A study on vulnerability and presentation attack detection in palmprint verification system

As biometric systems become ubiquitous in the domain of personal authentication, it is of utmost importance that these systems are secured against attacks. Among various types of attacks on biometric systems, the presentation attack, which involves presenting a fake copy (artefact) of the real biome...

Full description

Saved in:
Bibliographic Details
Published inPattern analysis and applications : PAA Vol. 21; no. 3; pp. 769 - 782
Main Authors Bhilare, Shruti, Kanhangad, Vivek, Chaudhari, Narendra
Format Journal Article
LanguageEnglish
Published London Springer London 01.08.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As biometric systems become ubiquitous in the domain of personal authentication, it is of utmost importance that these systems are secured against attacks. Among various types of attacks on biometric systems, the presentation attack, which involves presenting a fake copy (artefact) of the real biometric to the biometric sensor to gain illegitimate access, is the most common one. Despite the serious threat posed by these attacks, not much work has been done to address this vulnerability in palmprint-based biometric systems. This paper demonstrates the vulnerability of a palmprint verification system to presentation attacks and proposes a novel presentation attack detection (PAD) approach to discriminating between real biometric samples and artefacts. The proposed PAD approach is inspired by a work that established relationship between the surface reflectance and a set of statistical features extracted from the image. Specifically, statistical features computed from the distributions of pixel intensities, sub-band wavelet coefficients and the grey-level co-occurrence matrix form the original feature set, and CFS-based feature selection approach selects the most discriminating feature subset. A trained binary classifier utilizes the selected feature subset to determine whether the acquired image is of real hand or an artefact. For performance evaluation, an antispoofing database—PALMspoof has been developed. This database comprises left- and right-hand images of 104 subjects, and three kinds of artefacts generated from these images. In addition to PALMspoof database, the biometric system’s vulnerability has been assessed on display and print artefacts generated from two publicly available palmprint datasets. Our experimental results show that 1) the palmprint verification system is highly vulnerable with spoof acceptance of 84.56%; 2) the proposed PAD approach is effective against both print and display attacks, in both same-device and cross-device scenarios; and 3) the proposed approach for PAD provides an average improvement of 12.73 percentage points in classification error rate over local binary pattern (LBP)-based PAD approach.
AbstractList As biometric systems become ubiquitous in the domain of personal authentication, it is of utmost importance that these systems are secured against attacks. Among various types of attacks on biometric systems, the presentation attack, which involves presenting a fake copy (artefact) of the real biometric to the biometric sensor to gain illegitimate access, is the most common one. Despite the serious threat posed by these attacks, not much work has been done to address this vulnerability in palmprint-based biometric systems. This paper demonstrates the vulnerability of a palmprint verification system to presentation attacks and proposes a novel presentation attack detection (PAD) approach to discriminating between real biometric samples and artefacts. The proposed PAD approach is inspired by a work that established relationship between the surface reflectance and a set of statistical features extracted from the image. Specifically, statistical features computed from the distributions of pixel intensities, sub-band wavelet coefficients and the grey-level co-occurrence matrix form the original feature set, and CFS-based feature selection approach selects the most discriminating feature subset. A trained binary classifier utilizes the selected feature subset to determine whether the acquired image is of real hand or an artefact. For performance evaluation, an antispoofing database—PALMspoof has been developed. This database comprises left- and right-hand images of 104 subjects, and three kinds of artefacts generated from these images. In addition to PALMspoof database, the biometric system’s vulnerability has been assessed on display and print artefacts generated from two publicly available palmprint datasets. Our experimental results show that 1) the palmprint verification system is highly vulnerable with spoof acceptance of 84.56%; 2) the proposed PAD approach is effective against both print and display attacks, in both same-device and cross-device scenarios; and 3) the proposed approach for PAD provides an average improvement of 12.73 percentage points in classification error rate over local binary pattern (LBP)-based PAD approach.
