Triboelectric nanogenerator hybrid array driven by multiform natural energies and its applications in self-powered cathodic protection

In view of the increasing energy shortage and environmental pollution, the collection of friction charges to achieve the conversion of various natural energies and provide in-situ cathodic protection for metals is a significant challenge. Here, we designed a dual device-structure TENG composite arra...

Full description

Saved in:
Bibliographic Details
Published inScience China. Technological sciences Vol. 67; no. 3; pp. 878 - 890
Main Authors Sun, WeiXiang, Yang, Di, Luo, Ning, Li, Hao, Wang, DaoAi
Format Journal Article
LanguageEnglish
Published Beijing Science China Press 01.03.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In view of the increasing energy shortage and environmental pollution, the collection of friction charges to achieve the conversion of various natural energies and provide in-situ cathodic protection for metals is a significant challenge. Here, we designed a dual device-structure TENG composite array with the triboelectric layer of linear siloxane-modified polyurethane (PU) coating. This array could achieve a comprehensive collection for multiple forms of nature energy and cathodic protection of metals in multi-weather conditions. For one thing, the wave-mode TENG based on tanker structure could collect wave energy and showed the output performance with a short-circuit current of 15.5 µA. For another hing, the droplet-mode TENG based on arc-shaped surface structure could collect raindrop kinetic energy and showed the output performance with a short-circuit current of 16.3 µA. Notably, the parallel array of wave-mode TENG (W-TENG) and droplet-mode TENG (D-TENG) could simultaneously collect wave energy and raindrop kinetic energy, which showed a short-circuit current of 30.7 µA. Besides, a self-powered a cathodic protection system powered by the dual structure TENG array is assembled and the open-circuit potential drop of the carbon steel connected with the TENG array is about 450 mV. Compared with cathodic protection system powered by single structure TENG, the composite array could provide more effective corrosion resistance for marine equipment in rainy weather. Due to the characteristic for comprehensive collection of nature energy, the anti-corrosion system supplied by TENG parallel array possesses great application potential in the all-weather corrosion protection of metal machinery under complex marine conditions.
AbstractList In view of the increasing energy shortage and environmental pollution, the collection of friction charges to achieve the conversion of various natural energies and provide in-situ cathodic protection for metals is a significant challenge. Here, we designed a dual device-structure TENG composite array with the triboelectric layer of linear siloxane-modified polyurethane (PU) coating. This array could achieve a comprehensive collection for multiple forms of nature energy and cathodic protection of metals in multi-weather conditions. For one thing, the wave-mode TENG based on tanker structure could collect wave energy and showed the output performance with a short-circuit current of 15.5 µA. For another hing, the droplet-mode TENG based on arc-shaped surface structure could collect raindrop kinetic energy and showed the output performance with a short-circuit current of 16.3 µA. Notably, the parallel array of wave-mode TENG (W-TENG) and droplet-mode TENG (D-TENG) could simultaneously collect wave energy and raindrop kinetic energy, which showed a short-circuit current of 30.7 µA. Besides, a self-powered a cathodic protection system powered by the dual structure TENG array is assembled and the open-circuit potential drop of the carbon steel connected with the TENG array is about 450 mV. Compared with cathodic protection system powered by single structure TENG, the composite array could provide more effective corrosion resistance for marine equipment in rainy weather. Due to the characteristic for comprehensive collection of nature energy, the anti-corrosion system supplied by TENG parallel array possesses great application potential in the all-weather corrosion protection of metal machinery under complex marine conditions.
In view of the increasing energy shortage and environmental pollution, the collection of friction charges to achieve the conversion of various natural energies and provide in-situ cathodic protection for metals is a significant challenge. Here, we designed a dual device-structure TENG composite array with the triboelectric layer of linear siloxane-modified polyurethane (PU) coating. This array could achieve a comprehensive collection for multiple forms of nature energy and cathodic protection of metals in multi-weather conditions. For one thing, the wave-mode TENG based on tanker structure could collect wave energy and showed the output performance with a short-circuit current of 15.5 µA. For another hing, the droplet-mode TENG based on arc-shaped surface structure could collect raindrop kinetic energy and showed the output performance with a short-circuit current of 16.3 µA. Notably, the parallel array of wave-mode TENG (W-TENG) and droplet-mode TENG (D-TENG) could simultaneously collect wave energy and raindrop kinetic energy, which showed a short-circuit current of 30.7 µA. Besides, a self-powered a cathodic protection system powered by the dual structure TENG array is assembled and the open-circuit potential drop of the carbon steel connected with the TENG array is about 450 mV. Compared with cathodic protection system powered by single structure TENG, the composite array could provide more effective corrosion resistance for marine equipment in rainy weather. Due to the characteristic for comprehensive collection of nature energy, the anti-corrosion system supplied by TENG parallel array possesses great application potential in the all-weather corrosion protection of metal machinery under complex marine conditions.
