Real-time 850 nm multimode VCSEL to 1 550 nm single mode VCSEL data routing for optical interconnects

Short-reach optical interconnects among massive serves in data centers have attracted extensive research recently. Increasing capacity, cost and power efficiency as well as wavelength switching between data center network nodes are still key challenges for current optical interconnects. In this work...

Full description

Saved in:
Bibliographic Details
Published inOptoelectronics letters Vol. 15; no. 4; pp. 297 - 301
Main Authors Isoe, G. M., Leitch, A. W. R., Gibbon, T. B.
Format Journal Article
LanguageEnglish
Published Tianjin Tianjin University of Technology 01.07.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1673-1905
1993-5013
DOI10.1007/s11801-019-8129-y

Cover

Abstract Short-reach optical interconnects among massive serves in data centers have attracted extensive research recently. Increasing capacity, cost and power efficiency as well as wavelength switching between data center network nodes are still key challenges for current optical interconnects. In this work, we experimentally demonstrate the real-time inter-mode optical wavelength switching technique, for high-speed wavelength flexible data center interconnects. A 10 Gbit/s 1 550 nm single mode vertical cavity surface emitting laser (VCSEL) is optically injected and used to control a 10 Gbit/s multimode VCSEL carrier at 850 nm. Results show that a clearly open eye diagram is achieved at back-to-back analysis, implying a successful wavelength switch and error-free operation at 10 Gbit/s. A fully optical wavelength conversion of a multimode VCSEL operation at 850 nm using a single mode VCSEL subject to external optical injection at 1 550 nm is reported. This work opens new perspectives towards the development of a cost effective high-speed real-time inter-band wavelength switching technique between servers and network devices operating at different transmission windows at network nodes, for current and future optical interconnects.
AbstractList Short-reach optical interconnects among massive serves in data centers have attracted extensive research recently. Increasing capacity, cost and power efficiency as well as wavelength switching between data center network nodes are still key challenges for current optical interconnects. In this work, we experimentally demonstrate the real-time inter-mode optical wavelength switching technique, for high-speed wavelength flexible data center interconnects. A 10 Gbit/s 1 550 nm single mode vertical cavity surface emitting laser (VCSEL) is optically injected and used to control a 10 Gbit/s multimode VCSEL carrier at 850 nm. Results show that a clearly open eye diagram is achieved at back-to-back analysis, implying a successful wavelength switch and error-free operation at 10 Gbit/s. A fully optical wavelength conversion of a multimode VCSEL operation at 850 nm using a single mode VCSEL subject to external optical injection at 1 550 nm is reported. This work opens new perspectives towards the development of a cost effective high-speed real-time inter-band wavelength switching technique between servers and network devices operating at different transmission windows at network nodes, for current and future optical interconnects.
Author Gibbon, T. B.
Isoe, G. M.
Leitch, A. W. R.
Author_xml – sequence: 1
  givenname: G. M.
  surname: Isoe
  fullname: Isoe, G. M.
  email: George.Isoe@nmmu.ac.za
  organization: Centre for Broadband Communication, Nelson Mandela University
– sequence: 2
  givenname: A. W. R.
  surname: Leitch
  fullname: Leitch, A. W. R.
  organization: Centre for Broadband Communication, Nelson Mandela University
– sequence: 3
  givenname: T. B.
  surname: Gibbon
  fullname: Gibbon, T. B.