Author Kanhangad, Vivek
Chaudhari, Narendra
Bhilare, Shruti
Author_xml – sequence: 1
  givenname: Shruti
  surname: Bhilare
  fullname: Bhilare, Shruti
  organization: Discipline of Computer Science and Engineering, Indian Institute of Technology Indore
– sequence: 2
  givenname: Vivek
  surname: Kanhangad
  fullname: Kanhangad, Vivek
  email: kvivek@iiti.ac.in
  organization: Discipline of Electrical Engineering, Indian Institute of Technology Indore
– sequence: 3
  givenname: Narendra
  surname: Chaudhari
  fullname: Chaudhari, Narendra
  organization: Discipline of Computer Science and Engineering, Indian Institute of Technology Indore
BookMark eNp9kF1LBCEUhiU2aHfrB3QndD3lUUfndln6gqCbgqALMccJt1lnUmdh_n1uEwVB3agc30fPeRZo5jtvEToFcg6EyIuYV84LArIggohiPEBz4IwVsiyfZt9nDkdoEeOGEMYYreboeYVjGuoRdx7vhtbboF9c69KIta9xH2y0Punk8rVOSZs3XNtkzWfBedzrdtsH5xPe2eAaZ6ZoHGOy22N02Og22pOvfYkery4f1jfF3f317Xp1VxgGIhWaC2kZMChlZRvggksG1IKsSlYyQqiom1pyzSqhpSk5g4oK2xiiGWggwJbobHq3D937YGNSm24IPn-pKJFA8-iC5hRMKRO6GINtVG58q8OogKi9QzU5VNmh2jtUY2bkL8a4yUYK2rX_knQi417Pqw0_Pf0NfQAvyYhf
CitedBy_id crossref_primary_10_1016_j_eswa_2023_119546
crossref_primary_10_1007_s11760_019_01570_w
crossref_primary_10_1007_s11042_021_10976_z
crossref_primary_10_1109_ACCESS_2019_2953075
crossref_primary_10_1117_1_JEI_27_5_053028
crossref_primary_10_1016_j_neucom_2025_129751
crossref_primary_10_1007_s00138_018_0959_2
crossref_primary_10_3390_electronics12214500
crossref_primary_10_3390_app14010153
Cites_doi 10.1109/ACCESS.2014.2381273
10.1109/TBCAS.2008.2003432
10.1109/ICVGIP.2008.73
10.1109/CVPRW.2013.22
10.1117/12.2051724
10.1109/TIFS.2015.2398812
10.1016/j.patrec.2007.02.017
10.1109/TIFS.2011.2121062
10.1007/3-540-45344-X_32
10.1016/j.patcog.2009.01.018
10.1109/ICPR.2004.1334184
10.1016/j.patcog.2009.04.026
10.1109/FG.2013.6553761
10.1109/TSMC.1973.4309314
10.1117/12.429494
10.1109/ICCV.2007.4409068
10.1109/TIFS.2014.2322255
10.1016/j.patrec.2014.10.018
10.1109/CVPR.2010.5540134
10.1109/TSMCC.2005.848192
10.1109/TIP.2012.2191563
10.1109/CVPRW.2014.22
10.1117/12.2180333
10.1109/ICPR.2014.211
10.1109/TIM.2009.2028772
10.1109/TIP.2011.2147325
10.1109/BTAS.2007.4401916
ContentType Journal Article
Copyright Springer-Verlag London 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer-Verlag London 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s10044-017-0606-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1433-755X
EndPage 782
ExternalDocumentID 10_1007_s10044_017_0606_y
GrantInformation_xml – fundername: Council of Scientific and Industrial Research
  grantid: 22(0697)/15/EMR-II
  funderid: http://dx.doi.org/10.13039/501100001412
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
203
29O
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACREN
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9O
PF0
PT4
PT5
QOS
R89
R9I
RIG
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-a467e3131578ef14647312e17853530026dfd74a386a7c5431826efc0a31a1013
IEDL.DBID U2A
ISSN 1433-7541
IngestDate Sun Jul 13 03:56:56 EDT 2025
Tue Jul 01 01:15:15 EDT 2025
Thu Apr 24 22:55:44 EDT 2025
Fri Feb 21 02:29:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Biometrics
Image quality
Presentation attack detection
Anti-spoofing
Surface reflectance
Palmprint
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a467e3131578ef14647312e17853530026dfd74a386a7c5431826efc0a31a1013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2071243362
PQPubID 2043691
PageCount 14
ParticipantIDs proquest_journals_2071243362
crossref_primary_10_1007_s10044_017_0606_y
crossref_citationtrail_10_1007_s10044_017_0606_y
springer_journals_10_1007_s10044_017_0606_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-01
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Pattern analysis and applications : PAA
PublicationTitleAbbrev Pattern Anal Applic
PublicationYear 2018
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References Chen H, Valizadegan H, Jackson C, Soltysiak S, Jain AK (2005) Fake hands: spoofing hand geometry systems. Biom Consort
KanhangadVKumarAZhangDA unified framework for contactless hand verificationIEEE Trans Inf Forens Secur201161014102710.1109/TIFS.2011.2121062
ParthasaradhiSDerakhshaniRHornakLSchuckersSTime-series detection of perspiration as a liveness test in fingerprint devicesIEEE Trans Syst Man Cybern Part C Appl Rev200535333534310.1109/TSMCC.2005.848192
ErdogmusNMarcelSSpoofing face recognition with 3D masksIEEE Trans Inf Forens Secur2014971084109710.1109/TIFS.2014.2322255
Kanhangad V, Kumar A (2013) Securing palmprint authentication systems using spoof detection approach. In: 6th International conference on machine vision (ICMV) pp 90671M–90671M
Galbally J and Marcel S (2014) Face anti-spoofing based on general image quality assessment. In: 22nd International conference on pattern recognition (ICPR) pp 1173–1178
Walck C (2007) Handbook on statistical distributions for experimentalists. University of Stockholm Internal Report SUF-PFY96-01
FarajM-IBigunJAudiovisual person authentication using lip-motion from orientation mapsPattern Recogn Lett200728111368138210.1016/j.patrec.2007.02.017
ZhangDKanhangadVLuoNKumarARobust palmprint verification using 2D and 3D featuresPattern Recogn201043135836810.1016/j.patcog.2009.04.0261187.68516
Kanhangad V, Bhilare S, Garg P, Singh P, Chaudhari N (2015) Anti-spoofing for display and print attacks on palmprint verification systems. Proc. SPIE 9457:94570E-94570E-8. doi:10.1117/12.2180333
Chingovska I, Anjos A, Marcel S (2013) Anti-spoofing in action: joint operation with a verification system. In: IEEE conference on computer vision and pattern recognition workshops pp 98–104
GragnanielloDSansoneCVerdolivaLIris liveness detection for mobile devices based on local descriptorsPattern Recogn Lett201557818710.1016/j.patrec.2014.10.018
Ratha NK, Connell JH, Bolle RM (2001) An analysis of minutiae matching strength. In: Bigun J, Smeraldi F (eds) Audio-and video-based biometric person authentication: Third International Conference, AVBPA 2001 Halmstad, Sweden, June 6--8, 2001 Proceedings. Springer, Heidelberg, pp 223–228. doi:10.1007/3-540-45344-X_32
Kong, AK, and Zhang D (2004) Competitive coding scheme for palmprint verification. In: 17th International conference on pattern recognition pp 520–523
HaralickRMShanmugamKDinsteinITextural features for image classificationIEEE Trans Syst Man Cybern1973661062110.1109/TSMC.1973.4309314