Author Yang, Di
Sun, WeiXiang
Luo, Ning
Wang, DaoAi
Li, Hao
Author_xml – sequence: 1
  givenname: WeiXiang
  surname: Sun
  fullname: Sun, WeiXiang
  organization: School of Materials Science and Engineering, Shandong University of Science and Technology
– sequence: 2
  givenname: Di
  surname: Yang
  fullname: Yang, Di
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao Center of Resource Chemistry and New Materials
– sequence: 3
  givenname: Ning
  surname: Luo
  fullname: Luo, Ning
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao Center of Resource Chemistry and New Materials
– sequence: 4
  givenname: Hao
  surname: Li
  fullname: Li, Hao
  organization: School of Materials Science and Engineering, Shandong University of Science and Technology
– sequence: 5
  givenname: DaoAi
  surname: Wang
  fullname: Wang, DaoAi
  email: wangda@licp.cas.cn
  organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao Center of Resource Chemistry and New Materials
BookMark eNp9kE1rHSEUhqWk0CTND-hOyNpUx5lxZhlC0xYC2aRr8eN4Y5ir06M35f6B_O56ewOFQuPmiLyPz-E9IycpJyDkk-BXgnP1uQjRS8F4J1nXTxMb3pFTMY0zEzPnJ-0-qp4p2YkP5KKUJ96OnGYu-lPy8oDRZljAVYyOJpPyBhKgqRnp495i9NQgmj31GJ8hUbun291SY8i4bfG6Q7PQA7GJUKhJnsba5rou0Zkacyo0JlpgCWzNvwDB0_b-mH2zrZhrE7fQR_I-mKXAxes8Jz9uvzzcfGN391-_31zfMSfFWJkZez_P3jpj_TRwMNbYwdkggxvBq9mFPgyBBydG61w3Tj20vBpdp5wMSslzcnn8t6l_7qBU_ZR3mJpSd_MwyF7OSraUOKYc5lIQgl4xbg3uteD60Lg-Nq5b4_rQuB4ao_5hXKx_Cqho4vIm2R3J0ixpA_h3p_9DvwGQ2pwV
CitedBy_id crossref_primary_10_1002_advs_202401578
Cites_doi 10.1016/j.nanoen.2016.10.025
10.1038/542159a
10.1039/D0EE01258K
10.1038/450156a
10.1039/C6SC02562E
10.1016/j.nanoen.2018.12.078
10.1002/anie.201307249
10.1016/j.apmt.2022.101564
10.1016/j.nanoen.2012.01.004
10.1016/j.mattod.2020.10.031
10.1021/acsnano.5b03052
10.1016/j.nanoen.2020.105735
10.1016/j.nanoen.2017.06.035
10.1002/aenm.201501152
10.1002/aenm.201702649
10.1021/acsami.5b10923
10.1021/acsnano.6b03293
10.1016/j.nanoen.2020.105370
10.1021/acsnano.7b08674
10.1021/acsnano.9b08998
10.1021/acsnano.8b00416
10.1126/science.1168245
10.1021/acsnano.1c02790
10.1007/s12274-017-1805-y
10.1007/s12274-022-4339-x
10.1016/j.rser.2009.11.003
10.1016/j.nanoen.2022.107166
10.1021/acsnano.6b01569
10.1002/adma.201400373
10.1002/adfm.201401168
10.1002/adfm.202211056
10.1016/j.nanoen.2015.07.004
10.1039/C5TA07053H
10.1038/508302a
10.1016/j.nanoen.2014.08.017
10.1038/249720a0
10.1021/acsami.0c03843
10.1002/adfm.202208271
10.1243/09576509JPE782
10.1021/acsnano.5b03093
10.1016/j.energy.2020.119388
10.1016/j.nanoen.2022.107694
ContentType Journal Article
Copyright Science China Press 2024
Science China Press 2024.
