Solid and Hollow Gold Nanostructures for Nanomedicine: Comparison of Photothermal Properties
The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages upon irradiation with a 100 mW 808 nm continuous-wave laser for the first time were experimentally compared under identical optical density and...
Saved in:
Published in | Plasmonics (Norwell, Mass.) Vol. 13; no. 5; pp. 1659 - 1669 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.10.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages upon irradiation with a 100 mW 808 nm continuous-wave laser for the first time were experimentally compared under identical optical density and nanoparticle concentration conditions. Accompanying computer modeling of light absorption by the studied gold nanostructures revealed the general parameters influencing the photothermal efficiency, which is of significance for nanomedical applications. The spectral position of localized plasmonic excitations of the studied nanostructures ranged from 518 nm for solid gold nanoparticles to 718 nm for gold nanocages, which provided a possibility to observe a direct influence of the wavelength proximity between the localized surface plasmon resonance and laser line on the heat generation capability of the nanostructures. As a result, the best photothermal efficiency was registered for gold nanocages, which proves them as an efficient photothermal treatment agent and a possible candidate to build a nanocarrier platform for drug delivery with a controlled release. Light absorption modeling demonstrated an existence of optimal wall thickness for gold nanoshells that should lead to the maximum photothermal efficiency when irradiated with 808 nm light, which varied from about 0.1 to 0.4 in units of external nanoshell radius with an increase of the wall porosity. Additionally, computer modeling results show that increased wall porosity should lead to enhanced photothermal efficiency of polydisperse colloidal solutions of hollow gold nanostructures. |
---|---|
AbstractList | The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages upon irradiation with a 100 mW 808 nm continuous-wave laser for the first time were experimentally compared under identical optical density and nanoparticle concentration conditions. Accompanying computer modeling of light absorption by the studied gold nanostructures revealed the general parameters influencing the photothermal efficiency, which is of significance for nanomedical applications. The spectral position of localized plasmonic excitations of the studied nanostructures ranged from 518 nm for solid gold nanoparticles to 718 nm for gold nanocages, which provided a possibility to observe a direct influence of the wavelength proximity between the localized surface plasmon resonance and laser line on the heat generation capability of the nanostructures. As a result, the best photothermal efficiency was registered for gold nanocages, which proves them as an efficient photothermal treatment agent and a possible candidate to build a nanocarrier platform for drug delivery with a controlled release. Light absorption modeling demonstrated an existence of optimal wall thickness for gold nanoshells that should lead to the maximum photothermal efficiency when irradiated with 808 nm light, which varied from about 0.1 to 0.4 in units of external nanoshell radius with an increase of the wall porosity. Additionally, computer modeling results show that increased wall porosity should lead to enhanced photothermal efficiency of polydisperse colloidal solutions of hollow gold nanostructures. The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages upon irradiation with a 100 mW 808 nm continuous-wave laser for the first time were experimentally compared under identical optical density and nanoparticle concentration conditions. Accompanying computer modeling of light absorption by the studied gold nanostructures revealed the general parameters influencing the photothermal efficiency, which is of significance for nanomedical applications. The spectral position of localized plasmonic excitations of the studied nanostructures ranged from 518 nm for solid gold nanoparticles to 718 nm for gold nanocages, which provided a possibility to observe a direct influence of the wavelength proximity between the localized surface plasmon