Dror RO, Adelson EH, Willsky AS (2001) Estimating surface reflectance properties from images under unknown illumination. In: Photonics West 2001-electronic imaging pp 231–242
Li W, Zhang D, Lu G, Yan J (2010) Efficient joint 2D and 3D palmprint matching with alignment refinement. In: IEEE computer vision and pattern recognition (CVPR) pp 795–801
Pan G, Sun L, Wu Z and Lao S (2007) Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In: IEEE 11th International conference on computer vision pp 1-8
MoorthyAKBovikACBlind image quality assessment: from natural scene statistics to perceptual qualityieee trans image process20112033503364285048110.1109/TIP.2011.21473251374.94266
Kumar A (2008) Incorporating cohort information for reliable palmprint authentication. In: 6th Indian Conference on Computer Vision, Graphics & Image Processing pp 583–590
Information Technology—Presentation Attack Detection (2014) Part 3: Testing, reporting and classification of attacks, ISO/IEC JTC1 SC37 Biometrics, ISO/IEC Standard WD 30107-3
Kose N and Dugelay J-L (2013) Countermeasure for the protection of face recognition systems against mask attacks. In: 10th IEEE International conference and workshops on automatic face and gesture recognition pp 1–6
ZhangDGuoZLuGZhangDZuoWAn online system of multispectral palmprint verificationIEEE Trans Instrum Meas201059248049010.1109/TIM.2009.2028772
Chingovska I, Anjos A, Marcel S (2012) On the effectiveness of local binary patterns in face anti-spoofing. In: 11th International conference biometrics special interest group pp 1–7
Reddy PV, Kumar A, Rahman SMK, Mundra TS (2007) A new method for fingerprint antispoofing using pulse oxiometry. In: First IEEE international conference on biometrics: theory, applications, and systems. pp 1–6
SaadMABovikACCharrierCBlind image quality assessment: a natural scene statistics approach in the DCT domainieee trans image process20122133393352296043010.1109/TIP.2012.21915631373.94355
KongAZhangDKamelMA survey of palmprint recognitionPattern Recogn20094271408141810.1016/j.patcog.2009.01.018
Raghavendra R, Busch C (2014) Presentation attack detection algorithm for face and iris biometrics. In: 22nd European signal processing conference (EUSIPCO). pp 1387–1391
ReddyPVKumarARahmanSMundraTA new antispoofing approach for biometric devicesIEEE Trans Biomed Circuits Syst20082432833710.1109/TBCAS.2008.2003432
KecmanVLearning and soft computing: support vector machines, neural networks, and fuzzy logic models2001MassachusettsMIT press0994.68109
GalballyJMarcelSFierrezJNavasEErroDRaitioTBiometric anti-spoofing methods: a survey in face recognitionIEEE Access201421530155210.1109/ACCESS.2014.2381273
Zhang H, Sun Z, Tan T, Wang J (2011) Learning hierarchical visual codebook for iris liveness detection. In: International joint conference on biometrics (IJCB)
Casia palmprint database. http://biometrics.idealtest.org/. Accessed January (2015)
Hadid A (2014) Face biometrics under spoofing attacks: vulnerabilities, countermeasures, open issues, and research directions. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp 113–118
SanchezJSaratxagaIHernaezINavasEErroDRaitioTTowards a universal synthetic speech spoofing detection using phase informationIEEE Trans Inf Forens Secur201510481082010.1109/TIFS.2015.2398812
