Intelligent prediction on performance of high-temperature heat pump systems using different refrigerants

Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump (HTHP). The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions. The results demonstrated the...

Full description

Saved in:
Bibliographic Details
Published inJournal of Central South University Vol. 25; no. 11; pp. 2754 - 2765
Main Authors Yu, Xiao-hui, Zhang, Yu-feng, Zhang, Yan, He, Zhong-lu, Dong, Sheng-ming, Ma, Xue-lian, Yao, Sheng
Format Journal Article
LanguageEnglish
Published Changsha Central South University 01.12.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump (HTHP). The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions. The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants. Additionally, the exploration and analyses of the support vector machine (SVM) and back propagation (BP) neural network models were made to find a practical way to predict the performance of HTHP system. The results showed that SVM-Linear, SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy. SVM-RBF demonstrated better stability for coefficient of performance prediction. Finally, the proposed SVM model was used to assess the potential of the M1 and M2. The results indicated that the HTHP system using M1 could produce heat at the temperature of 130 °C with good performance.
AbstractList Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump (HTHP). The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions. The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants. Additionally, the exploration and analyses of the support vector machine (SVM) and back propagation (BP) neural network models were made to find a practical way to predict the performance of HTHP system. The results showed that SVM-Linear, SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy. SVM-RBF demonstrated better stability for coefficient of performance prediction. Finally, the proposed SVM model was used to assess the potential of the M1 and M2. The results indicated that the HTHP system using M1 could produce heat at the temperature of 130 °C with good performance.
Author Zhang, Yu-feng
Yao, Sheng
Dong, Sheng-ming
He, Zhong-lu
Zhang, Yan
Yu, Xiao-hui
Ma, Xue-lian
Author_xml – sequence: 1
  givenname: Xiao-hui
  orcidid: 0000-0002-6791-8946
  surname: Yu
  fullname: Yu, Xiao-hui
  email: yuxiaohui@tju.edu.cn
  organization: School of Environmental Science and Engineering, Tianjin University
– sequence: 2
  givenname: Yu-feng
  surname: Zhang
  fullname: Zhang, Yu-feng
  organization: School of Environmental Science and Engineering, Tianjin University
– sequence: 3
  givenname: Yan
  surname: Zhang
  fullname: Zhang, Yan
  organization: School of Architecture, Tianjin University
– sequence: 4
  givenname: Zhong-lu
  surname: He
  fullname: He, Zhong-lu
  organization: School of Environmental Science and Engineering, Tianjin University
– sequence: 5
  givenname: Sheng-ming
  surname: Dong
  fullname: Dong, Sheng-ming
  organization: School of Environmental Science and Engineering, Tianjin University
– sequence: 6
  givenname: Xue-lian
  surname: Ma
  fullname: Ma, Xue-lian
  organization: School of Environmental Science and Engineering, Tianjin University
– sequence: 7
  givenname: Sheng
  surname: Yao
  fullname: Yao, Sheng
  organization: School of Architecture, Tianjin University
BookMark eNp1UE1LAzEQDaJgrf0B3gKeo5mkm90cpfhRKHjRc0izSTfSza5J9tB_b5YKnoSBGWbeezPzbtBlGIJF6A7oA1BaPyaAugZCoSFcVqW4QAvGWE0qxvhlqamsCGukvEarlPyecmCCCykWqNuGbI9Hf7Ah4zHa1pvsh4BLjDa6IfY6GIsHhzt_6Ei2fWnrPEWLO6sLZepHnE6pDBKekg8H3HrnbJz1onWxKEcdcrpFV04fk1395iX6fHn-2LyR3fvrdvO0I4aDyERzW7KtwVBnoGVariUYMHtB9-u2cdC4qtVtW1OmWQ1WCwNac0qlKFju-BLdn3XHOHxPNmX1NUwxlJWKAZfAK8FpQcEZZeKQUrlTjdH3Op4UUDV7qs6equKpmj1VM4edOalgQ3nrT_l_0g_78H2d
CitedBy_id crossref_primary_10_1007_s11771_019_4068_9
crossref_primary_10_1016_j_applthermaleng_2024_122660
crossref_primary_10_3390_en16124591
crossref_primary_10_1007_s11771_022_5151_1
Cites_doi 10.1016/j.enbuild.2014.04.003
10.1016/j.energy.2017.12.094
10.1016/j.buildenv.2008.01.002
10.1016/j.applthermaleng.2017.08.072
10.1016/j.ijthermalsci.2007.03.004
10.1007/s11771-011-0895-z
10.1007/s11771-012-1036-z
10.1177/0263092317719634
10.1016/j.eswa.2008.06.126
10.1007/s11771-017-3437-5
10.1016/j.ijrefrig.2014.04.019
10.1007/978-1-4757-2440-0
10.1007/s11771-014-2040-2
10.1007/s11771-011-0716-4
10.1016/j.apenergy.2009.01.001
10.1016/j.energy.2014.01.111
10.1007/s11771-013-1620-x
10.1016/j.ijrefrig.2014.12.010
10.1007/s11771-016-3268-9
10.1016/j.proeng.2011.11.2338
10.1007/s11771-012-1028-z
10.1007/s11771-014-1978-4
10.1002/er.999
10.1016/j.applthermaleng.2017.02.035
10.1016/j.oceano.2017.03.007
10.1016/j.applthermaleng.2011.02.035
ContentType Journal Article
Copyright Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s11771-018-3951-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitle_FL 不同工质的高温热泵系统性能智能预测
EISSN 2227-5223
EndPage 2765
ExternalDocumentID 10_1007_s11771_018_3951_0
GroupedDBID -03
-0C
-EM
-SC
-S~
.VR
06D
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
40E
5VR
5VS
8UJ
92H
92I
92M
92R
93N
95-
95.
95~
96X
9D9
9DC
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAG
ABKAS
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACSNA
ACTTH
ACVWB
ACWMK
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADMVV
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFTE
AEGNC
AEJHL
AEJRE
AEKMD
AEKVL
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAJEC
CAJUS
CCEZO
CEKLB
CHBEP
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9J
PF0
PT4
Q--
Q-2
R-C
R89
ROL
RPX
RSV
RT3
S16
S3B
SAP
SCL
SCLPG
SCV
SDH
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T8S
TCJ
TGT
TSG
TUC
U1F
U1G
U2A
U5C
U5M
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~A9
0R~
AACDK
AAEOY
AAJBT
AASML
AAXDM
AAYXX
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
SJYHP
ID FETCH-LOGICAL-c316t-a3e316e71c0fc1d2a9491c1cb60b4d8f18f5dadd702a271ea6c1aa300962a93f3
IEDL.DBID U2A
ISSN 2095-2899
IngestDate Thu Oct 10 17:43:47 EDT 2024
Thu Sep 12 17:32:26 EDT 2024
Sat Dec 16 12:01:19 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords back propagation neural network
performance prediction
实验性能
支持向量机
误差回传神经网络
性能预测
support vector machine
high-temperature heat pump
experimental performance
高温热泵
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a3e316e71c0fc1d2a9491c1cb60b4d8f18f5dadd702a271ea6c1aa300962a93f3
ORCID 0000-0002-6791-8946
PQID 2139135630
PQPubID 2044301
PageCount 12
ParticipantIDs proquest_journals_2139135630
crossref_primary_10_1007_s11771_018_3951_0
springer_journals_10_1007_s11771_018_3951_0
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Changsha
PublicationPlace_xml – name: Changsha
– name: Heidelberg
PublicationSubtitle Science & Technology of Mining and Metallurgy
PublicationTitle Journal of Central South University
PublicationTitleAbbrev J. Cent. South Univ
PublicationYear 2018
Publisher Central South University
Springer Nature B.V
Publisher_xml – name: Central South University
– name: Springer Nature B.V
References Dhanalakshmi, Palanivela, Ramalingama (CR22) 2009; 36
Šarevski, Šarevski (CR5) 2017; 117
Ozyurt, Comakli, Yilmaz, Karsli (CR6) 2004; 28
Zeng, Liu, E (CR8) 2011; 18
Wang, Zhou, Xia, Liu, Zhang (CR1) 2017; 24
Zuo, Luo, Guan, Wang (CR19) 2014; 21
Adrián, Joaquín (CR2) 2015; 51
Vapnik (CR17) 1998
Zhang, Zhang, Yu, Guo, Deng, Dong, He, Ma (CR4) 2017; 127
Tian (CR27) 2005
Press, Saul, William, Flannery (CR28) 2007
Pan, Wang, Chen, Chen (CR3) 2011; 31
Li, Chen (CR30) 2012; 25
Wang, Zuo (CR9) 2012; 19
Marwan, Romuald, Philippe, Jean (CR7) 2014; 44
Dong, Zhang, He, Deng, Yu, Yang (CR24) 2018; 144
E, Qian, Zhu, Peng, Zuo, Liu (CR20) 2017; 36
Vapnik (CR16) 1995
Yu, Zhang, Deng, Chen, Ma, Dong, Zhang (CR23) 2014; 78
Esen, Inalli, Sengur, Esena (CR11) 2008; 43
Zuo, Luo, Guan, Wang (CR10) 2013; 20
Tian, Gao (CR31) 2006
Zhang (CR29) 2011; 26
Wang, Zuo (CR18) 2014; 21
E, Li, Gong (CR13) 2011; 18
Yang, E, Qu (CR12) 2012; 19
Shamshirband, Petković, Amini, Anuar, Nikolić, Ćojbasić, Kiah, Cani (CR26) 2014; 67
Jadran, Eva, Dalibor, Goran (CR25) 2017; 59
Mohanraj, Jayaraj, Muraleedharan (CR15) 2009; 86
Esen, Inalli, Sengur, Esena (CR14) 2008; 47
E, Zuo, Liu, Li, Gong (CR21) 2016; 23
H Yang (3951_CR12) 2012; 19
J E (3951_CR20) 2017; 36
V Vapnik (3951_CR17) 1998
J E (3951_CR13) 2011; 18
M Šarevski (3951_CR5) 2017; 117
H Esen (3951_CR14) 2008; 47
T Wang (3951_CR18) 2014; 21
Y Zeng (3951_CR8) 2011; 18
X Yu (3951_CR23) 2014; 78
M Li (3951_CR30) 2012; 25
S Dong (3951_CR24) 2018; 144
B Jadran (3951_CR25) 2017; 59
C Marwan (3951_CR7) 2014; 44
H Zuo (3951_CR10) 2013; 20
J E (3951_CR21) 2016; 23
V Vapnik (3951_CR16) 1995
Ying Tian (3951_CR27) 2005
P Dhanalakshmi (3951_CR22) 2009; 36
M Adrián (3951_CR2) 2015; 51
O Ozyurt (3951_CR6) 2004; 28
S Wang (3951_CR9) 2012; 19
M Mohanraj (3951_CR15) 2009; 86
W Press (3951_CR28) 2007
Z Wang (3951_CR1) 2017; 24
S Shamshirband (3951_CR26) 2014; 67
Y Zhang (3951_CR4) 2017; 127
J Tian (3951_CR31) 2006
H Zuo (3951_CR19) 2014; 21
L Pan (3951_CR3) 2011; 31
Jian Zhang (3951_CR29) 2011; 26
H Esen (3951_CR11) 2008; 43
References_xml – volume: 78
  start-page: 43
  year: 2014
  end-page: 49
  ident: CR23
  article-title: Experimental performance of high temperature heat pump with near-azeotropic refrigerant mixture [J]
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2014.04.003
  contributor:
    fullname: Zhang
– volume: 144
  start-page: 851
  year: 2018
  end-page: 864
  ident: CR24
  article-title: Investigation of support vector machine and back propagation artificial neural network for performance prediction of the organic Rankine cycle system [J]
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.094
  contributor:
    fullname: Yang
– volume: 43
  start-page: 2178
  issue: 12
  year: 2008
  end-page: 2187
  ident: CR11
  article-title: Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS [J]
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2008.01.002
  contributor:
    fullname: Esena
– volume: 25
  start-page: 1212
  year: 2012
  end-page: 1217
  ident: CR30
  article-title: Application of BP neural network algorithm in sustainable development of highway construction projects [J]
  publication-title: Procedia Engineering
  contributor:
    fullname: Chen
– volume: 127
  start-page: 1461
  year: 2017
  end-page: 1468
  ident: CR4
  article-title: Analysis of a high temperature heat pump using BY-5 as refrigerant [J]
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2017.08.072
  contributor:
    fullname: Ma
– volume: 47
  start-page: 431
  issue: 4
  year: 2008
  end-page: 441
  ident: CR14
  article-title: Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing [J]
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2007.03.004
  contributor:
    fullname: Esena
– volume: 18
  start-page: 1733
  issue: 5
  year: 2011
  end-page: 1737
  ident: CR13
  article-title: Function chain neural network prediction on heat transfer performance of oscillating heat pipe based on grey relational analysis [J]
  publication-title: Journal of Central South University of Technology
  doi: 10.1007/s11771-011-0895-z
  contributor:
    fullname: Gong
– year: 2007
  ident: CR28
  publication-title: Numerical recipes: The art of scientific computing, Section 16.5
  contributor:
    fullname: Flannery
– volume: 19
  start-page: 527
  issue: 2
  year: 2012
  end-page: 536
  ident: CR12
  article-title: Multidisciplinary design optimization for air-condition production system based on multi-agent technique [J]
  publication-title: Journal of Central South University of Technology
  doi: 10.1007/s11771-012-1036-z
  contributor:
    fullname: Qu
– volume: 36
  start-page: 227
  issue: 3
  year: 2017
  end-page: 242
  ident: CR20
  article-title: Parameters identification investigations on the hysteretic Preisach model improved by the fuzzy least square support vector machine based on adaptive variable chaos immune algorithm [J]
  publication-title: Journal of Low Frequency Noise, Vibration and Active Control
  doi: 10.1177/0263092317719634
  contributor:
    fullname: Liu
– volume: 36
  start-page: 6069
  issue: 3
  year: 2009
  end-page: 6075
  ident: CR22
  article-title: Classification of audio signals using SVM and RBFNN [J]
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.126
  contributor:
    fullname: Ramalingama
– volume: 24
  start-page: 353
  issue: 2
  year: 2017
  end-page: 359
  ident: CR1
  article-title: Performance comparison and analysis of a combined power and cooling system based on organic Rankine cycle [J]
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-017-3437-5
  contributor:
    fullname: Zhang
– volume: 44
  start-page: 177
  year: 2014
  end-page: 188
  ident: CR7
  article-title: Experimental and numerical investigations of a new high temperature heat pump for industrial heat recovery using water as refrigerant [J]
  publication-title: International Journal of Refrigeration
  doi: 10.1016/j.ijrefrig.2014.04.019
  contributor:
    fullname: Jean
– year: 1995
  ident: CR16
  publication-title: The nature of statistical learning theory [M]
  doi: 10.1007/978-1-4757-2440-0
  contributor:
    fullname: Vapnik
– volume: 21
  start-page: 1085
  issue: 3
  year: 2014
  end-page: 1090
  ident: CR19
  article-title: Identification on rock and soil parameters for vibration drilling rock in metal mine based on fuzzy least square support vector machine [J]
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-014-2040-2
  contributor:
    fullname: Wang
– year: 1998
  ident: CR17
  publication-title: Statistical learning theory [M]
  contributor:
    fullname: Vapnik
– volume: 18
  start-page: 444
  issue: 2
  year: 2011
  end-page: 450
  ident: CR8
  article-title: Neuron PI control for semi-active suspension system of tracked vehicle and its application [J]
  publication-title: Journal of Central South University of Technology
  doi: 10.1007/s11771-011-0716-4
  contributor:
    fullname: E
– volume: 86
  start-page: 1441
  year: 2009
  end-page: 1449
  ident: CR15
  article-title: Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks [J]
  publication-title: Apply Energy
  doi: 10.1016/j.apenergy.2009.01.001
  contributor:
    fullname: Muraleedharan
– year: 2006
  ident: CR31
  publication-title: Research and application of artificial neural network algorithm [M]
  contributor:
    fullname: Gao
– volume: 67
  start-page: 623
  year: 2014
  end-page: 630
  ident: CR26
  article-title: Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission [J]
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.111
  contributor:
    fullname: Cani
– volume: 20
  start-page: 1332
  issue: 5
  year: 2013
  end-page: 1340
  ident: CR10
  article-title: Multidisciplinary design optimization on production scale of underground metal mine [J]
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-013-1620-x
  contributor:
    fullname: Wang
– volume: 51
  start-page: 52
  year: 2015
  end-page: 58
  ident: CR2
  article-title: Experimental study of an R1234ze(E)/R134a mixture (R450A) as R134a replacement [J]
  publication-title: International Journal of Refrigeration
  doi: 10.1016/j.ijrefrig.2014.12.010
  contributor:
    fullname: Joaquín
– volume: 23
  start-page: 2118
  issue: 8
  year: 2016
  end-page: 2128
  ident: CR21
  article-title: Endpoint forecasting on composite regeneration by coupling cerium-based additive and microwave for diesel particulate filter [J]
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-016-3268-9
  contributor:
    fullname: Gong
– volume: 26
  start-page: 1554
  year: 2011
  end-page: 1562
  ident: CR29
  article-title: Study on the gas content of coal seam based on the BP neural network [J]
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.11.2338
  contributor:
    fullname: Zhang
– volume: 19
  start-page: 477
  issue: 2
  year: 2012
  end-page: 481
  ident: CR9
  article-title: Safety diagnosis on coal mine production system based on fuzzy logic inference [J]
  publication-title: Journal of Central South University of Technology
  doi: 10.1007/s11771-012-1028-z
  contributor:
    fullname: Zuo
– volume: 21
  start-page: 593
  issue: 2
  year: 2014
  end-page: 599
  ident: CR18
  article-title: Fuzzy least squares support vector machines soft measurement model based on adaptive mutative scale chaos immune algorithm [J]
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-014-1978-4
  contributor:
    fullname: Zuo
– volume: 28
  start-page: 833
  year: 2004
  end-page: 846
  ident: CR6
  article-title: Heat pump use in milk pasteurization: an energy analysis [J]
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.999
  contributor:
    fullname: Karsli
– volume: 117
  start-page: 355
  year: 2017
  end-page: 365
  ident: CR5
  article-title: Thermal characteristics of high-temperature R718 heat pumps with turbo compressor thermal vapor recompression [J]
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2017.02.035
  contributor:
    fullname: Šarevski
– year: 2005
  ident: CR27
  publication-title: Support vector regression and its application [D]
  contributor:
    fullname: Tian
– volume: 59
  start-page: 331
  year: 2017
  end-page: 349
  ident: CR25
  article-title: Application of neural networks and support vector machine for significant wave height prediction [J]
  publication-title: Oceanologia
  doi: 10.1016/j.oceano.2017.03.007
  contributor:
    fullname: Goran
– volume: 31
  start-page: 1886
  year: 2011
  end-page: 1893
  ident: CR3
  article-title: Theoretical and experimental study on several refrigerants of moderately high temperature heat pump [J]
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2011.02.035
  contributor:
    fullname: Chen
– volume: 18
  start-page: 444
  issue: 2
  year: 2011
  ident: 3951_CR8
  publication-title: Journal of Central South University of Technology
  doi: 10.1007/s11771-011-0716-4
  contributor:
    fullname: Y Zeng
– volume-title: The nature of statistical learning theory [M]
  year: 1995
  ident: 3951_CR16
  doi: 10.1007/978-1-4757-2440-0
  contributor:
    fullname: V Vapnik
– volume: 36
  start-page: 227
  issue: 3
  year: 2017
  ident: 3951_CR20
  publication-title: Journal of Low Frequency Noise, Vibration and Active Control
  doi: 10.1177/0263092317719634
  contributor:
    fullname: J E
– volume: 36
  start-page: 6069
  issue: 3
  year: 2009
  ident: 3951_CR22
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.126
  contributor:
    fullname: P Dhanalakshmi
– volume: 21
  start-page: 1085
  issue: 3
  year: 2014
  ident: 3951_CR19
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-014-2040-2
  contributor:
    fullname: H Zuo
– volume: 59
  start-page: 331
  year: 2017
  ident: 3951_CR25
  publication-title: Oceanologia
  doi: 10.1016/j.oceano.2017.03.007
  contributor:
    fullname: B Jadran
– volume-title: Statistical learning theory [M]
  year: 1998
  ident: 3951_CR17
  contributor:
    fullname: V Vapnik
– volume: 86
  start-page: 1441
  year: 2009
  ident: 3951_CR15
  publication-title: Apply Energy
  doi: 10.1016/j.apenergy.2009.01.001
  contributor:
    fullname: M Mohanraj
– volume-title: Research and application of artificial neural network algorithm [M]
  year: 2006
  ident: 3951_CR31
  contributor:
    fullname: J Tian
– volume: 19
  start-page: 477
  issue: 2
  year: 2012
  ident: 3951_CR9
  publication-title: Journal of Central South University of Technology
  doi: 10.1007/s11771-012-1028-z
  contributor:
    fullname: S Wang
– volume-title: Numerical recipes: The art of scientific computing, Section 16.5
  year: 2007
  ident: 3951_CR28
  contributor:
    fullname: W Press
– volume: 20
  start-page: 1332
  issue: 5
  year: 2013
  ident: 3951_CR10
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-013-1620-x
  contributor:
    fullname: H Zuo
– volume-title: Support vector regression and its application [D]
  year: 2005
  ident: 3951_CR27
  contributor:
    fullname: Ying Tian
– volume: 31
  start-page: 1886
  year: 2011
  ident: 3951_CR3
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2011.02.035
  contributor:
    fullname: L Pan
– volume: 67
  start-page: 623
  year: 2014
  ident: 3951_CR26
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.111
  contributor:
    fullname: S Shamshirband
– volume: 24
  start-page: 353
  issue: 2
  year: 2017
  ident: 3951_CR1
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-017-3437-5
  contributor:
    fullname: Z Wang
– volume: 43
  start-page: 2178
  issue: 12
  year: 2008
  ident: 3951_CR11
  publication-title: Building and Environment
  doi: 10.1016/j.buildenv.2008.01.002
  contributor:
    fullname: H Esen
– volume: 44
  start-page: 177
  year: 2014
  ident: 3951_CR7
  publication-title: International Journal of Refrigeration
  doi: 10.1016/j.ijrefrig.2014.04.019
  contributor:
    fullname: C Marwan
– volume: 26
  start-page: 1554
  year: 2011
  ident: 3951_CR29
  publication-title: Procedia Engineering
  doi: 10.1016/j.proeng.2011.11.2338
  contributor:
    fullname: Jian Zhang
– volume: 78
  start-page: 43
  year: 2014
  ident: 3951_CR23
  publication-title: Energ Buildings
  doi: 10.1016/j.enbuild.2014.04.003
  contributor:
    fullname: X Yu
– volume: 47
  start-page: 431
  issue: 4
  year: 2008
  ident: 3951_CR14
  publication-title: International Journal of Thermal Sciences
  doi: 10.1016/j.ijthermalsci.2007.03.004
  contributor:
    fullname: H Esen
– volume: 25
  start-page: 1212
  year: 2012
  ident: 3951_CR30
  publication-title: Procedia Engineering
  contributor:
    fullname: M Li
– volume: 18
  start-page: 1733
  issue: 5
  year: 2011
  ident: 3951_CR13
  publication-title: Journal of Central South University of Technology
  doi: 10.1007/s11771-011-0895-z
  contributor:
    fullname: J E
– volume: 21
  start-page: 593
  issue: 2
  year: 2014
  ident: 3951_CR18
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-014-1978-4
  contributor:
    fullname: T Wang
– volume: 51
  start-page: 52
  year: 2015
  ident: 3951_CR2
  publication-title: International Journal of Refrigeration
  doi: 10.1016/j.ijrefrig.2014.12.010
  contributor:
    fullname: M Adrián
– volume: 28
  start-page: 833
  year: 2004
  ident: 3951_CR6
  publication-title: International Journal of Energy Research
  doi: 10.1002/er.999
  contributor:
    fullname: O Ozyurt
– volume: 19
  start-page: 527
  issue: 2
  year: 2012
  ident: 3951_CR12
  publication-title: Journal of Central South University of Technology
  doi: 10.1007/s11771-012-1036-z
  contributor:
    fullname: H Yang
– volume: 23
  start-page: 2118
  issue: 8
  year: 2016
  ident: 3951_CR21
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-016-3268-9
  contributor:
    fullname: J E
– volume: 117
  start-page: 355
  year: 2017
  ident: 3951_CR5
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2017.02.035
  contributor:
    fullname: M Šarevski
– volume: 127
  start-page: 1461
  year: 2017
  ident: 3951_CR4
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2017.08.072
  contributor:
    fullname: Y Zhang
– volume: 144
  start-page: 851
  year: 2018
  ident: 3951_CR24
  publication-title: Energy
  doi: 10.1016/j.energy.2017.12.094
  contributor:
    fullname: S Dong
SSID ssib031263696
ssib051367662
ssib026412149
ssib016993150
ssib024508231
ssib017478267
ssj0001192107
ssib009883398
ssib016971650
Score 2.1782303
Snippet Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump (HTHP). The experimental research...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 2754
SubjectTerms Back propagation networks
Engineering
Heat
Heat pumps
High temperature
Mathematical models
Metallic Materials
Neural networks
Performance prediction
Refrigerants
Reliability aspects
Support vector machines
Title Intelligent prediction on performance of high-temperature heat pump systems using different refrigerants
URI https://link.springer.com/article/10.1007/s11771-018-3951-0
https://www.proquest.com/docview/2139135630
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ju-hB_MTpHDl4UiJN0s_jkM2p6MnBPJWkaRWErnT1__e9rm2m6EHoJTSE9uW17_c-8nuEXAJk1aC7DovSCNOMQcKUk2RMAjjRmSsCYTAO-fTszxfuw9Jb9ojoQhf5x02bkax_1PasGw8C9HxDJrE1PLjpA8AOLpZxLcSk06EIu-daF4L7yJFkM3cwjiTfGiN_vLAmWLies50ZA7zABbcuiuTC71rgwdirKc8ayr06roMEY_UpbQHohaE_0yZTf3uL7-bQYtwfadna2s32yV4DU-lko1cHpJfmh2R3i7zwiLzfd2yeFS1KTPjgJlO4Cnsaga4yipTIDDmwGgJnigaAFqBIdEMkvaZYfv9G224tFYUHLWHlEqt0jsliNn25nbOmbwNLJPcrpjCw6qcBT5ws4UaoyI14whPtO9o1YcbDzDPwXw0coUTAU-UnXCmJ3hTMlZk8If18laenhJoIpBumjmd06EY607423EiYaZSE6UNy1YovLjb0HLElYkZZxyDrGGUdO0MyagUcN1_qOhYAgblElrQhuW6Fbm__udjZv2afkx2Bm17XwYxIvyo_0wtAM5Uek8Hk7vVxOq7V-Av5iuC2
link.rule.ids 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGYAB8RSFAh6YQJZiOy-PFaJqoe3USt0iO05gaqM0_H_u0qQuCAakLFZOVnK52N_57r4j5AEgqwHb9ZjKFIYZo5RpL82ZBHBicl9EwuI55GQaDuf-6yJYNHXc6zbbvQ1J1iu1K3bjUYSub8wk9oYHP30f6dXRrOeivzUihe1znQ_BQyRJcqE7GCvJd8ZIIC_cHiz8wNsNjQFg4II7H0VyEW574ME4qDnPGs69-mAHGcbqMm0B8IWhQ9NGU397i-_7oQO5P-Ky9XY3OCHHDU6l_Y1hnZK9bHlGjnbYC8_Jx2hL51nRosSID35lClfhyhHoKqfIicyQBKthcKa4A9ACLIlumKTXFPPv32nbrqWi8KAlzFxims4FmQ9eZs9D1jRuYKnkYcU0nqyGWcRTL0-5FVr5iqc8NaFnfBvnPM4DCwtr5AktIp7pMOVaS3SnQFbm8pJ0lqtldkWoVaDdOPMCa2JfmdyExnIrQdJqCeJd8tiqLyk2_ByJY2JGXSeg6wR1nXhd0msVnDS_6joRgIG5RJq0Lnlqle5u_znZ9b-k78nBcDYZJ-PR9O2GHAo0gDoppkc6VfmZ3QK0qcxdbcpf9bXifQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLaqrVTBASgUsVBgDpxA08YzeR4r6NIHVByo1J7SzEymSEjbaDe98Oux89hZqnJASLmMYo0S24ntsf0Z4B25rIZ0N5JFXXCaMbOyiqyXmpwT42OVKcfnkF_P0qPz-OQiuRjmnC7HavcxJdn3NDBK07zdb5zfD41vmGUcBudS85x4itk3YyRvYQKbB58vTw9XKlXwMN0QUWDKkEkhkUfrQuPamuHkVbDIKk6i9UQZuQ-oMEQsGlW6mohH66RDQBsQ-LpjHsYb65q2FT2e5PBmzK3e9x5_Wsfg8t7J0nbGb_YYrka29TUvP_duW7Nnf91BlPwPvj6BR4NjLA56Td6GjXr-FB6uwSU-gx_HK_zQVjQLTjGxWgm6mtD_IG68YBBmyahbA2S0YJMjGlJd0UNXLwUX_F-LcT5MK4gXC9p5wXVBO3A-O_z-8UgOkyKk1Zi2suKj3LTO0EbeolNVERdo0Zo0MrHLPeY-cfQnzyJVqQzrKrVYVZrjN6LVXj-HyfxmXr8A4QoSYF5HiTN5XBhvUuPQaaJ0lSbyKbwfJVQ2PSBIGaCfmX0lsa9k9pXRFHZHGZbDv2FZKnK6UTMu2xQ-jCIJt_-62ct_on4LW98-zcovx2enr-CBYpF2RTi7MGkXt_VrcqVa82b4XH4DN_cIMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+prediction+on+performance+of+high-temperature+heat+pump+systems+using+different+refrigerants&rft.jtitle=Journal+of+Central+South+University&rft.au=Xiao-hui%2C+Yu&rft.au=Yu-feng%2C+Zhang&rft.au=Zhang%2C+Yan&rft.au=Zhong-lu%2C+He&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-2899&rft.eissn=2227-5223&rft.volume=25&rft.issue=11&rft.spage=2754&rft.epage=2765&rft_id=info:doi/10.1007%2Fs11771-018-3951-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2899&client=summon