A study on vulnerability and presentation attack detection in palmprint verification system
As biometric systems become ubiquitous in the domain of personal authentication, it is of utmost importance that these systems are secured against attacks. Among various types of attacks on biometric systems, the presentation attack, which involves presenting a fake copy (artefact) of the real biome...
Saved in:
Published in | Pattern analysis and applications : PAA Vol. 21; no. 3; pp. 769 - 782 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.08.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As biometric systems become ubiquitous in the domain of personal authentication, it is of utmost importance that these systems are secured against attacks. Among various types of attacks on biometric systems, the presentation attack, which involves presenting a fake copy (artefact) of the real biometric to the biometric sensor to gain illegitimate access, is the most common one. Despite the serious threat posed by these attacks, not much work has been done to address this vulnerability in palmprint-based biometric systems. This paper demonstrates the vulnerability of a palmprint verification system to presentation attacks and proposes a novel presentation attack detection (PAD) approach to discriminating between real biometric samples and artefacts. The proposed PAD approach is inspired by a work that established relationship between the surface reflectance and a set of statistical features extracted from the image. Specifically, statistical features computed from the distributions of pixel intensities, sub-band wavelet coefficients and the grey-level co-occurrence matrix form the original feature set, and CFS-based feature selection approach selects the most discriminating feature subset. A trained binary classifier utilizes the selected feature subset to determine whether the acquired image is of real hand or an artefact. For performance evaluation, an antispoofing database—PALMspoof has been developed. This database comprises left- and right-hand images of 104 subjects, and three kinds of artefacts generated from these images. In addition to PALMspoof database, the biometric system’s vulnerability has been assessed on display and print artefacts generated from two publicly available palmprint datasets. Our experimental results show that 1) the palmprint verification system is highly vulnerable with spoof acceptance of 84.56%; 2) the proposed PAD approach is effective against both print and display attacks, in both same-device and cross-device scenarios; and 3) the proposed approach for PAD provides an average improvement of 12.73 percentage points in classification error rate over local binary pattern (LBP)-based PAD approach. |
---|---|
AbstractList | As biometric systems become ubiquitous in the domain of personal authentication, it is of utmost importance that these systems are secured against attacks. Among various types of attacks on biometric systems, the presentation attack, which involves presenting a fake copy (artefact) of the real biometric to the biometric sensor to gain illegitimate access, is the most common one. Despite the serious threat posed by these attacks, not much work has been done to address this vulnerability in palmprint-based biometric systems. This paper demonstrates the vulnerability of a palmprint verification system to presentation attacks and proposes a novel presentation attack detection (PAD) approach to