Hall MA (1999) Correlation-based feature selection for machine learning. Dissertation, University of Waikato
606_CR1
606_CR30
S Parthasaradhi (606_CR7) 2005; 35
RM Haralick (606_CR29) 1973; 6
D Zhang (606_CR3) 2010; 43
N Erdogmus (606_CR8) 2014; 9
606_CR17
606_CR18
V Kecman (606_CR31) 2001
606_CR11
D Gragnaniello (606_CR21) 2015; 57
606_CR33
606_CR34
AK Moorthy (606_CR26) 2011; 20
A Kong (606_CR2) 2009; 42
606_CR10
606_CR32
606_CR16
606_CR35
606_CR36
PV Reddy (606_CR14) 2008; 2
J Galbally (606_CR13) 2014; 2
J Sanchez (606_CR12) 2015; 10
V Kanhangad (606_CR23) 2011; 6
606_CR28
D Zhang (606_CR15) 2010; 59
MA Saad (606_CR27) 2012; 21
606_CR22
606_CR9
606_CR6
606_CR20
606_CR4
M-I Faraj (606_CR19) 2007; 28
606_CR5
606_CR24
606_CR25
References_xml – reference: Reddy PV, Kumar A, Rahman SMK, Mundra TS (2007) A new method for fingerprint antispoofing using pulse oxiometry. In: First IEEE international conference on biometrics: theory, applications, and systems. pp 1–6
– reference: ParthasaradhiSDerakhshaniRHornakLSchuckersSTime-series detection of perspiration as a liveness test in fingerprint devicesIEEE Trans Syst Man Cybern Part C Appl Rev200535333534310.1109/TSMCC.2005.848192
– reference: Walck C (2007) Handbook on statistical distributions for experimentalists. University of Stockholm Internal Report SUF-PFY96-01
– reference: ZhangDGuoZLuGZhangDZuoWAn online system of multispectral palmprint verificationIEEE Trans Instrum Meas201059248049010.1109/TIM.2009.2028772
– reference: SanchezJSaratxagaIHernaezINavasEErroDRaitioTTowards a universal synthetic speech spoofing detection using phase informationIEEE Trans Inf Forens Secur201510481082010.1109/TIFS.2015.2398812
– reference: Chen H, Valizadegan H, Jackson C, Soltysiak S, Jain AK (2005) Fake hands: spoofing hand geometry systems. Biom Consort
– reference: Chingovska I, Anjos A, Marcel S (2013) Anti-spoofing in action: joint operation with a verification system. In: IEEE conference on computer vision and pattern recognition workshops pp 98–104
– reference: KanhangadVKumarAZhangDA unified framework for contactless hand verificationIEEE Trans Inf Forens Secur201161014102710.1109/TIFS.2011.2121062
– reference: MoorthyAKBovikACBlind image quality assessment: from natural scene statistics to perceptual qualityieee trans image process20112033503364285048110.1109/TIP.2011.21473251374.94266
– reference: ErdogmusNMarcelSSpoofing face recognition with 3D masksIEEE Trans Inf Forens Secur2014971084109710.1109/TIFS.2014.2322255
– reference: Pan G, Sun L, Wu Z and Lao S (2007) Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In: IEEE 11th International conference on computer vision pp 1-8
– reference: Kong, AK, and Zhang D (2004) Competitive coding scheme for palmprint verification. In: 17th International conference on pattern recognition pp 520–523
– reference: Chingovska I, Anjos A, Marcel S (2012) On the effectiveness of local binary patterns in face anti-spoofing. In: 11th International conference biometrics special interest group pp 1–7
– reference: Dror RO, Adelson EH, Willsky AS (2001) Estimating surface reflectance properties from images under unknown illumination. In: Photonics West 2001-electronic imaging pp 231–242
– reference: Casia palmprint database. http://biometrics.idealtest.org/. Accessed January (2015)