Copyright_xml – notice: Science China Press 2024
– notice: Science China Press 2024.
DBID AAYXX
CITATION
DOI 10.1007/s11431-023-2488-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1869-1900
EndPage 890
ExternalDocumentID 10_1007_s11431_023_2488_5
GroupedDBID -5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.VR
06D
0R~
0VY
1N0
29~
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFLOW
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BDATZ
BSONS
CAG
CAJEC
CCEZO
CEKLB
CHBEP
CJPJV
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
MA-
N2Q
NB0
NPVJJ
NQJWS
O9J
P9P
PF0
PT4
Q--
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TR2
TSG
TUC
U1G
U2A
U5M
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ACMFV
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-a64d99dbcabd850eabab5cbf3fc6ed79cf4f5f0fc16bcc2684ed9976c27c3f773
IEDL.DBID U2A
ISSN 1674-7321
IngestDate Fri Jul 25 10:58:57 EDT 2025
Tue Jul 01 03:26:23 EDT 2025
Thu Apr 24 23:05:57 EDT 2025
Fri Feb 21 02:40:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords triboelectric nanogenerator
hybrid structure array
siloxane-modified polyurethane
cathodic protection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a64d99dbcabd850eabab5cbf3fc6ed79cf4f5f0fc16bcc2684ed9976c27c3f773
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2955343973
PQPubID 2043625
PageCount 13
ParticipantIDs proquest_journals_2955343973
crossref_primary_10_1007_s11431_023_2488_5
crossref_citationtrail_10_1007_s11431_023_2488_5
springer_journals_10_1007_s11431_023_2488_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-03-01
PublicationDateYYYYMMDD 2024-03-01
PublicationDate_xml – month: 03
  year: 2024
  text: 2024-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Science China. Technological sciences
PublicationTitleAbbrev Sci. China Technol. Sci
PublicationYear 2024
Publisher Science China Press
Springer Nature B.V
Publisher_xml – name: Science China Press
– name: Springer Nature B.V
References Jie, Wang, Cao (CR19) 2015; 9
Liang, Yan, Liao (CR37) 2015; 16
Zheng, Cheng, Chen (CR1) 2015; 5
Zhang, Zheng, Wang (CR30) 2016; 30
Lin, Cheng, Lee (CR32) 2014; 26
Wang, Wu, Liu (CR40) 2020; 12
Wang (CR4) 2017; 542
Lin, Cheng, Lin (CR33) 2013; 52
Cui, Zheng, Liang (CR14) 2018; 11
Drew, Plummer, Sahinkaya (CR25) 2009; 223
Peng, Zhang, Sun (CR43) 2022; 29
Peng, Zhang, Liu (CR42) 2022; 102
Wen, Guo, Zi (CR2) 2016; 10
Sun, Zheng, Li (CR31) 2021; 217
Zhang, Zhang, Yao (CR16) 2015; 7
Rodrigues, Nunes, Clemente (CR5) 2020; 13
Leng, Zhu, Wang (CR9) 2023; 33
Zi, Guo, Wen (CR29) 2016; 10
Zhu, Zhang, Wang (CR11) 2022; 15
Zhang, Gu, Lu (CR36) 2021; 82
Callaway (CR27) 2007; 450
Chen, Yang, Wang (CR6) 2018; 8
Fan, Tian, Wang (CR3) 2012; 1
Liu, Sun, Liu (CR35) 2018; 12
Wang, Cheng, Zheng (CR15) 2014; 10
Xu, Li, Brugger (CR39) 2022; 98
Wang, Jiang, Xu (CR22) 2017; 39
Cui, Zheng, Liang (CR13) 2016; 7
Falcão (CR24) 2010; 14
Guo, Li, Chen (CR12) 2014; 24
Alireza, Omer (CR21) 2009
Salter (CR23) 1974; 249
Wang, Zhu, Ding (CR34) 2019; 57
Tollefson (CR26) 2014; 508
Wei, Zhao, Zhang (CR38) 2021; 15
Zhang, Li, Zhang (CR41) 2020; 78
Zhou, Huang, Xiao (CR10) 2022; 32
Zhang, Wu, Lin (CR7) 2021; 43
Xu, Jiang, Lin (CR20) 2018; 12
Yang, Deng, Zeng (CR8) 2020; 14
Scruggs, Jacob (CR28) 2009; 323
Li, Tao, Guo (CR17) 2015; 3
Zhao, Zhu, Fan (CR18) 2015; 9
X Zhang (2488_CR30) 2016; 30
Y Jie (2488_CR19) 2015; 9
J Tollefson (2488_CR26) 2014; 508
S Cui (2488_CR14) 2018; 11
J Peng (2488_CR42) 2022; 102
W Guo (2488_CR12) 2014; 24
J Peng (2488_CR43) 2022; 29
B Zhang (2488_CR7) 2021; 43
Z H Lin (2488_CR32) 2014; 26
Z Lin (2488_CR33) 2013; 52
L Xu (2488_CR20) 2018; 12
H Zhang (2488_CR16) 2015; 7
A F O Falcão (2488_CR24) 2010; 14
E Callaway (2488_CR27) 2007; 450
