The Logarithmic Capacitary Minkowski Problem for Polytopes
The logarithmic capacitary Minkowski problem asks for necessary and sufficient conditions on a finite Borel measure on the unit sphere so that it is the logarithmic capacitary measure of a convex body. This article completely solves the case of discrete measures whose support sets are in general pos...
Saved in:
Published in | Acta mathematica Sinica. English series Vol. 38; no. 2; pp. 406 - 418 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Beijing
Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
01.02.2022
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The logarithmic capacitary Minkowski problem asks for necessary and sufficient conditions on a finite Borel measure on the unit sphere so that it is the logarithmic capacitary measure of a convex body. This article completely solves the case of discrete measures whose support sets are in general position. |
---|---|
AbstractList | The logarithmic capacitary Minkowski problem asks for necessary and sufficient conditions on a finite Borel measure on the unit sphere so that it is the logarithmic capacitary measure of a convex body. This article completely solves the case of discrete measures whose support sets are in general position. |
Author | Xiong, Jia Wei Xiong, Ge |
Author_xml | – sequence: 1 givenname: Ge surname: Xiong fullname: Xiong, Ge organization: School of Mathematical Sciences, Tongji University – sequence: 2 givenname: Jia Wei surname: Xiong fullname: Xiong, Jia Wei email: everirst@tongji.edu.cn organization: School of Mathematics and Statistics, Ningbo University |
BookMark | eNp9kF1LwzAUhoNMcJv-AO8KXlfPadM08U6GXzBxF_M6pFm6ZeuamnS4_Xs7OhAEvTrn4n3OxzMig9rVhpBrhFsEyO8CAiKNIUliRIR4f0aGSFMR5wzzwannGbILMgphDZBlAtiQ3M9XJpq6pfK2XW2tjiaqUdq2yh-iN1tv3FfY2GjmXVGZbVQ6H81cdWhdY8IlOS9VFczVqY7Jx9PjfPIST9-fXycP01inyNpYAWMlNRpLQGZSwQqmi5xxzbkCpFCC5gUVQMsFKLGgOSQmNZznfMGE4iodk5t-buPd586EVq7dztfdSpmwNBFMcJZ1qbxPae9C8KaUxy9a6-rWK1tJBHkUJXtRshMlj6LkviPxF9l4u-0E_MskPRO6bL00_uemv6FvHWl8VQ |
CitedBy_id | crossref_primary_10_1016_j_aam_2024_102674 crossref_primary_10_1016_j_jmaa_2022_126925 crossref_primary_10_1155_2022_6554127 crossref_primary_10_1093_imrn_rnae019 crossref_primary_10_1016_j_jmaa_2025_129334 crossref_primary_10_3390_axioms14020086 crossref_primary_10_1007_s12220_024_01670_1 crossref_primary_10_1515_ans_2022_0040 |
Cites_doi | 10.1007/s00454-003-0009-4 10.1017/CBO9781107341029 10.1007/BF02547334 10.2307/1971509 10.1016/j.aim.2008.12.013 10.1002/cpa.3160290504 10.1093/imrn/rnv189 10.1016/S0001-8708(03)00005-7 10.1016/j.jfa.2019.06.008 10.1002/cpa.3160440809 10.1016/j.aim.2005.07.004 10.1016/j.aim.2021.107902 10.1007/s00208-003-0460-7 10.1006/aima.2001.2040 10.1007/978-3-642-15564-2 10.1016/j.aim.2004.06.002 10.1007/s002220050344 10.1090/tran/7499 10.1007/BF01456879 10.1007/s00454-004-1149-8 10.1090/S0894-0347-2012-00741-3 10.1016/j.aim.2014.06.004 10.1002/cpa.3160060303 10.2307/1971510 10.1016/j.aim.2015.06.022 10.1006/aima.1996.0008 |
ContentType | Journal Article |
Copyright | Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022. |
Copyright_xml | – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1007/s10114-022-1110-x |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1439-7617 |
EndPage | 418 |
ExternalDocumentID | 10_1007_s10114_022_1110_x |
GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 23M 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 67Z 6NX 7WY 88I 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJCF ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFEXP AFGCZ AFKRA AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. B0M BA0 BAPOH BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCEZO CCPQU CCVFK CHBEP COF CS3 CSCUP CW9 DDRTE DL5 DNIVK DPUIP DWQXO EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG EST ESX F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GROUPED_ABI_INFORM_COMPLETE GUQSH H13 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC IZQ I~X I~Z J-C JBSCW JZLTJ K60 K6V K6~ K7- KDC KOV L6V LAS LLZTM M0C M0N M2O M2P M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P62 P9R PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 PTHSS Q2X QOS R4E R89 R9I ROL RPX RSV S16 S1Z S26 S27 S28 S3B SAP SCL SCLPG SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR ZMTXR ZWQNP ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ADHKG AFDZB AFOHR AGQPQ AHPBZ AMVHM ATHPR CITATION PHGZM PHGZT TGP 7SC 7TB 8FD ABRTQ FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c316t-a066f4ec1f016e396b6cb768c88a0140f0c8b4904fd0a9d4702e3e8878d69a8a3 |
IEDL.DBID | U2A |
ISSN | 1439-8516 |
IngestDate | Fri Jul 25 19:24:36 EDT 2025 Tue Jul 01 03:38:00 EDT 2025 Thu Apr 24 23:03:43 EDT 2025 Fri Feb 21 02:47:46 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | 52A20 Minkowski problem 31B15 polytope capacity general position |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-a066f4ec1f016e396b6cb768c88a0140f0c8b4904fd0a9d4702e3e8878d69a8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2632969865 |
PQPubID | 54875 |
PageCount | 13 |
ParticipantIDs | proquest_journals_2632969865 crossref_citationtrail_10_1007_s10114_022_1110_x crossref_primary_10_1007_s10114_022_1110_x springer_journals_10_1007_s10114_022_1110_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-02-01 |
PublicationDateYYYYMMDD | 2022-02-01 |
PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Acta mathematica Sinica. English series |
PublicationTitleAbbrev | Acta. Math. Sin.-English Ser |
PublicationYear | 2022 |
Publisher | Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society Springer Nature B.V |
Publisher_xml | – name: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society – name: Springer Nature B.V |
References | CaffarelliL AInterior W2,p-estimates for solutions of the Monge—Ampère equationAnn. of Math. (2)1990131135150103836010.2307/1971510 ColesantiABrunn—Minkowski inequalities for variational functionals and related problemsAdv. Math.2005194105140214185610.1016/j.aim.2004.06.002 JerisonDA Minkowski problem for electrostatic capacityActa Math.1996176147139566810.1007/BF02547334 CaffarelliL AA localization property of viscosity solutions to the Monge—Ampère equation and their strict convexityAnn. of Math. (2)1990131129134103835910.2307/1971509 BorellCCapacitary inequalities of the Brunn—Minkowski typeMath. Ann.198326317918469800110.1007/BF01456879 ChouK SWangX JThe Lp-Minkowski problem and the Minkowski problem in centroaffine geometryAdv. Math.20062053383225430810.1016/j.aim.2005.07.004 ZouDXiongGThe Lp Minkowski problem for the electrostatic p-capacityJ. Differential Geom.202011655559641828971453.31012 GardnerR JGeometric Tomography2006CambridgeCambridge University Press10.1017/CBO9781107341029 PogorelovA VThe Minkowski Multidimensional Problem1978Washington, D.C.V.H. Winston & Sons0387.53023 BöröczkyK JHegedusPZhuG XOn the discrete logarithmic Minkowski problemInt. Math. Res. Not. IMRN2016618071837350994110.1093/imrn/rnv189 BöröczkyK JLutwakEYangDThe logarithmic Minkowski problemJ. Amer. Math. Soc.201326831852303778810.1090/S0894-0347-2012-00741-3 ColesantiANyströmKSalaniPThe Hadamard variational formula and the Minkowski problem for p-capacityAdv. Math.201528515111588340653410.1016/j.aim.2015.06.022 EvansL CGariepyR FMeasure Theory and Fine Properties of Functions1992Boca RatonCRC Press0804.28001 GruberP MConvex and Discrete Geometry2007BerlinSpringer1139.52001 NirenbergLThe Weyl and Minkowski problems in differential geometry in the largeComm. Pure Appl. Math.195363373945826510.1002/cpa.3160060303 GardnerR JHartenstineDCapacities, surface area, and radial sumsAdv. Math.2006221601626250893210.1016/j.aim.2008.12.013 CaffarelliL AJerisonDLiebE HOn the case of equality in the Brunn—Minkowski inequality for capacityAdv. Math.1996117193207137164910.1006/aima.1996.0008 XiongGXiongJ WXuLThe Lp capacitary Minkowski problem for polytopesJ. Funct. Anal.201927731313155399763110.1016/j.jfa.2019.06.008 ChengS YYauS TOn the regularity of the solution of the n-dimensional Minkowski problemComm. Pure Appl. Math.19762949551642326710.1002/cpa.3160290504 MazyaVSobolev Spaces with Applications to Elliptic Partial Differential Equations2011HeidelbergSpringer LiuY DSunQXiongGSharp affine isoperimetric inequalities for the volume decomposition functionals of polytopesAdv. Math.2021389107902428904210.1016/j.aim.2021.10790229 pp. ChenS BLiQ RZhuG XThe logarithmic Minkowski problem for non-symmetric measuresTrans. Amer. Math. Soc.201937126232641389609110.1090/tran/7499 CaffarelliL ASome regularity properties of solutions of Monge—Ampére equationComm. Pure Appl. Math.199144965969112704210.1002/cpa.3160440809 HugDLutwakEYangDOn the Lp Minkowski problem for polytopesDiscrete Comput. Geom.200533699715213229810.1007/s00454-004-1149-8 Akman, M., Gong, J., Hineman, J., et al.: The Brunn-Minkowski inequality and a Minkowski problem for nonlinear capacity. to appear in Mem. Amer. Math. Soc., preprint, https://arxiv.org/abs/1709.00447v2 StancuAOn the number of solutions to the discrete two dimensional L0-Minkowski problemAdv. Math.2003180290323201922610.1016/S0001-8708(03)00005-7 ZhuGThe logarithmic Minkowski problem for polytopesAdv. Math.2014262909931322844510.1016/j.aim.2014.06.004 ColesantiASalaniPThe Brunn—Minkowski inequality for p-capacity of convex bodiesMath. Ann.2003327459479202102510.1007/s00208-003-0460-7 AndrewsB GGauss curvature flow: the fate of the rolling stonesInvent. Math.1999138151161171433910.1007/s002220050344 