume: 13
  start-page: 041039
  year: 2023
  ident: 2579_CR30
  publication-title: Phys. Rev. X
– volume: 105
  start-page: 084039
  year: 2022
  ident: 2579_CR85
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.084039
– volume: 91
  start-page: 042003
  year: 2015
  ident: 2579_CR1
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.91.042003
– volume: 109
  start-page: 063012
  year: 2024
  ident: 2579_CR3
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.063012
– volume: 105
  start-page: 084025
  year: 2022
  ident: 2579_CR24
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.084025
– volume: 95
  start-page: 044028
  year: 2017
  ident: 2579_CR70
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.044028
– volume: 37
  start-page: 145
  year: 1991
  ident: 2579_CR86
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/18.61115
– volume: 84
  start-page: 084037
  year: 2011
  ident: 2579_CR51
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.84.084037
– volume: 103
  start-page: 104056
  year: 2021
  ident: 2579_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.104056
– volume: 98
  start-page: 084028
  year: 2018
  ident: 2579_CR71
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.084028
– volume: 2
  start-page: 023151
  year: 2020
  ident: 2579_CR8
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023151
– volume: 33
  start-page: 204001
  year: 2016
  ident: 2579_CR21
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/33/20/204001
– volume: 103
  start-page: 124060
  year: 2021
  ident: 2579_CR84
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.124060
– volume: 2021
  start-page: 05A101
  year: 2021
  ident: 2579_CR13
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptaa125
– ident: 2579_CR53
  doi: 10.48550/arXiv.2401.06845
– volume: 110
  start-page: 064024
  year: 2024
  ident: 2579_CR4
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.110.064024
– volume: 34
  start-page: 224001
  year: 2017
  ident: 2579_CR17
  publication-title: Class. Quantum Gravity
  doi: 10.1088/1361-6382/aa91b1
– volume: 102
  start-page: 124069
  year: 2020
  ident: 2579_CR32
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.124069
– volume: 96
  start-page: 024058
  year: 2017
  ident: 2579_CR41
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.024058
– volume: 32
  start-page: 024001
  year: 2014
  ident: 2579_CR12
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/32/2/024001
– volume: 1
  start-page: 833
  year: 2006
  ident: 2579_CR68
  publication-title: Bayesian Anal.
  doi: 10.1214/06-BA127
– volume: 49
  start-page: 6274
  year: 1994
  ident: 2579_CR42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.49.6274
– volume: 100
  start-page: 024059
  year: 2019
  ident: 2579_CR60
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.024059
– volume: 74
  start-page: 1015
  year: 2002
  ident: 2579_CR55
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.74.1015
– volume: 108
  start-page: 124037
  year: 2023
  ident: 2579_CR2
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.124037
– volume: 103
  start-page: 024024
  year: 2021
  ident: 2579_CR64
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.024024
– volume: 108
  start-page: 124018
  year: 2023
  ident: 2579_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.124018
– ident: 2579_CR69
  doi: 10.48550/arXiv.1705.01845
– volume: 101
  start-page: 103014
  year: 2020
  ident: 2579_CR65
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.103014
– ident: 2579_CR7
  doi: 10.48550/arXiv.2506.19990
– volume: 109
  start-page: 044032
  year: 2024
  ident: 2579_CR14
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.044032
– volume: 87
  start-page: 024035
  year: 2013
  ident: 2579_CR52
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.87.024035
