The Logarithmic Capacitary Minkowski Problem for Polytopes

The logarithmic capacitary Minkowski problem asks for necessary and sufficient conditions on a finite Borel measure on the unit sphere so that it is the logarithmic capacitary measure of a convex body. This article completely solves the case of discrete measures whose support sets are in general pos...

Full description

Saved in:
Bibliographic Details
Published inActa mathematica Sinica. English series Vol. 38; no. 2; pp. 406 - 418
Main Authors Xiong, Ge, Xiong, Jia Wei
Format Journal Article
LanguageEnglish
Published Beijing Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society 01.02.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The logarithmic capacitary Minkowski problem asks for necessary and sufficient conditions on a finite Borel measure on the unit sphere so that it is the logarithmic capacitary measure of a convex body. This article completely solves the case of discrete measures whose support sets are in general position.
AbstractList The logarithmic capacitary Minkowski problem asks for necessary and sufficient conditions on a finite Borel measure on the unit sphere so that it is the logarithmic capacitary measure of a convex body. This article completely solves the case of discrete measures whose support sets are in general position.
Author Xiong, Jia Wei
Xiong, Ge
Author_xml – sequence: 1
  givenname: Ge
  surname: Xiong
  fullname: Xiong, Ge
  organization: School of Mathematical Sciences, Tongji University
– sequence: 2
  givenname: Jia Wei
  surname: Xiong
  fullname: Xiong, Jia Wei
  email: everirst@tongji.edu.cn
  organization: School of Mathematics and Statistics, Ningbo University
BookMark eNp9kF1LwzAUhoNMcJv-AO8KXlfPadM08U6GXzBxF_M6pFm6ZeuamnS4_Xs7OhAEvTrn4n3OxzMig9rVhpBrhFsEyO8CAiKNIUliRIR4f0aGSFMR5wzzwannGbILMgphDZBlAtiQ3M9XJpq6pfK2XW2tjiaqUdq2yh-iN1tv3FfY2GjmXVGZbVQ6H81cdWhdY8IlOS9VFczVqY7Jx9PjfPIST9-fXycP01inyNpYAWMlNRpLQGZSwQqmi5xxzbkCpFCC5gUVQMsFKLGgOSQmNZznfMGE4iodk5t-buPd586EVq7dztfdSpmwNBFMcJZ1qbxPae9C8KaUxy9a6-rWK1tJBHkUJXtRshMlj6LkviPxF9l4u-0E_MskPRO6bL00_uemv6FvHWl8VQ
CitedBy_id crossref_primary_10_1016_j_aam_2024_102674
crossref_primary_10_1016_j_jmaa_2022_126925
crossref_primary_10_1155_2022_6554127
crossref_primary_10_1093_imrn_rnae019
crossref_primary_10_1016_j_jmaa_2025_129334
crossref_primary_10_3390_axioms14020086
crossref_primary_10_1007_s12220_024_01670_1
crossref_primary_10_1515_ans_2022_0040
Cites_doi 10.1007/s00454-003-0009-4
10.1017/CBO9781107341029
10.1007/BF02547334
10.2307/1971509
10.1016/j.aim.2008.12.013
10.1002/cpa.3160290504
10.1093/imrn/rnv189
10.1016/S0001-8708(03)00005-7
10.1016/j.jfa.2019.06.008
10.1002/cpa.3160440809
10.1016/j.aim.2005.07.004
10.1016/j.aim.2021.107902
10.1007/s00208-003-0460-7
10.1006/aima.2001.2040
10.1007/978-3-642-15564-2
10.1016/j.aim.2004.06.002
10.1007/s002220050344
10.1090/tran/7499
10.1007/BF01456879
10.1007/s00454-004-1149-8
10.1090/S0894-0347-2012-00741-3
10.1016/j.aim.2014.06.004
10.1002/cpa.3160060303
10.2307/1971510
10.1016/j.aim.2015.06.022
10.1006/aima.1996.0008
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022
Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022.
Copyright_xml – notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022
– notice: Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1007/s10114-022-1110-x
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1439-7617
EndPage 418
ExternalDocumentID 10_1007_s10114_022_1110_x
GroupedDBID -5D
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
23M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
67Z
6NX
7WY
88I
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCEZO
CCPQU
CCVFK
CHBEP
COF
CS3
CSCUP
CW9
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EAD
EAP
EAS
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
EST
ESX
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GROUPED_ABI_INFORM_COMPLETE
GUQSH
H13
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZQ
I~X
I~Z
J-C
JBSCW
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
L6V
LAS
LLZTM
M0C
M0N
M2O
M2P
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOS
R4E
R89
R9I
ROL
RPX
RSV
S16
S1Z
S26
S27
S28
S3B
SAP
SCL
SCLPG
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
ZMTXR
ZWQNP
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
AMVHM
ATHPR
CITATION
PHGZM
PHGZT
TGP
7SC
7TB
8FD
ABRTQ
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c316t-a066f4ec1f016e396b6cb768c88a0140f0c8b4904fd0a9d4702e3e8878d69a8a3
IEDL.DBID U2A
ISSN 1439-8516
IngestDate Fri Jul 25 19:24:36 EDT 2025
Tue Jul 01 03:38:00 EDT 2025
Thu Apr 24 23:03:43 EDT 2025
Fri Feb 21 02:47:46 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords 52A20
Minkowski problem
31B15
polytope
capacity
general position
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-a066f4ec1f016e396b6cb768c88a0140f0c8b4904fd0a9d4702e3e8878d69a8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2632969865
PQPubID 54875
PageCount 13
ParticipantIDs proquest_journals_2632969865
crossref_citationtrail_10_1007_s10114_022_1110_x
crossref_primary_10_1007_s10114_022_1110_x
springer_journals_10_1007_s10114_022_1110_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Acta mathematica Sinica. English series
PublicationTitleAbbrev Acta. Math. Sin.-English Ser
PublicationYear 2022
Publisher Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
Springer Nature B.V
Publisher_xml – name: Institute of Mathematics, Chinese Academy of Sciences and Chinese Mathematical Society
– name: Springer Nature B.V
References CaffarelliL AInterior W2,p-estimates for solutions of the Monge—Ampère equationAnn. of Math. (2)1990131135150103836010.2307/1971510
ColesantiABrunn—Minkowski inequalities for variational functionals and related problemsAdv. Math.2005194105140214185610.1016/j.aim.2004.06.002
JerisonDA Minkowski problem for electrostatic capacityActa Math.1996176147139566810.1007/BF02547334
CaffarelliL AA localization property of viscosity solutions to the Monge—Ampère equation and their strict convexityAnn. of Math. (2)1990131129134103835910.2307/1971509
BorellCCapacitary inequalities of the Brunn—Minkowski typeMath. Ann.198326317918469800110.1007/BF01456879
ChouK SWangX JThe Lp-Minkowski problem and the Minkowski problem in centroaffine geometryAdv. Math.20062053383225430810.1016/j.aim.2005.07.004
ZouDXiongGThe Lp Minkowski problem for the electrostatic p-capacityJ. Differential Geom.202011655559641828971453.31012
GardnerR JGeometric Tomography2006CambridgeCambridge University Press10.1017/CBO9781107341029
PogorelovA VThe Minkowski Multidimensional Problem1978Washington, D.C.V.H. Winston & Sons0387.53023
BöröczkyK JHegedusPZhuG XOn the discrete logarithmic Minkowski problemInt. Math. Res. Not. IMRN2016618071837350994110.1093/imrn/rnv189