discriminating between real biometric samples and artefacts. The proposed PAD approach is inspired by a work that established relationship between the surface reflectance and a set of statistical features extracted from the image. Specifically, statistical features computed from the distributions of pixel intensities, sub-band wavelet coefficients and the grey-level co-occurrence matrix form the original feature set, and CFS-based feature selection approach selects the most discriminating feature subset. A trained binary classifier utilizes the selected feature subset to determine whether the acquired image is of real hand or an artefact. For performance evaluation, an antispoofing database—PALMspoof has been developed. This database comprises left- and right-hand images of 104 subjects, and three kinds of artefacts generated from these images. In addition to PALMspoof database, the biometric system’s vulnerability has been assessed on display and print artefacts generated from two publicly available palmprint datasets. Our experimental results show that 1) the palmprint verification system is highly vulnerable with spoof acceptance of 84.56%; 2) the proposed PAD approach is effective against both print and display attacks, in both same-device and cross-device scenarios; and 3) the proposed approach for PAD provides an average improvement of 12.73 percentage points in classification error rate over local binary pattern (LBP)-based PAD approach. |
Author | Kanhangad, Vivek Chaudhari, Narendra Bhilare, Shruti |
Author_xml | – sequence: 1 givenname: Shruti surname: Bhilare fullname: Bhilare, Shruti organization: Discipline of Computer Science and Engineering, Indian Institute of Technology Indore – sequence: 2 givenname: Vivek surname: Kanhangad fullname: Kanhangad, Vivek email: kvivek@iiti.ac.in organization: Discipline of Electrical Engineering, Indian Institute of Technology Indore – sequence: 3 givenname: Narendra surname: Chaudhari fullname: Chaudhari, Narendra organization: Discipline of Computer Science and Engineering, Indian Institute of Technology Indore |
BookMark | eNp9kF1LBCEUhiU2aHfrB3QndD3lUUfndln6gqCbgqALMccJt1lnUmdh_n1uEwVB3agc30fPeRZo5jtvEToFcg6EyIuYV84LArIggohiPEBz4IwVsiyfZt9nDkdoEeOGEMYYreboeYVjGuoRdx7vhtbboF9c69KIta9xH2y0Punk8rVOSZs3XNtkzWfBedzrdtsH5xPe2eAaZ6ZoHGOy22N02Og22pOvfYkery4f1jfF3f317Xp1VxgGIhWaC2kZMChlZRvggksG1IKsSlYyQqiom1pyzSqhpSk5g4oK2xiiGWggwJbobHq3D937YGNSm24IPn-pKJFA8-iC5hRMKRO6GINtVG58q8OogKi9QzU5VNmh2jtUY2bkL8a4yUYK2rX_knQi417Pqw0_Pf0NfQAvyYhf |
CitedBy_id | crossref_primary_10_1016_j_eswa_2023_119546 crossref_primary_10_1007_s11760_019_01570_w crossref_primary_10_1007_s11042_021_10976_z crossref_primary_10_1109_ACCESS_2019_2953075 crossref_primary_10_1117_1_JEI_27_5_053028 crossref_primary_10_1016_j_neucom_2025_129751 crossref_primary_10_1007_s00138_018_0959_2 crossref_primary_10_3390_electronics12214500 crossref_primary_10_3390_app14010153 |
Cites_doi | 10.1109/ACCESS.2014.2381273 10.1109/TBCAS.2008.2003432 10.1109/ICVGIP.2008.73 10.1109/CVPRW.2013.22 10.1117/12.2051724 10.1109/TIFS.2015.2398812 10.1016/j.patrec.2007.02.017 10.1109/TIFS.2011.2121062 10.1007/3-540-45344-X_32 10.1016/j.patcog.2009.01.018 10.1109/ICPR.2004.1334184 10.1016/j.patcog.2009.04.026 10.1109/FG.2013.6553761 10.1109/TSMC.1973.4309314 10.1117/12.429494 10.1109/ICCV.2007.4409068 10.1109/TIFS.2014.2322255 10.1016/j.patrec.2014.10.018 10.1109/CVPR.2010.5540134 10.1109/TSMCC.2005.848192 10.1109/TIP.2012.2191563 10.1109/CVPRW.2014.22 10.1117/12.2180333 10.1109/ICPR.2014.211 10.1109/TIM.2009.2028772 10.1109/TIP.2011.2147325 10.1109/BTAS.2007.4401916 |