– reference: Hadid A (2014) Face biometrics under spoofing attacks: vulnerabilities, countermeasures, open issues, and research directions. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp 113–118
– reference: Ratha NK, Connell JH, Bolle RM (2001) An analysis of minutiae matching strength. In: Bigun J, Smeraldi F (eds) Audio-and video-based biometric person authentication: Third International Conference, AVBPA 2001 Halmstad, Sweden, June 6--8, 2001 Proceedings. Springer, Heidelberg, pp 223–228. doi:10.1007/3-540-45344-X_32
– reference: Zhang H, Sun Z, Tan T, Wang J (2011) Learning hierarchical visual codebook for iris liveness detection. In: International joint conference on biometrics (IJCB)
– reference: Galbally J and Marcel S (2014) Face anti-spoofing based on general image quality assessment. In: 22nd International conference on pattern recognition (ICPR) pp 1173–1178
– reference: Kumar A (2008) Incorporating cohort information for reliable palmprint authentication. In: 6th Indian Conference on Computer Vision, Graphics & Image Processing pp 583–590
– reference: Information Technology—Presentation Attack Detection (2014) Part 3: Testing, reporting and classification of attacks, ISO/IEC JTC1 SC37 Biometrics, ISO/IEC Standard WD 30107-3
– reference: Kanhangad V, Bhilare S, Garg P, Singh P, Chaudhari N (2015) Anti-spoofing for display and print attacks on palmprint verification systems. Proc. SPIE 9457:94570E-94570E-8. doi:10.1117/12.2180333
– reference: FarajM-IBigunJAudiovisual person authentication using lip-motion from orientation mapsPattern Recogn Lett200728111368138210.1016/j.patrec.2007.02.017
– reference: Hall MA (1999) Correlation-based feature selection for machine learning. Dissertation, University of Waikato
– reference: SaadMABovikACCharrierCBlind image quality assessment: a natural scene statistics approach in the DCT domainieee trans image process20122133393352296043010.1109/TIP.2012.21915631373.94355
– reference: Kose N and Dugelay J-L (2013) Countermeasure for the protection of face recognition systems against mask attacks. In: 10th IEEE International conference and workshops on automatic face and gesture recognition pp 1–6
– reference: KongAZhangDKamelMA survey of palmprint recognitionPattern Recogn20094271408141810.1016/j.patcog.2009.01.018
– reference: GragnanielloDSansoneCVerdolivaLIris liveness detection for mobile devices based on local descriptorsPattern Recogn Lett201557818710.1016/j.patrec.2014.10.018
– reference: ZhangDKanhangadVLuoNKumarARobust palmprint verification using 2D and 3D featuresPattern Recogn201043135836810.1016/j.patcog.2009.04.0261187.68516
– reference: ReddyPVKumarARahmanSMundraTA new antispoofing approach for biometric devicesIEEE Trans Biomed Circuits Syst20082432833710.1109/TBCAS.2008.2003432
– reference: Raghavendra R, Busch C (2014) Presentation attack detection algorithm for face and iris biometrics. In: 22nd European signal processing conference (EUSIPCO). pp 1387–1391
– reference: HaralickRMShanmugamKDinsteinITextural features for image classificationIEEE Trans Syst Man Cybern1973661062110.1109/TSMC.1973.4309314
– reference: KecmanVLearning and soft computing: support vector machines, neural networks, and fuzzy logic models2001MassachusettsMIT press0994.68109
