Triboelectric nanogenerator hybrid array driven by multiform natural energies and its applications in self-powered cathodic protection
In view of the increasing energy shortage and environmental pollution, the collection of friction charges to achieve the conversion of various natural energies and provide in-situ cathodic protection for metals is a significant challenge. Here, we designed a dual device-structure TENG composite arra...
Saved in:
Published in | Science China. Technological sciences Vol. 67; no. 3; pp. 878 - 890 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Science China Press
01.03.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In view of the increasing energy shortage and environmental pollution, the collection of friction charges to achieve the conversion of various natural energies and provide
in-situ
cathodic protection for metals is a significant challenge. Here, we designed a dual device-structure TENG composite array with the triboelectric layer of linear siloxane-modified polyurethane (PU) coating. This array could achieve a comprehensive collection for multiple forms of nature energy and cathodic protection of metals in multi-weather conditions. For one thing, the wave-mode TENG based on tanker structure could collect wave energy and showed the output performance with a short-circuit current of 15.5 µA. For another hing, the droplet-mode TENG based on arc-shaped surface structure could collect raindrop kinetic energy and showed the output performance with a short-circuit current of 16.3 µA. Notably, the parallel array of wave-mode TENG (W-TENG) and droplet-mode TENG (D-TENG) could simultaneously collect wave energy and raindrop kinetic energy, which showed a short-circuit current of 30.7 µA. Besides, a self-powered a cathodic protection system powered by the dual structure TENG array is assembled and the open-circuit potential drop of the carbon steel connected with the TENG array is about 450 mV. Compared with cathodic protection system powered by single structure TENG, the composite array could provide more effective corrosion resistance for marine equipment in rainy weather. Due to the characteristic for comprehensive collection of nature energy, the anti-corrosion system supplied by TENG parallel array possesses great application potential in the all-weather corrosion protection of metal machinery under complex marine conditions. |
---|---|
AbstractList | In view of the increasing energy shortage and environmental pollution, the collection of friction charges to achieve the conversion of various natural energies and provide
in-situ
cathodic protection for metals is a significant challenge. Here, we designed a dual device-structure TENG composite array with the triboelectric layer of linear siloxane-modified polyurethane (PU) coating. This array could achieve a comprehensive collection for multiple forms of nature energy and cathodic protection of metals in multi-weather conditions. For one thing, the wave-mode TENG based on tanker structure could collect wave energy and showed the output performance with a short-circuit current of 15.5 µA. For another hing, the droplet-mode TENG based on arc-shaped surface structure could collect raindrop kinetic energy and showed the output performance with a short-circuit current of 16.3 µA. Notably, the parallel array of wave-mode TENG (W-TENG) and droplet-mode TENG (D-TENG) could simultaneously collect wave energy and raindrop kinetic energy, which showed a short-circuit current of 30.7 µA. Besides, a self-powered a cathodic protection system powered by the dual structure TENG array is assembled and the open-circuit potential drop of the carbon steel connected with the TENG array is about 450 mV. Compared with cathodic protection system powered by single structure TENG, the composite array could provide more effective corrosion resistance for marine equipment in rainy weather. Due to the characteristic for comprehensive collection of nature energy, the anti-corrosion system supplied by TENG parallel array possesses great application potential in the all-weather corrosion protection of metal machinery under complex marine conditions. In view of the increasing energy shortage and environmental pollution, the collection of friction charges to achieve the conversion of various natural energies and provide in-situ cathodic protection for metals is a significant challenge. Here, we designed a dual device-structure TENG composite array with the triboelectric layer of linear siloxane-modified polyurethane (PU) coating. This array could achieve a comprehensive collection for multiple forms of nature energy and cathodic protection of metals in multi-weather conditions. For one thing, the wave-mode TENG based on tanker structure could collect wave energy and showed the output performance with a short-circuit current of 15.5 µA. For another hing, the droplet-mode TENG based on arc-shaped surface structure could collect raindrop kinetic energy and showed the output performance with a short-circuit current of 16.3 µA. Notably, the parallel array of wave-mode TENG (W-TENG) and droplet-mode TENG (D-TENG) could simultaneously collect wave energy and raindrop kinetic energy, which showed a short-circuit current of 30.7 µA. Besides, a self-powered a cathodic protection system powered by the dual structure TENG array is assembled and the open-circuit potential drop of the carbon steel connected with the TENG array is about 450 mV. Compared with cathodic protection system powered by single structure TENG, the composite array could provide more effective corrosion resistance for marine equipment in rainy weather. Due to the characteristic for comprehensive collection of nature energy, the anti-corrosion system supplied by TENG parallel array possesses great application potential in the all-weather corrosion protection of metal machinery under complex marine conditions. |
Author | Yang, Di Sun, WeiXiang Luo, Ning Wang, DaoAi Li, Hao |
Author_xml | – sequence: 1 givenname: WeiXiang surname: Sun fullname: Sun, WeiXiang organization: School of Materials Science and Engineering, Shandong University of Science and Technology – sequence: 2 givenname: Di surname: Yang fullname: Yang, Di organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao Center of Resource Chemistry and New Materials – sequence: 3 givenname: Ning surname: Luo fullname: Luo, Ning organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao Center of Resource Chemistry and New Materials – sequence: 4 givenname: Hao surname: Li fullname: Li, Hao organization: School of Materials Science and Engineering, Shandong University of Science and Technology – sequence: 5 givenname: DaoAi surname: Wang fullname: Wang, DaoAi email: wangda@licp.cas.cn organization: State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Qingdao Center of Resource Chemistry and New Materials |
BookMark | eNp9kE1rHSEUhqWk0CTND-hOyNpUx5lxZhlC0xYC2aRr8eN4Y5ir06M35f6B_O56ewOFQuPmiLyPz-E9IycpJyDkk-BXgnP1uQjRS8F4J1nXTxMb3pFTMY0zEzPnJ-0-qp4p2YkP5KKUJ96OnGYu-lPy8oDRZljAVYyOJpPyBhKgqRnp495i9NQgmj31GJ8hUbun291SY8i4bfG6Q7PQA7GJUKhJnsba5rou0Zkacyo0JlpgCWzNvwDB0_b-mH2zrZhrE7fQR_I-mKXAxes8Jz9uvzzcfGN391-_31zfMSfFWJkZez_P3jpj_TRwMNbYwdkggxvBq9mFPgyBBydG61w3Tj20vBpdp5wMSslzcnn8t6l_7qBU_ZR3mJpSd_MwyF7OSraUOKYc5lIQgl4xbg3uteD60Lg-Nq5b4_rQuB4ao_5hXKx_Cqho4vIm2R3J0ixpA_h3p_9DvwGQ2pwV |
CitedBy_id | crossref_primary_10_1002_advs_202401578 |
Cites_doi | 10.1016/j.nanoen.2016.10.025 10.1038/542159a 10.1039/D0EE01258K 10.1038/450156a 10.1039/C6SC02562E 10.1016/j.nanoen.2018.12.078 10.1002/anie.201307249 10.1016/j.apmt.2022.101564 10.1016/j.nanoen.2012.01.004 10.1016/j.mattod.2020.10.031 10.1021/acsnano.5b03052 10.1016/j.nanoen.2020.105735 10.1016/j.nanoen.2017.06.035 10.1002/aenm.201501152 10.1002/aenm.201702649 10.1021/acsami.5b10923 10.1021/acsnano.6b03293 10.1016/j.nanoen.2020.105370 10.1021/acsnano.7b08674 10.1021/acsnano.9b08998 10.1021/acsnano.8b00416 10.1126/science.1168245 10.1021/acsnano.1c02790 10.1007/s12274-017-1805-y 10.1007/s12274-022-4339-x 10.1016/j.rser.2009.11.003 10.1016/j.nanoen.2022.107166 10.1021/acsnano.6b01569 10.1002/adma.201400373 10.1002/adfm.201401168 10.1002/adfm.202211056 10.1016/j.nanoen.2015.07.004 10.1039/C5TA07053H 10.1038/508302a 10.1016/j.nanoen.2014.08.017 10.1038/249720a0 10.1021/acsami.0c03843 10.1002/adfm.202208271 10.1243/09576509JPE782 10.1021/acsnano.5b03093 10.1016/j.energy.2020.119388 10.1016/j.nanoen.2022.107694 |
ContentType | Journal Article |
Copyright | Science China Press 2024 Science China Press 2024. |
Copyright_xml | – notice: Science China Press 2024 – notice: Science China Press 2024. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11431-023-2488-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1869-1900 |
EndPage | 890 |
ExternalDocumentID | 10_1007_s11431_023_2488_5 |
GroupedDBID | -5B -5G -BR -EM -SC -S~ -Y2 -~C .VR 06D 0R~ 0VY 1N0 29~ 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 40D 40E 5VR 5VS 8TC 8UJ 92E 92I 92Q 93N 95- 95. 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABKTR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFLOW AFQWF AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BDATZ BSONS CAG CAJEC CCEZO CEKLB CHBEP CJPJV COF CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HG6 HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM MA- N2Q NB0 NPVJJ NQJWS O9J P9P PF0 PT4 Q-- QOS R89 RIG ROL RSV S16 S3B SAP SCL SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TCJ TGP TR2 TSG TUC U1G U2A U5M UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ACMFV ADHKG AFDZB AFOHR AGQPQ AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-a64d99dbcabd850eabab5cbf3fc6ed79cf4f5f0fc16bcc2684ed9976c27c3f773 |
IEDL.DBID | U2A |
ISSN | 1674-7321 |
IngestDate | Fri Jul 25 10:58:57 EDT 2025 Tue Jul 01 03:26:23 EDT 2025 Thu Apr 24 23:05:57 EDT 2025 Fri Feb 21 02:40:15 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | triboelectric nanogenerator hybrid structure array siloxane-modified polyurethane cathodic protection |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-a64d99dbcabd850eabab5cbf3fc6ed79cf4f5f0fc16bcc2684ed9976c27c3f773 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2955343973 |
PQPubID | 2043625 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2955343973 crossref_primary_10_1007_s11431_023_2488_5 crossref_citationtrail_10_1007_s11431_023_2488_5 springer_journals_10_1007_s11431_023_2488_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-03-01 |
PublicationDateYYYYMMDD | 2024-03-01 |
PublicationDate_xml | – month: 03 year: 2024 text: 2024-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Science China. Technological sciences |
PublicationTitleAbbrev | Sci. China Technol. Sci |
PublicationYear | 2024 |
Publisher | Science China Press Springer Nature B.V |
Publisher_xml | – name: Science China Press – name: Springer Nature B.V |
References | Jie, Wang, Cao (CR19) 2015; 9 Liang, Yan, Liao (CR37) 2015; 16 Zheng, Cheng, Chen (CR1) 2015; 5 Zhang, Zheng, Wang (CR30) 2016; 30 Lin, Cheng, Lee (CR32) 2014; 26 Wang, Wu, Liu (CR40) 2020; 12 Wang (CR4) 2017; 542 Lin, Cheng, Lin (CR33) 2013; 52 Cui, Zheng, Liang (CR14) 2018; 11 Drew, Plummer, Sahinkaya (CR25) 2009; 223 Peng, Zhang, Sun (CR43) 2022; 29 Peng, Zhang, Liu (CR42) 2022; 102 Wen, Guo, Zi (CR2) 2016; 10 Sun, Zheng, Li (CR31) 2021; 217 Zhang, Zhang, Yao (CR16) 2015; 7 Rodrigues, Nunes, Clemente (CR5) 2020; 13 Leng, Zhu, Wang (CR9) 2023; 33 Zi, Guo, Wen (CR29) 2016; 10 Zhu, Zhang, Wang (CR11) 2022; 15 Zhang, Gu, Lu (CR36) 2021; 82 Callaway (CR27) 2007; 450 Chen, Yang, Wang (CR6) 2018; 8 Fan, Tian, Wang (CR3) 2012; 1 Liu, Sun, Liu (CR35) 2018; 12 Wang, Cheng, Zheng (CR15) 2014; 10 Xu, Li, Brugger (CR39) 2022; 98 Wang, Jiang, Xu (CR22) 2017; 39 Cui, Zheng, Liang (CR13) 2016; 7 Falcão (CR24) 2010; 14 Guo, Li, Chen (CR12) 2014; 24 Alireza, Omer (CR21) 2009 Salter (CR23) 1974; 249 Wang, Zhu, Ding (CR34) 2019; 57 Tollefson (CR26) 2014; 508 Wei, Zhao, Zhang (CR38) 2021; 15 Zhang, Li, Zhang (CR41) 2020; 78 Zhou, Huang, Xiao (CR10) 2022; 32 Zhang, Wu, Lin (CR7) 2021; 43 Xu, Jiang, Lin (CR20) 2018; 12 Yang, Deng, Zeng (CR8) 2020; 14 Scruggs, Jacob (CR28) 2009; 323 Li, Tao, Guo (CR17) 2015; 3 Zhao, Zhu, Fan (CR18) 2015; 9 X Zhang (2488_CR30) 2016; 30 Y Jie (2488_CR19) 2015; 9 J Tollefson (2488_CR26) 2014; 508 S Cui (2488_CR14) 2018; 11 J Peng (2488_CR42) 2022; 102 W Guo (2488_CR12) 2014; 24 J Peng (2488_CR43) 2022; 29 B Zhang (2488_CR7) 2021; 43 Z H Lin (2488_CR32) 2014; 26 Z Lin (2488_CR33) 2013; 52 L Xu (2488_CR20) 2018; 12 H Zhang (2488_CR16) 2015; 7 A F O Falcão (2488_CR24) 2010; 14 E Callaway (2488_CR27) 2007; 450 Z Leng (2488_CR9) 2023; 33 W Xu (2488_CR39) 2022; 98 L Zheng (2488_CR1) 2015; 5 X Wei (2488_CR38) 2021; 15 N Zhang (2488_CR36) 2021; 82 K Alireza (2488_CR21) 2009 B Wang (2488_CR40) 2020; 12 S Cui (2488_CR13) 2016; 7 H Zhou (2488_CR10) 2022; 32 Z Wen (2488_CR2) 2016; 10 L Zhang (2488_CR41) 2020; 78 J Scruggs (2488_CR28) 2009; 323 B Drew (2488_CR25) 2009; 223 P Zhu (2488_CR11) 2022; 15 W Sun (2488_CR31) 2021; 217 C Rodrigues (2488_CR5) 2020; 13 Y Zi (2488_CR29) 2016; 10 X J Zhao (2488_CR18) 2015; 9 S H Salter (2488_CR23) 1974; 249 Y Liu (2488_CR35) 2018; 12 X Li (2488_CR17) 2015; 3 F R Fan (2488_CR3) 2012; 1 Z L Wang (2488_CR22) 2017; 39 H Yang (2488_CR8) 2020; 14 Z Wang (2488_CR15) 2014; 10 H Wang (2488_CR34) 2019; 57 Z L Wang (2488_CR4) 2017; 542 B Chen (2488_CR6) 2018; 8 Q Liang (2488_CR37) 2015; 16 |
References_xml | – volume: 30 start-page: 321 year: 2016 end-page: 329 ident: CR30 article-title: Liquid-solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.025 – volume: 542 start-page: 159 year: 2017 end-page: 160 ident: CR4 article-title: Catch wave power in floating nets publication-title: Nature doi: 10.1038/542159a – volume: 13 start-page: 2657 year: 2020 end-page: 2683 ident: CR5 article-title: Emerging triboelectric nanogenerators for ocean wave energy harvesting: State of the art and future perspectives publication-title: Energy Environ Sci doi: 10.1039/D0EE01258K – volume: 450 start-page: 156 year: 2007 end-page: 159 ident: CR27 article-title: Energy: To catch a wave publication-title: Nature doi: 10.1038/450156a – volume: 7 start-page: 6477 year: 2016 end-page: 6483 ident: CR13 article-title: Conducting polymer PPy nanowire-based triboelectric nanogenerator and its application for self-powered electrochemical cathodic protection publication-title: Chem Sci doi: 10.1039/C6SC02562E – volume: 57 start-page: 616 year: 2019 end-page: 624 ident: CR34 article-title: A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.078 – volume: 52 start-page: 12545 year: 2013 end-page: 12549 ident: CR33 article-title: Water-solid surface contact electrification and its use for harvesting liquid-wave energy publication-title: Angew Chem Int Ed doi: 10.1002/anie.201307249 – volume: 29 start-page: 101564 year: 2022 ident: CR43 article-title: High-efficiency droplet triboelectric nanogenerators based on arc-surface and organic coating material for self-powered anti-corrosion publication-title: Appl Mater Today doi: 10.1016/j.apmt.2022.101564 – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: CR3 article-title: Flexible triboelectric generator publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 43 start-page: 37 year: 2021 end-page: 44 ident: CR7 article-title: All-in-one 3D acceleration sensor based on coded liquid-metal triboelectric nanogenerator for vehicle restraint system publication-title: Mater Today doi: 10.1016/j.mattod.2020.10.031 – volume: 9 start-page: 8376 year: 2015 end-page: 8383 ident: CR19 article-title: Self-powered triboelectric nanosensor with poly(tetrafluoroethylene) nanoparticle arrays for dopamine detection publication-title: ACS Nano doi: 10.1021/acsnano.5b03052 – start-page: 223 year: 2009 end-page: 225 ident: CR21 publication-title: Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems – volume: 82 start-page: 105735 year: 2021 ident: CR36 article-title: A universal single electrode droplet-based electricity generator (SE-DEG) for water kinetic energy harvesting publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105735 – volume: 39 start-page: 9 year: 2017 end-page: 23 ident: CR22 article-title: Toward the blue energy dream by triboelectric nanogenerator networks publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.035 – volume: 5 start-page: 1501152 year: 2015 ident: CR1 article-title: A hybridized power panel to simultaneously generate electricity from sunlight, raindrops, and wind around the clock publication-title: Adv Energy Mater doi: 10.1002/aenm.201501152 – volume: 8 start-page: 1702649 year: 2018 ident: CR6 article-title: Scavenging wind energy by triboelectric nanogenerators publication-title: Adv Energy Mater doi: 10.1002/aenm.201702649 – volume: 7 start-page: 28142 year: 2015 end-page: 28147 ident: CR16 article-title: Simultaneously harvesting thermal and mechanical energies based on flexible hybrid nanogenerator for self-powered cathodic protection publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b10923 – volume: 10 start-page: 6526 year: 2016 end-page: 6534 ident: CR2 article-title: Harvesting broad frequency band blue energy by a triboelectric-electromagnetic hybrid nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b03293 – volume: 78 start-page: 105370 year: 2020 ident: CR41 article-title: Regulation and influence factors of triboelectricity at the solid-liquid interface publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105370 – volume: 12 start-page: 1849 year: 2018 end-page: 1858 ident: CR20 article-title: Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.7b08674 – volume: 14 start-page: 3328 year: 2020 end-page: 3336 ident: CR8 article-title: Polydirectional microvibration energy collection for self-powered multifunctional systems based on hybridized nanogenerators publication-title: ACS Nano doi: 10.1021/acsnano.9b08998 – volume: 12 start-page: 2893 year: 2018 end-page: 2899 ident: CR35 article-title: Integrating a silicon solar cell with a triboelectric nanogenerator a mutual electrode for harvesting energy from sunlight and raindrops publication-title: ACS Nano doi: 10.1021/acsnano.8b00416 – volume: 323 start-page: 1176 year: 2009 end-page: 1178 ident: CR28 article-title: Harvesting ocean wave energy publication-title: Science doi: 10.1126/science.1168245 – volume: 15 start-page: 13200 year: 2021 end-page: 13208 ident: CR38 article-title: All-weather droplet-based triboelectric nanogenerator for wave energy harvesting publication-title: ACS Nano doi: 10.1021/acsnano.1c02790 – volume: 11 start-page: 1873 year: 2018 end-page: 1882 ident: CR14 article-title: Triboelectrification based on double-layered polyaniline nanofibers for self-powered cathodic protection driven by wind publication-title: Nano Res doi: 10.1007/s12274-017-1805-y – volume: 15 start-page: 7460 year: 2022 end-page: 7467 ident: CR11 article-title: 3D printed triboelectric nanogenerator as self-powered human-machine interactive sensor for breathing-based language expression publication-title: Nano Res doi: 10.1007/s12274-022-4339-x – volume: 14 start-page: 899 year: 2010 end-page: 918 ident: CR24 article-title: Wave energy utilization: A review of the technologies publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2009.11.003 – volume: 98 start-page: 107166 year: 2022 ident: CR39 article-title: Study of the enhanced electricity output of a sliding droplet-based triboelectric nanogenerator for droplet sensor design publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107166 – volume: 10 start-page: 4797 year: 2016 end-page: 4805 ident: CR29 article-title: Harvesting low-frequency (< 5 Hz) irregular mechanical energy: A possible killer application of triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b01569 – volume: 26 start-page: 4690 year: 