BöröczkyK JLutwakEYangDThe logarithmic Minkowski problemJ. Amer. Math. Soc.201326831852303778810.1090/S0894-0347-2012-00741-3
ColesantiANyströmKSalaniPThe Hadamard variational formula and the Minkowski problem for p-capacityAdv. Math.201528515111588340653410.1016/j.aim.2015.06.022
EvansL CGariepyR FMeasure Theory and Fine Properties of Functions1992Boca RatonCRC Press0804.28001
GruberP MConvex and Discrete Geometry2007BerlinSpringer1139.52001
NirenbergLThe Weyl and Minkowski problems in differential geometry in the largeComm. Pure Appl. Math.195363373945826510.1002/cpa.3160060303
GardnerR JHartenstineDCapacities, surface area, and radial sumsAdv. Math.2006221601626250893210.1016/j.aim.2008.12.013
CaffarelliL AJerisonDLiebE HOn the case of equality in the Brunn—Minkowski inequality for capacityAdv. Math.1996117193207137164910.1006/aima.1996.0008
XiongGXiongJ WXuLThe Lp capacitary Minkowski problem for polytopesJ. Funct. Anal.201927731313155399763110.1016/j.jfa.2019.06.008
ChengS YYauS TOn the regularity of the solution of the n-dimensional Minkowski problemComm. Pure Appl. Math.19762949551642326710.1002/cpa.3160290504
MazyaVSobolev Spaces with Applications to Elliptic Partial Differential Equations2011HeidelbergSpringer
LiuY DSunQXiongGSharp affine isoperimetric inequalities for the volume decomposition functionals of polytopesAdv. Math.2021389107902428904210.1016/j.aim.2021.10790229 pp.
ChenS BLiQ RZhuG XThe logarithmic Minkowski problem for non-symmetric measuresTrans. Amer. Math. Soc.201937126232641389609110.1090/tran/7499
CaffarelliL ASome regularity properties of solutions of Monge—Ampére equationComm. Pure Appl. Math.199144965969112704210.1002/cpa.3160440809
HugDLutwakEYangDOn the Lp Minkowski problem for polytopesDiscrete Comput. Geom.200533699715213229810.1007/s00454-004-1149-8
Akman, M., Gong, J., Hineman, J., et al.: The Brunn-Minkowski inequality and a Minkowski problem for nonlinear capacity. to appear in Mem. Amer. Math. Soc., preprint, https://arxiv.org/abs/1709.00447v2
StancuAOn the number of solutions to the discrete two dimensional L0-Minkowski problemAdv. Math.2003180290323201922610.1016/S0001-8708(03)00005-7
ZhuGThe logarithmic Minkowski problem for polytopesAdv. Math.2014262909931322844510.1016/j.aim.2014.06.004
ColesantiASalaniPThe Brunn—Minkowski inequality for p-capacity of convex bodiesMath. Ann.2003327459479202102510.1007/s00208-003-0460-7
AndrewsB GGauss curvature flow: the fate of the rolling stonesInvent. Math.1999138151161171433910.1007/s002220050344
StancuAThe discrete planar L0-Minkowski problemAdv. Math.2002167160174190125010.1006/aima.2001.2040
SchneiderRConvex Bodies: The Brunn—Minkowski Theory2014CambridgeCambridge University Press1287.52001
KárolyiGValtrPPoint configurations in d-space without large subsets in convex positionDiscrete Comput. Geom.200330277286200796510.1007/s00454-003-0009-4
LewyHOn diffrential geometry in the large. I. Minkowski’s problemTrans. Amer. Math. Soc.193843258270150194264.0714.03
L C Evans (1110_CR16) 1992
D Hug (1110_CR20) 2005; 33
A Colesanti (1110_CR13) 2005; 194
A V Pogorelov (1110_CR27) 1978
L A Caffarelli (1110_CR8) 1991; 44
R Schneider (1110_CR28) 2014
H Lewy (1110_CR23) 1938; 43
A Colesanti (1110_CR15) 2003; 327
S Y Cheng (1110_CR11) 1976; 29
R J Gardner (1110_CR17) 2006
Y D Liu (1110_CR24) 2021; 389
L A Caffarelli (1110_CR6) 1990; 131
A Stancu (1110_CR30) 2003; 180
D Zou (1110_CR33) 2020; 116
S B Chen (1110_CR10) 2019; 371
R J Gardner (1110_CR18) 2006; 221
