Intelligent prediction on performance of high-temperature heat pump systems using different refrigerants
Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump (HTHP). The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions. The results demonstrated the...
Saved in:
Published in | Journal of Central South University Vol. 25; no. 11; pp. 2754 - 2765 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Changsha
Central South University
01.12.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump (HTHP). The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions. The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants. Additionally, the exploration and analyses of the support vector machine (SVM) and back propagation (BP) neural network models were made to find a practical way to predict the performance of HTHP system. The results showed that SVM-Linear, SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy. SVM-RBF demonstrated better stability for coefficient of performance prediction. Finally, the proposed SVM model was used to assess the potential of the M1 and M2. The results indicated that the HTHP system using M1 could produce heat at the temperature of 130 °C with good performance. |
---|---|
AbstractList | Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump (HTHP). The experimental research was used to analyze and compare the performance of M1 and M2-based in the HTHP in different running conditions. The results demonstrated the feasibility and reliability of M1 and M2 as new high-temperature refrigerants. Additionally, the exploration and analyses of the support vector machine (SVM) and back propagation (BP) neural network models were made to find a practical way to predict the performance of HTHP system. The results showed that SVM-Linear, SVM-RBF and BP models shared the similar ability to predict the heat capacity and power input with high accuracy. SVM-RBF demonstrated better stability for coefficient of performance prediction. Finally, the proposed SVM model was used to assess the potential of the M1 and M2. The results indicated that the HTHP system using M1 could produce heat at the temperature of 130 °C with good performance. |
Author | Zhang, Yu-feng Yao, Sheng Dong, Sheng-ming He, Zhong-lu Zhang, Yan Yu, Xiao-hui Ma, Xue-lian |
Author_xml | – sequence: 1 givenname: Xiao-hui orcidid: 0000-0002-6791-8946 surname: Yu fullname: Yu, Xiao-hui email: yuxiaohui@tju.edu.cn organization: School of Environmental Science and Engineering, Tianjin University – sequence: 2 givenname: Yu-feng surname: Zhang fullname: Zhang, Yu-feng organization: School of Environmental Science and Engineering, Tianjin University – sequence: 3 givenname: Yan surname: Zhang fullname: Zhang, Yan organization: School of Architecture, Tianjin University – sequence: 4 givenname: Zhong-lu surname: He fullname: He, Zhong-lu organization: School of Environmental Science and Engineering, Tianjin University – sequence: 5 givenname: Sheng-ming surname: Dong fullname: Dong, Sheng-ming organization: School of Environmental Science and Engineering, Tianjin University – sequence: 6 givenname: Xue-lian surname: Ma fullname: Ma, Xue-lian organization: School of Environmental Science and Engineering, Tianjin University – sequence: 7 givenname: Sheng surname: Yao fullname: Yao, Sheng organization: School of Architecture, Tianjin University |
BookMark | eNp1UE1LAzEQDaJgrf0B3gKeo5mkm90cpfhRKHjRc0izSTfSza5J9tB_b5YKnoSBGWbeezPzbtBlGIJF6A7oA1BaPyaAugZCoSFcVqW4QAvGWE0qxvhlqamsCGukvEarlPyecmCCCykWqNuGbI9Hf7Ah4zHa1pvsh4BLjDa6IfY6GIsHhzt_6Ei2fWnrPEWLO6sLZepHnE6pDBKekg8H3HrnbJz1onWxKEcdcrpFV04fk1395iX6fHn-2LyR3fvrdvO0I4aDyERzW7KtwVBnoGVariUYMHtB9-u2cdC4qtVtW1OmWQ1WCwNac0qlKFju-BLdn3XHOHxPNmX1NUwxlJWKAZfAK8FpQcEZZeKQUrlTjdH3Op4UUDV7qs6equKpmj1VM4edOalgQ3nrT_l_0g_78H2d |
CitedBy_id | crossref_primary_10_1007_s11771_019_4068_9 crossref_primary_10_1016_j_applthermaleng_2024_122660 crossref_primary_10_3390_en16124591 crossref_primary_10_1007_s11771_022_5151_1 |
Cites_doi | 10.1016/j.enbuild.2014.04.003 10.1016/j.energy.2017.12.094 10.1016/j.buildenv.2008.01.002 10.1016/j.applthermaleng.2017.08.072 10.1016/j.ijthermalsci.2007.03.004 10.1007/s11771-011-0895-z 10.1007/s11771-012-1036-z 10.1177/0263092317719634 10.1016/j.eswa.2008.06.126 10.1007/s11771-017-3437-5 10.1016/j.ijrefrig.2014.04.019 10.1007/978-1-4757-2440-0 10.1007/s11771-014-2040-2 10.1007/s11771-011-0716-4 10.1016/j.apenergy.2009.01.001 10.1016/j.energy.2014.01.111 10.1007/s11771-013-1620-x 10.1016/j.ijrefrig.2014.12.010 10.1007/s11771-016-3268-9 10.1016/j.proeng.2011.11.2338 10.1007/s11771-012-1028-z 10.1007/s11771-014-1978-4 10.1002/er.999 10.1016/j.applthermaleng.2017.02.035 10.1016/j.oceano.2017.03.007 10.1016/j.applthermaleng.2011.02.035 |
ContentType | Journal Article |
Copyright | Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11771-018-3951-0 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
DocumentTitle_FL | 不同工质的高温热泵系统性能智能预测 |
EISSN | 2227-5223 |
EndPage | 2765 |
ExternalDocumentID | 10_1007_s11771_018_3951_0 |
GroupedDBID | -03 -0C -EM -SC -S~ .VR 06D 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40E 5VR 5VS 8UJ 92H 92I 92M 92R 93N 95- 95. 95~ 96X 9D9 9DC AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABDZT ABECU ABFGW ABFTV ABHQN ABJNI ABJOX ABKAG ABKAS ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACSNA ACTTH ACVWB ACWMK ADHIR ADINQ ADKNI ADKPE ADMDM ADMVV ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFTE AEGNC AEJHL AEJRE AEKMD AEKVL AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFLOW AFNRJ AFQWF AFUIB AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAJEC CAJUS CCEZO CEKLB CHBEP CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR IKXTQ IWAJR IXD I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9J PF0 PT4 Q-- Q-2 R-C R89 ROL RPX RSV RT3 S16 S3B SAP SCL SCLPG SCV SDH SEG SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T8S TCJ TGT TSG TUC U1F U1G U2A U5C U5M UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z5O Z7R Z7S Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~A9 0R~ AACDK AAEOY AAJBT AASML AAXDM AAYXX ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION SJYHP |
ID | FETCH-LOGICAL-c316t-a3e316e71c0fc1d2a9491c1cb60b4d8f18f5dadd702a271ea6c1aa300962a93f3 |
IEDL.DBID | U2A |
ISSN | 2095-2899 |
IngestDate | Thu Oct 10 17:43:47 EDT 2024 Thu Sep 12 17:32:26 EDT 2024 Sat Dec 16 12:01:19 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | back propagation neural network performance prediction 实验性能 支持向量机 误差回传神经网络 性能预测 support vector machine high-temperature heat pump experimental performance 高温热泵 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-a3e316e71c0fc1d2a9491c1cb60b4d8f18f5dadd702a271ea6c1aa300962a93f3 |
ORCID | 0000-0002-6791-8946 |
PQID | 2139135630 |
PQPubID | 2044301 |
PageCount | 12 |
ParticipantIDs | proquest_journals_2139135630 crossref_primary_10_1007_s11771_018_3951_0 springer_journals_10_1007_s11771_018_3951_0 |
PublicationCentury | 2000 |
PublicationDate | 2018-12-01 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Changsha |
PublicationPlace_xml | – name: Changsha – name: Heidelberg |
PublicationSubtitle | Science & Technology of Mining and Metallurgy |
PublicationTitle | Journal of Central South University |
PublicationTitleAbbrev | J. Cent. South Univ |
PublicationYear | 2018 |
Publisher | Central South University Springer Nature B.V |
Publisher_xml | – name: Central South University – name: Springer Nature B.V |
References | Dhanalakshmi, Palanivela, Ramalingama (CR22) 2009; 36 Šarevski, Šarevski (CR5) 2017; 117 Ozyurt, Comakli, Yilmaz, Karsli (CR6) 2004; 28 Zeng, Liu, E (CR8) 2011; 18 Wang, Zhou, Xia, Liu, Zhang (CR1) 2017; 24 Zuo, Luo, Guan, Wang (CR19) 2014; 21 Adrián, Joaquín (CR2) 2015; 51 Vapnik (CR17) 1998 Zhang, Zhang, Yu, Guo, Deng, Dong, He, Ma (CR4) 2017; 127 Tian (CR27) 2005 Press, Saul, William, Flannery (CR28) 2007 Pan, Wang, Chen, Chen (CR3) 2011; 31 Li, Chen (CR30) 2012; 25 Wang, Zuo (CR9) 2012; 19 Marwan, Romuald, Philippe, Jean (CR7) 2014; 44 Dong, Zhang, He, Deng, Yu, Yang (CR24) 2018; 144 E, Qian, Zhu, Peng, Zuo, Liu (CR20) 2017; 36 Vapnik (CR16) 1995 Yu, Zhang, Deng, Chen, Ma, Dong, Zhang (CR23) 2014; 78 Esen, Inalli, Sengur, Esena (CR11) 2008; 43 Zuo, Luo, Guan, Wang (CR10) 2013; 20 Tian, Gao (CR31) 2006 Zhang (CR29) 2011; 26 Wang, Zuo (CR18) 2014; 21 E, Li, Gong (CR13) 2011; 18 Yang, E, Qu (CR12) 2012; 19 Shamshirband, Petković, Amini, Anuar, Nikolić, Ćojbasić, Kiah, Cani (CR26) 2014; 67 Jadran, Eva, Dalibor, Goran (CR25) 2017; 59 Mohanraj, Jayaraj, Muraleedharan (CR15) 2009; 86 Esen, Inalli, Sengur, Esena (CR14) 2008; 47 E, Zuo, Liu, Li, Gong (CR21) 2016; 23 H Yang (3951_CR12) 2012; 19 J E (3951_CR20) 2017; 36 V Vapnik (3951_CR17) 1998 J E (3951_CR13) 2011; 18 M Šarevski (3951_CR5) 2017; 117 H Esen (3951_CR14) 2008; 47 T Wang (3951_CR18) 2014; 21 Y Zeng (3951_CR8) 2011; 18 X Yu (3951_CR23) 2014; 78 M Li (3951_CR30) 2012; 25 S Dong (3951_CR24) 2018; 144 B Jadran (3951_CR25) 2017; 59 C Marwan (3951_CR7) 2014; 44 H Zuo (3951_CR10) 2013; 20 J E (3951_CR21) 2016; 23 V Vapnik (3951_CR16) 1995 Ying Tian (3951_CR27) 2005 P Dhanalakshmi (3951_CR22) 2009; 36 M Adrián (3951_CR2) 2015; 51 O Ozyurt (3951_CR6) 2004; 28 S Wang (3951_CR9) 2012; 19 M Mohanraj (3951_CR15) 2009; 86 W Press (3951_CR28) 2007 Z Wang (3951_CR1) 2017; 24 S Shamshirband (3951_CR26) 2014; 67 Y Zhang (3951_CR4) 2017; 127 J Tian (3951_CR31) 2006 H Zuo (3951_CR19) 2014; 21 L Pan (3951_CR3) 2011; 31 Jian Zhang (3951_CR29) 2011; 26 H Esen (3951_CR11) 2008; 43 |
References_xml | – volume: 78 start-page: 43 year: 2014 end-page: 49 ident: CR23 article-title: Experimental performance of high temperature heat pump with near-azeotropic refrigerant mixture [J] publication-title: Energ Buildings doi: 10.1016/j.enbuild.2014.04.003 contributor: fullname: Zhang – volume: 144 start-page: 851 year: 2018 end-page: 864 ident: CR24 article-title: Investigation of support vector machine and back propagation artificial neural network for performance prediction of the organic Rankine cycle system [J] publication-title: Energy doi: 10.1016/j.energy.2017.12.094 contributor: fullname: Yang – volume: 43 start-page: 2178 issue: 12 year: 2008 end-page: 2187 ident: CR11 article-title: Predicting performance of a ground-source heat pump system using fuzzy weighted pre-processing-based ANFIS [J] publication-title: Building and Environment doi: 10.1016/j.buildenv.2008.01.002 contributor: fullname: Esena – volume: 25 start-page: 1212 year: 2012 end-page: 1217 ident: CR30 article-title: Application of BP neural network algorithm in sustainable development of highway construction projects [J] publication-title: Procedia Engineering contributor: fullname: Chen – volume: 127 start-page: 1461 year: 2017 end-page: 1468 ident: CR4 article-title: Analysis of a high temperature heat pump using BY-5 as refrigerant [J] publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2017.08.072 contributor: fullname: Ma – volume: 47 start-page: 431 issue: 4 year: 2008 end-page: 441 ident: CR14 article-title: Forecasting of a ground-coupled heat pump performance using neural networks with statistical data weighting pre-processing [J] publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2007.03.004 contributor: fullname: Esena – volume: 18 start-page: 1733 issue: 5 year: 2011 end-page: 1737 ident: CR13 article-title: Function chain neural network prediction on heat transfer performance of oscillating heat pipe based on grey relational analysis [J] publication-title: Journal of Central South University of Technology doi: 10.1007/s11771-011-0895-z contributor: fullname: Gong – year: 2007 ident: CR28 publication-title: Numerical recipes: The art of scientific computing, Section 16.5 contributor: fullname: Flannery – volume: 19 start-page: 527 issue: 2 year: 2012 end-page: 536 ident: CR12 article-title: Multidisciplinary design optimization for air-condition production system based on multi-agent technique [J] publication-title: Journal of Central South University of Technology doi: 10.1007/s11771-012-1036-z contributor: fullname: Qu – volume: 36 start-page: 227 issue: 3 year: 2017 end-page: 242 ident: CR20 article-title: Parameters identification investigations on the hysteretic Preisach model improved by the fuzzy least square support vector machine based on adaptive variable chaos immune algorithm [J] publication-title: Journal of Low Frequency Noise, Vibration and Active Control doi: 10.1177/0263092317719634 contributor: fullname: Liu – volume: 36 start-page: 6069 issue: 3 year: 2009 end-page: 6075 ident: CR22 article-title: Classification of audio signals using SVM and RBFNN [J] publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.06.126 contributor: fullname: Ramalingama – volume: 24 start-page: 353 issue: 2 year: 2017 end-page: 359 ident: CR1 article-title: Performance comparison and analysis of a combined power and cooling system based on organic Rankine cycle [J] publication-title: Journal of Central South University doi: 10.1007/s11771-017-3437-5 contributor: fullname: Zhang – volume: 44 start-page: 177 year: 2014 end-page: 188 ident: CR7 article-title: Experimental and numerical investigations of a new high temperature heat pump for industrial heat recovery using water as refrigerant [J] publication-title: International Journal of Refrigeration doi: 10.1016/j.ijrefrig.2014.04.019 contributor: fullname: Jean – year: 1995 ident: CR16 publication-title: The nature of statistical learning theory [M] doi: 10.1007/978-1-4757-2440-0 contributor: fullname: Vapnik – volume: 21 start-page: 1085 issue: 3 year: 2014 end-page: 1090 ident: CR19 article-title: Identification on rock and soil parameters for vibration drilling rock in metal mine based on fuzzy least square support vector machine [J] publication-title: Journal of Central South University doi: 10.1007/s11771-014-2040-2 contributor: fullname: Wang – year: 1998 ident: CR17 publication-title: Statistical learning theory [M] contributor: fullname: Vapnik – volume: 18 start-page: 444 issue: 2 year: 2011 end-page: 450 ident: CR8 article-title: Neuron PI control for semi-active suspension system of tracked vehicle and its application [J] publication-title: Journal of Central South University of Technology doi: 10.1007/s11771-011-0716-4 contributor: fullname: E – volume: 86 start-page: 1441 year: 2009 end-page: 1449 ident: CR15 article-title: Performance prediction of a direct expansion solar assisted heat pump using artificial neural networks [J] publication-title: Apply Energy doi: 10.1016/j.apenergy.2009.01.001 contributor: fullname: Muraleedharan – year: 2006 ident: CR31 publication-title: Research and application of artificial neural network algorithm [M] contributor: fullname: Gao – volume: 67 start-page: 623 year: 2014 end-page: 630 ident: CR26 article-title: Support vector regression methodology for wind turbine reaction torque prediction with power-split hydrostatic continuous variable transmission [J] publication-title: Energy doi: 10.1016/j.energy.2014.01.111 contributor: fullname: Cani – volume: 20 start-page: 1332 issue: 5 year: 2013 end-page: 1340 ident: CR10 article-title: Multidisciplinary design optimization on production scale of underground metal mine [J] publication-title: Journal of Central South University doi: 10.1007/s11771-013-1620-x contributor: fullname: Wang – volume: 51 start-page: 52 year: 2015 end-page: 58 ident: CR2 article-title: Experimental study of an R1234ze(E)/R134a mixture (R450A) as R134a replacement [J] publication-title: International Journal of Refrigeration doi: 10.1016/j.ijrefrig.2014.12.010 contributor: fullname: Joaquín – volume: 23 start-page: 2118 issue: 8 year: 2016 end-page: 2128 ident: CR21 article-title: Endpoint forecasting on composite regeneration by coupling cerium-based additive and microwave for diesel particulate filter [J] publication-title: Journal of Central South University doi: 10.1007/s11771-016-3268-9 contributor: fullname: Gong – volume: 26 start-page: 1554 year: 2011 end-page: 1562 ident: CR29 article-title: Study on the gas content of coal seam based on the BP neural network [J] publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.11.2338 contributor: fullname: Zhang – volume: 19 start-page: 477 issue: 2 year: 2012 end-page: 481 ident: CR9 article-title: Safety diagnosis on coal mine production system based on fuzzy logic inference [J] publication-title: Journal of Central South University of Technology doi: 10.1007/s11771-012-1028-z contributor: fullname: Zuo – volume: 21 start-page: 593 issue: 2 year: 2014 end-page: 599 ident: CR18 article-title: Fuzzy least squares support vector machines soft measurement model based on adaptive mutative scale chaos immune algorithm [J] publication-title: Journal of Central South University doi: 10.1007/s11771-014-1978-4 contributor: fullname: Zuo – volume: 28 start-page: 833 year: 2004 end-page: 846 ident: CR6 article-title: Heat pump use in milk pasteurization: an energy analysis [J] publication-title: International Journal of Energy Research doi: 10.1002/er.999 contributor: fullname: Karsli – volume: 117 start-page: 355 year: 2017 end-page: 365 ident: CR5 article-title: Thermal characteristics of high-temperature R718 heat pumps with turbo compressor thermal vapor recompression [J] publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2017.02.035 contributor: fullname: Šarevski – year: 2005 ident: CR27 publication-title: Support vector regression and its application [D] contributor: fullname: Tian – volume: 59 start-page: 331 year: 2017 end-page: 349 ident: CR25 article-title: Application of neural networks and support vector machine for significant wave height prediction [J] publication-title: Oceanologia doi: 10.1016/j.oceano.2017.03.007 contributor: fullname: Goran – volume: 31 start-page: 1886 year: 2011 end-page: 1893 ident: CR3 article-title: Theoretical and experimental study on several refrigerants of moderately high temperature heat pump [J] publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2011.02.035 contributor: fullname: Chen – volume: 18 start-page: 444 issue: 2 year: 2011 ident: 3951_CR8 publication-title: Journal of Central South University of Technology doi: 10.1007/s11771-011-0716-4 contributor: fullname: Y Zeng – volume-title: The nature of statistical learning theory [M] year: 1995 ident: 3951_CR16 doi: 10.1007/978-1-4757-2440-0 contributor: fullname: V Vapnik – volume: 36 start-page: 227 issue: 3 year: 2017 ident: 3951_CR20 publication-title: Journal of Low Frequency Noise, Vibration and Active Control doi: 10.1177/0263092317719634 contributor: fullname: J E – volume: 36 start-page: 6069 issue: 3 year: 2009 ident: 3951_CR22 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2008.06.126 contributor: fullname: P Dhanalakshmi – volume: 21 start-page: 1085 issue: 3 year: 2014 ident: 3951_CR19 publication-title: Journal of Central South University doi: 10.1007/s11771-014-2040-2 contributor: fullname: H Zuo – volume: 59 start-page: 331 year: 2017 ident: 3951_CR25 publication-title: Oceanologia doi: 10.1016/j.oceano.2017.03.007 contributor: fullname: B Jadran – volume-title: Statistical learning theory [M] year: 1998 ident: 3951_CR17 contributor: fullname: V Vapnik – volume: 86 start-page: 1441 year: 2009 ident: 3951_CR15 publication-title: Apply Energy doi: 10.1016/j.apenergy.2009.01.001 contributor: fullname: M Mohanraj – volume-title: Research and application of artificial neural network algorithm [M] year: 2006 ident: 3951_CR31 contributor: fullname: J Tian – volume: 19 start-page: 477 issue: 2 year: 2012 ident: 3951_CR9 publication-title: Journal of Central South University of Technology doi: 10.1007/s11771-012-1028-z contributor: fullname: S Wang – volume-title: Numerical recipes: The art of scientific computing, Section 16.5 year: 2007 ident: 3951_CR28 contributor: fullname: W Press – volume: 20 start-page: 1332 issue: 5 year: 2013 ident: 3951_CR10 publication-title: Journal of Central South University doi: 10.1007/s11771-013-1620-x contributor: fullname: H Zuo – volume-title: Support vector regression and its application [D] year: 2005 ident: 3951_CR27 contributor: fullname: Ying Tian – volume: 31 start-page: 1886 year: 2011 ident: 3951_CR3 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2011.02.035 contributor: fullname: L Pan – volume: 67 start-page: 623 year: 2014 ident: 3951_CR26 publication-title: Energy doi: 10.1016/j.energy.2014.01.111 contributor: fullname: S Shamshirband – volume: 24 start-page: 353 issue: 2 year: 2017 ident: 3951_CR1 publication-title: Journal of Central South University doi: 10.1007/s11771-017-3437-5 contributor: fullname: Z Wang – volume: 43 start-page: 2178 issue: 12 year: 2008 ident: 3951_CR11 publication-title: Building and Environment doi: 10.1016/j.buildenv.2008.01.002 contributor: fullname: H Esen – volume: 44 start-page: 177 year: 2014 ident: 3951_CR7 publication-title: International Journal of Refrigeration doi: 10.1016/j.ijrefrig.2014.04.019 contributor: fullname: C Marwan – volume: 26 start-page: 1554 year: 2011 ident: 3951_CR29 publication-title: Procedia Engineering doi: 10.1016/j.proeng.2011.11.2338 contributor: fullname: Jian Zhang – volume: 78 start-page: 43 year: 2014 ident: 3951_CR23 publication-title: Energ Buildings doi: 10.1016/j.enbuild.2014.04.003 contributor: fullname: X Yu – volume: 47 start-page: 431 issue: 4 year: 2008 ident: 3951_CR14 publication-title: International Journal of Thermal Sciences doi: 10.1016/j.ijthermalsci.2007.03.004 contributor: fullname: H Esen – volume: 25 start-page: 1212 year: 2012 ident: 3951_CR30 publication-title: Procedia Engineering contributor: fullname: M Li – volume: 18 start-page: 1733 issue: 5 year: 2011 ident: 3951_CR13 publication-title: Journal of Central South University of Technology doi: 10.1007/s11771-011-0895-z contributor: fullname: J E – volume: 21 start-page: 593 issue: 2 year: 2014 ident: 3951_CR18 publication-title: Journal of Central South University doi: 10.1007/s11771-014-1978-4 contributor: fullname: T Wang – volume: 51 start-page: 52 year: 2015 ident: 3951_CR2 publication-title: International Journal of Refrigeration doi: 10.1016/j.ijrefrig.2014.12.010 contributor: fullname: M Adrián – volume: 28 start-page: 833 year: 2004 ident: 3951_CR6 publication-title: International Journal of Energy Research doi: 10.1002/er.999 contributor: fullname: O Ozyurt – volume: 19 start-page: 527 issue: 2 year: 2012 ident: 3951_CR12 publication-title: Journal of Central South University of Technology doi: 10.1007/s11771-012-1036-z contributor: fullname: H Yang – volume: 23 start-page: 2118 issue: 8 year: 2016 ident: 3951_CR21 publication-title: Journal of Central South University doi: 10.1007/s11771-016-3268-9 contributor: fullname: J E – volume: 117 start-page: 355 year: 2017 ident: 3951_CR5 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2017.02.035 contributor: fullname: M Šarevski – volume: 127 start-page: 1461 year: 2017 ident: 3951_CR4 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2017.08.072 contributor: fullname: Y Zhang – volume: 144 start-page: 851 year: 2018 ident: 3951_CR24 publication-title: Energy doi: 10.1016/j.energy.2017.12.094 contributor: fullname: S Dong |
SSID | ssib031263696 ssib051367662 ssib026412149 ssib016993150 ssib024508231 ssib017478267 ssj0001192107 ssib009883398 ssib016971650 |
Score | 2.1782303 |
Snippet | Two new binary near-azeotropic mixtures named M1 and M2 were developed as the refrigerants of the high-temperature heat pump (HTHP). The experimental research... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 2754 |
SubjectTerms | Back propagation networks Engineering Heat Heat pumps High temperature Mathematical models Metallic Materials Neural networks Performance prediction Refrigerants Reliability aspects Support vector machines |
Title | Intelligent prediction on performance of high-temperature heat pump systems using different refrigerants |
URI | https://link.springer.com/article/10.1007/s11771-018-3951-0 https://www.proquest.com/docview/2139135630 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA9ju-hB_MTpHDl4UiJN0s_jkM2p6MnBPJWkaRWErnT1__e9rm2m6EHoJTSE9uW17_c-8nuEXAJk1aC7DovSCNOMQcKUk2RMAjjRmSsCYTAO-fTszxfuw9Jb9ojoQhf5x02bkax_1PasGw8C9HxDJrE1PLjpA8AOLpZxLcSk06EIu-daF4L7yJFkM3cwjiTfGiN_vLAmWLies50ZA7zABbcuiuTC71rgwdirKc8ayr06roMEY_UpbQHohaE_0yZTf3uL7-bQYtwfadna2s32yV4DU-lko1cHpJfmh2R3i7zwiLzfd2yeFS1KTPjgJlO4Cnsaga4yipTIDDmwGgJnigaAFqBIdEMkvaZYfv9G224tFYUHLWHlEqt0jsliNn25nbOmbwNLJPcrpjCw6qcBT5ws4UaoyI14whPtO9o1YcbDzDPwXw0coUTAU-UnXCmJ3hTMlZk8If18laenhJoIpBumjmd06EY607423EiYaZSE6UNy1YovLjb0HLElYkZZxyDrGGUdO0MyagUcN1_qOhYAgblElrQhuW6Fbm__udjZv2afkx2Bm17XwYxIvyo_0wtAM5Uek8Hk7vVxOq7V-Av5iuC2 |
link.rule.ids | 315,783,787,27938,27939,41095,41537,42164,42606,52125,52248 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZQGYAB8RSFAh6YQJZiOy-PFaJqoe3USt0iO05gaqM0_H_u0qQuCAakLFZOVnK52N_57r4j5AEgqwHb9ZjKFIYZo5RpL82ZBHBicl9EwuI55GQaDuf-6yJYNHXc6zbbvQ1J1iu1K3bjUYSub8wk9oYHP30f6dXRrOeivzUihe1znQ_BQyRJcqE7GCvJd8ZIIC_cHiz8wNsNjQFg4II7H0VyEW574ME4qDnPGs69-mAHGcbqMm0B8IWhQ9NGU397i-_7oQO5P-Ky9XY3OCHHDU6l_Y1hnZK9bHlGjnbYC8_Jx2hL51nRosSID35lClfhyhHoKqfIicyQBKthcKa4A9ACLIlumKTXFPPv32nbrqWi8KAlzFxims4FmQ9eZs9D1jRuYKnkYcU0nqyGWcRTL0-5FVr5iqc8NaFnfBvnPM4DCwtr5AktIp7pMOVaS3SnQFbm8pJ0lqtldkWoVaDdOPMCa2JfmdyExnIrQdJqCeJd8tiqLyk2_ByJY2JGXSeg6wR1nXhd0msVnDS_6joRgIG5RJq0Lnlqle5u_znZ9b-k78nBcDYZJ-PR9O2GHAo0gDoppkc6VfmZ3QK0qcxdbcpf9bXifQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9RADLaqrVTBASgUsVBgDpxA08YzeR4r6NIHVByo1J7SzEymSEjbaDe98Oux89hZqnJASLmMYo0S24ntsf0Z4B25rIZ0N5JFXXCaMbOyiqyXmpwT42OVKcfnkF_P0qPz-OQiuRjmnC7HavcxJdn3NDBK07zdb5zfD41vmGUcBudS85x4itk3YyRvYQKbB58vTw9XKlXwMN0QUWDKkEkhkUfrQuPamuHkVbDIKk6i9UQZuQ-oMEQsGlW6mohH66RDQBsQ-LpjHsYb65q2FT2e5PBmzK3e9x5_Wsfg8t7J0nbGb_YYrka29TUvP_duW7Nnf91BlPwPvj6BR4NjLA56Td6GjXr-FB6uwSU-gx_HK_zQVjQLTjGxWgm6mtD_IG68YBBmyahbA2S0YJMjGlJd0UNXLwUX_F-LcT5MK4gXC9p5wXVBO3A-O_z-8UgOkyKk1Zi2suKj3LTO0EbeolNVERdo0Zo0MrHLPeY-cfQnzyJVqQzrKrVYVZrjN6LVXj-HyfxmXr8A4QoSYF5HiTN5XBhvUuPQaaJ0lSbyKbwfJVQ2PSBIGaCfmX0lsa9k9pXRFHZHGZbDv2FZKnK6UTMu2xQ-jCIJt_-62ct_on4LW98-zcovx2enr-CBYpF2RTi7MGkXt_VrcqVa82b4XH4DN_cIMw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Intelligent+prediction+on+performance+of+high-temperature+heat+pump+systems+using+different+refrigerants&rft.jtitle=Journal+of+Central+South+University&rft.au=Xiao-hui%2C+Yu&rft.au=Yu-feng%2C+Zhang&rft.au=Zhang%2C+Yan&rft.au=Zhong-lu%2C+He&rft.date=2018-12-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-2899&rft.eissn=2227-5223&rft.volume=25&rft.issue=11&rft.spage=2754&rft.epage=2765&rft_id=info:doi/10.1007%2Fs11771-018-3951-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2899&client=summon |