StancuAThe discrete planar L0-Minkowski problemAdv. Math.2002167160174190125010.1006/aima.2001.2040 SchneiderRConvex Bodies: The Brunn—Minkowski Theory2014CambridgeCambridge University Press1287.52001 KárolyiGValtrPPoint configurations in d-space without large subsets in convex positionDiscrete Comput. Geom.200330277286200796510.1007/s00454-003-0009-4 LewyHOn diffrential geometry in the large. I. Minkowski’s problemTrans. Amer. Math. Soc.193843258270150194264.0714.03 L C Evans (1110_CR16) 1992 D Hug (1110_CR20) 2005; 33 A Colesanti (1110_CR13) 2005; 194 A V Pogorelov (1110_CR27) 1978 L A Caffarelli (1110_CR8) 1991; 44 R Schneider (1110_CR28) 2014 H Lewy (1110_CR23) 1938; 43 A Colesanti (1110_CR15) 2003; 327 S Y Cheng (1110_CR11) 1976; 29 R J Gardner (1110_CR17) 2006 Y D Liu (1110_CR24) 2021; 389 L A Caffarelli (1110_CR6) 1990; 131 A Stancu (1110_CR30) 2003; 180 D Zou (1110_CR33) 2020; 116 S B Chen (1110_CR10) 2019; 371 R J Gardner (1110_CR18) 2006; 221 G Zhu (1110_CR32) 2014; 262 D Jerison (1110_CR21) 1996; 176 L Nirenberg (1110_CR26) 1953; 6 A Stancu (1110_CR29) 2002; 167 G Xiong (1110_CR31) 2019; 277 L A Caffarelli (1110_CR9) 1996; 117 K J Böröczky (1110_CR4) 2016; 6 C Borell (1110_CR3) 1983; 263 K S Chou (1110_CR12) 2006; 205 K J Böröczky (1110_CR5) 2013; 26 B G Andrews (1110_CR2) 1999; 138 V Mazya (1110_CR25) 2011 A Colesanti (1110_CR14) 2015; 285 1110_CR1 P M Gruber (1110_CR19) 2007 G Károlyi (1110_CR22) 2003; 30 L A Caffarelli (1110_CR7) 1990; 131 |
References_xml | – reference: CaffarelliL AInterior W2,p-estimates for solutions of the Monge—Ampère equationAnn. of Math. (2)1990131135150103836010.2307/1971510 – reference: StancuAThe discrete planar L0-Minkowski problemAdv. Math.2002167160174190125010.1006/aima.2001.2040 – reference: PogorelovA VThe Minkowski Multidimensional Problem1978Washington, D.C.V.H. Winston & Sons0387.53023 – reference: ZouDXiongGThe Lp Minkowski problem for the electrostatic p-capacityJ. Differential Geom.202011655559641828971453.31012 – reference: MazyaVSobolev Spaces with Applications to Elliptic Partial Differential Equations2011HeidelbergSpringer – reference: BöröczkyK JLutwakEYangDThe logarithmic Minkowski problemJ. Amer. Math. Soc.201326831852303778810.1090/S0894-0347-2012-00741-3 – reference: AndrewsB GGauss curvature flow: the fate of the rolling stonesInvent. Math.1999138151161171433910.1007/s002220050344 – reference: JerisonDA Minkowski problem for electrostatic capacityActa Math.1996176147139566810.1007/BF02547334 – reference: EvansL CGariepyR FMeasure Theory and Fine Properties of Functions1992Boca RatonCRC Press0804.28001 – reference: GardnerR JGeometric Tomography2006CambridgeCambridge University Press10.1017/CBO9781107341029 – reference: HugDLutwakEYangDOn the Lp Minkowski problem for polytopesDiscrete Comput. Geom.200533699715213229810.1007/s00454-004-1149-8 – reference: CaffarelliL AJerisonDLiebE HOn the case of equality in the Brunn—Minkowski inequality for capacityAdv. Math.1996117193207137164910.1006/aima.1996.0008 – reference: ChenS BLiQ RZhuG XThe logarithmic Minkowski problem for non-symmetric measuresTrans. Amer. Math. Soc.201937126232641389609110.1090/tran/7499 – reference: NirenbergLThe Weyl and Minkowski problems in differential geometry in the largeComm. Pure Appl. Math.195363373945826510.1002/cpa.3160060303 – reference: GardnerR JHartenstineDCapacities, surface area, and radial sumsAdv. Math.2006221601626250893210.1016/j.aim.2008.12.013 – reference: ZhuGThe logarithmic Minkowski problem for polytopesAdv. Math.2014262909931322844510.1016/j.aim.2014.06.004 – reference: StancuAOn the number of solutions to the discrete two dimensional L0-Minkowski problemAdv. Math.2003180290323201922610.1016/S0001-8708(03)00005-7 – reference: BöröczkyK JHegedusPZhuG XOn the discrete logarithmic Minkowski problemInt. Math. Res. Not. IMRN2016618071837350994110.1093/imrn/rnv189 – reference: XiongGXiongJ WXuLThe Lp capacitary Minkowski problem for polytopesJ. Funct. Anal.201927731313155399763110.1016/j.jfa.2019.06.008 – reference: ChengS YYauS TOn the regularity of the solution of the n-dimensional Minkowski problemComm. Pure Appl. Math.19762949551642326710.1002/cpa.3160290504 – reference: ColesantiABrunn—Minkowski inequalities for variational functionals and related problemsAdv. Math.2005194105140214185610.1016/j.aim.2004.06.002 – reference: LiuY DSunQXiongGSharp affine isoperimetric inequalities for the volume decomposition functionals of polytopesAdv. Math.2021389107902428904210.1016/j.aim.2021.10790229 pp. – reference: Akman, M., Gong, J., Hineman, J., et al.: The Brunn-Minkowski inequality and a Minkowski problem for nonlinear capacity. to appear in Mem. Amer. Math. Soc., preprint, https://arxiv.org/abs/1709.00447v2 – reference: CaffarelliL AA localization property of viscosity solutions to the Monge—Ampère equation and their strict convexityAnn. of Math. (2)1990131129134103835910.2307/1971509 – reference: KárolyiGValtrPPoint configurations in d-space without large subsets in convex positionDiscrete Comput. Geom.200330277286200796510.1007/s00454-003-0009-4 – reference: GruberP MConvex and Discrete Geometry2007BerlinSpringer1139.52001 – reference: ColesantiANyströmKSalaniPThe Hadamard variational formula and the Minkowski problem for p-capacityAdv. Math.201528515111588340653410.1016/j.aim.2015.06.022 – reference: LewyHOn diffrential geometry in the large. I. Minkowski’s problemTrans. Amer. Math. Soc.193843258270150194264.0714.03 – reference: BorellCCapacitary inequalities of the Brunn—Minkowski typeMath. Ann.198326317918469800110.1007/BF01456879 – reference: ChouK SWangX JThe Lp-Minkowski problem and the Minkowski problem in centroaffine geometryAdv. Math.20062053383225430810.1016/j.aim.2005.07.004 – reference: ColesantiASalaniPThe Brunn—Minkowski inequality for p-capacity of convex bodiesMath. Ann.2003327459479202102510.1007/s00208-003-0460-7 – reference: CaffarelliL ASome regularity properties of solutions of Monge—Ampére equationComm. Pure Appl. Math.199144965969112704210.1002/cpa.3160440809 – reference: SchneiderRConvex Bodies: The Brunn—Minkowski Theory2014CambridgeCambridge University Press1287.52001 – volume: 30 start-page: 277 year: 2003 ident: 1110_CR22 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-003-0009-4 – volume-title: Geometric Tomography year: 2006 ident: 1110_CR17 doi: 