Toward unbiased emotion recognition: overcoming user bias with siamese convolutional networks

Purpose: Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the environment, such as social interactions or exposure to salient events, and are expressed by individuals in a strictly subjective manner. ER systems ar...

Full description

Saved in:
Bibliographic Details
Published inSignal, image and video processing Vol. 19; no. 11
Main Authors La Porta, Nicolò, Oldano, Gilles, Puiatti, Alessandro, Leidi, Tiziano, Papandrea, Michela
Format Journal Article
LanguageEnglish
Published London Springer London 01.11.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Purpose: Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the environment, such as social interactions or exposure to salient events, and are expressed by individuals in a strictly subjective manner. ER systems are usually based on machine learning approaches applied to physiological signals, which provide an authentic representation of emotions as they are not easily controlled or masked. However, ER remains a challenging task, due to a well-established user bias related to individual response specificity (IRS). When multiple subjects are considered together in a dataset, IRS makes the ER task more difficult at the dataset level than at the subject level. Methods: In this work, we accomplish a multi-class ER task based on physiological signals while addressing the user bias problem. We propose a mitigation strategy based on Siamese Convolutional Networks (SCN). We perform a qualitative and quantitative analysis of user bias, comparing the feature space of the proposed SCN with a baseline hand-crafted feature space. Results: Our SCN reached state-of-the-art performance in the considered multi-class ER task and showed great capability of disentangling user bias, by reducing the gap between subject-level and dataset-level metrics. Conclusion: Our main contribution is the proposal of a user bias mitigation strategy for ER tasks, which takes advantage of the SCN capability of producing subject-independent latent representations.
AbstractList Purpose: Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the environment, such as social interactions or exposure to salient events, and are expressed by individuals in a strictly subjective manner. ER systems are usually based on machine learning approaches applied to physiological signals, which provide an authentic representation of emotions as they are not easily controlled or masked. However, ER remains a challenging task, due to a well-established user bias related to individual response specificity (IRS). When multiple subjects are considered together in a dataset, IRS makes the ER task more difficult at the dataset level than at the subject level. Methods: In this work, we accomplish a multi-class ER task based on physiological signals while addressing the user bias problem. We propose a mitigation strategy based on Siamese Convolutional Networks (SCN). We perform a qualitative and quantitative analysis of user bias, comparing the feature space of the proposed SCN with a baseline hand-crafted feature space. Results: Our SCN reached state-of-the-art performance in the considered multi-class ER task and showed great capability of disentangling user bias, by reducing the gap between subject-level and dataset-level metrics. Conclusion: Our main contribution is the proposal of a user bias mitigation strategy for ER tasks, which takes advantage of the SCN capability of producing subject-independent latent representations.
Purpose:Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the environment, such as social interactions or exposure to salient events, and are expressed by individuals in a strictly subjective manner. ER systems are usually based on machine learning approaches applied to physiological signals, which provide an authentic representation of emotions as they are not easily controlled or masked. However, ER remains a challenging task, due to a well-established user bias related to individual response specificity (IRS). When multiple subjects are considered together in a dataset, IRS makes the ER task more difficult at the dataset level than at the subject level.Methods:In this work, we accomplish a multi-class ER task based on physiological signals while addressing the user bias problem. We propose a mitigation strategy based on Siamese Convolutional Networks (SCN). We perform a qualitative and quantitative analysis of user bias, comparing the feature space of the proposed SCN with a baseline hand-crafted feature space.Results:Our SCN reached state-of-the-art performance in the considered multi-class ER task and showed great capability of disentangling user bias, by reducing the gap between subject-level and dataset-level metrics.Conclusion:Our main contribution is the proposal of a user bias mitigation strategy for ER tasks, which takes advantage of the SCN capability of producing subject-independent latent representations.
ArticleNumber 875
Author Leidi, Tiziano
Puiatti, Alessandro
Papandrea, Michela
Oldano, Gilles
La Porta, Nicolò
Author_xml – sequence: 1
  givenname: Nicolò
  orcidid: 0009-0007-1261-0075
  surname: La Porta
  fullname: La Porta, Nicolò
  email: nicolo.laporta@supsi.ch
  organization: Institute of Information Systems and Networking, University of Applied Science and Art of Southern Switzerland (SUPSI), Faculty of Informatics, Università della Svizzera Italiana (USI)
– sequence: 2
  givenname: Gilles
  surname: Oldano
  fullname: Oldano, Gilles
  organization: Institute of Information Systems and Networking, University of Applied Science and Art of Southern Switzerland (SUPSI)
– sequence: 3
  givenname: Alessandro
  orcidid: 0000-0002-9745-1515
  surname: Puiatti
  fullname: Puiatti, Alessandro
  organization: Institute of Digital Technologies for Personalised Healthcare (MeDiTech), University of Applied Science and Art of Southern Switzerland (SUPSI)
– sequence: 4
  givenname: Tiziano
  orcidid: 0000-0002-6335-7977
  surname: Leidi
  fullname: Leidi, Tiziano
  organization: Institute of Information Systems and Networking, University of Applied Science and Art of Southern Switzerland (SUPSI)
– sequence: 5
  givenname: Michela
  orcidid: 0000-0003-3573-6221
  surname: Papandrea
  fullname: Papandrea, Michela
  organization: Institute of Information Systems and Networking, University of Applied Science and Art of Southern Switzerland (SUPSI)
BookMark eNp9kE1PwzAMhiM0JMbYH-AUiXMhTtKPcUMTXxISl3FEUZq6o2NNRtJu4t-TUgQ3fLEPz2vZzymZWGeRkHNgl8BYfhUA8owljKcJkyljCRyRKRSZSCAHmPzOTJyQeQgbFkvwvMiKKXlduYP2Fe1t2eiAFcXWdY2z1KNxa9sM8zV1e_TGtY1d0z6gpwNLD033RkOjWwxIjbN7t-0HXG-pxe7g_Hs4I8e13gac__QZebm7XS0fkqfn-8flzVNiBGRdoiVIEIZjpQuotaxFuchlJSuI_1WIhpei5lClC1NKZEUNyBGlLhiUwCshZuRi3Lvz7qPH0KmN6328JCjBBUshGsojxUfKeBeCx1rtfNNq_6mAqcGkGk2qaFJ9m1QQQ2IMhQjbNfq_1f-kvgCXPXnK
Cites_doi 10.3390/bioengineering9110688
10.1145/1978942.1979047
10.1159/000119004
10.1109/TPAMI.1979.4766909
10.1016/j.biopsycho.2009.09.012
10.1109/TMM.2022.3165715
10.3389/fnins.2022.965871
10.1016/j.inffus.2023.102019
10.1080/02699931.2015.1031089
10.1037/10019-000
10.1016/0005-7916(94)90063-9
10.1007/978-3-540-45012-2_2
10.3390/s21031018
10.1109/TAFFC.2022.3181053
10.1109/CEC.2016.7743957
10.1007/s40846-019-00505-7
10.1109/access.2019.2962085
10.1037/h0077714
10.1080/0144929X.2022.2156387
10.1109/JSEN.2018.2867221
10.1007/978-3-030-39903-0_978
10.1145/3242969.3242985
10.15439/2021F120
10.3390/app11115194
10.1001/archpsyc.1960.03590090061010
10.1016/0377-0427(87)90125-7
10.1037//0022-3514.74.4.967
10.1109/t-affc.2011.25
10.3390/s22051789
10.1016/j.mex.2025.103205
10.1145/3491102.3501944
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s11760-025-04500-1
DatabaseName Springer Open Access Journals
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1863-1711
ExternalDocumentID 10_1007_s11760_025_04500_1
GrantInformation_xml – fundername: SUPSI - University of Applied Sciences and Arts of Southern Switzerland
GroupedDBID .VR
06D
0R~
123
1N0
203
29~
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5VS
67Z
6NX
875
8TC
95-
95.
95~
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHWEU
AHYZX
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
B-.
BA0
BGNMA
BSONS
C6C
CS3
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9O
PF0
PT4
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z45
ZMTXR
~A9
-Y2
2VQ
AARHV
AAYXX
ABULA
ACBXY
AEBTG
AFGCZ
AGJBK
AHSBF
AIAKS
AJBLW
BDATZ
CAG
CITATION
COF
EJD
FINBP
FSGXE
H13
O9-
RIG
ID FETCH-LOGICAL-c316t-a41413c2eda81fa4f3b974d4d1100deec2b3f21d59cb4e08f1e2ee4a801b12d33
IEDL.DBID C6C
ISSN 1863-1703
IngestDate Sun Aug 10 23:38:13 EDT 2025
Thu Aug 14 00:20:19 EDT 2025
Sun Aug 10 01:12:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Siamese Networks
Biosignal Processing
User Bias
Emotion Recognition
Affective Computing
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a41413c2eda81fa4f3b974d4d1100deec2b3f21d59cb4e08f1e2ee4a801b12d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0007-1261-0075
0000-0003-3573-6221
0000-0002-9745-1515
0000-0002-6335-7977
OpenAccessLink https://doi.org/10.1007/s11760-025-04500-1
PQID 3230511177
PQPubID 2044169
ParticipantIDs proquest_journals_3230511177
crossref_primary_10_1007_s11760_025_04500_1
springer_journals_10_1007_s11760_025_04500_1
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: Heidelberg
PublicationTitle Signal, image and video processing
PublicationTitleAbbrev SIViP
PublicationYear 2025
Publisher Springer London
Springer Nature B.V
Publisher_xml – name: Springer London
– name: Springer Nature B.V
References 4500_CR27
4500_CR28
4500_CR25
4500_CR1
R Somarathna (4500_CR3) 2023; 14
4500_CR29
4500_CR4
4500_CR5
4500_CR6
4500_CR7
4500_CR8
4500_CR9
T Zhang (4500_CR31) 2023; 25
K Lewin (4500_CR2) 2013
Z Ahmad (4500_CR10) 2022
P Ekman (4500_CR23) 1999; 98
4500_CR20
H Huang (4500_CR15) 2020
A Alslaity (4500_CR13) 2024; 43
S Chen (4500_CR12) 2021
4500_CR21
4500_CR16
4500_CR17
4500_CR14
4500_CR18
4500_CR19
C Filippini (4500_CR26) 2022; 22
D Ayata (4500_CR11) 2020; 40
C Kirschbaum (4500_CR22) 1993; 28
JA Russell (4500_CR24) 1980; 39
4500_CR30
4500_CR32
References_xml – year: 2022
  ident: 4500_CR10
  publication-title: Bioengineering
  doi: 10.3390/bioengineering9110688
– ident: 4500_CR8
  doi: 10.1145/1978942.1979047
– volume: 28
  start-page: 76
  issue: 1–2
  year: 1993
  ident: 4500_CR22
  publication-title: Neuropsychobiology
  doi: 10.1159/000119004
– ident: 4500_CR30
  doi: 10.1109/TPAMI.1979.4766909
– ident: 4500_CR17
  doi: 10.1016/j.biopsycho.2009.09.012
– volume: 25
  start-page: 3773
  year: 2023
  ident: 4500_CR31
  publication-title: IEEE Trans. Multimedia
  doi: 10.1109/TMM.2022.3165715
– ident: 4500_CR14
  doi: 10.3389/fnins.2022.965871
– ident: 4500_CR5
  doi: 10.1016/j.inffus.2023.102019
– ident: 4500_CR21
  doi: 10.1080/02699931.2015.1031089
– volume: 98
  start-page: 16
  issue: 45–60
  year: 1999
  ident: 4500_CR23
  publication-title: Handbook of cognition and emotion
– year: 2013
  ident: 4500_CR2
  publication-title: Read Books Ltd
  doi: 10.1037/10019-000
– ident: 4500_CR7
  doi: 10.1016/0005-7916(94)90063-9
– ident: 4500_CR1
  doi: 10.1007/978-3-540-45012-2_2
– year: 2021
  ident: 4500_CR12
  publication-title: Sensors
  doi: 10.3390/s21031018
– volume: 14
  start-page: 2626
  issue: 4
  year: 2023
  ident: 4500_CR3
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3181053
– ident: 4500_CR25
  doi: 10.1109/CEC.2016.7743957
– volume: 40
  start-page: 149
  year: 2020
  ident: 4500_CR11
  publication-title: Journal of Medical and Biological Engineering
  doi: 10.1007/s40846-019-00505-7
– year: 2020
  ident: 4500_CR15
  publication-title: Ieee Access
  doi: 10.1109/access.2019.2962085
– volume: 39
  start-page: 1161
  issue: 6
  year: 1980
  ident: 4500_CR24
  publication-title: J. Pers. Soc. Psychol.
  doi: 10.1037/h0077714
– volume: 43
  start-page: 139
  issue: 1
  year: 2024
  ident: 4500_CR13
  publication-title: Behaviour & Information Technology
  doi: 10.1080/0144929X.2022.2156387
– ident: 4500_CR18
  doi: 10.1109/JSEN.2018.2867221
– ident: 4500_CR6
  doi: 10.1007/978-3-030-39903-0_978
– ident: 4500_CR20
  doi: 10.1145/3242969.3242985
– ident: 4500_CR4
  doi: 10.15439/2021F120
– ident: 4500_CR27
  doi: 10.3390/app11115194
– ident: 4500_CR16
  doi: 10.1001/archpsyc.1960.03590090061010
– ident: 4500_CR29
  doi: 10.1016/0377-0427(87)90125-7
– ident: 4500_CR28
  doi: 10.1037//0022-3514.74.4.967
– ident: 4500_CR19
  doi: 10.1109/t-affc.2011.25
– volume: 22
  start-page: 1789
  issue: 5
  year: 2022
  ident: 4500_CR26
  publication-title: Sensors
  doi: 10.3390/s22051789
– ident: 4500_CR32
  doi: 10.1016/j.mex.2025.103205
– ident: 4500_CR9
  doi: 10.1145/3491102.3501944
SSID ssj0000327868
Score 2.349195
Snippet Purpose: Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the...
Purpose:Emotion Recognition (ER) systems are designed for an accurate inference of human emotions. Emotions are elicited by stimuli provided by the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Bias
Computer Imaging
Computer Science
Datasets
Emotion recognition
Emotions
Human bias
Image Processing and Computer Vision
Machine learning
Multimedia Information Systems
Original Paper
Pattern Recognition and Graphics
Physiology
Qualitative analysis
Representations
Signal,Image and Speech Processing
Vision
Title Toward unbiased emotion recognition: overcoming user bias with siamese convolutional networks
URI https://link.springer.com/article/10.1007/s11760-025-04500-1
https://www.proquest.com/docview/3230511177
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEN4YuOjBB2pEkezBmzZ2H-wWb0BAogknSPBgmu7uNOFSjMD_d7YPUKIHL-2h200zncl8MzvzDSF36JUswmAXgNEyQPzPg8Sh4XWdUYZrm0YF2-dEjWfyZd6ZlzQ5vhdm7_z-ccWYVmHgh64i-AjDACOdeocJ7cc0DNRgm08JBddR0fkWKc-6GYqyR-b3bX76oR243DsPzd3M6JQcl_iQ9oofekYOIGuQk2r2Ai1NsUGOvhEJnpP3aV79SjeZWaBbchSK6Tx0Wx-0zJ6or9ZEBcM3qM9NUL-W-kQsXS18sSxQX4Ne6iJ-RFaUiK8uyGw0nA7GQTk4IbCCqXWQSIa-yXJwScTSRKbCYNjgpPP8cA7AciNSzlyna42EMEoZcACZoLcyjDshLkktW2ZwRSgkykYOHAirZNe5iMlUS1AsUUYJbZvkvhJj_FHwY8Q7JmQv9BiFHudCj1mTtCpJx6WtrGKBURDCPqZ1kzxU0t89_nu36_8tvyGH3CtA3kjYIrX15wZuEVGsTZvUe6N-f-Lvz2-vw3auWnid8d4XrAvGnw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV05T8MwFH6qygAM3IhyeoAJIsWO66RIDIhDLS1MrcSCQmy_SF1SRIsQ_4cfynMOCggGhs5xIuvLOz4_vwPgkLySIRpsPdSh9Ij_Cy-xpHgtq5UWoUmjotvnnWoP5M19874G71UtTJ7tXl1J5pZ6WuzGQ-V7bvwq0RDf93iZStnFt1c6qI3POpf0V4-EuL7qX7S9cpaAZwKuJl4iOZlrI9AmEU8TmQaamLSV1rVMs4hG6CAV3DZbRkv0o5SjQJQJGXDNhXVhTzL0c0Q-Iqc7A3H-GcnxAxFGRc1dpFy_Tz8oq3N-3_Z3DziltT9uYnMHd70CSyUzZeeFKK1CDbM1WK6mPrDSCKzB4pcWhuvw0M_zbtlLpofkEC3DYi4Q-8xMGmWnzOWJEsr0BnNREebWMhcCZuOhS9NF5rLfSy2gTWRFcvp4AwYzgXkT6tkowy1gmCgTWbQYGCVb1kZcpqFExROlVRCaBhxXMMZPRWeOeNqD2YEeE-hxDnrMG7BbIR2XWjqOAzp_EeHkYdiAkwr96eO_v7b9v-UHMN_u3_biXueuuwMLwglDXs64C_XJ8wvuEa-Z6P1crBg8zlqOPwCbcwTI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LS8QwEB5EQfTgW1yfOehJi00a067gQVaXXRXxoOBFapNMYS_dxa6I_8qf6KQPq6IHD56bljCdzHwz-WYGYJe8kiEYbD3UofQI_wsvsXTw2lYrLUKTRmW3z2vVu5MX90f3E_BW18IUbPf6SrKsaXBdmrLx4cimh03hGw-V77lRrARJfN_jFa3yEl9fKGjLT_pn9If3hOie33Z6XjVXwDMBV2MvkZxMtxFok4iniUwDTajaSuvap1lEI3SQCm6P2kZL9KOUo0CUCRlzzYV1KVAy-lMUGXEX7nVU5yOr4wcijMr6u0i53p9-UFXq_Lztr96wgbjfbmULZ9ddgLkKpbLTUq0WYQKzJZivJ0CwyiAsweyndobL8HBbcHDZc6YH5Bwtw3JGEPtgKQ2zY-Y4oyRxeoO5DAlza5lLB7N84Ci7yBwTvjoRtImsJKrnK3D3L2JehclsmOEaMEyUiSxaDIySbWsjLtNQouKJ0ioITQv2azHGo7JLR9z0Y3ZCj0nocSH0mLdgs5Z0XJ3YPA4oFiPwycOwBQe19JvHv39t_W_Ld2D65qwbX_WvLzdgRjhdKCobN2Fy_PSMWwRxxnq70CoGj_-txu_ZpAju
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Toward+unbiased+emotion+recognition%3A+overcoming+user+bias+with+siamese+convolutional+networks&rft.jtitle=Signal%2C+image+and+video+processing&rft.au=La+Porta%2C+Nicol%C3%B2&rft.au=Oldano%2C+Gilles&rft.au=Puiatti%2C+Alessandro&rft.au=Leidi%2C+Tiziano&rft.date=2025-11-01&rft.pub=Springer+London&rft.issn=1863-1703&rft.eissn=1863-1711&rft.volume=19&rft.issue=11&rft_id=info:doi/10.1007%2Fs11760-025-04500-1&rft.externalDocID=10_1007_s11760_025_04500_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1863-1703&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1863-1703&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1863-1703&client=summon