– reference: Li W, Zhang D, Lu G, Yan J (2010) Efficient joint 2D and 3D palmprint matching with alignment refinement. In: IEEE computer vision and pattern recognition (CVPR) pp 795–801
– reference: GalballyJMarcelSFierrezJNavasEErroDRaitioTBiometric anti-spoofing methods: a survey in face recognitionIEEE Access201421530155210.1109/ACCESS.2014.2381273
– reference: Kanhangad V, Kumar A (2013) Securing palmprint authentication systems using spoof detection approach. In: 6th International conference on machine vision (ICMV) pp 90671M–90671M
– ident: 606_CR28
– volume: 2
  start-page: 1530
  year: 2014
  ident: 606_CR13
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2381273
– volume: 2
  start-page: 328
  issue: 4
  year: 2008
  ident: 606_CR14
  publication-title: IEEE Trans Biomed Circuits Syst
  doi: 10.1109/TBCAS.2008.2003432
– ident: 606_CR32
  doi: 10.1109/ICVGIP.2008.73
– ident: 606_CR35
  doi: 10.1109/CVPRW.2013.22
– ident: 606_CR4
– ident: 606_CR22
  doi: 10.1117/12.2051724
– volume: 10
  start-page: 810
  issue: 4
  year: 2015
  ident: 606_CR12
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2015.2398812
– volume: 28
  start-page: 1368
  issue: 11
  year: 2007
  ident: 606_CR19
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2007.02.017
– volume: 6
  start-page: 1014
  year: 2011
  ident: 606_CR23
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2011.2121062
– ident: 606_CR1
  doi: 10.1007/3-540-45344-X_32
– ident: 606_CR20
– volume: 42
  start-page: 1408
  issue: 7
  year: 2009
  ident: 606_CR2
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.01.018
– ident: 606_CR10
– ident: 606_CR34
  doi: 10.1109/ICPR.2004.1334184
– ident: 606_CR33
– volume: 43
  start-page: 358
  issue: 1
  year: 2010
  ident: 606_CR3
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2009.04.026
– ident: 606_CR17
  doi: 10.1109/FG.2013.6553761
– volume: 6
  start-page: 610
  year: 1973
  ident: 606_CR29
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMC.1973.4309314
– ident: 606_CR25
  doi: 10.1117/12.429494
– ident: 606_CR18
  doi: 10.1109/ICCV.2007.4409068
– volume: 9
  start-page: 1084
  issue: 7
  year: 2014
  ident: 606_CR8
  publication-title: IEEE Trans Inf Forens Secur
  doi: 10.1109/TIFS.2014.2322255
– volume-title: Learning and soft computing: support vector machines, neural networks, and fuzzy logic models
  year: 2001
  ident: 606_CR31
– volume: 57
  start-page: 81
  year: 2015
  ident: 606_CR21
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2014.10.018
– ident: 606_CR16
  doi: 10.1109/CVPR.2010.5540134
– volume: 35
  start-page: 335
  issue: 3
  year: 2005
  ident: 606_CR7
  publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev
  doi: 10.1109/TSMCC.2005.848192
– volume: 21
  start-page: 3339
  year: 2012
  ident: 606_CR27
  publication-title: ieee trans image process
  doi: 10.1109/TIP.2012.2191563
– ident: 606_CR9
  doi: 10.1109/CVPRW.2014.22
– ident: 606_CR5
  doi: 10.1117/12.2180333
– ident: 606_CR24
  doi: 10.1109/ICPR.2014.211
– volume: 59
  start-page: 480
  issue: 2
  year: 2010
  ident: 606_CR15
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2009.2028772
– volume: 20