resonance and laser line on the heat generation capability of the nanostructures. As a result, the best photothermal efficiency was registered for gold nanocages, which proves them as an efficient photothermal treatment agent and a possible candidate to build a nanocarrier platform for drug delivery with a controlled release. Light absorption modeling demonstrated an existence of optimal wall thickness for gold nanoshells that should lead to the maximum photothermal efficiency when irradiated with 808 nm light, which varied from about 0.1 to 0.4 in units of external nanoshell radius with an increase of the wall porosity. Additionally, computer modeling results show that increased wall porosity should lead to enhanced photothermal efficiency of polydisperse colloidal solutions of hollow gold nanostructures. |
Author | Rachkov, A. E. Chegel, V. I. Lytvyn, V. K. Mogylnyi, I. V. Lopatynskyi, A. M. Malymon, Y. O. Soldatkin, A. P. |
Author_xml | – sequence: 1 givenname: A. M. surname: Lopatynskyi fullname: Lopatynskyi, A. M. email: lop2000@ukr.net organization: Department of Optoelectronic Functional Transducers, V. E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, Institute of High Technologies, Taras Shevchenko Kyiv National University – sequence: 2 givenname: Y. O. surname: Malymon fullname: Malymon, Y. O. organization: Institute of High Technologies, Taras Shevchenko Kyiv National University – sequence: 3 givenname: V. K. surname: Lytvyn fullname: Lytvyn, V. K. organization: Department of Optoelectronic Functional Transducers, V. E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine – sequence: 4 givenname: I. V. surname: Mogylnyi fullname: Mogylnyi, I. V. organization: Department of Optoelectronic Functional Transducers, V. E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine – sequence: 5 givenname: A. E. surname: Rachkov fullname: Rachkov, A. E. organization: Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine – sequence: 6 givenname: A. P. surname: Soldatkin fullname: Soldatkin, A. P. organization: Institute of High Technologies, Taras Shevchenko Kyiv National University, Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine – sequence: 7 givenname: V. I. surname: Chegel fullname: Chegel, V. I. organization: Department of Optoelectronic Functional Transducers, V. E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, Institute of High Technologies, Taras Shevchenko Kyiv National University |
BookMark | eNp1kEtLw0AQxxepYK1-AG8LnqM7yb7iTYq2QtGCehOWuA-bkuzG3RTx25sa0ZOnGWb-D_gdo4kP3iJ0BuQCCBGXCYBymREQGeGCZXCApsCYyKDkxeR3Z-wIHae0JYRSyukUvTyGpja48gYvQ9OED7wIjcH3lQ-pjzvd76JN2IX4fWqtqXXt7RWeh7arYp2Cx8Hh9Sb0od_Y2FYNXsfQ2djXNp2gQ1c1yZ7-zBl6vr15mi-z1cPibn69ynQBvM9KnRtpRMW14US4XIIWJXWkLAtpCvLKwFGa01wAt1pAZYcPMCclLwTXwIoZOh9zuxjedzb1aht20Q-VKgdCuZC5pIMKRpWOIaVonepi3VbxUwFRe4hqhKgGiGoPUcHgyUdPGrT-zca_5P9NX8y1dew |
CitedBy_id | crossref_primary_10_1007_s13204_021_01740_8 crossref_primary_10_1007_s10118_020_2420_z crossref_primary_10_1007_s00604_020_04460_y crossref_primary_10_1007_s11051_023_05683_9 crossref_primary_10_1007_s13204_019_00990_x crossref_primary_10_1021_acsami_9b17335 crossref_primary_10_1007_s13204_020_01406_x crossref_primary_10_1039_D2NJ03257K |
Cites_doi | 10.1039/C6AN00773B 10.1016/S0040-6090(97)00220-4 10.2217/nnm.14.126 10.1021/jp209251y 10.1002/smll.200701290 10.1021/jp409298f 10.1557/mrs2005.99 10.1039/C2NR33187J 10.1016/j.jare.2010.02.002 10.1016/j.nano.2014.05.006 10.1007/978-3-642-31107-9_50 10.1016/j.colsurfa.2012.08.043 10.1021/nn405663h 10.1039/df9511100055 10.1021/nn304332s 10.1246/bcsj.20150143 10.1021/ed081p544A 10.1021/jp057170o 10.1088/0957-4484/20/42/425104 10.1088/0957-4484/19/35/355702 10.1039/c0jm00354a 10.1073/pnas.1419622112 10.1126/science.1073765 10.1088/0957-4484/17/20/022 10.1016/j.susc.2012.10.019 10.1109/JSEN.2010.2057418 10.1021/nl070345g 10.1021/ja311503q 10.1021/nn501871d 10.1016/j.biomaterials.2008.12.038 10.1186/s12645-016-0021-x 10.1039/C6NR09177F 10.1038/86684 10.1021/acs.chemrev.5b00321 10.1246/bcsj.20150420 10.1186/1556-276X-6-434 10.1002/lsm.22072 10.1007/s11468-015-0034-z 10.7150/thno.5409 10.15407/spqeo19.04.358 10.1007/s10103-007-0470-x |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2017 Copyright Springer Science & Business Media 2018 |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017 – notice: Copyright Springer Science & Business Media 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11468-017-0675-1 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Physics |
EISSN | 1557-1963 |
EndPage | 1669 |
ExternalDocumentID | 10_1007_s11468_017_0675_1 |
GrantInformation_xml | – fundername: Science and Technology Center in Ukraine grantid: 6044; 6044; 6044 funderid: http://dx.doi.org/10.13039/501100008202 – fundername: Science and Technology Center in Ukraine (UA) grantid: 6044 |
GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 1N0 203 29O 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40D 40E 5VS 67Z 6NX 875 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AAPBV AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBBX ABDBF ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABPTK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFLOW AFNRJ AFQWF AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BDATZ BGNMA CAG COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG5 HG6 HLICF HMJXF HRMNR HVGLF HZ~ I-F IHE IJ- IKXTQ ITM IWAJR IXC IXE IZQ I~X I~Z J-C J0Z JBSCW JZLTJ KDC KOV LLZTM M4Y MA- N2Q NPVJJ NQJWS NU0 O9- O93 O9J P9N PF0 PT4 QOR QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7V Z7X Z7Y Z83 Z85 Z88 ZMTXR ~A9 AACDK AAJBT AASML AAYXX AAYZH ABAKF ACAOD ACDTI ACZOJ AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU CITATION H13 |
ID | FETCH-LOGICAL-c316t-9c2d8d7a6cd607f281c794f09938d30b51f44242716ec71ae09915f886376c153 |
IEDL.DBID | AGYKE |
ISSN | 1557-1955 |
IngestDate | Wed Nov 06 07:39:22 EST 2024 Mon Nov 04 10:01:37 EST 2024 Sat Dec 16 12:00:08 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Gold nanoshells Gold nanocages Nanocarrier Localized surface plasmon resonance Gold nanoparticles Photothermal plasmonic effect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-9c2d8d7a6cd607f281c794f09938d30b51f44242716ec71ae09915f886376c153 |
PQID | 2104678284 |
PQPubID | 2044107 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2104678284 crossref_primary_10_1007_s11468_017_0675_1 springer_journals_10_1007_s11468_017_0675_1 |
PublicationCentury | 2000 |
PublicationDate | 2018-10-01 |
PublicationDateYYYYMMDD | 2018-10-01 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Plasmonics (Norwell, Mass.) |
PublicationTitleAbbrev | Plasmonics |
PublicationYear | 2018 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Sharma, Brown, Singh, Iwakuma, Pyrgiotakis, Krishna, Knapik, Barr, Moudgil, Grobmyer (CR22) 2010; 20 Prevo, Esakoff, Mikhailovsky, Zasadzinski (CR28) 2008; 4 Khlebtsov, Zharov, Melnikov, Tuchin, Khlebtsov (CR18) 2006; 17 Pattani, Tunnell (CR37) 2012; 44 Goodman, Cao, Urban, Neumann, Ayala-Orozco, Knight, Joshi, Nordlander, Halas (CR36) 2014; 8 Chegel, Rachkov, Lopatynskyi, Ishihara, Yanchuk, Nemoto, Hill, Ariga (CR35) 2012; 116 Boyer, Tamarat, Maali, Lounis, Orrit (CR15) 2002; 297 Dutta, Munns, Dutta (CR31) 1997; 304 Chinen, Guan, Ferrer, Barnaby, Merkel, Mirkin (CR5) 2015; 115 Weissleder (CR11) 2001; 19 Lopatynskyi, Lopatynska, Guo, Chegel (CR33) 2011; 11 Khan, Kumar, Ahamed, Alrokayan, AlSalhi (CR30) 2011; 6 Mackey, Ali, Austin, Near, El-Sayed (CR19) 2014; 118 Lopatynskyi, Lytvyn, Mogylnyi, Rachkov, Soldatkin, Chegel (CR34) 2016; 19 Guo, Li, Xiao, Lu, Bhushan, Luo, Schricker, Sigmund, Zauscher (CR12) 2014 Hleb, Lapotko (CR13) 2008; 19 Huang, Jain, El-Sayed, El-Sayed (CR14) 2008; 23 Abdollahi, Naderi, Amoabediny (CR32) 2012; 414 Huang, El-Sayed (CR8) 2010; 1 Xie, Larmour, Chen, Wark, Tileli, McComb, Faulds, Graham (CR39) 2013; 5 Cheng, Chen, Yeh (CR24) 2009; 20 Hembury, Chiappini, Bertazzo, Kalber, Drisko, Ogunlade, Walker-Samuel, Krishna, Jumeaux, Beard, Kumar, Porter, Lythgoe, Boissière, Sanchez, Stevens (CR38) 2015; 112 Yeshchenko, Kutsevol, Naumenko (CR42) 2016; 11 Song, Goswami, Yang, Xie (CR2) 2016; 141 Chen, Wang, Xi, Au, Siekkinen, Warsen, Li, Zhang, Xia, Li (CR17) 2007; 7 Halas (CR40) 2005; 30 Wang, Zheng, Huang, Xia (CR29) 2013; 135 Zhang, Wang, Chen (CR21) 2013; 3 Wang, Black, Luehmann, Li, Zhang, Cai, Wan, Liu, Li, Kim, Li, Wang, Liu, Xia (CR25) 2013; 7 Ayala-Orozco, Urban, Knight, Urban, Neumann, Bishnoi, Mukherjee, Goodman, Charron, Mitchell, Shea, Roy, Nanda, Schiff, Halas, Joshi (CR23) 2014; 8 Guerrero, Hassan, Escobar, Albericio, Kogan, Araya (CR4) 2014; 9 Jain, Lee, El-Sayed, El-Sayed (CR16) 2006; 110 Malgras, Ji, Kamachi, Mori, Shieh, KCW (CR3) 2015; 88 Hainfeld, Lin, Slatkin, Dilmanian, Vadas, Smilowitz (CR10) 2014; 10 Yang, Aw, Xing (CR9) 2017; 9 Yamamoto, Kuroda (CR1) 2016; 89 Turkevich, Stevenson, Hillier (CR26) 1951; 11 McFarland, Haynes, Mirkin, Van Duyne, Godwin (CR27) 2004; 81 Zhang, Yang, Lu, Zhang, Huang, Tian, Li, Liang, Li (CR20) 2009; 30 Haume, Rosa, Grellet, Śmiałek, Butterworth, Solov’yov, Prise, Golding, Mason (CR6) 2016; 7 Yeshchenko, Bondarchuk, Gurin, Dmitruk, Kotko (CR41) 2013; 608 Yao, Zhang, Wang, He, Xin, Wang (CR7) 2016; 2016 MAM Khan (675_CR30) 2011; 6 Z Zhang (675_CR21) 2013; 3 AM Lopatynskyi (675_CR34) 2016; 19 AR Guerrero (675_CR4) 2014; 9 AB Chinen (675_CR5) 2015; 115 R Weissleder (675_CR11) 2001; 19 P Sharma (675_CR22) 2010; 20 AM Goodman (675_CR36) 2014; 8 D Boyer (675_CR15) 2002; 297 C Yao (675_CR7) 2016; 2016 PK Jain (675_CR16) 2006; 110 E Yamamoto (675_CR1) 2016; 89 BG Prevo (675_CR28) 2008; 4 J Chen (675_CR17) 2007; 7 EY Hleb (675_CR13) 2008; 19 XR Song (675_CR2) 2016; 141 K Haume (675_CR6) 2016; 7 X Huang (675_CR8) 2010; 1 675_CR39 Y Wang (675_CR25) 2013; 7 AD McFarland (675_CR27) 2004; 81 OA Yeshchenko (675_CR41) 2013; 608 OA Yeshchenko (675_CR42) 2016; 11 X Huang (675_CR14) 2008; 23 AM Lopatynskyi (675_CR33) 2011; 11 V Chegel (675_CR35) 2012; 116 M Hembury (675_CR38) 2015; 112 G Zhang (675_CR20) 2009; 30 FY Cheng (675_CR24) 2009; 20 B Khlebtsov (675_CR18) 2006; 17 MA Mackey (675_CR19) 2014; 118 C Ayala-Orozco (675_CR23) 2014; 8 VP Pattani (675_CR37) 2012; 44 V Malgras (675_CR3) 2015; 88 J Turkevich (675_CR26) 1951; 11 I Dutta (675_CR31) 1997; 304 JF Hainfeld (675_CR10) 2014; 10 Y Wang (675_CR29) 2013; 135 N Halas (675_CR40) 2005; 30 675_CR9 SN Abdollahi (675_CR32) 2012; 414 L Guo (675_CR12) 2014 |
References_xml | – volume: 141 start-page: 3126 issue: 11 year: 2016 end-page: 3140 ident: CR2 article-title: Functionalization of metal nanoclusters for biomedical applications publication-title: Analyst doi: 10.1039/C6AN00773B contributor: fullname: Xie – volume: 304 start-page: 229 issue: 1-2 year: 1997 end-page: 238 ident: CR31 article-title: An X-ray diffraction (XRD) study of vapor deposited gold thin films on aluminum nitride (AlN) substrates publication-title: Thin Solid Films doi: 10.1016/S0040-6090(97)00220-4 contributor: fullname: Dutta – volume: 9 start-page: 2023 issue: 13 year: 2014 end-page: 2039 ident: CR4 article-title: Gold nanoparticles for photothermally controlled drug release publication-title: Nanomedicine (Lond) doi: 10.2217/nnm.14.126 contributor: fullname: Araya – volume: 116 start-page: 2683 issue: 4 year: 2012 end-page: 2690 ident: CR35 article-title: Gold nanoparticles aggregation: drastic effect of cooperative functionalities in a single molecular conjugate publication-title: J Phys Chem C doi: 10.1021/jp209251y contributor: fullname: Ariga – volume: 4 start-page: 1183 issue: 8 year: 2008 end-page: 1195 ident: CR28 article-title: Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation publication-title: Small doi: 10.1002/smll.200701290 contributor: fullname: Zasadzinski – volume: 118 start-page: 1319 issue: 5 year: 2014 end-page: 1326 ident: CR19 article-title: The most effective gold nanorod size for plasmonic photothermal therapy: theory and experiments publication-title: J Phys Chem B doi: 10.1021/jp409298f contributor: fullname: El-Sayed – volume: 30 start-page: 362 issue: 05 year: 2005 end-page: 367 ident: CR40 article-title: Playing with plasmons: tuning the optical resonant properties of metallic nanoshells publication-title: MRS Bull doi: 10.1557/mrs2005.99 contributor: fullname: Halas – volume: 5 start-page: 765 issue: 2 year: 2013 end-page: 771 ident: CR39 article-title: Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer publication-title: Nanoscale doi: 10.1039/C2NR33187J contributor: fullname: Graham – volume: 2016 start-page: 5497136 year: 2016 ident: CR7 article-title: Gold nanoparticle mediated phototherapy for cancer publication-title: J Nanomater contributor: fullname: Wang – volume: 1 start-page: 13 issue: 1 year: 2010 end-page: 28 ident: CR8 article-title: Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy publication-title: J Adv Res doi: 10.1016/j.jare.2010.02.002 contributor: fullname: El-Sayed – volume: 10 start-page: 1609 issue: 8 year: 2014 end-page: 1617 ident: CR10 article-title: Gold nanoparticle hyperthermia reduces radiotherapy dose publication-title: Nanomedicine doi: 10.1016/j.nano.2014.05.006 contributor: fullname: Smilowitz – start-page: 1199 year: 2014 end-page: 1226 ident: CR12 article-title: Photothermal properties of hollow gold nanostructures for cancer theranostics publication-title: Handbook of nanomaterials properties doi: 10.1007/978-3-642-31107-9_50 contributor: fullname: Zauscher – volume: 414 start-page: 345 year: 2012 end-page: 351 ident: CR32 article-title: Synthesis and physicochemical characterization of tunable silica–gold nanoshells via seed growth method publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2012.08.043 contributor: fullname: Amoabediny – volume: 8 start-page: 3222 issue: 4 year: 2014 end-page: 3231 ident: CR36 article-title: The surprising in vivo instability of near-IR-absorbing hollow Au–Ag nanoshells publication-title: ACS Nano doi: 10.1021/nn405663h contributor: fullname: Halas – volume: 11 start-page: 55 year: 1951 end-page: 75 ident: CR26 article-title: A study of the nucleation and growth processes in the synthesis of colloidal gold publication-title: Discuss Faraday Soc doi: 10.1039/df9511100055 contributor: fullname: Hillier – volume: 7 start-page: 2068 issue: 3 year: 2013 end-page: 2077 ident: CR25 article-title: Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment publication-title: ACS Nano doi: 10.1021/nn304332s contributor: fullname: Xia – volume: 88 start-page: 1171 issue: 9 year: 2015 end-page: 1200 ident: CR3 article-title: Templated synthesis for nanoarchitectured porous materials publication-title: Bull Chem Soc Jpn doi: 10.1246/bcsj.20150143 contributor: fullname: KCW – volume: 81 start-page: 544 year: 2004 ident: CR27 article-title: Color my nanoworld publication-title: J Chem Educ doi: 10.1021/ed081p544A contributor: fullname: Godwin – volume: 110 start-page: 7238 issue: 14 year: 2006 end-page: 7248 ident: CR16 article-title: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine publication-title: J Phys Chem B doi: 10.1021/jp057170o contributor: fullname: El-Sayed – volume: 20 start-page: 425104 issue: 42 year: 2009 ident: CR24 article-title: Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods publication-title: Nanotechnology doi: 10.1088/0957-4484/20/42/425104 contributor: fullname: Yeh – volume: 19 start-page: 355702 issue: 35 year: 2008 ident: CR13 article-title: Photothermal properties of gold nanoparticles under exposure to high optical energies publication-title: Nanotechnology doi: 10.1088/0957-4484/19/35/355702 contributor: fullname: Lapotko – volume: 20 start-page: 5182 issue: 25 year: 2010 end-page: 5185 ident: CR22 article-title: Near-infrared absorbing and luminescent gold speckled silica nanoparticles for photothermal therapy publication-title: J Mater Chem doi: 10.1039/c0jm00354a contributor: fullname: Grobmyer – volume: 112 start-page: 1959 issue: 7 year: 2015 end-page: 1964 ident: CR38 article-title: Gold–silica quantum rattles for multimodal imaging and therapy publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1419622112 contributor: fullname: Stevens – volume: 297 start-page: 1160 issue: 5584 year: 2002 end-page: 1163 ident: CR15 article-title: Photothermal imaging of nanometer-sized metal particles among scatterers publication-title: Science doi: 10.1126/science.1073765 contributor: fullname: Orrit – volume: 17 start-page: 5167 issue: 20 year: 2006 end-page: 5179 ident: CR18 article-title: Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters publication-title: Nanotechnology doi: 10.1088/0957-4484/17/20/022 contributor: fullname: Khlebtsov – volume: 608 start-page: 275 year: 2013 end-page: 281 ident: CR41 article-title: Temperature dependence of the surface plasmon resonance in gold nanoparticles publication-title: Surf Sci doi: 10.1016/j.susc.2012.10.019 contributor: fullname: Kotko – volume: 11 start-page: 361 issue: 2 year: 2011 end-page: 369 ident: CR33 article-title: Localized surface plasmon resonance biosensor—part I: theoretical study of sensitivity—extended Mie approach publication-title: IEEE Sensors J doi: 10.1109/JSEN.2010.2057418 contributor: fullname: Chegel – volume: 7 start-page: 1318 issue: 5 year: 2007 end-page: 1322 ident: CR17 article-title: Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells publication-title: Nano Lett doi: 10.1021/nl070345g contributor: fullname: Li – volume: 135 start-page: 1941 issue: 5 year: 2013 end-page: 1951 ident: CR29 article-title: Synthesis of Ag nanocubes 18–32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility publication-title: J Am Chem Soc doi: 10.1021/ja311503q contributor: fullname: Xia – volume: 8 start-page: 6372 issue: 6 year: 2014 end-page: 6381 ident: CR23 article-title: Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells publication-title: ACS Nano doi: 10.1021/nn501871d contributor: fullname: Joshi – volume: 30 start-page: 1928 issue: 10 year: 2009 end-page: 1936 ident: CR20 article-title: Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.12.038 contributor: fullname: Li – volume: 7 start-page: 8 issue: 1 year: 2016 ident: CR6 article-title: Gold nanoparticles for cancer radiotherapy: a review publication-title: Cancer Nanotechnol doi: 10.1186/s12645-016-0021-x contributor: fullname: Mason – volume: 9 start-page: 3698 issue: 11 year: 2017 end-page: 3718 ident: CR9 article-title: Nanostructures for NIR light-controlled therapies publication-title: Nanoscale doi: 10.1039/C6NR09177F contributor: fullname: Xing – volume: 19 start-page: 316 issue: 4 year: 2001 end-page: 317 ident: CR11 article-title: A clearer vision for in vivo imaging publication-title: Nat Biotechnol doi: 10.1038/86684 contributor: fullname: Weissleder – volume: 115 start-page: 10530 issue: 19 year: 2015 end-page: 10574 ident: CR5 article-title: Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00321 contributor: fullname: Mirkin – volume: 89 start-page: 501 issue: 5 year: 2016 end-page: 539 ident: CR1 article-title: Colloidal mesoporous silica nanoparticles publication-title: Bull Chem Soc Jpn doi: 10.1246/bcsj.20150420 contributor: fullname: Kuroda – volume: 6 start-page: 434 issue: 1 year: 2011 ident: CR30 article-title: Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-6-434 contributor: fullname: AlSalhi – volume: 44 start-page: 675 issue: 8 year: 2012 end-page: 684 ident: CR37 article-title: Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types publication-title: Lasers Surg Med doi: 10.1002/lsm.22072 contributor: fullname: Tunnell – volume: 11 start-page: 345 issue: 1 year: 2016 end-page: 350 ident: CR42 article-title: Light-induced heating of gold nanoparticles in colloidal solution: dependence on detuning from surface plasmon resonance publication-title: Plasmonics doi: 10.1007/s11468-015-0034-z contributor: fullname: Naumenko – volume: 3 start-page: 223 issue: 3 year: 2013 end-page: 238 ident: CR21 article-title: Gold nanorods based platforms for light-mediated theranostics publication-title: Theranostics doi: 10.7150/thno.5409 contributor: fullname: Chen – volume: 19 start-page: 358 issue: 4 year: 2016 end-page: 365 ident: CR34 article-title: Smart nanocarriers for drug delivery: controllable LSPR tuning publication-title: Semiconductor Physics, Quantum Electronics Optoelectronics doi: 10.15407/spqeo19.04.358 contributor: fullname: Chegel – volume: 23 start-page: 217 issue: 3 year: 2008 end-page: 228 ident: CR14 article-title: Plasmonic photothermal therapy (PPTT) using gold nanoparticles publication-title: Lasers Med Sci doi: 10.1007/s10103-007-0470-x contributor: fullname: El-Sayed – volume: 110 start-page: 7238 issue: 14 year: 2006 ident: 675_CR16 publication-title: J Phys Chem B doi: 10.1021/jp057170o contributor: fullname: PK Jain – volume: 1 start-page: 13 issue: 1 year: 2010 ident: 675_CR8 publication-title: J Adv Res doi: 10.1016/j.jare.2010.02.002 contributor: fullname: X Huang – volume: 8 start-page: 6372 issue: 6 year: 2014 ident: 675_CR23 publication-title: ACS Nano doi: 10.1021/nn501871d contributor: fullname: C Ayala-Orozco – volume: 19 start-page: 358 issue: 4 year: 2016 ident: 675_CR34 publication-title: Semiconductor Physics, Quantum Electronics Optoelectronics doi: 10.15407/spqeo19.04.358 contributor: fullname: AM Lopatynskyi – volume: 7 start-page: 8 issue: 1 year: 2016 ident: 675_CR6 publication-title: Cancer Nanotechnol doi: 10.1186/s12645-016-0021-x contributor: fullname: K Haume – volume: 115 start-page: 10530 issue: 19 year: 2015 ident: 675_CR5 publication-title: Chem Rev doi: 10.1021/acs.chemrev.5b00321 contributor: fullname: AB Chinen – ident: 675_CR39 doi: 10.1039/C2NR33187J – volume: 8 start-page: 3222 issue: 4 year: 2014 ident: 675_CR36 publication-title: ACS Nano doi: 10.1021/nn405663h contributor: fullname: AM Goodman – volume: 3 start-page: 223 issue: 3 year: 2013 ident: 675_CR21 publication-title: Theranostics doi: 10.7150/thno.5409 contributor: fullname: Z Zhang – volume: 118 start-page: 1319 issue: 5 year: 2014 ident: 675_CR19 publication-title: J Phys Chem B doi: 10.1021/jp409298f contributor: fullname: MA Mackey – volume: 9 start-page: 2023 issue: 13 year: 2014 ident: 675_CR4 publication-title: Nanomedicine (Lond) doi: 10.2217/nnm.14.126 contributor: fullname: AR Guerrero – volume: 19 start-page: 355702 issue: 35 year: 2008 ident: 675_CR13 publication-title: Nanotechnology doi: 10.1088/0957-4484/19/35/355702 contributor: fullname: EY Hleb – volume: 11 start-page: 345 issue: 1 year: 2016 ident: 675_CR42 publication-title: Plasmonics doi: 10.1007/s11468-015-0034-z contributor: fullname: OA Yeshchenko – volume: 6 start-page: 434 issue: 1 year: 2011 ident: 675_CR30 publication-title: Nanoscale Res Lett doi: 10.1186/1556-276X-6-434 contributor: fullname: MAM Khan – volume: 81 start-page: 544 year: 2004 ident: 675_CR27 publication-title: J Chem Educ doi: 10.1021/ed081p544A contributor: fullname: AD McFarland – volume: 89 start-page: 501 issue: 5 year: 2016 ident: 675_CR1 publication-title: Bull Chem Soc Jpn doi: 10.1246/bcsj.20150420 contributor: fullname: E Yamamoto – ident: 675_CR9 doi: 10.1039/C6NR09177F – volume: 297 start-page: 1160 issue: 5584 year: 2002 ident: 675_CR15 publication-title: Science doi: 10.1126/science.1073765 contributor: fullname: D Boyer – volume: 30 start-page: 362 issue: 05 year: 2005 ident: 675_CR40 publication-title: MRS Bull doi: 10.1557/mrs2005.99 contributor: fullname: N Halas – volume: 23 start-page: 217 issue: 3 year: 2008 ident: 675_CR14 publication-title: Lasers Med Sci doi: 10.1007/s10103-007-0470-x contributor: fullname: X Huang – volume: 19 start-page: 316 issue: 4 year: 2001 ident: 675_CR11 publication-title: Nat Biotechnol doi: 10.1038/86684 contributor: fullname: R Weissleder – volume: 17 start-page: 5167 issue: 20 year: 2006 ident: 675_CR18 publication-title: Nanotechnology doi: 10.1088/0957-4484/17/20/022 contributor: fullname: B Khlebtsov – start-page: 1199 volume-title: Handbook of nanomaterials properties year: 2014 ident: 675_CR12 doi: 10.1007/978-3-642-31107-9_50 contributor: fullname: L Guo – volume: 20 start-page: 5182 issue: 25 year: 2010 ident: 675_CR22 publication-title: J Mater Chem doi: 10.1039/c0jm00354a contributor: fullname: P Sharma – volume: 116 start-page: 2683 issue: 4 year: 2012 ident: 675_CR35 publication-title: J Phys Chem C doi: 10.1021/jp209251y contributor: fullname: V Chegel – volume: 304 start-page: 229 issue: 1-2 year: 1997 ident: 675_CR31 publication-title: Thin Solid Films doi: 10.1016/S0040-6090(97)00220-4 contributor: fullname: I Dutta – volume: 608 start-page: 275 year: 2013 ident: 675_CR41 publication-title: Surf Sci doi: 10.1016/j.susc.2012.10.019 contributor: fullname: OA Yeshchenko – volume: 30 start-page: 1928 issue: 10 year: 2009 ident: 675_CR20 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.12.038 contributor: fullname: G Zhang – volume: 4 start-page: 1183 issue: 8 year: 2008 ident: 675_CR28 publication-title: Small doi: 10.1002/smll.200701290 contributor: fullname: BG Prevo – volume: 141 start-page: 3126 issue: 11 year: 2016 ident: 675_CR2 publication-title: Analyst doi: 10.1039/C6AN00773B contributor: fullname: XR Song – volume: 7 start-page: 1318 issue: 5 year: 2007 ident: 675_CR17 publication-title: Nano Lett doi: 10.1021/nl070345g contributor: fullname: J Chen – volume: 44 start-page: 675 issue: 8 year: 2012 ident: 675_CR37 publication-title: Lasers Surg Med doi: 10.1002/lsm.22072 contributor: fullname: VP Pattani – volume: 414 start-page: 345 year: 2012 ident: 675_CR32 publication-title: Colloids Surf A Physicochem Eng Asp doi: 10.1016/j.colsurfa.2012.08.043 contributor: fullname: SN Abdollahi – volume: 10 start-page: 1609 issue: 8 year: 2014 ident: 675_CR10 publication-title: Nanomedicine doi: 10.1016/j.nano.2014.05.006 contributor: fullname: JF Hainfeld – volume: 7 start-page: 2068 issue: 3 year: 2013 ident: 675_CR25 publication-title: ACS Nano doi: 10.1021/nn304332s contributor: fullname: Y Wang – volume: 112 start-page: 1959 issue: 7 year: 2015 ident: 675_CR38 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1419622112 contributor: fullname: M Hembury – volume: 20 start-page: 425104 issue: 42 year: 2009 ident: 675_CR24 publication-title: Nanotechnology doi: 10.1088/0957-4484/20/42/425104 contributor: fullname: FY Cheng – volume: 11 start-page: 361 issue: 2 year: 2011 ident: 675_CR33 publication-title: IEEE Sensors J doi: 10.1109/JSEN.2010.2057418 contributor: fullname: AM Lopatynskyi – volume: 135 start-page: 1941 issue: 5 year: 2013 ident: 675_CR29 publication-title: J Am Chem Soc doi: 10.1021/ja311503q contributor: fullname: Y Wang – volume: 88 start-page: 1171 issue: 9 year: 2015 ident: 675_CR3 publication-title: Bull Chem Soc Jpn doi: 10.1246/bcsj.20150143 contributor: fullname: V Malgras – volume: 2016 start-page: 5497136 year: 2016 ident: 675_CR7 publication-title: J Nanomater contributor: fullname: C Yao – volume: 11 start-page: 55 year: 1951 ident: 675_CR26 publication-title: Discuss Faraday Soc doi: 10.1039/df9511100055 contributor: fullname: J Turkevich |
SSID | ssj0044464 |
Score | 2.2562258 |
Snippet | The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 1659 |
SubjectTerms | Biochemistry Biological and Medical Physics Biophysics Biotechnology Chemistry Chemistry and Materials Science Continuous wave lasers Controlled release Drug carriers Efficiency Electromagnetic absorption Gold Heat generation Irradiation Modelling Nanoparticles Nanostructure Nanotechnology Optical density Porosity Thickness |
Title | Solid and Hollow Gold Nanostructures for Nanomedicine: Comparison of Photothermal Properties |
URI | https://link.springer.com/article/10.1007/s11468-017-0675-1 https://www.proquest.com/docview/2104678284 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-mQ_TFb3F-jDz4pHQ0bdIP3-Z0DkURdKAglDZpUDZbcRXBv95r2q749bDXpqT07nL5XS73O4ADU1AeK8kNS0XCYHbEDF9h4BqxMHRt7otQd1G4unYGQ3Zxz-8bYE2PLpJRp8pIakdd17rpIqHcqeYg18CIp1nWnTa75w-XZ5X_ZRjg6Fwy565Bfc6rXOZfk3zfjWqI-SMrqjeb_kpRADjRHIX5HZNR5z2LOuLzN4PjDP-xCssl9iTdwljWoBEn67DYq1q-rcOCvg8qJhvweJuOnyUJE0kGaCnpBzlPx5KgL04Lxtl3DNMJAl79qErQH5PetK0hSRW5eUozXeH1gp-9yY_933L-1k0Y9s_uegOjbMRgCJs6meELS3rSDR0hHdNVlkcFLmOF4NL2pG1GnCrGcK_H2CsWLg1jHKFceZ6D7guNwd6C-SRN4m0gzJIIKHwqmRRMeMqTlowdxCjSiXgszBYcVgoJXgu-jaBmVs5FF6Doglx0AW3BXqWyoFx6k8DKs9aIezzWgqNKBfXwv5PtzPT2LiwhdCqYcekezKPo432EJ1nURns8OT3pt0u7bMPc0Op-ASrv3OA |
link.rule.ids | 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA6iyHwRnYrTqXnwSQk0bdIfvo3hrLqNgRvsQSht0qAwW3ET_30vaWNR9MHXtqRw19x91y_3HULnjqA8V5ITV2WCMC9jJFJQuGYsTQOPRyI1UxRGYz-esbs5n9d93Et72t1SkiZSN81upktIR1WNcgmUPBtaXl0L5s_cng2_DOobQyVzHhAacW6pzN-W-J6MGoT5gxQ1uWawg7ZrkIh7lVd30VpetFGrb2eztdGmObgplnvo8aFcPEucFhLH4NLyA9-UC4khaJaVNOw71NMYkKm5ZJn0K9z_mj-IS4UnT-XKtGK9wGsn-v_8mxZa3UezwfW0H5N6YgIRHvVXJBKuDGWQ-kL6TqDckArYbwpQoBdKz8k4VYxBUoYiKRcBTXO4Q7kKQx_iDHjNO0DrRVnkhwgzV0Lmj6hkUjARqlC6MvcBTEg_47lwOujCmi55rYQxkkYCWds5ATsn2s4J7aCuNW5S75Fl4mp6GQBKyDro0hq8uf3nYkf_evoMteLpaJgMb8f3x2gL8E4lZ0u7aB3ckJ8Aplhlp-Yb-gRKb8GT |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kxcfFx6q4PnPwpFQ3bdKHN1l3XV1dFlRQEGqbNChqK25F8Nc7aRsXRQ_itSlpm5lMv-HLfAOw1RSUJ0pyy1axsJgTMytQmLjGLIo8hwciKroonPXd7iU7ueJXVZ_ToTntbijJsqZBqzSl-d6zVHujwreiYkhHWI14LUx_xpkWRqrB-MHRda9tgjHDbKcgljn3LBpwbojNnyb5-msa4c1vFGnx5-nMwq155_LAycPuax7vivdvco7_-Kg5mKlQKTko3WgexpK0DlMt0wyuDhPFSVExXICb8-zxXpIolaSLPpS9kaPsURKM0lmpRfuKCTxBKFxcMtT9Pml9NjwkmSKDuywvar-e8LEDTQi8aGXXRbjstC9aXatq0WAJh7q5FQhb-tKLXCHdpqdsnwrc4Aphp-NLpxlzqhhDFIBZWSI8GiU4QrnyfRcDG7qJswS1NEuTZSDMlgg1AiqZFEz4ype2TFxEL9KNeSKaDdg21gmfSyWOcKS5rJcuxKUL9dKFtAFrxn5htSmHoa35bEREPmvAjjHHaPjXyVb-dPcmTA4OO-Hpcb-3CtOIr0r5XLoGNbRCso4YJo83Kj_9ADZe5z0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid+and+Hollow+Gold+Nanostructures+for+Nanomedicine%3A+Comparison+of+Photothermal+Properties&rft.jtitle=Plasmonics+%28Norwell%2C+Mass.%29&rft.au=Lopatynskyi%2C+A.+M.&rft.au=Malymon%2C+Y.+O.&rft.au=Lytvyn%2C+V.+K.&rft.au=Mogylnyi%2C+I.+V.&rft.date=2018-10-01&rft.pub=Springer+US&rft.issn=1557-1955&rft.eissn=1557-1963&rft.volume=13&rft.issue=5&rft.spage=1659&rft.epage=1669&rft_id=info:doi/10.1007%2Fs11468-017-0675-1&rft.externalDocID=10_1007_s11468_017_0675_1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1955&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1955&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1955&client=summon |