  organization: Centre for Broadband Communication, Nelson Mandela University
BookMark eNp9kFtLAzEQhYNUsNb-AN8CPkdz2WSTRyn1AgXB22tId6dlyzapSfrQf2_KCoqg8zITzvkmwzlHIx88IHTJ6DWjtL5JjGnKCGWGaMYNOZygMTNGEEmZGJVZ1YIwQ-UZmqa0oaUEr3VlxgiewfUkd1vAWlLst3i778sztIDfZy_zBc4BMywHLXV-3QP-obYuOxzDPhcFr0LEYZe7xvW48xliE7yHJqcLdLpyfYLpV5-gt7v56-yBLJ7uH2e3C9IIpjJxesWXbNkKRVVroKVKUMaXUjlZ89o5roVueFUbLaCtAAwopyslnVsWjGoxQVfD3l0MH3tI2W7CPvrypeVcVVxII6viqgdXE0NKEVa26bLLXfA5uq63jNpjrHaI1ZZY7TFWeygk-0XuYrd18fAvwwcmFa9fQ_y-6W_oE0pWijs
CitedBy_id crossref_primary_10_1007_s11277_021_08409_z
Cites_doi 10.29026/oea.2018.180005
10.1109/JLT.2009.2038722
10.1080/09500340.2017.1349198
10.1364/OE.24.007374
10.1364/OFC.2012.OTh3F.5
10.1002/047174140X
10.1109/JLT.2016.2647203
ContentType Journal Article
Copyright Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Tianjin University of Technology and Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
DBID AAYXX
CITATION
DOI 10.1007/s11801-019-8129-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1993-5013
EndPage 301
ExternalDocumentID 10_1007_s11801_019_8129_y
GroupedDBID -5F
-5G
-BR
-EM
-SI
-S~
-Y2
-~C
.VR
06D
0R~
0VY
123
1N0
29N
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
6NX
8TC
92H
92I
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CAJEI
CCEZO
CHBEP
COF
CS3
CSCUP
CUBFJ
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9T
PF0
PT4
Q--
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TCJ
TGT
TSG
TUC
U1G
U2A
U5S
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
WK8
YLTOR
Z7R
Z7X
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-a8f2b1bd3606d9ed063012b56a5727aa2838c247983ed4ee9e6a8465aabb1b083
IEDL.DBID U2A
ISSN 1673-1905
IngestDate Mon Jul 14 09:32:26 EDT 2025
Tue Jul 01 02:10:31 EDT 2025
Thu Apr 24 23:05:29 EDT 2025
Fri Feb 21 02:41:39 EST 2025
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords A
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a8f2b1bd3606d9ed063012b56a5727aa2838c247983ed4ee9e6a8465aabb1b083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2264235954
PQPubID 2044109
PageCount 5
ParticipantIDs proquest_journals_2264235954
crossref_citationtrail_10_1007_s11801_019_8129_y
crossref_primary_10_1007_s11801_019_8129_y
springer_journals_10_1007_s11801_019_8129_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Tianjin
PublicationPlace_xml – name: Tianjin
– name: Heidelberg
PublicationTitle Optoelectronics letters
PublicationTitleAbbrev Optoelectron. Lett
PublicationYear 2019
Publisher Tianjin University of Technology
Springer Nature B.V
Publisher_xml – name: Tianjin University of Technology
– name: Springer Nature B.V
References IsoeGWassinSGamathamRLeitchAGibbonTJournal of Modern Optics20176422452017JMOp...64.2245I10.1080/09500340.2017.1349198
IEEE Standard for Ethernet - Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation, IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3-2015 as amended by IEEE’s 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Corl-2017), 1 (2017).
MotaghiannezamRPhamTChenADuTKocotCXuJOptics Express20162473742016OExpr..24.7374M10.1364/OE.24.007374
T. Lengyel, K. Szczerba, M. Karlsson, A. Larsson and P. Andrekson, Demonstration of a 71.8 Gbit/s 4-PAM 850 nm VCSEL-based Link with a Pre-emphasizing Passive Filter, ECOC 2016; 42nd European Conference on Optical Communication, 1 (2016).
PavanS KLavrencikJRalphS EJournal of Lightwave Technology20173516142017JLwT...35.1614P10.1109/JLT.2016.2647203
StubkjaerK EKlochAHansenP BPoulsenH NWolfsonDJepsenK SIEICE Transactions on Electronics199982338
J. Hecht, All-optical Converters Promise Improved Networks, Laser Focus World, 159 (2001).
T. Yamamoto, High-speed Directly Modulated Lasers, Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference, 1 (2012).
TanakaKAgataAHoriuchiYJournal of Lightwave Technology2010286512010JLwT...28..651T10.1109/JLT.2009.2038722
AgrawalG PLightwave Technology: Telecommunication Systems: John Wiley & Sons200510.1002/047174140X
Y. Xiong, J. Liu, C. Gang and L. Zhong, Fiber Channel over Ethernet and Fiber Channel Switching Based on Ethernet Switch Fabrics, ed: Google Patents (2013).
ChengC-HShenC-CKaoH-YHsiehD-HWangH-YYehY-WOpto-Electronic Advances2018118000510.29026/oea.2018.180005
K E Stubkjaer (8129_CR10) 1999; 82
8129_CR11
C-H Cheng (8129_CR9) 2018; 1
cr-split#-8129_CR7.2
R Motaghiannezam (8129_CR4) 2016; 24
cr-split#-8129_CR7.1
8129_CR2
K Tanaka (8129_CR1) 2010; 28
8129_CR3
8129_CR5
G Isoe (8129_CR6) 2017; 64
S K Pavan (8129_CR8) 2017; 35
G P Agrawal (8129_CR12) 2005
References_xml – reference: IsoeGWassinSGamathamRLeitchAGibbonTJournal of Modern Optics20176422452017JMOp...64.2245I10.1080/09500340.2017.1349198
– reference: T. Yamamoto, High-speed Directly Modulated Lasers, Optical Fiber Communication Conference and Exposition (OFC/NFOEC), 2012 and the National Fiber Optic Engineers Conference, 1 (2012).
– reference: ChengC-HShenC-CKaoH-YHsiehD-HWangH-YYehY-WOpto-Electronic Advances2018118000510.29026/oea.2018.180005
– reference: IEEE Standard for Ethernet - Amendment 10: Media Access Control Parameters, Physical Layers, and Management Parameters for 200 Gb/s and 400 Gb/s Operation, IEEE Std 802.3bs-2017 (Amendment to IEEE 802.3-2015 as amended by IEEE’s 802.3bw-2015, 802.3by-2016, 802.3bq-2016, 802.3bp-2016, 802.3br-2016, 802.3bn-2016, 802.3bz-2016, 802.3bu-2016, 802.3bv-2017, and IEEE 802.3-2015/Corl-2017), 1 (2017).
– reference: MotaghiannezamRPhamTChenADuTKocotCXuJOptics Express20162473742016OExpr..24.7374M10.1364/OE.24.007374
– reference: TanakaKAgataAHoriuchiYJournal of Lightwave Technology2010286512010JLwT...28..651T10.1109/JLT.2009.2038722
– reference: Y. Xiong, J. Liu, C. Gang and L. Zhong, Fiber Channel over Ethernet and Fiber Channel Switching Based on Ethernet Switch Fabrics, ed: Google Patents (2013).
– reference: J. Hecht, All-optical Converters Promise Improved Networks, Laser Focus World, 159 (2001).
– reference: StubkjaerK EKlochAHansenP BPoulsenH NWolfsonDJepsenK SIEICE Transactions on Electronics199982338
– reference: T. Lengyel, K. Szczerba, M. Karlsson, A. Larsson and P. Andrekson, Demonstration of a 71.8 Gbit/s 4-PAM 850 nm VCSEL-based Link with a Pre-emphasizing Passive Filter, ECOC 2016; 42nd European Conference on Optical Communication, 1 (2016).
– reference: PavanS KLavrencikJRalphS EJournal of Lightwave Technology20173516142017JLwT...35.1614P10.1109/JLT.2016.2647203
– reference: AgrawalG PLightwave Technology: Telecommunication Systems: John Wiley & Sons200510.1002/047174140X
– ident: #cr-split#-8129_CR7.1
– volume: 1
  start-page: 180005
  year: 2018
  ident: 8129_CR9
  publication-title: Opto-Electronic Advances
  doi: 10.29026/oea.2018.180005
– volume: 82
  start-page: 338
  year: 1999
  ident: 8129_CR10
  publication-title: IEICE Transactions on Electronics
– volume: 28
  start-page: 651
  year: 2010
  ident: 8129_CR1
  publication-title: Journal of Lightwave Technology
  doi: 10.1109/JLT.2009.2038722
– ident: 8129_CR11
– volume: 64
  start-page: 2245
  year: 2017
  ident: 8129_CR6
  publication-title: Journal of Modern Optics
  doi: 10.1080/09500340.2017.1349198
– ident: 8129_CR3
– volume: 24
  start-page: 7374
  year: 2016
  ident: 8129_CR4
  publication-title: Optics Express
  doi: 10.1364/OE.24.007374
– ident: 8129_CR2
– ident: 8129_CR5
  doi: 10.1364/OFC.2012.OTh3F.5
– volume-title: Lightwave Technology: Telecommunication Systems: John Wiley & Sons
  year: 2005
  ident: 8129_CR12
  doi: 10.1002/047174140X
– ident: #cr-split#-8129_CR7.2
– volume: 35
  start-page: 1614
  year: 2017
  ident: 8129_CR8
  publication-title: Journal of Lightwave Technology
  doi: 10.1109/JLT.2016.2647203
SSID ssj0000327849
Score 2.1178224
Snippet Short-reach optical interconnects among massive serves in data centers have attracted extensive research recently. Increasing capacity, cost and power...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 297
SubjectTerms Computer centers
Data centers