  start-page: 3350
  year: 2011
  ident: 606_CR26
  publication-title: ieee trans image process
  doi: 10.1109/TIP.2011.2147325
– ident: 606_CR6
  doi: 10.1109/BTAS.2007.4401916
– ident: 606_CR36
– ident: 606_CR30
– ident: 606_CR11
SSID ssj0033328
Score 2.2260132
Snippet As biometric systems become ubiquitous in the domain of personal authentication, it is of utmost importance that these systems are secured against attacks....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 769
SubjectTerms Biometrics
Computer Science
Data base management systems
Feature extraction
Image acquisition
Pattern Recognition
Performance evaluation
Reflectance
Statistical analysis
Statistical methods
Theoretical Advances
Wavelet analysis
Title A study on vulnerability and presentation attack detection in palmprint verification system
URI https://link.springer.com/article/10.1007/s10044-017-0606-y
https://www.proquest.com/docview/2071243362
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6Xbz4LU7nyMGTEmiaNm2PRZxD0ZODiYeSpimIMxuuE_bf-5I2VkUFr2kSyvvK7_G-EDoVNFQAhAsiy7wkga8YiRMpSC4TFYWFH3NblXZ7x0fj4HoSTpo67oXLdnchSWupPxW7eYHJmDDpWuAGr9ZRNzSuOwjx2E-d-WWM2YGqgAMYicKAulDmT1d8fYxahPktKGrfmuE22mxAIk5rru6gNaV30VYDGHGjjgtYcjMZ3Noeekyx7RiLZxq_Laemp7RNf11hoQs8b4uNNBZVJeQzLlRl07E0ftJ4LqYv5qcqDCJusojqrXW_5300Hl7eX4xIM0CBSEZ5RQRYQcUoo6CWqgSbGESM-opG8EaHzLhfRVlEgWAxF5E0VfHgbKhSeoJRAbrKDlBHz7Q6RNhEC3keSMr9BA54eZxwUca5VHAerEAPeY6SmWy6i5shF9Os7YtsiJ8B8TND_GzVQ2cfR-Z1a42_Nvcde7JGyxaZD_jIBz5zv4fOHcvaz79edvSv3cdoA1BSXGf99VGnel2qE0AiVT5A3fTq4eZyYCXwHfL01n0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3rxLVar5uBJCTTJPo9FLFXbnlooeAjZbBbEui12K_TfO8luXBUVvGaTsMxkJl-Yb2YQupTU1wCEU6KyJCMe05xEsZIkUbEO_ZRFgc1KGwyD3ti7n_iTKo974djuLiRpPfWnZLe2ZxgThq4Fz-DVOtoALBAZHteYdZz75ZzbhqqAAzgJfY-6UOZPW3y9jGqE-S0oau-a7i7arkAi7pRa3UNrOt9HOxVgxJU5LmDI9WRwYwfosYNtxVg8y_HbcmpqSlv66wrLPMXzOtkox7IopHrGqS4sHSvHTzmey-mL-akCwxE3LKJyalnv-RCNu7ejmx6pGigQxWlQEAleUHPKKZilzsAneiGnTNMQ7mifm-dXmqWhJ3kUyFCZrHh4bOhMtSWnEmyVH6FGPsv1McImWhgknqIBi2FBO4niQGZRojSsBy_QRG0nSaGq6uKmycVU1HWRjfAFCF8Y4YtVE119LJmXpTX-mtxy6hGVlS0EA3zEQM8Ba6Jrp7L686-bnfxr9gXa7I0GfdG_Gz6coi1ATFHJAGyhRvG61GeASork3J7Cd3fe19w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXzxW5xOzYNPSljT9PNxqMPP4YODgQ8lTVMQZ1ZcJuy_99I2VkUFX9MklLvc5Rfu7ncIHXPqSwDCGRF5mhPPlYxEseAkFbEM_cyNgrIq7W4QXA6965E_qvucTm22uw1JVjUNhqVJ6W6R5d1PhW-OZ7InTOoWPInni2gJvDE1x3ro9qwrZoyVzVUBEzAS-h61Yc2ftvh6MTVo81uAtLx3-utotQaMuFdpeAMtSLWJ1mrwiGvTnMKQ7c9gx7bQYw-X7LF4ovDbbGz4pctU2DnmKsNFU3ikMNeai2ecSV2mZin8pHDBxy_mpzSG424yiqqpFffzNhr2Lx7OLkndTIEIRgNNOHhEyUBGYKIyB__ohYy6koZwX_vMPMWyPAs9zqKAh8JUyMPDQ-bC4YxysFu2g1pqouQuwiZyGKSeoIEbwwInjeKA51EqJKwHj9BGjpVkImqmcdPwYpw0HMlG-AkIPzHCT-ZtdPKxpKhoNv6a3LHqSWqLmyYuYCUX9By4bXRqVdZ8_nWzvX_NPkLL9-f95PZqcLOPVgA8RVUyYAe19OtMHgBA0elheQjfARUp3Bg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+on+vulnerability+and+presentation+attack+detection+in+palmprint+verification+system&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Bhilare%2C+Shruti&rft.au=Kanhangad%2C+Vivek&rft.au=Chaudhari%2C+Narendra&rft.date=2018-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=21&rft.issue=3&rft.spage=769&rft.epage=782&rft_id=info:doi/10.1007%2Fs10044-017-0606-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon