Toward unbiased emotion recognition: overcoming user bias with siamese convolutional networks
Purpose: Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the environment, such as social interactions or exposure to salient events, and are expressed by individuals in a strictly subjective manner. ER systems ar...
Saved in:
Published in | Signal, image and video processing Vol. 19; no. 11 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Springer London
01.11.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Purpose:
Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the environment, such as social interactions or exposure to salient events, and are expressed by individuals in a strictly subjective manner. ER systems are usually based on machine learning approaches applied to physiological signals, which provide an authentic representation of emotions as they are not easily controlled or masked. However, ER remains a challenging task, due to a well-established user bias related to individual response specificity (IRS). When multiple subjects are considered together in a dataset, IRS makes the ER task more difficult at the dataset level than at the subject level.
Methods:
In this work, we accomplish a multi-class ER task based on physiological signals while addressing the user bias problem. We propose a mitigation strategy based on Siamese Convolutional Networks (SCN). We perform a qualitative and quantitative analysis of user bias, comparing the feature space of the proposed SCN with a baseline hand-crafted feature space.
Results:
Our SCN reached state-of-the-art performance in the considered multi-class ER task and showed great capability of disentangling user bias, by reducing the gap between subject-level and dataset-level metrics.
Conclusion:
Our main contribution is the proposal of a user bias mitigation strategy for ER tasks, which takes advantage of the SCN capability of producing subject-independent latent representations. |
---|---|
AbstractList | Purpose:
Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the environment, such as social interactions or exposure to salient events, and are expressed by individuals in a strictly subjective manner. ER systems are usually based on machine learning approaches applied to physiological signals, which provide an authentic representation of emotions as they are not easily controlled or masked. However, ER remains a challenging task, due to a well-established user bias related to individual response specificity (IRS). When multiple subjects are considered together in a dataset, IRS makes the ER task more difficult at the dataset level than at the subject level.
Methods:
In this work, we accomplish a multi-class ER task based on physiological signals while addressing the user bias problem. We propose a mitigation strategy based on Siamese Convolutional Networks (SCN). We perform a qualitative and quantitative analysis of user bias, comparing the feature space of the proposed SCN with a baseline hand-crafted feature space.
Results:
Our SCN reached state-of-the-art performance in the considered multi-class ER task and showed great capability of disentangling user bias, by reducing the gap between subject-level and dataset-level metrics.
Conclusion:
Our main contribution is the proposal of a user bias mitigation strategy for ER tasks, which takes advantage of the SCN capability of producing subject-independent latent representations. Purpose:Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the environment, such as social interactions or exposure to salient events, and are expressed by individuals in a strictly subjective manner. ER systems are usually based on machine learning approaches applied to physiological signals, which provide an authentic representation of emotions as they are not easily controlled or masked. However, ER remains a challenging task, due to a well-established user bias related to individual response specificity (IRS). When multiple subjects are considered together in a dataset, IRS makes the ER task more difficult at the dataset level than at the subject level.Methods:In this work, we accomplish a multi-class ER task based on physiological signals while addressing the user bias problem. We propose a mitigation strategy based on Siamese Convolutional Networks (SCN). We perform a qualitative and quantitative analysis of user bias, comparing the feature space of the proposed SCN with a baseline hand-crafted feature space.Results:Our SCN reached state-of-the-art performance in the considered multi-class ER task and showed great capability of disentangling user bias, by reducing the gap between subject-level and dataset-level metrics.Conclusion:Our main contribution is the proposal of a user bias mitigation strategy for ER tasks, which takes advantage of the SCN capability of producing subject-independent latent representations. |
ArticleNumber | 875 |
Author | Leidi, Tiziano Puiatti, Alessandro Papandrea, Michela Oldano, Gilles La Porta, Nicolò |
Author_xml | – sequence: 1 givenname: Nicolò orcidid: 0009-0007-1261-0075 surname: La Porta fullname: La Porta, Nicolò email: nicolo.laporta@supsi.ch organization: Institute of Information Systems and Networking, University of Applied Science and Art of Southern Switzerland (SUPSI), Faculty of Informatics, Università della Svizzera Italiana (USI) – sequence: 2 givenname: Gilles surname: Oldano fullname: Oldano, Gilles organization: Institute of Information Systems and Networking, University of Applied Science and Art of Southern Switzerland (SUPSI) – sequence: 3 givenname: Alessandro orcidid: 0000-0002-9745-1515 surname: Puiatti fullname: Puiatti, Alessandro organization: Institute of Digital Technologies for Personalised Healthcare (MeDiTech), University of Applied Science and Art of Southern Switzerland (SUPSI) – sequence: 4 givenname: Tiziano orcidid: 0000-0002-6335-7977 surname: Leidi fullname: Leidi, Tiziano organization: Institute of Information Systems and Networking, University of Applied Science and Art of Southern Switzerland (SUPSI) – sequence: 5 givenname: Michela orcidid: 0000-0003-3573-6221 surname: Papandrea fullname: Papandrea, Michela organization: Institute of Information Systems and Networking, University of Applied Science and Art of Southern Switzerland (SUPSI) |
BookMark | eNp9kE1PwzAMhiM0JMbYH-AUiXMhTtKPcUMTXxISl3FEUZq6o2NNRtJu4t-TUgQ3fLEPz2vZzymZWGeRkHNgl8BYfhUA8owljKcJkyljCRyRKRSZSCAHmPzOTJyQeQgbFkvwvMiKKXlduYP2Fe1t2eiAFcXWdY2z1KNxa9sM8zV1e_TGtY1d0z6gpwNLD033RkOjWwxIjbN7t-0HXG-pxe7g_Hs4I8e13gac__QZebm7XS0fkqfn-8flzVNiBGRdoiVIEIZjpQuotaxFuchlJSuI_1WIhpei5lClC1NKZEUNyBGlLhiUwCshZuRi3Lvz7qPH0KmN6328JCjBBUshGsojxUfKeBeCx1rtfNNq_6mAqcGkGk2qaFJ9m1QQQ2IMhQjbNfq_1f-kvgCXPXnK |
Cites_doi | 10.3390/bioengineering9110688 10.1145/1978942.1979047 10.1159/000119004 10.1109/TPAMI.1979.4766909 10.1016/j.biopsycho.2009.09.012 10.1109/TMM.2022.3165715 10.3389/fnins.2022.965871 10.1016/j.inffus.2023.102019 10.1080/02699931.2015.1031089 10.1037/10019-000 10.1016/0005-7916(94)90063-9 10.1007/978-3-540-45012-2_2 10.3390/s21031018 10.1109/TAFFC.2022.3181053 10.1109/CEC.2016.7743957 10.1007/s40846-019-00505-7 10.1109/access.2019.2962085 10.1037/h0077714 10.1080/0144929X.2022.2156387 10.1109/JSEN.2018.2867221 10.1007/978-3-030-39903-0_978 10.1145/3242969.3242985 10.15439/2021F120 10.3390/app11115194 10.1001/archpsyc.1960.03590090061010 10.1016/0377-0427(87)90125-7 10.1037//0022-3514.74.4.967 10.1109/t-affc.2011.25 10.3390/s22051789 10.1016/j.mex.2025.103205 10.1145/3491102.3501944 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION |
DOI | 10.1007/s11760-025-04500-1 |
DatabaseName | Springer Open Access Journals CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1863-1711 |
ExternalDocumentID | 10_1007_s11760_025_04500_1 |
GrantInformation_xml | – fundername: SUPSI - University of Applied Sciences and Arts of Southern Switzerland |