Z Leng (2488_CR9) 2023; 33
W Xu (2488_CR39) 2022; 98
L Zheng (2488_CR1) 2015; 5
X Wei (2488_CR38) 2021; 15
N Zhang (2488_CR36) 2021; 82
K Alireza (2488_CR21) 2009
B Wang (2488_CR40) 2020; 12
S Cui (2488_CR13) 2016; 7
H Zhou (2488_CR10) 2022; 32
Z Wen (2488_CR2) 2016; 10
L Zhang (2488_CR41) 2020; 78
J Scruggs (2488_CR28) 2009; 323
B Drew (2488_CR25) 2009; 223
P Zhu (2488_CR11) 2022; 15
W Sun (2488_CR31) 2021; 217
C Rodrigues (2488_CR5) 2020; 13
Y Zi (2488_CR29) 2016; 10
X J Zhao (2488_CR18) 2015; 9
S H Salter (2488_CR23) 1974; 249
Y Liu (2488_CR35) 2018; 12
X Li (2488_CR17) 2015; 3
F R Fan (2488_CR3) 2012; 1
Z L Wang (2488_CR22) 2017; 39
H Yang (2488_CR8) 2020; 14
Z Wang (2488_CR15) 2014; 10
H Wang (2488_CR34) 2019; 57
Z L Wang (2488_CR4) 2017; 542
B Chen (2488_CR6) 2018; 8
Q Liang (2488_CR37) 2015; 16
References_xml – volume: 30
  start-page: 321
  year: 2016
  end-page: 329
  ident: CR30
  article-title: Liquid-solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.025
– volume: 542
  start-page: 159
  year: 2017
  end-page: 160
  ident: CR4
  article-title: Catch wave power in floating nets
  publication-title: Nature
  doi: 10.1038/542159a
– volume: 13
  start-page: 2657
  year: 2020
  end-page: 2683
  ident: CR5
  article-title: Emerging triboelectric nanogenerators for ocean wave energy harvesting: State of the art and future perspectives
  publication-title: Energy Environ Sci
  doi: 10.1039/D0EE01258K
– volume: 450
  start-page: 156
  year: 2007
  end-page: 159
  ident: CR27
  article-title: Energy: To catch a wave
  publication-title: Nature
  doi: 10.1038/450156a
– volume: 7
  start-page: 6477
  year: 2016
  end-page: 6483
  ident: CR13
  article-title: Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection
  publication-title: Chem Sci
  doi: 10.1039/C6SC02562E
– volume: 57
  start-page: 616
  year: 2019
  end-page: 624
  ident: CR34
  article-title: A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.078
– volume: 52
  start-page: 12545
  year: 2013
  end-page: 12549
  ident: CR33
  article-title: Water-solid surface contact electrification and its use for harvesting liquid-wave energy
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201307249
– volume: 29
  start-page: 101564
  year: 2022
  ident: CR43
  article-title: High-efficiency droplet triboelectric nanogenerators based on arc-surface and organic coating material for self-powered anti-corrosion
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2022.101564
– volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: CR3
  article-title: Flexible triboelectric generator
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 43
  start-page: 37
  year: 2021
  end-page: 44
  ident: CR7
  article-title: All-in-one 3D acceleration sensor based on coded liquid-metal triboelectric nanogenerator for vehicle restraint system
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2020.10.031
– volume: 9
  start-page: 8376
  year: 2015
  end-page: 8383
  ident: CR19
  article-title: Self-powered triboelectric nanosensor with poly(tetrafluoroethylene) nanoparticle arrays for dopamine detection
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03052
– start-page: 223
  year: 2009
  end-page: 225
  ident: CR21
  publication-title: Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems
– volume: 82
  start-page: 105735
  year: 2021
  ident: CR36
  article-title: A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105735
– volume: 39
  start-page: 9
  year: 2017
  end-page: 23
  ident: CR22
  article-title: Toward the blue energy dream by triboelectric nanogenerator networks
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 5
  start-page: 1501152
  year: 2015
  ident: CR1
  article-title: A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201501152
– volume: 8
  start-page: 1702649
  year: 2018
  ident: CR6
  article-title: Scavenging wind energy by triboelectric nanogenerators
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201702649
– volume: 7
  start-page: 28142
  year: 2015
  end-page: 28147
  ident: CR16
  article-title: Simultaneously harvesting thermal and mechanical energies based on flexible hybrid nanogenerator for self-powered cathodic protection
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b10923
– volume: 10
  start-page: 6526
  year: 2016
  end-page: 6534
  ident: CR2
  article-title: Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03293
– volume: 78
  start-page: 105370
  year: 2020
  ident: CR41
  article-title: Regulation and influence factors of triboelectricity at the solid-liquid interface
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105370
– volume: 12
  start-page: 1849
  year: 2018
  end-page: 1858
  ident: CR20
  article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08674
– volume: 14
  start-page: 3328
  year: 2020
  end-page: 3336
  ident: CR8
  article-title: Polydirectional microvibration energy collection for self-powered multifunctional systems based on hybridized nanogenerators
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08998
– volume: 12
  start-page: 2893
  year: 2018
  end-page: 2899
  ident: CR35
  article-title: Integrating a silicon solar cell with a triboelectric nanogenerator a mutual electrode for harvesting energy from sunlight and raindrops
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00416
– volume: 323
  start-page: 1176
  year: 2009
  end-page: 1178
  ident: CR28
  article-title: Harvesting ocean wave energy
  publication-title: Science
  doi: 10.1126/science.1168245
– volume: 15
  start-page: 13200
  year: 2021
  end-page: 13208
  ident: CR38
  article-title: All-weather droplet-based triboelectric nanogenerator for wave energy harvesting
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02790
– volume: 11
  start-page: 1873
  year: 2018
  end-page: 1882
  ident: CR14
  article-title: Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1805-y
– volume: 15
  start-page: 7460
  year: 2022
  end-page: 7467
  ident: CR11
  article-title: 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4339-x
– volume: 14
  start-page: 899
  year: 2010
  end-page: 918
  ident: CR24
  article-title: Wave energy utilization: A review of the technologies
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2009.11.003
– volume: 98
  start-page: 107166
  year: 2022
  ident: CR39
  article-title: Study of the enhanced electricity output of a sliding droplet-based triboelectric nanogenerator for droplet sensor design
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107166
– volume: 10
  start-page: 4797
  year: 2016
  end-page: 4805
  ident: CR29
  article-title: Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01569
– volume: 26
  start-page: 4690
  year: 2014
  end-page: 4696
  ident: CR32
  article-title: Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process
  publication-title: Adv Mater
  doi: 10.1002/adma.201400373
– volume: 24
  start-page: 6691
  year: 2014
  end-page: 6699
  ident: CR12
  article-title: Electrochemical cathodic protection powered by triboelectric nanogenerator
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201401168
– volume: 33
  start-page: 2211056
  year: 2023
  ident: CR9
  article-title: Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human-machine merging interface
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202211056
– volume: 16
  start-page: 329
  year: 2015
  end-page: 338
  ident: CR37