ContentType | Journal Article |
Copyright | Springer-Verlag London 2017 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer-Verlag London 2017 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s10044-017-0606-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1433-755X |
EndPage | 782 |
ExternalDocumentID | 10_1007_s10044_017_0606_y |
GrantInformation_xml | – fundername: Council of Scientific and Industrial Research grantid: 22(0697)/15/EMR-II funderid: http://dx.doi.org/10.13039/501100001412 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29O 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BDATZ BGNMA BSONS CAG COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAS LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9O PF0 PT4 PT5 QOS R89 R9I RIG RNI ROL RPX RSV RZK S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-a467e3131578ef14647312e17853530026dfd74a386a7c5431826efc0a31a1013 |
IEDL.DBID | U2A |
ISSN | 1433-7541 |
IngestDate | Sun Jul 13 03:56:56 EDT 2025 Tue Jul 01 01:15:15 EDT 2025 Thu Apr 24 22:55:44 EDT 2025 Fri Feb 21 02:29:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Biometrics Image quality Presentation attack detection Anti-spoofing Surface reflectance Palmprint |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-a467e3131578ef14647312e17853530026dfd74a386a7c5431826efc0a31a1013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2071243362 |
PQPubID | 2043691 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2071243362 crossref_primary_10_1007_s10044_017_0606_y crossref_citationtrail_10_1007_s10044_017_0606_y springer_journals_10_1007_s10044_017_0606_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-01 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Pattern analysis and applications : PAA |
PublicationTitleAbbrev | Pattern Anal Applic |
PublicationYear | 2018 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | Chen H, Valizadegan H, Jackson C, Soltysiak S, Jain AK (2005) Fake hands: spoofing hand geometry systems. Biom Consort KanhangadVKumarAZhangDA unified framework for contactless hand verificationIEEE Trans Inf Forens Secur201161014102710.1109/TIFS.2011.2121062 ParthasaradhiSDerakhshaniRHornakLSchuckersSTime-series detection of perspiration as a liveness test in fingerprint devicesIEEE Trans Syst Man Cybern Part C Appl Rev200535333534310.1109/TSMCC.2005.848192 ErdogmusNMarcelSSpoofing face recognition with 3D masksIEEE Trans Inf Forens Secur2014971084109710.1109/TIFS.2014.2322255 Kanhangad V, Kumar A (2013) Securing palmprint authentication systems using spoof detection approach. In: 6th International conference on machine vision (ICMV) pp 90671M–90671M Galbally J and Marcel S (2014) Face anti-spoofing based on general image quality assessment. In: 22nd International conference on pattern recognition (ICPR) pp 1173–1178 Walck C (2007) Handbook on statistical distributions for experimentalists. University of Stockholm Internal Report SUF-PFY96-01 FarajM-IBigunJAudiovisual person authentication using lip-motion from orientation mapsPattern Recogn Lett200728111368138210.1016/j.patrec.2007.02.017 ZhangDKanhangadVLuoNKumarARobust palmprint verification using 2D and 3D featuresPattern Recogn201043135836810.1016/j.patcog.2009.04.0261187.68516 Kanhangad V, Bhilare S, Garg P, Singh P, Chaudhari N (2015) Anti-spoofing for display and print attacks on palmprint