10.1017/CBO9781107341029 – volume: 176 start-page: 1 year: 1996 ident: 1110_CR21 publication-title: Acta Math. doi: 10.1007/BF02547334 – volume: 131 start-page: 129 year: 1990 ident: 1110_CR6 publication-title: Ann. of Math. (2) doi: 10.2307/1971509 – volume: 221 start-page: 601 year: 2006 ident: 1110_CR18 publication-title: Adv. Math. doi: 10.1016/j.aim.2008.12.013 – volume: 29 start-page: 495 year: 1976 ident: 1110_CR11 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160290504 – volume: 6 start-page: 1807 year: 2016 ident: 1110_CR4 publication-title: Int. Math. Res. Not. IMRN doi: 10.1093/imrn/rnv189 – volume: 180 start-page: 290 year: 2003 ident: 1110_CR30 publication-title: Adv. Math. doi: 10.1016/S0001-8708(03)00005-7 – volume: 277 start-page: 3131 year: 2019 ident: 1110_CR31 publication-title: J. Funct. Anal. doi: 10.1016/j.jfa.2019.06.008 – volume: 44 start-page: 965 year: 1991 ident: 1110_CR8 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160440809 – volume-title: Convex Bodies: The Brunn—Minkowski Theory year: 2014 ident: 1110_CR28 – volume: 116 start-page: 555 year: 2020 ident: 1110_CR33 publication-title: J. Differential Geom. – volume: 43 start-page: 258 year: 1938 ident: 1110_CR23 publication-title: Trans. Amer. Math. Soc. – ident: 1110_CR1 – volume: 205 start-page: 33 year: 2006 ident: 1110_CR12 publication-title: Adv. Math. doi: 10.1016/j.aim.2005.07.004 – volume: 389 start-page: 107902 year: 2021 ident: 1110_CR24 publication-title: Adv. Math. doi: 10.1016/j.aim.2021.107902 – volume: 327 start-page: 459 year: 2003 ident: 1110_CR15 publication-title: Math. Ann. doi: 10.1007/s00208-003-0460-7 – volume: 167 start-page: 160 year: 2002 ident: 1110_CR29 publication-title: Adv. Math. doi: 10.1006/aima.2001.2040 – volume-title: Sobolev Spaces with Applications to Elliptic Partial Differential Equations year: 2011 ident: 1110_CR25 doi: 10.1007/978-3-642-15564-2 – volume: 194 start-page: 105 year: 2005 ident: 1110_CR13 publication-title: Adv. Math. doi: 10.1016/j.aim.2004.06.002 – volume: 138 start-page: 151 year: 1999 ident: 1110_CR2 publication-title: Invent. Math. doi: 10.1007/s002220050344 – volume: 371 start-page: 2623 year: 2019 ident: 1110_CR10 publication-title: Trans. Amer. Math. Soc. doi: 10.1090/tran/7499 – volume: 263 start-page: 179 year: 1983 ident: 1110_CR3 publication-title: Math. Ann. doi: 10.1007/BF01456879 – volume: 33 start-page: 699 year: 2005 ident: 1110_CR20 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-004-1149-8 – volume: 26 start-page: 831 year: 2013 ident: 1110_CR5 publication-title: J. Amer. Math. Soc. doi: 10.1090/S0894-0347-2012-00741-3 – volume: 262 start-page: 909 year: 2014 ident: 1110_CR32 publication-title: Adv. Math. doi: 10.1016/j.aim.2014.06.004 – volume-title: Convex and Discrete Geometry year: 2007 ident: 1110_CR19 – volume: 6 start-page: 337 year: 1953 ident: 1110_CR26 publication-title: Comm. Pure Appl. Math. doi: 10.1002/cpa.3160060303 – volume: 131 start-page: 135 year: 1990 ident: 1110_CR7 publication-title: Ann. of Math. (2) doi: 10.2307/1971510 – volume: 285 start-page: 1511 year: 2015 ident: 1110_CR14 publication-title: Adv. Math. doi: 10.1016/j.aim.2015.06.022 – volume-title: The Minkowski Multidimensional Problem year: 1978 ident: 1110_CR27 – volume-title: Measure Theory and Fine Properties of Functions year: 1992 ident: 1110_CR16 – volume: 117 start-page: 193 year: 1996 ident: 1110_CR9 publication-title: Adv. Math. doi: 10.1006/aima.1996.0008 |
SSID | ssj0055906 |
Score | 2.3111 |
Snippet | The logarithmic capacitary Minkowski problem asks for necessary and sufficient conditions on a finite Borel measure on the unit sphere so that it is the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 406 |
SubjectTerms | Differential geometry Mathematics Mathematics and Statistics Polytopes Position measurement |
Title | The Logarithmic Capacitary Minkowski Problem for Polytopes |
URI | https://link.springer.com/article/10.1007/s10114-022-1110-x https://www.proquest.com/docview/2632969865 |
Volume | 38 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gXOCAeIrBmHrgBKqUvrKG2zb2ELBpQkwapypJE5gY67QWwf49Th8bIEDilEPTSLUb-7Nsf0boLFQq9Bzpma7DuekqPeZFN-fYNS6U7XImU033-qQ7dK9H3ijv446LavciJZla6k_NboDdTV19DvcTmwAcNzwI3XUd19CuF-YXEDLOWoocagKcIEUq86cjvjqjFcL8lhRNfU17B23nINGoZ1rdRWtyuoe2ekuG1XgfXYJ-jdvoEULd5OllLIwmeD0Bgf58YfTg66K3-HlsDLJxMQYgU2MQTRZJNJPxARq2W_fNrpnPQTCFY5HEZAALlCuFpQCfSYcSTgSHMEH4PtMBksLC5y7Frgoxo6Fbw7Z0JFgPPySU-cw5RKVpNJVHyGCWJuOucS9l3qO2H1qECSm4kExJZZURLgQSiJwkXM-qmAQremMtwwBkqIMHHLyX0fnylVnGkPHX5koh5SC_LHGgKeMpoT7xyuiikPzq8a-HHf9r9wnatLXm04rrCiol81d5CoAi4VW07rc7VbRRb1w12nrtPNy0YG20-oO7avp7fQClxMeT |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB_UgPrFaNQdPSmCf6cZbKZaq3dJDC70tSTbRYu2W7or23zvZR6uigufNBjKZzHzDzHyD0GWsdey7yieeKwTxtBnzYppznIaQ2vEEV_lNhz3aGXr3I39U9nGnVbV7lZLMLfWnZjfA7sRUn8P7tAgAxw3AAoFR5aHTrMwvIGSraClyGQE4QatU5k9bfHVGK4T5LSma-5r2LtopQSJuFre6h9bUdB9th0uG1fQA3cD94m7yCKFu9vQylrgFXk9CoD9f4BBOl7ylz2PcL8bFYECmuJ9MFlkyU-khGrZvB60OKecgEOnaNCMcYIH2lLQ14DPlMiqoFBAmyCDgJkDSlgyExyxPxxZnsdewHOUqsB5BTBkPuHuE1qfJVB0jzG1Dxt0Qfs68x5wgtimXSgqpuFbariGrEkgkS5JwM6tiEq3ojY0MI5ChCR6s6L2Grpa_zAqGjL8W1yspR-VjSSNDGc8oC6hfQ9eV5Feff93s5F-rL9BmZxB2o-5d7-EUbTlGC_Lq6zpaz-av6gzARSbOc2X6AOYrxQA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iIPogfuJ0ah58UsrSNs1a38Z0TN3GHhzsrSRposO5jrWi---99GNTUcHnpoHcXXK_4-5-h9B5pHXkucqzqCuERbUZ82Kac5y6kNqhgqtM090eaw_o3dAbFnNOk7LavUxJ5j0NhqVpktamka59anwDHG-ZSnS4q8QCELlGTTMwGPTAaZRPMaBlkrcXuYEF0IKVac2ftvjqmJZo81uCNPM7rW20VQBG3Mg1vINW1GQXbXYXbKvJHroCXeNO_Ahhb_r0MpK4CR5QQtA_m-MunDR-S55HuJ-PjsGAUnE_Hs_TeKqSfTRo3Tw021YxE8GSrs1SiwNE0FRJWwNWU27ABJMCQgbp-9wES5pIX9CAUB0RHkS0ThzlKnhJ_IgF3OfuAVqdxBN1iDC3DTF3XXgZC1_g-JHNuFRSSMW10nYFkVIgoSwIw83cinG4pDo2MgxBhiaQIOF7BV0sfpnmbBl_La6WUg6Li5OEhj4-YIHPvAq6LCW__PzrZkf_Wn2G1vvXrbBz27s_RhuOMYKsELuKVtPZqzoBnJGK08yWPgB8Bskz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Logarithmic+Capacitary+Minkowski+Problem+for+Polytopes&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Xiong+Ge&rft.au=Xiong+Jia+Wei&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=38&rft.issue=2&rft.spage=406&rft.epage=418&rft_id=info:doi/10.1007%2Fs10114-022-1110-x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-8516&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-8516&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-8516&client=summon |