GroupedDBID | .VR 06D 0R~ 123 1N0 203 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 875 8TC 95- 95. 95~ AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHWEU AHYZX AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BGNMA BSONS C6C CS3 CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O93 O9J OAM P9O PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z45 ZMTXR ~A9 -Y2 2VQ AARHV AAYXX ABULA ACBXY AEBTG AFGCZ AGJBK AHSBF AIAKS AJBLW BDATZ CAG CITATION COF EJD FINBP FSGXE H13 O9- RIG |
ID | FETCH-LOGICAL-c316t-a41413c2eda81fa4f3b974d4d1100deec2b3f21d59cb4e08f1e2ee4a801b12d33 |
IEDL.DBID | C6C |
ISSN | 1863-1703 |
IngestDate | Sun Aug 10 23:38:13 EDT 2025 Thu Aug 14 00:20:19 EDT 2025 Sun Aug 10 01:12:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Siamese Networks Biosignal Processing User Bias Emotion Recognition Affective Computing |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-a41413c2eda81fa4f3b974d4d1100deec2b3f21d59cb4e08f1e2ee4a801b12d33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0007-1261-0075 0000-0003-3573-6221 0000-0002-9745-1515 0000-0002-6335-7977 |
OpenAccessLink | https://doi.org/10.1007/s11760-025-04500-1 |
PQID | 3230511177 |
PQPubID | 2044169 |
ParticipantIDs | proquest_journals_3230511177 crossref_primary_10_1007_s11760_025_04500_1 springer_journals_10_1007_s11760_025_04500_1 |
PublicationCentury | 2000 |
PublicationDate | 2025-11-01 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: Heidelberg |
PublicationTitle | Signal, image and video processing |
PublicationTitleAbbrev | SIViP |
PublicationYear | 2025 |
Publisher | Springer London Springer Nature B.V |
Publisher_xml | – name: Springer London – name: Springer Nature B.V |
References | 4500_CR27 4500_CR28 4500_CR25 4500_CR1 R Somarathna (4500_CR3) 2023; 14 4500_CR29 4500_CR4 4500_CR5 4500_CR6 4500_CR7 4500_CR8 4500_CR9 T Zhang (4500_CR31) 2023; 25 K Lewin (4500_CR2) 2013 Z Ahmad (4500_CR10) 2022 P Ekman (4500_CR23) 1999; 98 4500_CR20 H Huang (4500_CR15) 2020 A Alslaity (4500_CR13) 2024; 43 S Chen (4500_CR12) 2021 4500_CR21 4500_CR16 4500_CR17 4500_CR14 4500_CR18 4500_CR19 C Filippini (4500_CR26) 2022; 22 D Ayata (4500_CR11) 2020; 40 C Kirschbaum (4500_CR22) 1993; 28 JA Russell (4500_CR24) 1980; 39 4500_CR30 4500_CR32 |
References_xml | – year: 2022 ident: 4500_CR10 publication-title: Bioengineering doi: 10.3390/bioengineering9110688 – ident: 4500_CR8 doi: 10.1145/1978942.1979047 – volume: 28 start-page: 76 issue: 1–2 year: 1993 ident: 4500_CR22 publication-title: Neuropsychobiology doi: 10.1159/000119004 – ident: 4500_CR30 doi: 10.1109/TPAMI.1979.4766909 – ident: 4500_CR17 doi: 10.1016/j.biopsycho.2009.09.012 – volume: 25 start-page: 3773 year: 2023 ident: 4500_CR31 publication-title: IEEE Trans. Multimedia doi: 10.1109/TMM.2022.3165715 – ident: 4500_CR14 doi: 10.3389/fnins.2022.965871 – ident: 4500_CR5 doi: 10.1016/j.inffus.2023.102019 – ident: 4500_CR21 doi: 10.1080/02699931.2015.1031089 – volume: 98 start-page: 16 issue: 45–60 year: 1999 ident: 4500_CR23 publication-title: Handbook of cognition and emotion – year: 2013 ident: 4500_CR2 publication-title: Read Books Ltd doi: 10.1037/10019-000 – ident: 4500_CR7 doi: 10.1016/0005-7916(94)90063-9 – ident: 4500_CR1 doi: 10.1007/978-3-540-45012-2_2 – year: 2021 ident: 4500_CR12 publication-title: Sensors doi: 10.3390/s21031018 – volume: 14 start-page: 2626 issue: 4 year: 2023 ident: 4500_CR3 publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3181053 – ident: 4500_CR25 doi: 10.1109/CEC.2016.7743957 – volume: 40 start-page: 149 year: 2020 ident: 4500_CR11 publication-title: Journal of Medical and Biological Engineering doi: 10.1007/s40846-019-00505-7 – year: 2020 ident: 4500_CR15 publication-title: Ieee Access doi: 10.1109/access.2019.2962085 – volume: 39 start-page: 1161 issue: 6 year: 1980 ident: 4500_CR24 publication-title: J. Pers. Soc. Psychol. doi: 10.1037/h0077714 – volume: 43 start-page: 139 issue: 1 year: 2024 ident: 4500_CR13 