  article-title: Multi-unit hydroelectric generator based on contact electrification and its service behavior
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.07.004
– volume: 3
  start-page: 22663
  year: 2015
  end-page: 22668
  ident: CR17
  article-title: A self-powered system based on tribo-electric nanogenerators and supercapacitors for metal corrosion prevention
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA07053H
– volume: 508
  start-page: 302
  year: 2014
  end-page: 304
  ident: CR26
  article-title: Power from the oceans: Blue energy
  publication-title: Nature
  doi: 10.1038/508302a
– volume: 10
  start-page: 37
  year: 2014
  end-page: 43
  ident: CR15
  article-title: Enhancing the performance of triboelectric nanogenerator through prior-charge injection and its application on self-powered anticorrosion
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.08.017
– volume: 249
  start-page: 720
  year: 1974
  end-page: 724
  ident: CR23
  article-title: Wave power
  publication-title: Nature
  doi: 10.1038/249720a0
– volume: 12
  start-page: 31351
  year: 2020
  end-page: 31359
  ident: CR40
  article-title: New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c03843
– volume: 32
  start-page: 2208271
  year: 2022
  ident: CR10
  article-title: Deep-learning-assisted noncontact gesture-recognition system for touchless human-machine interfaces
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202208271
– volume: 223
  start-page: 887
  year: 2009
  end-page: 902
  ident: CR25
  article-title: A review of wave energy converter technology
  publication-title: Proc Institution Mech Engineers Part A-J Power Energy
  doi: 10.1243/09576509JPE782
– volume: 9
  start-page: 7671
  year: 2015
  end-page: 7677
  ident: CR18
  article-title: Triboelectric charging at the nanostructured solid/liquid interface for area-scalable wave energy conversion and its use in corrosion protection
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03093
– volume: 217
  start-page: 119388
  year: 2021
  ident: CR31
  article-title: Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119388
– volume: 102
  start-page: 107694
  year: 2022
  ident: CR42
  article-title: New cambered-surface based drip generator: A drop of water generates 50 µA current without precharging
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107694
– volume: 13
  start-page: 2657
  year: 2020
  ident: 2488_CR5
  publication-title: Energy Environ Sci
  doi: 10.1039/D0EE01258K
– volume: 98
  start-page: 107166
  year: 2022
  ident: 2488_CR39
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107166
– volume: 32
  start-page: 2208271
  year: 2022
  ident: 2488_CR10
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202208271
– volume: 450
  start-page: 156
  year: 2007
  ident: 2488_CR27
  publication-title: Nature
  doi: 10.1038/450156a
– volume: 542
  start-page: 159
  year: 2017
  ident: 2488_CR4
  publication-title: Nature
  doi: 10.1038/542159a
– volume: 30
  start-page: 321
  year: 2016
  ident: 2488_CR30
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.025
– volume: 1
  start-page: 328
  year: 2012
  ident: 2488_CR3
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 9
  start-page: 7671
  year: 2015
  ident: 2488_CR18
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03093
– volume: 223
  start-page: 887
  year: 2009
  ident: 2488_CR25
  publication-title: Proc Institution Mech Engineers Part A-J Power Energy
  doi: 10.1243/09576509JPE782
– volume: 323
  start-page: 1176
  year: 2009
  ident: 2488_CR28
  publication-title: Science
  doi: 10.1126/science.1168245
– volume: 26
  start-page: 4690
  year: 2014
  ident: 2488_CR32
  publication-title: Adv Mater