G Zhu (1110_CR32) 2014; 262
D Jerison (1110_CR21) 1996; 176
L Nirenberg (1110_CR26) 1953; 6
A Stancu (1110_CR29) 2002; 167
G Xiong (1110_CR31) 2019; 277
L A Caffarelli (1110_CR9) 1996; 117
K J Böröczky (1110_CR4) 2016; 6
C Borell (1110_CR3) 1983; 263
K S Chou (1110_CR12) 2006; 205
K J Böröczky (1110_CR5) 2013; 26
B G Andrews (1110_CR2) 1999; 138
V Mazya (1110_CR25) 2011
A Colesanti (1110_CR14) 2015; 285
1110_CR1
P M Gruber (1110_CR19) 2007
G Károlyi (1110_CR22) 2003; 30
L A Caffarelli (1110_CR7) 1990; 131
References_xml – reference: CaffarelliL AInterior W2,p-estimates for solutions of the Monge—Ampère equationAnn. of Math. (2)1990131135150103836010.2307/1971510
– reference: StancuAThe discrete planar L0-Minkowski problemAdv. Math.2002167160174190125010.1006/aima.2001.2040
– reference: PogorelovA VThe Minkowski Multidimensional Problem1978Washington, D.C.V.H. Winston & Sons0387.53023
– reference: ZouDXiongGThe Lp Minkowski problem for the electrostatic p-capacityJ. Differential Geom.202011655559641828971453.31012
– reference: MazyaVSobolev Spaces with Applications to Elliptic Partial Differential Equations2011HeidelbergSpringer
– reference: BöröczkyK JLutwakEYangDThe logarithmic Minkowski problemJ. Amer. Math. Soc.201326831852303778810.1090/S0894-0347-2012-00741-3
– reference: AndrewsB GGauss curvature flow: the fate of the rolling stonesInvent. Math.1999138151161171433910.1007/s002220050344
– reference: JerisonDA Minkowski problem for electrostatic capacityActa Math.1996176147139566810.1007/BF02547334
– reference: EvansL CGariepyR FMeasure Theory and Fine Properties of Functions1992Boca RatonCRC Press0804.28001
– reference: GardnerR JGeometric Tomography2006CambridgeCambridge University Press10.1017/CBO9781107341029
– reference: HugDLutwakEYangDOn the Lp Minkowski problem for polytopesDiscrete Comput. Geom.200533699715213229810.1007/s00454-004-1149-8
– reference: CaffarelliL AJerisonDLiebE HOn the case of equality in the Brunn—Minkowski inequality for capacityAdv. Math.1996117193207137164910.1006/aima.1996.0008
– reference: ChenS BLiQ RZhuG XThe logarithmic Minkowski problem for non-symmetric measuresTrans. Amer. Math. Soc.201937126232641389609110.1090/tran/7499
– reference: NirenbergLThe Weyl and Minkowski problems in differential geometry in the largeComm. Pure Appl. Math.195363373945826510.1002/cpa.3160060303
– reference: GardnerR JHartenstineDCapacities, surface area, and radial sumsAdv. Math.2006221601626250893210.1016/j.aim.2008.12.013
– reference: ZhuGThe logarithmic Minkowski problem for polytopesAdv. Math.2014262909931322844510.1016/j.aim.2014.06.004
– reference: StancuAOn the number of solutions to the discrete two dimensional L0-Minkowski problemAdv. Math.2003180290323201922610.1016/S0001-8708(03)00005-7
– reference: BöröczkyK JHegedusPZhuG XOn the discrete logarithmic Minkowski problemInt. Math. Res. Not. IMRN2016618071837350994110.1093/imrn/rnv189
– reference: XiongGXiongJ WXuLThe Lp capacitary Minkowski problem for polytopesJ. Funct. Anal.201927731313155399763110.1016/j.jfa.2019.06.008
– reference: ChengS YYauS TOn the regularity of the solution of the n-dimensional Minkowski problemComm. Pure Appl. Math.19762949551642326710.1002/cpa.3160290504
– reference: ColesantiABrunn—Minkowski inequalities for variational functionals and related problemsAdv. Math.2005194105140214185610.1016/j.aim.2004.06.002
– reference: LiuY DSunQXiongGSharp affine isoperimetric inequalities for the volume decomposition functionals of polytopesAdv. Math.2021389107902428904210.1016/j.aim.2021.10790229 pp.
– reference: Akman, M., Gong, J., Hineman, J., et al.: The Brunn-Minkowski inequality and a Minkowski problem for nonlinear capacity. to appear in Mem. Amer. Math. Soc., preprint, https://arxiv.org/abs/1709.00447v2
– reference: CaffarelliL AA localization property of viscosity solutions to the Monge—Ampère equation and their strict convexityAnn. of Math. (2)1990131129134103835910.2307/1971509
– reference: KárolyiGValtrPPoint configurations in d-space without large subsets in convex positionDiscrete Comput. Geom.200330277286200796510.1007/s00454-003-0009-4
– reference: GruberP MConvex and Discrete Geometry2007BerlinSpringer1139.52001
– reference: ColesantiANyströmKSalaniPThe Hadamard variational formula and the Minkowski problem for p-capacityAdv. Math.201528515111588340653410.1016/j.aim.2015.06.022
– reference: LewyHOn diffrential geometry in the large. I. Minkowski’s problemTrans. Amer. Math. Soc.193843258270150194264.0714.03
– reference: BorellCCapacitary inequalities of the Brunn—Minkowski typeMath. Ann.198326317918469800110.1007/BF01456879
– reference: ChouK SWangX JThe Lp-Minkowski problem and the Minkowski problem in centroaffine geometryAdv. Math.20062053383225430810.1016/j.aim.2005.07.004
– reference: ColesantiASalaniPThe Brunn—Minkowski inequality for p-capacity of convex bodiesMath. Ann.2003327459479202102510.1007/s00208-003-0460-7
– reference: CaffarelliL ASome regularity properties of solutions of Monge—Ampére equationComm. Pure Appl. Math.199144965969112704210.1002/cpa.3160440809
– reference: SchneiderRConvex Bodies: The Brunn—Minkowski Theory2014CambridgeCambridge University Press1287.52001
– volume: 30
  start-page: 277
  year: 2003
  ident: 1110_CR22
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-003-0009-4
– volume-title: Geometric Tomography
  year: 2006
  ident: 1110_CR17
  doi: 10.1017/CBO9781107341029
– volume: 176
  start-page: 1
  year: 1996
  ident: 1110_CR21
  publication-title: Acta Math.
  doi: 10.1007/BF02547334
– volume: 131
  start-page: 129
  year: 1990
  ident: 1110_CR6
  publication-title: Ann. of Math. (2)
  doi: 10.2307/1971509
– volume: 221
  start-page: 601
  year: 2006
  ident: 1110_CR18
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2008.12.013
– volume: 29
  start-page: 495
  year: 1976
  ident: 1110_CR11
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160290504
– volume: 6
  start-page: 1807
  year: 2016
  ident: 1110_CR4
  publication-title: Int. Math. Res. Not. IMRN
  doi: 10.1093/imrn/rnv189
– volume: 180
  start-page: 290
  year: 2003
  ident: 1110_CR30
  publication-title: Adv. Math.
  doi: 10.1016/S0001-8708(03)00005-7
– volume: 277
  start-page: 3131
  year: 2019
  ident: 1110_CR31
  publication-title: J. Funct. Anal.
  doi: 10.1016/j.jfa.2019.06.008
– volume: 44
  start-page: 965
  year: 1991
  ident: 1110_CR8
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160440809
– volume-title: Convex Bodies: The Brunn—Minkowski Theory
  year: 2014
  ident: 1110_CR28
– volume: 116
  start-page: 555
  year: 2020
  ident: 1110_CR33
  publication-title: J. Differential Geom.
– volume: 43
  start-page: 258
  year: 1938
  ident: 1110_CR23
  publication-title: Trans. Amer. Math. Soc.
– ident: 1110_CR1
– volume: 205
  start-page: 33
  year: 2006
  ident: 1110_CR12
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2005.07.004
– volume: 389
  start-page: 107902
  year: 2021
  ident: 1110_CR24
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2021.107902
– volume: 327
  start-page: 459
  year: 2003
  ident: 1110_CR15
  publication-title: Math. Ann.
  doi: 10.1007/s00208-003-0460-7
– volume: 167
  start-page: 160
  year: 2002
  ident: 1110_CR29
  publication-title: Adv. Math.
  doi: 10.1006/aima.2001.2040
– volume-title: Sobolev Spaces with Applications to Elliptic Partial Differential Equations
  year: 2011
  ident: 1110_CR25
  doi: 10.1007/978-3-642-15564-2
– volume: 194
  start-page: 105
  year: 2005
  ident: 1110_CR13
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2004.06.002
– volume: 138
  start-page: 151
  year: 1999
  ident: 1110_CR2
  publication-title: Invent. Math.
  doi: 10.1007/s002220050344
– volume: 371
  start-page: 2623
  year: 2019
  ident: 1110_CR10
  publication-title: Trans. Amer. Math. Soc.
  doi: 10.1090/tran/7499
– volume: 263
  start-page: 179
  year: 1983
  ident: 1110_CR3
  publication-title: Math. Ann.
  doi: 10.1007/BF01456879
– volume: 33
  start-page: 699
  year: 2005
  ident: 1110_CR20
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/s00454-004-1149-8
– volume: 26
  start-page: 831
  year: 2013
  ident: 1110_CR5
  publication-title: J. Amer. Math. Soc.
  doi: 10.1090/S0894-0347-2012-00741-3
– volume: 262
  start-page: 909
  year: 2014
  ident: 1110_CR32
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2014.06.004
– volume-title: Convex and Discrete Geometry
  year: 2007
  ident: 1110_CR19
– volume: 6
  start-page: 337
  year: 1953
  ident: 1110_CR26
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.3160060303
– volume: 131
  start-page: 135
  year: 1990
  ident: 1110_CR7
  publication-title: Ann. of Math. (2)
  doi: 10.2307/1971510
– volume: 285
  start-page: 1511
  year: 2015
  ident: 1110_CR14
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2015.06.022
– volume-title: The Minkowski Multidimensional Problem
  year: 1978
  ident: 1110_CR27
– volume-title: Measure Theory and Fine Properties of Functions
  year: 1992
  ident: 1110_CR16
– volume: 117
  start-page: 193
  year: 1996
  ident: 1110_CR9
  publication-title: Adv. Math.
  doi: 10.1006/aima.1996.0008
SSID ssj0055906
Score 2.3111
Snippet The logarithmic capacitary Minkowski problem asks for necessary and sufficient conditions on a finite Borel measure on the unit sphere so that it is the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 406
SubjectTerms Differential geometry
Mathematics
Mathematics and Statistics
Polytopes
Position measurement
Title The Logarithmic Capacitary Minkowski Problem for Polytopes
URI https://link.springer.com/article/10.1007/s10114-022-1110-x
https://www.proquest.com/docview/2632969865
Volume 38
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI5gXOCAeIrBmHrgBKqUvrKG2zb2ELBpQkwapypJE5gY67QWwf49Th8bIEDilEPTSLUb-7Nsf0boLFQq9Bzpma7DuekqPeZFN-fYNS6U7XImU033-qQ7dK9H3ijv446LavciJZla6k_NboDdTV19DvcTmwAcNzwI3XUd19CuF-YXEDLOWoocagKcIEUq86cjvjqjFcL8lhRNfU17B23nINGoZ1rdRWtyuoe2ekuG1XgfXYJ-jdvoEULd5OllLIwmeD0Bgf58YfTg66K3-HlsDLJxMQYgU2MQTRZJNJPxARq2W_fNrpnPQTCFY5HEZAALlCuFpQCfSYcSTgSHMEH4PtMBksLC5y7Frgoxo6Fbw7Z0JFgPPySU-cw5RKVpNJVHyGCWJuOucS9l3qO2H1qECSm4kExJZZURLgQSiJwkXM-qmAQremMtwwBkqIMHHLyX0fnylVnGkPHX5koh5SC_LHGgKeMpoT7xyuiikPzq8a-HHf9r9wnatLXm04rrCiol81d5CoAi4VW07rc7VbRRb1w12nrtPNy0YG20-oO7avp7fQClxMeT
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6iB_UgPrFaNQdPSmCf6cZbKZaq3dJDC70tSTbRYu2W7or23zvZR6uigufNBjKZzHzDzHyD0GWsdey7yieeKwTxtBnzYppznIaQ2vEEV_lNhz3aGXr3I39U9nGnVbV7lZLMLfWnZjfA7sRUn8P7tAgAxw3AAoFR5aHTrMwvIGSraClyGQE4QatU5k9bfHVGK4T5LSma-5r2LtopQSJuFre6h9bUdB9th0uG1fQA3cD94m7yCKFu9vQylrgFXk9CoD9f4BBOl7ylz2PcL8bFYECmuJ9MFlkyU-khGrZvB60OKecgEOnaNCMcYIH2lLQ14DPlMiqoFBAmyCDgJkDSlgyExyxPxxZnsdewHOUqsB5BTBkPuHuE1qfJVB0jzG1Dxt0Qfs68x5wgtimXSgqpuFbariGrEkgkS5JwM6tiEq3ojY0MI5ChCR6s6L2Grpa_zAqGjL8W1yspR-VjSSNDGc8oC6hfQ9eV5Feff93s5F-rL9BmZxB2o-5d7-EUbTlGC_Lq6zpaz-av6gzARSbOc2X6AOYrxQA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwEA-iIPogfuJ0ah58UsrSNs1a38Z0TN3GHhzsrSRposO5jrWi---99GNTUcHnpoHcXXK_4-5-h9B5pHXkucqzqCuERbUZ82Kac5y6kNqhgqtM090eaw_o3dAbFnNOk7LavUxJ5j0NhqVpktamka59anwDHG-ZSnS4q8QCELlGTTMwGPTAaZRPMaBlkrcXuYEF0IKVac2ftvjqmJZo81uCNPM7rW20VQBG3Mg1vINW1GQXbXYXbKvJHroCXeNO_Ahhb_r0MpK4CR5QQtA_m-MunDR-S55HuJ-PjsGAUnE_Hs_TeKqSfTRo3Tw021YxE8GSrs1SiwNE0FRJWwNWU27ABJMCQgbp-9wES5pIX9CAUB0RHkS0ThzlKnhJ_IgF3OfuAVqdxBN1iDC3DTF3XXgZC1_g-JHNuFRSSMW10nYFkVIgoSwIw83cinG4pDo2MgxBhiaQIOF7BV0sfpnmbBl_La6WUg6Li5OEhj4-YIHPvAq6LCW__PzrZkf_Wn2G1vvXrbBz27s_RhuOMYKsELuKVtPZqzoBnJGK08yWPgB8Bskz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Logarithmic+Capacitary+Minkowski+Problem+for+Polytopes&rft.jtitle=Acta+mathematica+Sinica.+English+series&rft.au=Xiong+Ge&rft.au=Xiong+Jia+Wei&rft.date=2022-02-01&rft.pub=Springer+Nature+B.V&rft.issn=1439-8516&rft.eissn=1439-7617&rft.volume=38&rft.issue=2&rft.spage=406&rft.epage=418&rft_id=info:doi/10.1007%2Fs10114-022-1110-x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1439-8516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1439-8516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1439-8516&client=summon