verification systems. Proc. SPIE 9457:94570E-94570E-8. doi:10.1117/12.2180333 Chingovska I, Anjos A, Marcel S (2013) Anti-spoofing in action: joint operation with a verification system. In: IEEE conference on computer vision and pattern recognition workshops pp 98–104 GragnanielloDSansoneCVerdolivaLIris liveness detection for mobile devices based on local descriptorsPattern Recogn Lett201557818710.1016/j.patrec.2014.10.018 Ratha NK, Connell JH, Bolle RM (2001) An analysis of minutiae matching strength. In: Bigun J, Smeraldi F (eds) Audio-and video-based biometric person authentication: Third International Conference, AVBPA 2001 Halmstad, Sweden, June 6--8, 2001 Proceedings. Springer, Heidelberg, pp 223–228. doi:10.1007/3-540-45344-X_32 Kong, AK, and Zhang D (2004) Competitive coding scheme for palmprint verification. In: 17th International conference on pattern recognition pp 520–523 HaralickRMShanmugamKDinsteinITextural features for image classificationIEEE Trans Syst Man Cybern1973661062110.1109/TSMC.1973.4309314 Dror RO, Adelson EH, Willsky AS (2001) Estimating surface reflectance properties from images under unknown illumination. In: Photonics West 2001-electronic imaging pp 231–242 Li W, Zhang D, Lu G, Yan J (2010) Efficient joint 2D and 3D palmprint matching with alignment refinement. In: IEEE computer vision and pattern recognition (CVPR) pp 795–801 Pan G, Sun L, Wu Z and Lao S (2007) Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In: IEEE 11th International conference on computer vision pp 1-8 MoorthyAKBovikACBlind image quality assessment: from natural scene statistics to perceptual qualityieee trans image process20112033503364285048110.1109/TIP.2011.21473251374.94266 Kumar A (2008) Incorporating cohort information for reliable palmprint authentication. In: 6th Indian Conference on Computer Vision, Graphics & Image Processing pp 583–590 Information Technology—Presentation Attack Detection (2014) Part 3: Testing, reporting and classification of attacks, ISO/IEC JTC1 SC37 Biometrics, ISO/IEC Standard WD 30107-3 Kose N and Dugelay J-L (2013) Countermeasure for the protection of face recognition systems against mask attacks. In: 10th IEEE International conference and workshops on automatic face and gesture recognition pp 1–6 ZhangDGuoZLuGZhangDZuoWAn online system of multispectral palmprint verificationIEEE Trans Instrum Meas201059248049010.1109/TIM.2009.2028772 Chingovska I, Anjos A, Marcel S (2012) On the effectiveness of local binary patterns in face anti-spoofing. In: 11th International conference biometrics special interest group pp 1–7 Reddy PV, Kumar A, Rahman SMK, Mundra TS (2007) A new method for fingerprint antispoofing using pulse oxiometry. In: First IEEE international conference on biometrics: theory, applications, and systems. pp 1–6 SaadMABovikACCharrierCBlind image quality assessment: a natural scene statistics approach in the DCT domainieee trans image process20122133393352296043010.1109/TIP.2012.21915631373.94355 KongAZhangDKamelMA survey of palmprint recognitionPattern Recogn20094271408141810.1016/j.patcog.2009.01.018 Raghavendra R, Busch C (2014) Presentation attack detection algorithm for face and iris biometrics. In: 22nd European signal processing conference (EUSIPCO). pp 1387–1391 ReddyPVKumarARahmanSMundraTA new antispoofing approach for biometric devicesIEEE Trans Biomed Circuits Syst20082432833710.1109/TBCAS.2008.2003432 KecmanVLearning and soft computing: support vector machines, neural networks, and fuzzy logic models2001MassachusettsMIT press0994.68109 GalballyJMarcelSFierrezJNavasEErroDRaitioTBiometric anti-spoofing methods: a survey in face recognitionIEEE Access201421530155210.1109/ACCESS.2014.2381273 Zhang H, Sun Z, Tan T, Wang J (2011) Learning hierarchical visual codebook for iris liveness detection. In: International joint conference on biometrics (IJCB) Casia palmprint database. http://biometrics.idealtest.org/. Accessed January (2015) Hadid A (2014) Face biometrics under spoofing attacks: vulnerabilities, countermeasures, open issues, and research directions. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp 113–118 SanchezJSaratxagaIHernaezINavasEErroDRaitioTTowards a universal synthetic speech spoofing detection using phase informationIEEE Trans Inf Forens Secur201510481082010.1109/TIFS.2015.2398812 Hall MA (1999) Correlation-based feature selection for machine learning. Dissertation, University of Waikato 606_CR1 606_CR30 S Parthasaradhi (606_CR7) 2005; 35 RM Haralick (606_CR29) 1973; 6 D Zhang (606_CR3) 2010; 43 N Erdogmus (606_CR8) 2014; 9 606_CR17 606_CR18 V Kecman (606_CR31) 2001 606_CR11 D Gragnaniello (606_CR21) 2015; 57 606_CR33 606_CR34 AK Moorthy (606_CR26) 2011; 20 A Kong (606_CR2) 2009; 42 606_CR10 606_CR32 606_CR16 606_CR35 606_CR36 PV Reddy (606_CR14) 2008; 2 J Galbally (606_CR13) 2014; 2 J Sanchez (606_CR12) 2015; 10 V Kanhangad (606_CR23) 2011; 6 606_CR28 D Zhang (606_CR15) 2010; 59 MA Saad (606_CR27) 2012; 21 606_CR22 606_CR9 606_CR6 606_CR20 606_CR4 M-I Faraj (606_CR19) 2007; 28 606_CR5 606_CR24 606_CR25 |
References_xml | – reference: Reddy PV, Kumar A, Rahman SMK, Mundra TS (2007) A new method for fingerprint antispoofing using pulse oxiometry. In: First IEEE international conference on biometrics: theory, applications, and systems. pp 1–6 – reference: ParthasaradhiSDerakhshaniRHornakLSchuckersSTime-series detection of perspiration as a liveness test in fingerprint devicesIEEE Trans Syst Man Cybern Part C Appl Rev200535333534310.1109/TSMCC.2005.848192 – reference: Walck C (2007) Handbook on statistical distributions for experimentalists. University of Stockholm Internal Report SUF-PFY96-01 – reference: ZhangDGuoZLuGZhangDZuoWAn online system of multispectral palmprint verificationIEEE Trans Instrum Meas201059248049010.1109/TIM.2009.2028772 – reference: SanchezJSaratxagaIHernaezINavasEErroDRaitioTTowards a universal synthetic speech spoofing detection using phase informationIEEE Trans Inf Forens Secur201510481082010.1109/TIFS.2015.2398812 – reference: Chen H, Valizadegan H, Jackson C, Soltysiak S, Jain AK (2005) Fake hands: spoofing hand geometry systems. Biom Consort – reference: Chingovska I, Anjos A, Marcel S (2013) Anti-spoofing in action: joint operation with a verification system. In: IEEE conference on computer vision and pattern recognition workshops pp 98–104 – reference: KanhangadVKumarAZhangDA unified framework for contactless hand verificationIEEE Trans Inf Forens Secur201161014102710.1109/TIFS.2011.2121062 – reference: MoorthyAKBovikACBlind image quality assessment: from natural scene statistics to perceptual qualityieee trans image process20112033503364285048110.1109/TIP.2011.21473251374.94266 – reference: ErdogmusNMarcelSSpoofing face recognition with 3D masksIEEE Trans Inf Forens Secur2014971084109710.1109/TIFS.2014.2322255 – reference: Pan G, Sun L, Wu Z and Lao S (2007) Eyeblink-based anti-spoofing in face recognition from a generic webcamera. In: IEEE 11th International conference on computer vision pp 1-8 – reference: Kong, AK, and Zhang D (2004) Competitive coding scheme for palmprint verification. In: 17th International conference on pattern recognition pp 520–523 – reference: Chingovska I, Anjos A, Marcel S (2012) On the effectiveness of local binary patterns in face anti-spoofing. In: 11th International conference biometrics special interest group pp 1–7 – reference: Dror RO, Adelson EH, Willsky AS (2001) Estimating surface reflectance properties from images under unknown illumination. In: Photonics West 2001-electronic imaging pp 231–242 – reference: Casia palmprint database. http://biometrics.idealtest.org/. Accessed January (2015) – reference: Hadid A (2014) Face biometrics under spoofing attacks: vulnerabilities, countermeasures, open issues, and research directions. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops. pp 113–118 – reference: Ratha NK, Connell JH, Bolle RM (2001) An analysis of minutiae matching strength. In: Bigun J, Smeraldi F (eds) Audio-and video-based biometric person authentication: Third International Conference, AVBPA 2001 Halmstad, Sweden, June 6--8, 2001 Proceedings. Springer, Heidelberg, pp 223–228. doi:10.1007/3-540-45344-X_32 – reference: Zhang H, Sun Z, Tan T, Wang J (2011) Learning hierarchical visual codebook for iris liveness detection. In: International joint conference on biometrics (IJCB) – reference: Galbally J and Marcel S (2014) Face anti-spoofing based on general image quality assessment. In: 22nd International conference on pattern recognition (ICPR) pp 1173–1178 – reference: Kumar A (2008) Incorporating cohort information for reliable palmprint authentication. In: 6th Indian Conference on Computer Vision, Graphics & Image Processing pp 583–590 – reference: Information Technology—Presentation Attack Detection (2014) Part 3: Testing, reporting and classification of attacks, ISO/IEC JTC1 SC37 Biometrics, ISO/IEC Standard WD 30107-3 – reference: Kanhangad V, Bhilare S, Garg P, Singh P, Chaudhari N (2015) Anti-spoofing for display and print attacks on palmprint verification systems. Proc. SPIE 9457:94570E-94570E-8. doi:10.1117/12.2180333 – reference: FarajM-IBigunJAudiovisual person authentication using lip-motion from orientation mapsPattern Recogn Lett200728111368138210.1016/j.patrec.2007.02.017 – reference: Hall MA (1999) Correlation-based feature selection for machine learning. Dissertation, University of Waikato – reference: SaadMABovikACCharrierCBlind image quality assessment: a natural scene statistics approach in the DCT domainieee trans image process20122133393352296043010.1109/TIP.2012.21915631373.94355 – reference: Kose N and Dugelay J-L (2013) Countermeasure for the protection of face recognition systems against mask attacks. In: 10th IEEE International conference and workshops on automatic face and gesture recognition pp 1–6 – reference: KongAZhangDKamelMA survey of palmprint recognitionPattern Recogn20094271408141810.1016/j.patcog.2009.01.018 – reference: GragnanielloDSansoneCVerdolivaLIris liveness detection for mobile devices based on local descriptorsPattern Recogn Lett201557818710.1016/j.patrec.2014.10.018 – reference: ZhangDKanhangadVLuoNKumarARobust palmprint verification using 2D and 3D featuresPattern Recogn201043135836810.1016/j.patcog.2009.04.0261187.68516 – reference: ReddyPVKumarARahmanSMundraTA new antispoofing approach for biometric devicesIEEE Trans Biomed Circuits Syst20082432833710.1109/TBCAS.2008.2003432 – reference: Raghavendra R, Busch C (2014) Presentation attack detection algorithm for face and iris biometrics. In: 22nd European signal processing conference (EUSIPCO). pp 1387–1391 – reference: HaralickRMShanmugamKDinsteinITextural features for image classificationIEEE Trans Syst Man Cybern1973661062110.1109/TSMC.1973.4309314 – reference: KecmanVLearning and soft computing: support vector machines, neural networks, and fuzzy logic models2001MassachusettsMIT press0994.68109 – reference: Li W, Zhang D, Lu G, Yan J (2010) Efficient joint 2D and 3D palmprint matching with alignment refinement. In: IEEE computer vision and pattern recognition (CVPR) pp 795–801 – reference: GalballyJMarcelSFierrezJNavasEErroDRaitioTBiometric anti-spoofing methods: a survey in face recognitionIEEE Access201421530155210.1109/ACCESS.2014.2381273 – reference: Kanhangad V, Kumar A (2013) Securing palmprint authentication systems using spoof detection approach. In: 6th International conference on machine vision (ICMV) pp 90671M–90671M – ident: 606_CR28 – volume: 2 start-page: 1530 year: 2014 ident: 606_CR13 publication-title: IEEE Access doi: 10.1109/ACCESS.2014.2381273 – volume: 2 start-page: 328 issue: 4 year: 2008 ident: 606_CR14 publication-title: IEEE Trans Biomed Circuits Syst doi: 10.1109/TBCAS.2008.2003432 – ident: 606_CR32 doi: 10.1109/ICVGIP.2008.73 – ident: 606_CR35 doi: 10.1109/CVPRW.2013.22 – ident: 606_CR4 – ident: 606_CR22 doi: 10.1117/12.2051724 – volume: 10 start-page: 810 issue: 4 year: 2015 ident: 606_CR12 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2015.2398812 – volume: 28 start-page: 1368 issue: 11 year: 2007 ident: 606_CR19 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2007.02.017 – volume: 6 start-page: 1014 year: 2011 ident: 606_CR23 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2011.2121062 – ident: 606_CR1 doi: 10.1007/3-540-45344-X_32 – ident: 606_CR20 – volume: 42 start-page: 1408 issue: 7 year: 2009 ident: 606_CR2 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.01.018 – ident: 606_CR10 – ident: 606_CR34 doi: 10.1109/ICPR.2004.1334184 – ident: 606_CR33 – volume: 43 start-page: 358 issue: 1 year: 2010 ident: 606_CR3 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2009.04.026 – ident: 606_CR17 doi: 10.1109/FG.2013.6553761 – volume: 6 start-page: 610 year: 1973 ident: 606_CR29 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMC.1973.4309314 – ident: 606_CR25 doi: 10.1117/12.429494 – ident: 606_CR18 doi: 10.1109/ICCV.2007.4409068 – volume: 9 start-page: 1084 issue: 7 year: 2014 ident: 606_CR8 publication-title: IEEE Trans Inf Forens Secur doi: 10.1109/TIFS.2014.2322255 – volume-title: Learning and soft computing: support vector machines, neural networks, and fuzzy logic models year: 2001 ident: 606_CR31 – volume: 57 start-page: 81 year: 2015 ident: 606_CR21 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2014.10.018 – ident: 606_CR16 doi: 10.1109/CVPR.2010.5540134 – volume: 35 start-page: 335 issue: 3 year: 2005 ident: 606_CR7 publication-title: IEEE Trans Syst Man Cybern Part C Appl Rev doi: 10.1109/TSMCC.2005.848192 – volume: 21 start-page: 3339 year: 2012 ident: 606_CR27 publication-title: ieee trans image process doi: 10.1109/TIP.2012.2191563 – ident: 606_CR9 doi: 10.1109/CVPRW.2014.22 – ident: 606_CR5 doi: 10.1117/12.2180333 – ident: 606_CR24 doi: 10.1109/ICPR.2014.211 – volume: 59 start-page: 480 issue: 2 year: 2010 ident: 606_CR15 publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2009.2028772 – volume: 20 start-page: 3350 year: 2011 ident: 606_CR26 publication-title: ieee trans image process doi: 10.1109/TIP.2011.2147325 – ident: 606_CR6 doi: 10.1109/BTAS.2007.4401916 – ident: 606_CR36 – ident: 606_CR30 – ident: 606_CR11 |
SSID | ssj0033328 |
Score | 2.2260132 |
Snippet | As biometric systems become ubiquitous in the domain of personal authentication, it is of utmost importance that these systems are secured against attacks.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 769 |
SubjectTerms | Biometrics Computer Science Data base management systems Feature extraction Image acquisition Pattern Recognition Performance evaluation Reflectance Statistical analysis Statistical methods Theoretical Advances Wavelet analysis |
Title | A study on vulnerability and presentation attack detection in palmprint verification system |
URI | https://link.springer.com/article/10.1007/s10044-017-0606-y https://www.proquest.com/docview/2071243362 |
Volume | 21 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6Xbz4LU7nyMGTEmiaNm2PRZxD0ZODiYeSpimIMxuuE_bf-5I2VkUFr2kSyvvK7_G-EDoVNFQAhAsiy7wkga8YiRMpSC4TFYWFH3NblXZ7x0fj4HoSTpo67oXLdnchSWupPxW7eYHJmDDpWuAGr9ZRNzSuOwjx2E-d-WWM2YGqgAMYicKAulDmT1d8fYxahPktKGrfmuE22mxAIk5rru6gNaV30VYDGHGjjgtYcjMZ3Noeekyx7RiLZxq_Laemp7RNf11hoQs8b4uNNBZVJeQzLlRl07E0ftJ4LqYv5qcqDCJusojqrXW_5300Hl7eX4xIM0CBSEZ5RQRYQcUoo6CWqgSbGESM-opG8EaHzLhfRVlEgWAxF5E0VfHgbKhSeoJRAbrKDlBHz7Q6RNhEC3keSMr9BA54eZxwUca5VHAerEAPeY6SmWy6i5shF9Os7YtsiJ8B8TND_GzVQ2cfR-Z1a42_Nvcde7JGyxaZD_jIBz5zv4fOHcvaz79edvSv3cdoA1BSXGf99VGnel2qE0AiVT5A3fTq4eZyYCXwHfL01n0 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD3rxLVar5uBJCTTJPo9FLFXbnlooeAjZbBbEui12K_TfO8luXBUVvGaTsMxkJl-Yb2YQupTU1wCEU6KyJCMe05xEsZIkUbEO_ZRFgc1KGwyD3ti7n_iTKo974djuLiRpPfWnZLe2ZxgThq4Fz-DVOtoALBAZHteYdZz75ZzbhqqAAzgJfY-6UOZPW3y9jGqE-S0oau-a7i7arkAi7pRa3UNrOt9HOxVgxJU5LmDI9WRwYwfosYNtxVg8y_HbcmpqSlv66wrLPMXzOtkox7IopHrGqS4sHSvHTzmey-mL-akCwxE3LKJyalnv-RCNu7ejmx6pGigQxWlQEAleUHPKKZilzsAneiGnTNMQ7mifm-dXmqWhJ3kUyFCZrHh4bOhMtSWnEmyVH6FGPsv1McImWhgknqIBi2FBO4niQGZRojSsBy_QRG0nSaGq6uKmycVU1HWRjfAFCF8Y4YtVE119LJmXpTX-mtxy6hGVlS0EA3zEQM8Ba6Jrp7L686-bnfxr9gXa7I0GfdG_Gz6coi1ATFHJAGyhRvG61GeASork3J7Cd3fe19w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA86QXzxW5xOzYNPSljT9PNxqMPP4YODgQ8lTVMQZ1ZcJuy_99I2VkUFX9MklLvc5Rfu7ncIHXPqSwDCGRF5mhPPlYxEseAkFbEM_cyNgrIq7W4QXA6965E_qvucTm22uw1JVjUNhqVJ6W6R5d1PhW-OZ7InTOoWPInni2gJvDE1x3ro9qwrZoyVzVUBEzAS-h61Yc2ftvh6MTVo81uAtLx3-utotQaMuFdpeAMtSLWJ1mrwiGvTnMKQ7c9gx7bQYw-X7LF4ovDbbGz4pctU2DnmKsNFU3ikMNeai2ecSV2mZin8pHDBxy_mpzSG424yiqqpFffzNhr2Lx7OLkndTIEIRgNNOHhEyUBGYKIyB__ohYy6koZwX_vMPMWyPAs9zqKAh8JUyMPDQ-bC4YxysFu2g1pqouQuwiZyGKSeoIEbwwInjeKA51EqJKwHj9BGjpVkImqmcdPwYpw0HMlG-AkIPzHCT-ZtdPKxpKhoNv6a3LHqSWqLmyYuYCUX9By4bXRqVdZ8_nWzvX_NPkLL9-f95PZqcLOPVgA8RVUyYAe19OtMHgBA0elheQjfARUp3Bg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+study+on+vulnerability+and+presentation+attack+detection+in+palmprint+verification+system&rft.jtitle=Pattern+analysis+and+applications+%3A+PAA&rft.au=Bhilare%2C+Shruti&rft.au=Kanhangad%2C+Vivek&rft.au=Chaudhari%2C+Narendra&rft.date=2018-08-01&rft.pub=Springer+Nature+B.V&rft.issn=1433-7541&rft.eissn=1433-755X&rft.volume=21&rft.issue=3&rft.spage=769&rft.epage=782&rft_id=info:doi/10.1007%2Fs10044-017-0606-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1433-7541&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1433-7541&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1433-7541&client=summon |