2014 end-page: 4696 ident: CR32 article-title: Harvesting water drop energy by a sequential contact-electrification and electrostatic-induction process publication-title: Adv Mater doi: 10.1002/adma.201400373 – volume: 24 start-page: 6691 year: 2014 end-page: 6699 ident: CR12 article-title: Electrochemical cathodic protection powered by triboelectric nanogenerator publication-title: Adv Funct Mater doi: 10.1002/adfm.201401168 – volume: 33 start-page: 2211056 year: 2023 ident: CR9 article-title: Sebum-membrane-inspired protein-based bioprotonic hydrogel for artificial skin and human-machine merging interface publication-title: Adv Funct Mater doi: 10.1002/adfm.202211056 – volume: 16 start-page: 329 year: 2015 end-page: 338 ident: CR37 article-title: Multi-unit hydroelectric generator based on contact electrification and its service behavior publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.07.004 – volume: 3 start-page: 22663 year: 2015 end-page: 22668 ident: CR17 article-title: A self-powered system based on tribo-electric nanogenerators and supercapacitors for metal corrosion prevention publication-title: J Mater Chem A doi: 10.1039/C5TA07053H – volume: 508 start-page: 302 year: 2014 end-page: 304 ident: CR26 article-title: Power from the oceans: Blue energy publication-title: Nature doi: 10.1038/508302a – volume: 10 start-page: 37 year: 2014 end-page: 43 ident: CR15 article-title: Enhancing the performance of triboelectric nanogenerator through prior-charge injection and its application on self-powered anticorrosion publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.08.017 – volume: 249 start-page: 720 year: 1974 end-page: 724 ident: CR23 article-title: Wave power publication-title: Nature doi: 10.1038/249720a0 – volume: 12 start-page: 31351 year: 2020 end-page: 31359 ident: CR40 article-title: New hydrophobic organic coating based triboelectric nanogenerator for efficient and stable hydropower harvesting publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c03843 – volume: 32 start-page: 2208271 year: 2022 ident: CR10 article-title: Deep-learning-assisted noncontact gesture-recognition system for touchless human-machine interfaces publication-title: Adv Funct Mater doi: 10.1002/adfm.202208271 – volume: 223 start-page: 887 year: 2009 end-page: 902 ident: CR25 article-title: A review of wave energy converter technology publication-title: Proc Institution Mech Engineers Part A-J Power Energy doi: 10.1243/09576509JPE782 – volume: 9 start-page: 7671 year: 2015 end-page: 7677 ident: CR18 article-title: Triboelectric charging at the nanostructured solid/liquid interface for area-scalable wave energy conversion and its use in corrosion protection publication-title: ACS Nano doi: 10.1021/acsnano.5b03093 – volume: 217 start-page: 119388 year: 2021 ident: CR31 article-title: Liquid-solid triboelectric nanogenerators array and its applications for wave energy harvesting and self-powered cathodic protection publication-title: Energy doi: 10.1016/j.energy.2020.119388 – volume: 102 start-page: 107694 year: 2022 ident: CR42 article-title: New cambered-surface based drip generator: A drop of water generates 50 µA current without precharging publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107694 – volume: 13 start-page: 2657 year: 2020 ident: 2488_CR5 publication-title: Energy Environ Sci doi: 10.1039/D0EE01258K – volume: 98 start-page: 107166 year: 2022 ident: 2488_CR39 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107166 – volume: 32 start-page: 2208271 year: 2022 ident: 2488_CR10 publication-title: Adv Funct Mater doi: 10.1002/adfm.202208271 – volume: 450 start-page: 156 year: 2007 ident: 2488_CR27 publication-title: Nature doi: 10.1038/450156a – volume: 542 start-page: 159 year: 2017 ident: 2488_CR4 publication-title: Nature doi: 10.1038/542159a – volume: 30 start-page: 321 year: 2016 ident: 2488_CR30 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.025 – volume: 1 start-page: 328 year: 