  doi: 10.1002/adma.201400373
– volume: 508
  start-page: 302
  year: 2014
  ident: 2488_CR26
  publication-title: Nature
  doi: 10.1038/508302a
– volume: 11
  start-page: 1873
  year: 2018
  ident: 2488_CR14
  publication-title: Nano Res
  doi: 10.1007/s12274-017-1805-y
– volume: 12
  start-page: 1849
  year: 2018
  ident: 2488_CR20
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08674
– volume: 29
  start-page: 101564
  year: 2022
  ident: 2488_CR43
  publication-title: Appl Mater Today
  doi: 10.1016/j.apmt.2022.101564
– volume: 52
  start-page: 12545
  year: 2013
  ident: 2488_CR33
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.201307249
– volume: 33
  start-page: 2211056
  year: 2023
  ident: 2488_CR9
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.202211056
– volume: 9
  start-page: 8376
  year: 2015
  ident: 2488_CR19
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b03052
– volume: 12
  start-page: 31351
  year: 2020
  ident: 2488_CR40
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.0c03843
– volume: 82
  start-page: 105735
  year: 2021
  ident: 2488_CR36
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105735
– volume: 5
  start-page: 1501152
  year: 2015
  ident: 2488_CR1
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201501152
– volume: 7
  start-page: 6477
  year: 2016
  ident: 2488_CR13
  publication-title: Chem Sci
  doi: 10.1039/C6SC02562E
– volume: 14
  start-page: 899
  year: 2010
  ident: 2488_CR24
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2009.11.003
– volume: 12
  start-page: 2893
  year: 2018
  ident: 2488_CR35
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b00416
– volume: 39
  start-page: 9
  year: 2017
  ident: 2488_CR22
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.06.035
– volume: 43
  start-page: 37
  year: 2021
  ident: 2488_CR7
  publication-title: Mater Today
  doi: 10.1016/j.mattod.2020.10.031
– volume: 249
  start-page: 720
  year: 1974
  ident: 2488_CR23
  publication-title: Nature
  doi: 10.1038/249720a0
– volume: 8
  start-page: 1702649
  year: 2018
  ident: 2488_CR6
  publication-title: Adv Energy Mater
  doi: 10.1002/aenm.201702649
– volume: 10
  start-page: 6526
  year: 2016
  ident: 2488_CR2
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03293
– volume: 7
  start-page: 28142
  year: 2015
  ident: 2488_CR16
  publication-title: ACS Appl Mater Interfaces
  doi: 10.1021/acsami.5b10923
– volume: 14
  start-page: 3328
  year: 2020
  ident: 2488_CR8
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08998
– volume: 16
  start-page: 329
  year: 2015
  ident: 2488_CR37
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2015.07.004
– volume: 217
  start-page: 119388
  year: 2021
  ident: 2488_CR31
  publication-title: Energy
  doi: 10.1016/j.energy.2020.119388
– volume: 15
  start-page: 7460
  year: 2022
  ident: 2488_CR11
  publication-title: Nano Res
  doi: 10.1007/s12274-022-4339-x
– volume: 78
  start-page: 105370
  year: 2020
  ident: 2488_CR41
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105370
– volume: 102
  start-page: 107694
  year: 2022
  ident: 2488_CR42
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107694
– volume: 10
  start-page: 37
  year: 2014
  ident: 2488_CR15
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.08.017
– volume: 15
  start-page: 13200
  year: 2021
  ident: 2488_CR38
  publication-title: ACS Nano
  doi: 10.1021/acsnano.1c02790
– start-page: 223
  volume-title: Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems
  year: 2009
  ident: 2488_CR21
– volume: 24
  start-page: 6691
  year: 2014
  ident: 2488_CR12
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201401168
– volume: 10
  start-page: 4797