Electronic devices
Energy conversion efficiency
High speed
Lasers
Network switching
Nodes
Optical Devices
Optical interconnects
Optics
Photonics
Physics
Physics and Astronomy
Power efficiency
Real time
Servers
Switching
Technological planning
Vertical cavity surface emission lasers
Title Real-time 850 nm multimode VCSEL to 1 550 nm single mode VCSEL data routing for optical interconnects
URI https://link.springer.com/article/10.1007/s11801-019-8129-y
https://www.proquest.com/docview/2264235954
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BKyQW3ojyqDwwgSwldpzHWKEC4jUARTBFjuNOkFZNOvDvuXOTFhAgMdvn4c5nf_cGOLYCQYXSlkdhEvBgiKqY-cOIK197iQmFkS5ccHsXXg6Cq2f1XNdxl022exOSdC_1otjNj53pS24rkfD3ZWgrNN1JGweiN3eseJJiaQR7_TCSHD881UQzfzrl63-0AJnf4qLuuznfgLUaJ7LeTLCbsGSLLVivMSOrNbLcghWXwmnKbbD3iPk4zYpnsfJY8cZcsiCNumFPZw_9G1aNmM_UbI1cBK-WfVqlXFE2GU0pD5ohlGWjsfNzM-ooMTGUEGOqcgcG5_3Hs0teD1HgRvphxXU8FJmf5RItlTyxOfXY8kWmQq0QumiN8CI2IoiSWNo8sDaxoUZMorTOkAwB2i60ilFh94BJb4h0UiNiNEGcKLRMTBDlRqFWGxnmHfAaVqam7jBOgy5e00VvZOJ-itxPifvpewdO5iTjWXuNvzYfNvJJa00rUyoEFlRdHHTgtJHZYvnXw_b_tfsAVoXnyr3w6hxCq5pM7RGikSrrQrt38XLd77pb-AEbUdQt
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ07T8MwEIBPUIRg4VFAFAp4YAJZSuw4jxEhUIG2A1DEFjmOO5UWNWHov-fOTSggQGL2Yzjn4s_3BDi1AqFCacujMAl4MERVzPxhxJWvvcSEwkjnLuj1w84guH1Wz1Ued1FHu9cuSfenXiS7-bF7-pLZSiR8tgwryAIxtS0YiIsPw4onyZdG2OuHkeR44anam_nTLl_vowVkfvOLuuvmegs2Kk5kF_OD3YYlO27CZsWMrNLIogmrLoTTFDtg75H5OPWKZ7Hy2PiFuWBBanXDni4frrqsnDCfqfkYmQhGln0apVhRNp28URw0Q5Rlk1dn52ZUUWJqKCDGlMUuDK6vHi87vGqiwI30w5LreCgyP8slvlTyxOZUY8sXmQq1QnTRGvEiNiKIkljaPLA2saFGJlFaZ7gMAW0PGuPJ2O4Dk94Q10mNxGiCOFH4MjFBlBuFWm1kmLfAq0WZmqrCODW6GKWL2sgk_RSln5L001kLzj6WvM7La_w1uV2fT1ppWpFSIrCg7OKgBef1mS2Gf93s4F-zT2Ct89jrpt2b_t0hrAvPpX7hZ9SGRjl9s0dIJmV27L7Ed5cQ1Yw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ25TsQwEEBHHALRcCOW0wUVyCK24xwlAlbcQsAiushxnAqyq00o-HtmsgkLCJCoHbsYe-LnOQH2nESo0MbxMIh97ueoiqnIQ66F8WIbSKtqd8H1TXDW8y-e9FPT57Rso91bl-Qop4GqNBXV4SDLD8eJbyKqn8FkwpIxf5uEafwbCzroPXn0YWTxFPnVCIFFECqOl59uPZs_rfL1bhoD5zcfaX31dBdhvmFGdjTa5CWYcMUyLDT8yBrtLJdhpg7ntOUKuDvkP05941mkPVa8sDpwkNresMfj-9MrVvWZYHo0RuaCZ8c-jVLcKBv2XykmmiHWsv6gtnkzqi4xtBQcY6tyFXrd04fjM940VOBWiaDiJsplKtJM4asli11G9baETHVgNGKMMYgakZV-GEfKZb5zsQsM8ok2JsVpCGtrMFX0C7cOTHk5zlMG6dH6UazxlWL9MLMaNdyqIOuA14oysU21cWp68ZyM6yST9BOUfkLST946sP8xZTAqtfHXx1vt_iSN1pUJJQVLyjT2O3DQ7tl4-NfFNv719S7M3p50k6vzm8tNmJNenQWGp2gLpqrhq9tGSKnSnfogvgM949nI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+850+nm+multimode+VCSEL+to+1+550+nm+single+mode+VCSEL+data+routing+for+optical+interconnects&rft.jtitle=Optoelectronics+letters&rft.au=Isoe%2C+G.+M.&rft.au=Leitch%2C+A.+W.+R.&rft.au=Gibbon%2C+T.+B.&rft.date=2019-07-01&rft.issn=1673-1905&rft.eissn=1993-5013&rft.volume=15&rft.issue=4&rft.spage=297&rft.epage=301&rft_id=info:doi/10.1007%2Fs11801-019-8129-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11801_019_8129_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1673-1905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1673-1905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1673-1905&client=summon