2012 ident: 2488_CR3 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 9 start-page: 7671 year: 2015 ident: 2488_CR18 publication-title: ACS Nano doi: 10.1021/acsnano.5b03093 – volume: 223 start-page: 887 year: 2009 ident: 2488_CR25 publication-title: Proc Institution Mech Engineers Part A-J Power Energy doi: 10.1243/09576509JPE782 – volume: 323 start-page: 1176 year: 2009 ident: 2488_CR28 publication-title: Science doi: 10.1126/science.1168245 – volume: 26 start-page: 4690 year: 2014 ident: 2488_CR32 publication-title: Adv Mater doi: 10.1002/adma.201400373 – volume: 508 start-page: 302 year: 2014 ident: 2488_CR26 publication-title: Nature doi: 10.1038/508302a – volume: 11 start-page: 1873 year: 2018 ident: 2488_CR14 publication-title: Nano Res doi: 10.1007/s12274-017-1805-y – volume: 12 start-page: 1849 year: 2018 ident: 2488_CR20 publication-title: ACS Nano doi: 10.1021/acsnano.7b08674 – volume: 29 start-page: 101564 year: 2022 ident: 2488_CR43 publication-title: Appl Mater Today doi: 10.1016/j.apmt.2022.101564 – volume: 52 start-page: 12545 year: 2013 ident: 2488_CR33 publication-title: Angew Chem Int Ed doi: 10.1002/anie.201307249 – volume: 33 start-page: 2211056 year: 2023 ident: 2488_CR9 publication-title: Adv Funct Mater doi: 10.1002/adfm.202211056 – volume: 9 start-page: 8376 year: 2015 ident: 2488_CR19 publication-title: ACS Nano doi: 10.1021/acsnano.5b03052 – volume: 12 start-page: 31351 year: 2020 ident: 2488_CR40 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.0c03843 – volume: 82 start-page: 105735 year: 2021 ident: 2488_CR36 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105735 – volume: 5 start-page: 1501152 year: 2015 ident: 2488_CR1 publication-title: Adv Energy Mater doi: 10.1002/aenm.201501152 – volume: 7 start-page: 6477 year: 2016 ident: 2488_CR13 publication-title: Chem Sci doi: 10.1039/C6SC02562E – volume: 14 start-page: 899 year: 2010 ident: 2488_CR24 publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2009.11.003 – volume: 12 start-page: 2893 year: 2018 ident: 2488_CR35 publication-title: ACS Nano doi: 10.1021/acsnano.8b00416 – volume: 39 start-page: 9 year: 2017 ident: 2488_CR22 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.06.035 – volume: 43 start-page: 37 year: 2021 ident: 2488_CR7 publication-title: Mater Today doi: 10.1016/j.mattod.2020.10.031 – volume: 249 start-page: 720 year: 1974 ident: 2488_CR23 publication-title: Nature doi: 10.1038/249720a0 – volume: 8 start-page: 1702649 year: 2018 ident: 2488_CR6 publication-title: Adv Energy Mater doi: 10.1002/aenm.201702649 – volume: 10 start-page: 6526 year: 2016 ident: 2488_CR2 publication-title: ACS Nano doi: 10.1021/acsnano.6b03293 – volume: 7 start-page: 28142 year: 2015 ident: 2488_CR16 publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.5b10923 – volume: 14 start-page: 3328 year: 2020 ident: 2488_CR8 publication-title: ACS Nano doi: 10.1021/acsnano.9b08998 – volume: 16 start-page: 329 year: 2015 ident: 2488_CR37 publication-title: Nano Energy doi: 10.1016/j.nanoen.2015.07.004 – volume: 217 start-page: 119388 year: 2021 ident: 2488_CR31 publication-title: Energy doi: 10.1016/j.energy.2020.119388 – volume: 15 start-page: 7460 year: 2022 ident: 2488_CR11 publication-title: Nano Res doi: 10.1007/s12274-022-4339-x – volume: 78 start-page: 105370 year: 2020 ident: 2488_CR41 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105370 – volume: 102 start-page: 107694 year: 2022 ident: 2488_CR42 publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107694 – volume: 10 start-page: 37 year: 2014 ident: 2488_CR15 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.08.017 – volume: 15 start-page: 13200 year: 2021 ident: 2488_CR38 publication-title: ACS Nano doi: 10.1021/acsnano.1c02790 – start-page: 223 volume-title: Energy Harvesting: Solar, Wind, and Ocean Energy Conversion Systems year: 2009 ident: 2488_CR21 – volume: 24 start-page: 6691 year: 2014 ident: 2488_CR12 publication-title: Adv Funct Mater doi: 10.1002/adfm.201401168 – volume: 10 start-page: 4797 year: 2016 ident: 2488_CR29 publication-title: ACS Nano doi: 10.1021/acsnano.6b01569 – volume: 3 start-page: 22663 year: 2015 ident: 2488_CR17 publication-title: J Mater Chem A doi: 10.1039/C5TA07053H – volume: 57 start-page: 616 year: 2019 ident: 2488_CR34 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.078 |