  year: 2016
  ident: 2488_CR29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01569
– volume: 3
  start-page: 22663
  year: 2015
  ident: 2488_CR17
  publication-title: J Mater Chem A
  doi: 10.1039/C5TA07053H
– volume: 57
  start-page: 616
  year: 2019
  ident: 2488_CR34
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.078
SSID ssj0000389014
Score 2.347976
Snippet In view of the increasing energy shortage and environmental pollution, the collection of friction charges to achieve the conversion of various natural energies...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 878
SubjectTerms Arrays
Carbon steels
Cathodic protection
Corrosion
Corrosion potential
Corrosion prevention
Corrosion resistance
Droplets
Energy
Engineering
Kinetic energy
Nanogenerators
Open circuit voltage
Polyurethane resins
Raindrops
Short circuit currents
Siloxanes
Surface structure
Voltage drop
Wave power
Weather
Title Triboelectric nanogenerator hybrid array driven by multiform natural energies and its applications in self-powered cathodic protection
URI https://link.springer.com/article/10.1007/s11431-023-2488-5
https://www.proquest.com/docview/2955343973
Volume 67
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAgnqK85IEJZCmJ7bgZK0RBIJioBFPkJ1RCaZWGoX-A381dmtCCAIklGXK2pXx-3PnuviPkNMjYZ9ZLpk0wTDgtmOYqhodJnPDSZRnmO9_dp9cDcfMoH5s87kkb7d66JOudep7sBkc7mL4JZwnMOiaXyaoE0x3juAZJ7_NiBRnjoprTGwPsmeJJ3Hozf-rl63k0VzK_-UXr46a_STYaPZH2ZsBukSVfbJP1BfbAHfKOrB-jWR2boaWFLkbPNYk0mNH0ZYqpWFSXpZ5SV-KeRs2U1vGDqKfSmtETRsAWSBVBdeHosIL3gkubDgs68a-BjbGYmncUWV5HDkZr-B1AaJcM-pcPF9esKavALI_TiulUIALGauO6MvLaaCOtCTzY1DuV2SCCDFGwcWqsRTYYD_IqtYmyPCjF98hKMSr8PqHSgAFkDax70ESCsl0hIp3FyPitVHCuQ6L25-a24RzH0hev-ZwtGfHIAY8c8chlh5x9NhnPCDf-Ej5qEcubtTfJk0xKjnoW75DzFsX55187O_iX9CFZg8knZuFoR2SlKt_8MegnlTkhq72rp9vLk3pefgDiM-LD
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOEAPCFpQ0wLdA70UrWTver3xgQNqi8LzRCRuZp80EnJQkqrKH-CP8Ec749iEVgWpBy72wbNea2cf33hmvgHYiyoNhQuKGxstz7zJuJE6xYsVPgvKFwXlO59f5L1-dnKlrhbgoc2FqaPdW5dkvVPPk93waEfTV0gucNbxNpLyNEx_oZ02Pjj-hkr9LMTR98uvPd6UEuBOpvmEmzyjXq0z1ndVEow1VjkbZXR58LpwMYsqJtGluXWOGFACyuvcCe1k1FriexdhGbFHl5ZOXxw-_sghhrqk5hCngH6upUhb7-m_vvrP828Oav_yw9bH29E6rDW4lB3OJtIGLITqLbx5wlb4Du6JZWQ4q5szcKwy1fCmJq1Gs539mFLqFzOjkZkyP6I9lNkpq-MVCRezmkEUe6AWRE3BTOXZYIL3Jy50NqjYONxGfkfF24JnxCo79NhbwyeBQpvQf5Wx34KlaliF98CURYPLWdxnEPlE7bpZlpgiJYZxraP3HUjawS1dw3FOpTZuyzk7M-mjRH2UpI9SdeDLY5O7GcHHS8LbrcbKZq2PS1EoJQnXyQ7st1qcP372ZR_-S_oTrPQuz8_Ks-OL04-wKhBbzULhtmFpMvoZdhAbTexuPTcZXL_2YvgNSYoh8w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkRA9IJ7qQilzgAto1GQemebAoaJdtRQqDqzUW5gnrFRlV7tBaP8Af4e_iJ1HtyBA4tBLcojnobFnxo7tzwDPk85j6aPm1iXHVbCKW2lyfDgRVNShLCnf-f1ZcTxRb8_1-Qb8GHJh2mj3wSXZ5TQQSlPd7M1D2lsnvuE1j2awkFygBPIhqvI0rr6hzbZ8fXKIDH4hxPjo45tj3pcV4F7mRcNtoWgGzlsX9nUWrbNOe5dk8kUMpvRJJZ2y5PPCeU9oKBHpTeGF8TIZI7HfG3BTUfIxbqCJOLj8qUNodVmLJ07B_dxIkQ-e1D_N-te7cK3g_uaTba-68V240-uo7KATqnuwEev7sHUFufABfCfEkVlXQ2fqWW3r2ecWwBpNePZlRWlgzC4WdsXCgs5T5lasjV0kHZm1aKI4ArUgmApm68CmDb6vuNPZtGbLeJH4nAq5xcAIYXYWcLQeWwKJHsLkWtb-EWzWszpuA9MOjS_v8MxBLSgZv69UZsuc0MaNSSGMIBsWt_I93jmV3bio1kjNxI8K-VERPyo9gpeXTeYd2Me_iHcGjlX9vl9WotRako4nR_Bq4OL68187e_xf1M_g1ofDcfXu5Oz0CdwWqGZ1UXE7sNksvsanqCY1brcVTQafrnsv_AS2PiYm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triboelectric+nanogenerator+hybrid+array+driven+by+multiform+natural+energies+and+its+applications+in+self-powered+cathodic+protection&rft.jtitle=Science+China.+Technological+sciences&rft.au=Sun+WeiXiang&rft.au=Yang%2C+Di&rft.au=Luo+Ning&rft.au=Li%2C+Hao&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=67&rft.issue=3&rft.spage=878&rft.epage=890&rft_id=info:doi/10.1007%2Fs11431-023-2488-5&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7321&client=summon