– volume: 104
  start-page: 124027
  year: 2021
  ident: 2579_CR61
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.124027
– volume: 102
  start-page: 064002
  year: 2020
  ident: 2579_CR83
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.064002
– volume: 103
  start-page: 024014
  year: 2021
  ident: 2579_CR95
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.024014
– volume: 113
  start-page: 251101
  year: 2014
  ident: 2579_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.251101
– volume: 100
  start-page: 024021
  year: 2019
  ident: 2579_CR18
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.024021
– volume: 96
  start-page: 123011
  year: 2017
  ident: 2579_CR36
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.123011
SSID ssj0002951311
Score 2.305827
Snippet Inferring the properties of colliding black holes from gravitational wave observations is subject to systematic errors arising from modelling uncertainties....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 1256
SubjectTerms 639/766/34/4118
639/766/34/4123
Accuracy
Astronomy
Astrophysics and Cosmology
Bayesian analysis
Gravitational waves
Methods
Physics
Physics and Astronomy
Simulation
Theory of relativity
Title Incorporation of model accuracy in gravitational wave Bayesian inference
URI https://link.springer.com/article/10.1038/s41550-025-02579-7
https://www.proquest.com/docview/3240567951
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7MDcGL6FQ2nSMH8aLFpkmT9rgNx_QwPEzYrSRpCjvYjXVT9t-bpK1D0YOHQqC_wntp3_de3vsewI2gRGoZCU9R45sYByL1hCLc4z4VxpzhIJMuy3fKJq_0eR7OGxDUtTAuad9RWrrfdJ0d9lBYw-d7tvmqOXjs8QNoWep2u6pHbPQVVwkMZCAYV_UxPol-ufW7DdoDyx97oc7EjE_guMKGaFDO5hQaOm9DZ1DYaPXybYdukRuXwYiiDYcv5egMJk-WjnJVqRMtM-Q63CCh1HYt1A4tcmQbDVWE3OYlH-Jdo6HYaVtEiRZ12d85zMaPs9HEq3okeIpgtvFEHNKASgPcIiwUxypSVMY-EwzrMKZBGhNfZoIoIqUi2vhzBsBIPwxJlhIakgto5stcdwDRlAeaE2kp7SiWRJKMiVjhLE3DjPlxF-5qoSWrkgkjcTvYJEpKESdGvIkTccK70KvlmlRfRZFY8r-QcaOhLtzXst6f_vtpl_-7_AqOAqdum6fXg-ZmvdXXBjtsZB9ag_FwOO27RfMJwxq-lA
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH_4gehFdCqbnzmIFy02TZq0xzmUqnN4mLBbSNIUdrATN5X99yZp61D04KEQ6Ce_1_b98vLe7wGcSkqUUYkMNLVzEzuByAOpCQ94SKV1ZzgqlM_yHbDsid6N4tESRE0tjE_a95KW_jfdZIddTp3jCwPXfNVuPA34Mqxars1cGleP9b7iKpGlDATjuj4mJMkvp373QQti-WMt1LuYmy3YrLkh6lZPsw1LpmxBuzt10erJ8xydIT-ughHTFqw9VqMdyG6dHOVLbU40KZDvcIOk1m-vUs_RuESu0VAtyG1v8iHfDbqSc-OKKNG4KfvbheHN9bCXBXWPhEATzGaBTGMaUWWJW4Kl5lgnmqo0ZJJhE6c0ylMSqkISTZTSxNj5nCUwKoxjUuSExmQPVspJadqAaM4jw4lyknYUK6JIwWSqcZHnccHCtAPnDWjipVLCEH4FmySiglhYeIWHWPAOHDa4ivqrmAon_hczbi3UgYsG68Xuv6-2_7_DT2A9Gz70Rf92cH8AG5E3vcvZO4SV2eubObI8YqaO_YvzCd4iwAc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PS8MwFH7oRPEiOpVNp-YgXrTaNGnSHnU65g-GBwVvIUlT2MFu2KnsvzdJW0XRg4dCoD_50vZ97-W97wEcSkqUUYkMNLW-iXUgskBqwgMeUmnNGY5y5bN8R2z4SG-e4qcFYE0tjE_a95KW_jfdZIedlc7whYFrvmo3ngb8dJrli7Bk-XbonK4-63_GViJLGwjGdY1MSJJfTv9uh77I5Y_1UG9mBuuwVvNDdF490QYsmKINnfPSRawnz3N0hPy4CkiUbVi-r0abMLx2kpTTekrRJEe-yw2SWr--SD1H4wK5ZkO1KLe9ybt8M-hCzo0rpETjpvRvCx4GVw_9YVD3SQg0wWwWyDSmEVWWvCVYao51oqlKQyYZNnFKoywlocol0UQpTYz16SyJUWEckzwjNCbb0ComhekAohmPDCfKydpRrIgiOZOpxnmWxTkL0y4cN6CJaaWGIfwqNklEBbGw8AoPseBd6DW4ivrLKIUTAIwZtzPUhZMG66_df19t53-HH8DK_eVA3F2PbndhNfIz79L2etCavbyaPUslZmrfvzcfukLBEA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporation+of+model+accuracy+in+gravitational+wave+Bayesian+inference&rft.jtitle=Nature+astronomy&rft.au=Hoy%2C+Charlie&rft.au=Ak%C3%A7ay%2C+Sarp&rft.au=Mac+Uilliam%2C+Jake&rft.au=Thompson%2C+Jonathan+E&rft.date=2025-08-01&rft.pub=Nature+Publishing+Group&rft.eissn=2397-3366&rft.volume=9&rft.issue=8&rft.spage=1256&rft.epage=1267&rft_id=info:doi/10.1038%2Fs41550-025-02579-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-3366&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-3366&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-3366&client=summon