SSID | ssj0000389014 |
Score | 2.347976 |
Snippet | In view of the increasing energy shortage and environmental pollution, the collection of friction charges to achieve the conversion of various natural energies... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 878 |
SubjectTerms | Arrays Carbon steels Cathodic protection Corrosion Corrosion potential Corrosion prevention Corrosion resistance Droplets Energy Engineering Kinetic energy Nanogenerators Open circuit voltage Polyurethane resins Raindrops Short circuit currents Siloxanes Surface structure Voltage drop Wave power Weather |
Title | Triboelectric nanogenerator hybrid array driven by multiform natural energies and its applications in self-powered cathodic protection |
URI | https://link.springer.com/article/10.1007/s11431-023-2488-5 https://www.proquest.com/docview/2955343973 |
Volume | 67 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAgnqK85IEJZCmJ7bgZK0RBIJioBFPkJ1RCaZWGoX-A381dmtCCAIklGXK2pXx-3PnuviPkNMjYZ9ZLpk0wTDgtmOYqhodJnPDSZRnmO9_dp9cDcfMoH5s87kkb7d66JOudep7sBkc7mL4JZwnMOiaXyaoE0x3juAZJ7_NiBRnjoprTGwPsmeJJ3Hozf-rl63k0VzK_-UXr46a_STYaPZH2ZsBukSVfbJP1BfbAHfKOrB-jWR2boaWFLkbPNYk0mNH0ZYqpWFSXpZ5SV-KeRs2U1vGDqKfSmtETRsAWSBVBdeHosIL3gkubDgs68a-BjbGYmncUWV5HDkZr-B1AaJcM-pcPF9esKavALI_TiulUIALGauO6MvLaaCOtCTzY1DuV2SCCDFGwcWqsRTYYD_IqtYmyPCjF98hKMSr8PqHSgAFkDax70ESCsl0hIp3FyPitVHCuQ6L25-a24RzH0hev-ZwtGfHIAY8c8chlh5x9NhnPCDf-Ej5qEcubtTfJk0xKjnoW75DzFsX55187O_iX9CFZg8knZuFoR2SlKt_8MegnlTkhq72rp9vLk3pefgDiM-LD |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB7xOEAPCFpQ0wLdA70UrWTver3xgQNqi8LzRCRuZp80EnJQkqrKH-CP8Ec749iEVgWpBy72wbNea2cf33hmvgHYiyoNhQuKGxstz7zJuJE6xYsVPgvKFwXlO59f5L1-dnKlrhbgoc2FqaPdW5dkvVPPk93waEfTV0gucNbxNpLyNEx_oZ02Pjj-hkr9LMTR98uvPd6UEuBOpvmEmzyjXq0z1ndVEow1VjkbZXR58LpwMYsqJtGluXWOGFACyuvcCe1k1FriexdhGbFHl5ZOXxw-_sghhrqk5hCngH6upUhb7-m_vvrP828Oav_yw9bH29E6rDW4lB3OJtIGLITqLbx5wlb4Du6JZWQ4q5szcKwy1fCmJq1Gs539mFLqFzOjkZkyP6I9lNkpq-MVCRezmkEUe6AWRE3BTOXZYIL3Jy50NqjYONxGfkfF24JnxCo79NhbwyeBQpvQf5Wx34KlaliF98CURYPLWdxnEPlE7bpZlpgiJYZxraP3HUjawS1dw3FOpTZuyzk7M-mjRH2UpI9SdeDLY5O7GcHHS8LbrcbKZq2PS1EoJQnXyQ7st1qcP372ZR_-S_oTrPQuz8_Ks-OL04-wKhBbzULhtmFpMvoZdhAbTexuPTcZXL_2YvgNSYoh8w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9RADLZKkRA9IJ7qQilzgAto1GQemebAoaJdtRQqDqzUW5gnrFRlV7tBaP8Af4e_iJ1HtyBA4tBLcojnobFnxo7tzwDPk85j6aPm1iXHVbCKW2lyfDgRVNShLCnf-f1ZcTxRb8_1-Qb8GHJh2mj3wSXZ5TQQSlPd7M1D2lsnvuE1j2awkFygBPIhqvI0rr6hzbZ8fXKIDH4hxPjo45tj3pcV4F7mRcNtoWgGzlsX9nUWrbNOe5dk8kUMpvRJJZ2y5PPCeU9oKBHpTeGF8TIZI7HfG3BTUfIxbqCJOLj8qUNodVmLJ07B_dxIkQ-e1D_N-te7cK3g_uaTba-68V240-uo7KATqnuwEev7sHUFufABfCfEkVlXQ2fqWW3r2ecWwBpNePZlRWlgzC4WdsXCgs5T5lasjV0kHZm1aKI4ArUgmApm68CmDb6vuNPZtGbLeJH4nAq5xcAIYXYWcLQeWwKJHsLkWtb-EWzWszpuA9MOjS_v8MxBLSgZv69UZsuc0MaNSSGMIBsWt_I93jmV3bio1kjNxI8K-VERPyo9gpeXTeYd2Me_iHcGjlX9vl9WotRako4nR_Bq4OL68187e_xf1M_g1ofDcfXu5Oz0CdwWqGZ1UXE7sNksvsanqCY1brcVTQafrnsv_AS2PiYm |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Triboelectric+nanogenerator+hybrid+array+driven+by+multiform+natural+energies+and+its+applications+in+self-powered+cathodic+protection&rft.jtitle=Science+China.+Technological+sciences&rft.au=Sun+WeiXiang&rft.au=Yang%2C+Di&rft.au=Luo+Ning&rft.au=Li%2C+Hao&rft.date=2024-03-01&rft.pub=Springer+Nature+B.V&rft.issn=1674-7321&rft.eissn=1869-1900&rft.volume=67&rft.issue=3&rft.spage=878&rft.epage=890&rft_id=info:doi/10.1007%2Fs11431-023-2488-5&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1674-7321&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1674-7321&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1674-7321&client=summon |