publication-title: Behaviour & Information Technology doi: 10.1080/0144929X.2022.2156387 – ident: 4500_CR18 doi: 10.1109/JSEN.2018.2867221 – ident: 4500_CR6 doi: 10.1007/978-3-030-39903-0_978 – ident: 4500_CR20 doi: 10.1145/3242969.3242985 – ident: 4500_CR4 doi: 10.15439/2021F120 – ident: 4500_CR27 doi: 10.3390/app11115194 – ident: 4500_CR16 doi: 10.1001/archpsyc.1960.03590090061010 – ident: 4500_CR29 doi: 10.1016/0377-0427(87)90125-7 – ident: 4500_CR28 doi: 10.1037//0022-3514.74.4.967 – ident: 4500_CR19 doi: 10.1109/t-affc.2011.25 – volume: 22 start-page: 1789 issue: 5 year: 2022 ident: 4500_CR26 publication-title: Sensors doi: 10.3390/s22051789 – ident: 4500_CR32 doi: 10.1016/j.mex.2025.103205 – ident: 4500_CR9 doi: 10.1145/3491102.3501944 |
SSID | ssj0000327868 |
Score | 2.349195 |
Snippet | Purpose:
Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the... Purpose:Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Index Database Publisher |
SubjectTerms | Bias Computer Imaging Computer Science Datasets Emotion recognition Emotions Human bias Image Processing and Computer Vision Machine learning Multimedia Information Systems Original Paper Pattern Recognition and Graphics Physiology Qualitative analysis Representations Signal,Image and Speech Processing Vision |
Title | Toward unbiased emotion recognition: overcoming user bias with siamese convolutional networks |
URI | https://link.springer.com/article/10.1007/s11760-025-04500-1 https://www.proquest.com/docview/3230511177 |
Volume | 19 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YuOjBB2pEkezBmzZ2H-wWb0BAogknSPBgmu7uNOFSjMD_d7YPUKIHL-2h200zncl8MzvzDSF36JUswmAXgNEyQPzPg8Sh4XWdUYZrm0YF2-dEjWfyZd6ZlzQ5vhdm7_z-ccWYVmHgh64i-AjDACOdeocJ7cc0DNRgm08JBddR0fkWKc-6GYqyR-b3bX76oR243DsPzd3M6JQcl_iQ9oofekYOIGuQk2r2Ai1NsUGOvhEJnpP3aV79SjeZWaBbchSK6Tx0Wx-0zJ6or9ZEBcM3qM9NUL-W-kQsXS18sSxQX4Ne6iJ-RFaUiK8uyGw0nA7GQTk4IbCCqXWQSIa-yXJwScTSRKbCYNjgpPP8cA7AciNSzlyna42EMEoZcACZoLcyjDshLkktW2ZwRSgkykYOHAirZNe5iMlUS1AsUUYJbZvkvhJj_FHwY8Q7JmQv9BiFHudCj1mTtCpJx6WtrGKBURDCPqZ1kzxU0t89_nu36_8tvyGH3CtA3kjYIrX15wZuEVGsTZvUe6N-f-Lvz2-vw3auWnid8d4XrAvGnw |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFH6qygAM3IhyeoAJIsWO66RIDIhDLS1MrcSCQmy_SF1SRIsQ_4cfynMOCggGhs5xIuvLOz4_vwPgkLySIRpsPdSh9Ij_Cy-xpHgtq5UWoUmjotvnnWoP5M19874G71UtTJ7tXl1J5pZ6WuzGQ-V7bvwq0RDf93iZStnFt1c6qI3POpf0V4-EuL7qX7S9cpaAZwKuJl4iOZlrI9AmEU8TmQaamLSV1rVMs4hG6CAV3DZbRkv0o5SjQJQJGXDNhXVhTzL0c0Q-Iqc7A3H-GcnxAxFGRc1dpFy_Tz8oq3N-3_Z3DziltT9uYnMHd70CSyUzZeeFKK1CDbM1WK6mPrDSCKzB4pcWhuvw0M_zbtlLpofkEC3DYi4Q-8xMGmWnzOWJEsr0BnNREebWMhcCZuOhS9NF5rLfSy2gTWRFcvp4AwYzgXkT6tkowy1gmCgTWbQYGCVb1kZcpqFExROlVRCaBhxXMMZPRWeOeNqD2YEeE-hxDnrMG7BbIR2XWjqOAzp_EeHkYdiAkwr96eO_v7b9v-UHMN_u3_biXueuuwMLwglDXs64C_XJ8wvuEa-Z6P1crBg8zlqOPwCbcwTI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5EQfTgW1yfOehJi00a067gQVaXXRXxoOBFapNMYS_dxa6I_8qf6KQPq6IHD56bljCdzHwz-WYGYJe8kiEYbD3UofQI_wsvsXTw2lYrLUKTRmW3z2vVu5MX90f3E_BW18IUbPf6SrKsaXBdmrLx4cimh03hGw-V77lRrARJfN_jFa3yEl9fKGjLT_pn9If3hOie33Z6XjVXwDMBV2MvkZxMtxFok4iniUwDTajaSuvap1lEI3SQCm6P2kZL9KOUo0CUCRlzzYV1KVAy-lMUGXEX7nVU5yOr4wcijMr6u0i53p9-UFXq_Lztr96wgbjfbmULZ9ddgLkKpbLTUq0WYQKzJZivJ0CwyiAsweyndobL8HBbcHDZc6YH5Bwtw3JGEPtgKQ2zY-Y4oyRxeoO5DAlza5lLB7N84Ci7yBwTvjoRtImsJKrnK3D3L2JehclsmOEaMEyUiSxaDIySbWsjLtNQouKJ0ioITQv2azHGo7JLR9z0Y3ZCj0nocSH0mLdgs5Z0XJ3YPA4oFiPwycOwBQe19JvHv39t_W_Ld2D65qwbX_WvLzdgRjhdKCobN2Fy_PSMWwRxxnq70CoGj_-txu_ZpAju |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+unbiased+emotion+recognition%3A+overcoming+user+bias+with+siamese+convolutional+networks&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=La+Porta%2C+Nicol%C3%B2&rft.au=Oldano%2C+Gilles&rft.au=Puiatti%2C+Alessandro&rft.au=Leidi%2C+Tiziano&rft.date=2025-11-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=19&rft.issue=11&rft_id=info:doi/10.1007%2Fs11760-025-04500-1&rft.externalDocID=10_1007_s11760_025_04500_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon |