Solid and Hollow Gold Nanostructures for Nanomedicine: Comparison of Photothermal Properties

The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages upon irradiation with a 100 mW 808 nm continuous-wave laser for the first time were experimentally compared under identical optical density and...

Full description

Saved in:
Bibliographic Details
Published inPlasmonics (Norwell, Mass.) Vol. 13; no. 5; pp. 1659 - 1669
Main Authors Lopatynskyi, A. M., Malymon, Y. O., Lytvyn, V. K., Mogylnyi, I. V., Rachkov, A. E., Soldatkin, A. P., Chegel, V. I.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2018
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages upon irradiation with a 100 mW 808 nm continuous-wave laser for the first time were experimentally compared under identical optical density and nanoparticle concentration conditions. Accompanying computer modeling of light absorption by the studied gold nanostructures revealed the general parameters influencing the photothermal efficiency, which is of significance for nanomedical applications. The spectral position of localized plasmonic excitations of the studied nanostructures ranged from 518 nm for solid gold nanoparticles to 718 nm for gold nanocages, which provided a possibility to observe a direct influence of the wavelength proximity between the localized surface plasmon resonance and laser line on the heat generation capability of the nanostructures. As a result, the best photothermal efficiency was registered for gold nanocages, which proves them as an efficient photothermal treatment agent and a possible candidate to build a nanocarrier platform for drug delivery with a controlled release. Light absorption modeling demonstrated an existence of optimal wall thickness for gold nanoshells that should lead to the maximum photothermal efficiency when irradiated with 808 nm light, which varied from about 0.1 to 0.4 in units of external nanoshell radius with an increase of the wall porosity. Additionally, computer modeling results show that increased wall porosity should lead to enhanced photothermal efficiency of polydisperse colloidal solutions of hollow gold nanostructures.
AbstractList The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages upon irradiation with a 100 mW 808 nm continuous-wave laser for the first time were experimentally compared under identical optical density and nanoparticle concentration conditions. Accompanying computer modeling of light absorption by the studied gold nanostructures revealed the general parameters influencing the photothermal efficiency, which is of significance for nanomedical applications. The spectral position of localized plasmonic excitations of the studied nanostructures ranged from 518 nm for solid gold nanoparticles to 718 nm for gold nanocages, which provided a possibility to observe a direct influence of the wavelength proximity between the localized surface plasmon resonance and laser line on the heat generation capability of the nanostructures. As a result, the best photothermal efficiency was registered for gold nanocages, which proves them as an efficient photothermal treatment agent and a possible candidate to build a nanocarrier platform for drug delivery with a controlled release. Light absorption modeling demonstrated an existence of optimal wall thickness for gold nanoshells that should lead to the maximum photothermal efficiency when irradiated with 808 nm light, which varied from about 0.1 to 0.4 in units of external nanoshell radius with an increase of the wall porosity. Additionally, computer modeling results show that increased wall porosity should lead to enhanced photothermal efficiency of polydisperse colloidal solutions of hollow gold nanostructures.
The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages upon irradiation with a 100 mW 808 nm continuous-wave laser for the first time were experimentally compared under identical optical density and nanoparticle concentration conditions. Accompanying computer modeling of light absorption by the studied gold nanostructures revealed the general parameters influencing the photothermal efficiency, which is of significance for nanomedical applications. The spectral position of localized plasmonic excitations of the studied nanostructures ranged from 518 nm for solid gold nanoparticles to 718 nm for gold nanocages, which provided a possibility to observe a direct influence of the wavelength proximity between the localized surface plasmon resonance and laser line on the heat generation capability of the nanostructures. As a result, the best photothermal efficiency was registered for gold nanocages, which proves them as an efficient photothermal treatment agent and a possible candidate to build a nanocarrier platform for drug delivery with a controlled release. Light absorption modeling demonstrated an existence of optimal wall thickness for gold nanoshells that should lead to the maximum photothermal efficiency when irradiated with 808 nm light, which varied from about 0.1 to 0.4 in units of external nanoshell radius with an increase of the wall porosity. Additionally, computer modeling results show that increased wall porosity should lead to enhanced photothermal efficiency of polydisperse colloidal solutions of hollow gold nanostructures.
Author Rachkov, A. E.
Chegel, V. I.
Lytvyn, V. K.
Mogylnyi, I. V.
Lopatynskyi, A. M.
Malymon, Y. O.
Soldatkin, A. P.
Author_xml – sequence: 1
  givenname: A. M.
  surname: Lopatynskyi
  fullname: Lopatynskyi, A. M.
  email: lop2000@ukr.net
  organization: Department of Optoelectronic Functional Transducers, V. E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, Institute of High Technologies, Taras Shevchenko Kyiv National University
– sequence: 2
  givenname: Y. O.
  surname: Malymon
  fullname: Malymon, Y. O.
  organization: Institute of High Technologies, Taras Shevchenko Kyiv National University
– sequence: 3
  givenname: V. K.
  surname: Lytvyn
  fullname: Lytvyn, V. K.
  organization: Department of Optoelectronic Functional Transducers, V. E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine
– sequence: 4
  givenname: I. V.
  surname: Mogylnyi
  fullname: Mogylnyi, I. V.
  organization: Department of Optoelectronic Functional Transducers, V. E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine
– sequence: 5
  givenname: A. E.
  surname: Rachkov
  fullname: Rachkov, A. E.
  organization: Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine
– sequence: 6
  givenname: A. P.
  surname: Soldatkin
  fullname: Soldatkin, A. P.
  organization: Institute of High Technologies, Taras Shevchenko Kyiv National University, Laboratory of Biomolecular Electronics, Institute of Molecular Biology and Genetics of National Academy of Sciences of Ukraine
– sequence: 7
  givenname: V. I.
  surname: Chegel
  fullname: Chegel, V. I.
  organization: Department of Optoelectronic Functional Transducers, V. E. Lashkaryov Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, Institute of High Technologies, Taras Shevchenko Kyiv National University
BookMark eNp1kEtLw0AQxxepYK1-AG8LnqM7yb7iTYq2QtGCehOWuA-bkuzG3RTx25sa0ZOnGWb-D_gdo4kP3iJ0BuQCCBGXCYBymREQGeGCZXCApsCYyKDkxeR3Z-wIHae0JYRSyukUvTyGpja48gYvQ9OED7wIjcH3lQ-pjzvd76JN2IX4fWqtqXXt7RWeh7arYp2Cx8Hh9Sb0od_Y2FYNXsfQ2djXNp2gQ1c1yZ7-zBl6vr15mi-z1cPibn69ynQBvM9KnRtpRMW14US4XIIWJXWkLAtpCvLKwFGa01wAt1pAZYcPMCclLwTXwIoZOh9zuxjedzb1aht20Q-VKgdCuZC5pIMKRpWOIaVonepi3VbxUwFRe4hqhKgGiGoPUcHgyUdPGrT-zca_5P9NX8y1dew
CitedBy_id crossref_primary_10_1007_s13204_021_01740_8
crossref_primary_10_1007_s10118_020_2420_z
crossref_primary_10_1007_s00604_020_04460_y
crossref_primary_10_1007_s11051_023_05683_9
crossref_primary_10_1007_s13204_019_00990_x
crossref_primary_10_1021_acsami_9b17335
crossref_primary_10_1007_s13204_020_01406_x
crossref_primary_10_1039_D2NJ03257K
Cites_doi 10.1039/C6AN00773B
10.1016/S0040-6090(97)00220-4
10.2217/nnm.14.126
10.1021/jp209251y
10.1002/smll.200701290
10.1021/jp409298f
10.1557/mrs2005.99
10.1039/C2NR33187J
10.1016/j.jare.2010.02.002
10.1016/j.nano.2014.05.006
10.1007/978-3-642-31107-9_50
10.1016/j.colsurfa.2012.08.043
10.1021/nn405663h
10.1039/df9511100055
10.1021/nn304332s
10.1246/bcsj.20150143
10.1021/ed081p544A
10.1021/jp057170o
10.1088/0957-4484/20/42/425104
10.1088/0957-4484/19/35/355702
10.1039/c0jm00354a
10.1073/pnas.1419622112
10.1126/science.1073765
10.1088/0957-4484/17/20/022
10.1016/j.susc.2012.10.019
10.1109/JSEN.2010.2057418
10.1021/nl070345g
10.1021/ja311503q
10.1021/nn501871d
10.1016/j.biomaterials.2008.12.038
10.1186/s12645-016-0021-x
10.1039/C6NR09177F
10.1038/86684
10.1021/acs.chemrev.5b00321
10.1246/bcsj.20150420
10.1186/1556-276X-6-434
10.1002/lsm.22072
10.1007/s11468-015-0034-z
10.7150/thno.5409
10.15407/spqeo19.04.358
10.1007/s10103-007-0470-x
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2017
Copyright Springer Science & Business Media 2018
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2017
– notice: Copyright Springer Science & Business Media 2018
DBID AAYXX
CITATION
DOI 10.1007/s11468-017-0675-1
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1557-1963
EndPage 1669
ExternalDocumentID 10_1007_s11468_017_0675_1
GrantInformation_xml – fundername: Science and Technology Center in Ukraine
  grantid: 6044; 6044; 6044
  funderid: http://dx.doi.org/10.13039/501100008202
– fundername: Science and Technology Center in Ukraine (UA)
  grantid: 6044
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
1N0
203
29O
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40D
40E
5VS
67Z
6NX
875
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAPBV
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDBF
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPTK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BDATZ
BGNMA
CAG
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG5
HG6
HLICF
HMJXF
HRMNR
HVGLF
HZ~
I-F
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JZLTJ
KDC
KOV
LLZTM
M4Y
MA-
N2Q
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P9N
PF0
PT4
QOR
QOS
R89
R9I
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7V
Z7X
Z7Y
Z83
Z85
Z88
ZMTXR
~A9
AACDK
AAJBT
AASML
AAYXX
AAYZH
ABAKF
ACAOD
ACDTI
ACZOJ
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
CITATION
H13
ID FETCH-LOGICAL-c316t-9c2d8d7a6cd607f281c794f09938d30b51f44242716ec71ae09915f886376c153
IEDL.DBID AGYKE
ISSN 1557-1955
IngestDate Wed Nov 06 07:39:22 EST 2024
Mon Nov 04 10:01:37 EST 2024
Sat Dec 16 12:00:08 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Gold nanoshells
Gold nanocages
Nanocarrier
Localized surface plasmon resonance
Gold nanoparticles
Photothermal plasmonic effect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-9c2d8d7a6cd607f281c794f09938d30b51f44242716ec71ae09915f886376c153
PQID 2104678284
PQPubID 2044107
PageCount 11
ParticipantIDs proquest_journals_2104678284
crossref_primary_10_1007_s11468_017_0675_1
springer_journals_10_1007_s11468_017_0675_1
PublicationCentury 2000
PublicationDate 2018-10-01
PublicationDateYYYYMMDD 2018-10-01
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Plasmonics (Norwell, Mass.)
PublicationTitleAbbrev Plasmonics
PublicationYear 2018
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Sharma, Brown, Singh, Iwakuma, Pyrgiotakis, Krishna, Knapik, Barr, Moudgil, Grobmyer (CR22) 2010; 20
Prevo, Esakoff, Mikhailovsky, Zasadzinski (CR28) 2008; 4
Khlebtsov, Zharov, Melnikov, Tuchin, Khlebtsov (CR18) 2006; 17
Pattani, Tunnell (CR37) 2012; 44
Goodman, Cao, Urban, Neumann, Ayala-Orozco, Knight, Joshi, Nordlander, Halas (CR36) 2014; 8
Chegel, Rachkov, Lopatynskyi, Ishihara, Yanchuk, Nemoto, Hill, Ariga (CR35) 2012; 116
Boyer, Tamarat, Maali, Lounis, Orrit (CR15) 2002; 297
Dutta, Munns, Dutta (CR31) 1997; 304
Chinen, Guan, Ferrer, Barnaby, Merkel, Mirkin (CR5) 2015; 115
Weissleder (CR11) 2001; 19
Lopatynskyi, Lopatynska, Guo, Chegel (CR33) 2011; 11
Khan, Kumar, Ahamed, Alrokayan, AlSalhi (CR30) 2011; 6
Mackey, Ali, Austin, Near, El-Sayed (CR19) 2014; 118
Lopatynskyi, Lytvyn, Mogylnyi, Rachkov, Soldatkin, Chegel (CR34) 2016; 19
Guo, Li, Xiao, Lu, Bhushan, Luo, Schricker, Sigmund, Zauscher (CR12) 2014
Hleb, Lapotko (CR13) 2008; 19
Huang, Jain, El-Sayed, El-Sayed (CR14) 2008; 23
Abdollahi, Naderi, Amoabediny (CR32) 2012; 414
Huang, El-Sayed (CR8) 2010; 1
Xie, Larmour, Chen, Wark, Tileli, McComb, Faulds, Graham (CR39) 2013; 5
Cheng, Chen, Yeh (CR24) 2009; 20
Hembury, Chiappini, Bertazzo, Kalber, Drisko, Ogunlade, Walker-Samuel, Krishna, Jumeaux, Beard, Kumar, Porter, Lythgoe, Boissière, Sanchez, Stevens (CR38) 2015; 112
Yeshchenko, Kutsevol, Naumenko (CR42) 2016; 11
Song, Goswami, Yang, Xie (CR2) 2016; 141
Chen, Wang, Xi, Au, Siekkinen, Warsen, Li, Zhang, Xia, Li (CR17) 2007; 7
Halas (CR40) 2005; 30
Wang, Zheng, Huang, Xia (CR29) 2013; 135
Zhang, Wang, Chen (CR21) 2013; 3
Wang, Black, Luehmann, Li, Zhang, Cai, Wan, Liu, Li, Kim, Li, Wang, Liu, Xia (CR25) 2013; 7
Ayala-Orozco, Urban, Knight, Urban, Neumann, Bishnoi, Mukherjee, Goodman, Charron, Mitchell, Shea, Roy, Nanda, Schiff, Halas, Joshi (CR23) 2014; 8
Guerrero, Hassan, Escobar, Albericio, Kogan, Araya (CR4) 2014; 9
Jain, Lee, El-Sayed, El-Sayed (CR16) 2006; 110
Malgras, Ji, Kamachi, Mori, Shieh, KCW (CR3) 2015; 88
Hainfeld, Lin, Slatkin, Dilmanian, Vadas, Smilowitz (CR10) 2014; 10
Yang, Aw, Xing (CR9) 2017; 9
Yamamoto, Kuroda (CR1) 2016; 89
Turkevich, Stevenson, Hillier (CR26) 1951; 11
McFarland, Haynes, Mirkin, Van Duyne, Godwin (CR27) 2004; 81
Zhang, Yang, Lu, Zhang, Huang, Tian, Li, Liang, Li (CR20) 2009; 30
Haume, Rosa, Grellet, Śmiałek, Butterworth, Solov’yov, Prise, Golding, Mason (CR6) 2016; 7
Yeshchenko, Bondarchuk, Gurin, Dmitruk, Kotko (CR41) 2013; 608
Yao, Zhang, Wang, He, Xin, Wang (CR7) 2016; 2016
MAM Khan (675_CR30) 2011; 6
Z Zhang (675_CR21) 2013; 3
AM Lopatynskyi (675_CR34) 2016; 19
AR Guerrero (675_CR4) 2014; 9
AB Chinen (675_CR5) 2015; 115
R Weissleder (675_CR11) 2001; 19
P Sharma (675_CR22) 2010; 20
AM Goodman (675_CR36) 2014; 8
D Boyer (675_CR15) 2002; 297
C Yao (675_CR7) 2016; 2016
PK Jain (675_CR16) 2006; 110
E Yamamoto (675_CR1) 2016; 89
BG Prevo (675_CR28) 2008; 4
J Chen (675_CR17) 2007; 7
EY Hleb (675_CR13) 2008; 19
XR Song (675_CR2) 2016; 141
K Haume (675_CR6) 2016; 7
X Huang (675_CR8) 2010; 1
675_CR39
Y Wang (675_CR25) 2013; 7
AD McFarland (675_CR27) 2004; 81
OA Yeshchenko (675_CR41) 2013; 608
OA Yeshchenko (675_CR42) 2016; 11
X Huang (675_CR14) 2008; 23
AM Lopatynskyi (675_CR33) 2011; 11
V Chegel (675_CR35) 2012; 116
M Hembury (675_CR38) 2015; 112
G Zhang (675_CR20) 2009; 30
FY Cheng (675_CR24) 2009; 20
B Khlebtsov (675_CR18) 2006; 17
MA Mackey (675_CR19) 2014; 118
C Ayala-Orozco (675_CR23) 2014; 8
VP Pattani (675_CR37) 2012; 44
V Malgras (675_CR3) 2015; 88
J Turkevich (675_CR26) 1951; 11
I Dutta (675_CR31) 1997; 304
JF Hainfeld (675_CR10) 2014; 10
Y Wang (675_CR29) 2013; 135
N Halas (675_CR40) 2005; 30
675_CR9
SN Abdollahi (675_CR32) 2012; 414
L Guo (675_CR12) 2014
References_xml – volume: 141
  start-page: 3126
  issue: 11
  year: 2016
  end-page: 3140
  ident: CR2
  article-title: Functionalization of metal nanoclusters for biomedical applications
  publication-title: Analyst
  doi: 10.1039/C6AN00773B
  contributor:
    fullname: Xie
– volume: 304
  start-page: 229
  issue: 1-2
  year: 1997
  end-page: 238
  ident: CR31
  article-title: An X-ray diffraction (XRD) study of vapor deposited gold thin films on aluminum nitride (AlN) substrates
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(97)00220-4
  contributor:
    fullname: Dutta
– volume: 9
  start-page: 2023
  issue: 13
  year: 2014
  end-page: 2039
  ident: CR4
  article-title: Gold nanoparticles for photothermally controlled drug release
  publication-title: Nanomedicine (Lond)
  doi: 10.2217/nnm.14.126
  contributor:
    fullname: Araya
– volume: 116
  start-page: 2683
  issue: 4
  year: 2012
  end-page: 2690
  ident: CR35
  article-title: Gold nanoparticles aggregation: drastic effect of cooperative functionalities in a single molecular conjugate
  publication-title: J Phys Chem C
  doi: 10.1021/jp209251y
  contributor:
    fullname: Ariga
– volume: 4
  start-page: 1183
  issue: 8
  year: 2008
  end-page: 1195
  ident: CR28
  article-title: Scalable routes to gold nanoshells with tunable sizes and response to near-infrared pulsed-laser irradiation
  publication-title: Small
  doi: 10.1002/smll.200701290
  contributor:
    fullname: Zasadzinski
– volume: 118
  start-page: 1319
  issue: 5
  year: 2014
  end-page: 1326
  ident: CR19
  article-title: The most effective gold nanorod size for plasmonic photothermal therapy: theory and experiments
  publication-title: J Phys Chem B
  doi: 10.1021/jp409298f
  contributor:
    fullname: El-Sayed
– volume: 30
  start-page: 362
  issue: 05
  year: 2005
  end-page: 367
  ident: CR40
  article-title: Playing with plasmons: tuning the optical resonant properties of metallic nanoshells
  publication-title: MRS Bull
  doi: 10.1557/mrs2005.99
  contributor:
    fullname: Halas
– volume: 5
  start-page: 765
  issue: 2
  year: 2013
  end-page: 771
  ident: CR39
  article-title: Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer
  publication-title: Nanoscale
  doi: 10.1039/C2NR33187J
  contributor:
    fullname: Graham
– volume: 2016
  start-page: 5497136
  year: 2016
  ident: CR7
  article-title: Gold nanoparticle mediated phototherapy for cancer
  publication-title: J Nanomater
  contributor:
    fullname: Wang
– volume: 1
  start-page: 13
  issue: 1
  year: 2010
  end-page: 28
  ident: CR8
  article-title: Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2010.02.002
  contributor:
    fullname: El-Sayed
– volume: 10
  start-page: 1609
  issue: 8
  year: 2014
  end-page: 1617
  ident: CR10
  article-title: Gold nanoparticle hyperthermia reduces radiotherapy dose
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2014.05.006
  contributor:
    fullname: Smilowitz
– start-page: 1199
  year: 2014
  end-page: 1226
  ident: CR12
  article-title: Photothermal properties of hollow gold nanostructures for cancer theranostics
  publication-title: Handbook of nanomaterials properties
  doi: 10.1007/978-3-642-31107-9_50
  contributor:
    fullname: Zauscher
– volume: 414
  start-page: 345
  year: 2012
  end-page: 351
  ident: CR32
  article-title: Synthesis and physicochemical characterization of tunable silica–gold nanoshells via seed growth method
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2012.08.043
  contributor:
    fullname: Amoabediny
– volume: 8
  start-page: 3222
  issue: 4
  year: 2014
  end-page: 3231
  ident: CR36
  article-title: The surprising in vivo instability of near-IR-absorbing hollow Au–Ag nanoshells
  publication-title: ACS Nano
  doi: 10.1021/nn405663h
  contributor:
    fullname: Halas
– volume: 11
  start-page: 55
  year: 1951
  end-page: 75
  ident: CR26
  article-title: A study of the nucleation and growth processes in the synthesis of colloidal gold
  publication-title: Discuss Faraday Soc
  doi: 10.1039/df9511100055
  contributor:
    fullname: Hillier
– volume: 7
  start-page: 2068
  issue: 3
  year: 2013
  end-page: 2077
  ident: CR25
  article-title: Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment
  publication-title: ACS Nano
  doi: 10.1021/nn304332s
  contributor:
    fullname: Xia
– volume: 88
  start-page: 1171
  issue: 9
  year: 2015
  end-page: 1200
  ident: CR3
  article-title: Templated synthesis for nanoarchitectured porous materials
  publication-title: Bull Chem Soc Jpn
  doi: 10.1246/bcsj.20150143
  contributor:
    fullname: KCW
– volume: 81
  start-page: 544
  year: 2004
  ident: CR27
  article-title: Color my nanoworld
  publication-title: J Chem Educ
  doi: 10.1021/ed081p544A
  contributor:
    fullname: Godwin
– volume: 110
  start-page: 7238
  issue: 14
  year: 2006
  end-page: 7248
  ident: CR16
  article-title: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine
  publication-title: J Phys Chem B
  doi: 10.1021/jp057170o
  contributor:
    fullname: El-Sayed
– volume: 20
  start-page: 425104
  issue: 42
  year: 2009
  ident: CR24
  article-title: Comparative efficiencies of photothermal destruction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/42/425104
  contributor:
    fullname: Yeh
– volume: 19
  start-page: 355702
  issue: 35
  year: 2008
  ident: CR13
  article-title: Photothermal properties of gold nanoparticles under exposure to high optical energies
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/35/355702
  contributor:
    fullname: Lapotko
– volume: 20
  start-page: 5182
  issue: 25
  year: 2010
  end-page: 5185
  ident: CR22
  article-title: Near-infrared absorbing and luminescent gold speckled silica nanoparticles for photothermal therapy
  publication-title: J Mater Chem
  doi: 10.1039/c0jm00354a
  contributor:
    fullname: Grobmyer
– volume: 112
  start-page: 1959
  issue: 7
  year: 2015
  end-page: 1964
  ident: CR38
  article-title: Gold–silica quantum rattles for multimodal imaging and therapy
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1419622112
  contributor:
    fullname: Stevens
– volume: 297
  start-page: 1160
  issue: 5584
  year: 2002
  end-page: 1163
  ident: CR15
  article-title: Photothermal imaging of nanometer-sized metal particles among scatterers
  publication-title: Science
  doi: 10.1126/science.1073765
  contributor:
    fullname: Orrit
– volume: 17
  start-page: 5167
  issue: 20
  year: 2006
  end-page: 5179
  ident: CR18
  article-title: Optical amplification of photothermal therapy with gold nanoparticles and nanoclusters
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/20/022
  contributor:
    fullname: Khlebtsov
– volume: 608
  start-page: 275
  year: 2013
  end-page: 281
  ident: CR41
  article-title: Temperature dependence of the surface plasmon resonance in gold nanoparticles
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2012.10.019
  contributor:
    fullname: Kotko
– volume: 11
  start-page: 361
  issue: 2
  year: 2011
  end-page: 369
  ident: CR33
  article-title: Localized surface plasmon resonance biosensor—part I: theoretical study of sensitivity—extended Mie approach
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2010.2057418
  contributor:
    fullname: Chegel
– volume: 7
  start-page: 1318
  issue: 5
  year: 2007
  end-page: 1322
  ident: CR17
  article-title: Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells
  publication-title: Nano Lett
  doi: 10.1021/nl070345g
  contributor:
    fullname: Li
– volume: 135
  start-page: 1941
  issue: 5
  year: 2013
  end-page: 1951
  ident: CR29
  article-title: Synthesis of Ag nanocubes 18–32 nm in edge length: the effects of polyol on reduction kinetics, size control, and reproducibility
  publication-title: J Am Chem Soc
  doi: 10.1021/ja311503q
  contributor:
    fullname: Xia
– volume: 8
  start-page: 6372
  issue: 6
  year: 2014
  end-page: 6381
  ident: CR23
  article-title: Au nanomatryoshkas as efficient near-infrared photothermal transducers for cancer treatment: benchmarking against nanoshells
  publication-title: ACS Nano
  doi: 10.1021/nn501871d
  contributor:
    fullname: Joshi
– volume: 30
  start-page: 1928
  issue: 10
  year: 2009
  end-page: 1936
  ident: CR20
  article-title: Influence of anchoring ligands and particle size on the colloidal stability and in vivo biodistribution of polyethylene glycol-coated gold nanoparticles in tumor-xenografted mice
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.12.038
  contributor:
    fullname: Li
– volume: 7
  start-page: 8
  issue: 1
  year: 2016
  ident: CR6
  article-title: Gold nanoparticles for cancer radiotherapy: a review
  publication-title: Cancer Nanotechnol
  doi: 10.1186/s12645-016-0021-x
  contributor:
    fullname: Mason
– volume: 9
  start-page: 3698
  issue: 11
  year: 2017
  end-page: 3718
  ident: CR9
  article-title: Nanostructures for NIR light-controlled therapies
  publication-title: Nanoscale
  doi: 10.1039/C6NR09177F
  contributor:
    fullname: Xing
– volume: 19
  start-page: 316
  issue: 4
  year: 2001
  end-page: 317
  ident: CR11
  article-title: A clearer vision for in vivo imaging
  publication-title: Nat Biotechnol
  doi: 10.1038/86684
  contributor:
    fullname: Weissleder
– volume: 115
  start-page: 10530
  issue: 19
  year: 2015
  end-page: 10574
  ident: CR5
  article-title: Nanoparticle probes for the detection of cancer biomarkers, cells, and tissues by fluorescence
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00321
  contributor:
    fullname: Mirkin
– volume: 89
  start-page: 501
  issue: 5
  year: 2016
  end-page: 539
  ident: CR1
  article-title: Colloidal mesoporous silica nanoparticles
  publication-title: Bull Chem Soc Jpn
  doi: 10.1246/bcsj.20150420
  contributor:
    fullname: Kuroda
– volume: 6
  start-page: 434
  issue: 1
  year: 2011
  ident: CR30
  article-title: Structural and thermal studies of silver nanoparticles and electrical transport study of their thin films
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-6-434
  contributor:
    fullname: AlSalhi
– volume: 44
  start-page: 675
  issue: 8
  year: 2012
  end-page: 684
  ident: CR37
  article-title: Nanoparticle-mediated photothermal therapy: a comparative study of heating for different particle types
  publication-title: Lasers Surg Med
  doi: 10.1002/lsm.22072
  contributor:
    fullname: Tunnell
– volume: 11
  start-page: 345
  issue: 1
  year: 2016
  end-page: 350
  ident: CR42
  article-title: Light-induced heating of gold nanoparticles in colloidal solution: dependence on detuning from surface plasmon resonance
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-0034-z
  contributor:
    fullname: Naumenko
– volume: 3
  start-page: 223
  issue: 3
  year: 2013
  end-page: 238
  ident: CR21
  article-title: Gold nanorods based platforms for light-mediated theranostics
  publication-title: Theranostics
  doi: 10.7150/thno.5409
  contributor:
    fullname: Chen
– volume: 19
  start-page: 358
  issue: 4
  year: 2016
  end-page: 365
  ident: CR34
  article-title: Smart nanocarriers for drug delivery: controllable LSPR tuning
  publication-title: Semiconductor Physics, Quantum Electronics Optoelectronics
  doi: 10.15407/spqeo19.04.358
  contributor:
    fullname: Chegel
– volume: 23
  start-page: 217
  issue: 3
  year: 2008
  end-page: 228
  ident: CR14
  article-title: Plasmonic photothermal therapy (PPTT) using gold nanoparticles
  publication-title: Lasers Med Sci
  doi: 10.1007/s10103-007-0470-x
  contributor:
    fullname: El-Sayed
– volume: 110
  start-page: 7238
  issue: 14
  year: 2006
  ident: 675_CR16
  publication-title: J Phys Chem B
  doi: 10.1021/jp057170o
  contributor:
    fullname: PK Jain
– volume: 1
  start-page: 13
  issue: 1
  year: 2010
  ident: 675_CR8
  publication-title: J Adv Res
  doi: 10.1016/j.jare.2010.02.002
  contributor:
    fullname: X Huang
– volume: 8
  start-page: 6372
  issue: 6
  year: 2014
  ident: 675_CR23
  publication-title: ACS Nano
  doi: 10.1021/nn501871d
  contributor:
    fullname: C Ayala-Orozco
– volume: 19
  start-page: 358
  issue: 4
  year: 2016
  ident: 675_CR34
  publication-title: Semiconductor Physics, Quantum Electronics Optoelectronics
  doi: 10.15407/spqeo19.04.358
  contributor:
    fullname: AM Lopatynskyi
– volume: 7
  start-page: 8
  issue: 1
  year: 2016
  ident: 675_CR6
  publication-title: Cancer Nanotechnol
  doi: 10.1186/s12645-016-0021-x
  contributor:
    fullname: K Haume
– volume: 115
  start-page: 10530
  issue: 19
  year: 2015
  ident: 675_CR5
  publication-title: Chem Rev
  doi: 10.1021/acs.chemrev.5b00321
  contributor:
    fullname: AB Chinen
– ident: 675_CR39
  doi: 10.1039/C2NR33187J
– volume: 8
  start-page: 3222
  issue: 4
  year: 2014
  ident: 675_CR36
  publication-title: ACS Nano
  doi: 10.1021/nn405663h
  contributor:
    fullname: AM Goodman
– volume: 3
  start-page: 223
  issue: 3
  year: 2013
  ident: 675_CR21
  publication-title: Theranostics
  doi: 10.7150/thno.5409
  contributor:
    fullname: Z Zhang
– volume: 118
  start-page: 1319
  issue: 5
  year: 2014
  ident: 675_CR19
  publication-title: J Phys Chem B
  doi: 10.1021/jp409298f
  contributor:
    fullname: MA Mackey
– volume: 9
  start-page: 2023
  issue: 13
  year: 2014
  ident: 675_CR4
  publication-title: Nanomedicine (Lond)
  doi: 10.2217/nnm.14.126
  contributor:
    fullname: AR Guerrero
– volume: 19
  start-page: 355702
  issue: 35
  year: 2008
  ident: 675_CR13
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/19/35/355702
  contributor:
    fullname: EY Hleb
– volume: 11
  start-page: 345
  issue: 1
  year: 2016
  ident: 675_CR42
  publication-title: Plasmonics
  doi: 10.1007/s11468-015-0034-z
  contributor:
    fullname: OA Yeshchenko
– volume: 6
  start-page: 434
  issue: 1
  year: 2011
  ident: 675_CR30
  publication-title: Nanoscale Res Lett
  doi: 10.1186/1556-276X-6-434
  contributor:
    fullname: MAM Khan
– volume: 81
  start-page: 544
  year: 2004
  ident: 675_CR27
  publication-title: J Chem Educ
  doi: 10.1021/ed081p544A
  contributor:
    fullname: AD McFarland
– volume: 89
  start-page: 501
  issue: 5
  year: 2016
  ident: 675_CR1
  publication-title: Bull Chem Soc Jpn
  doi: 10.1246/bcsj.20150420
  contributor:
    fullname: E Yamamoto
– ident: 675_CR9
  doi: 10.1039/C6NR09177F
– volume: 297
  start-page: 1160
  issue: 5584
  year: 2002
  ident: 675_CR15
  publication-title: Science
  doi: 10.1126/science.1073765
  contributor:
    fullname: D Boyer
– volume: 30
  start-page: 362
  issue: 05
  year: 2005
  ident: 675_CR40
  publication-title: MRS Bull
  doi: 10.1557/mrs2005.99
  contributor:
    fullname: N Halas
– volume: 23
  start-page: 217
  issue: 3
  year: 2008
  ident: 675_CR14
  publication-title: Lasers Med Sci
  doi: 10.1007/s10103-007-0470-x
  contributor:
    fullname: X Huang
– volume: 19
  start-page: 316
  issue: 4
  year: 2001
  ident: 675_CR11
  publication-title: Nat Biotechnol
  doi: 10.1038/86684
  contributor:
    fullname: R Weissleder
– volume: 17
  start-page: 5167
  issue: 20
  year: 2006
  ident: 675_CR18
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/17/20/022
  contributor:
    fullname: B Khlebtsov
– start-page: 1199
  volume-title: Handbook of nanomaterials properties
  year: 2014
  ident: 675_CR12
  doi: 10.1007/978-3-642-31107-9_50
  contributor:
    fullname: L Guo
– volume: 20
  start-page: 5182
  issue: 25
  year: 2010
  ident: 675_CR22
  publication-title: J Mater Chem
  doi: 10.1039/c0jm00354a
  contributor:
    fullname: P Sharma
– volume: 116
  start-page: 2683
  issue: 4
  year: 2012
  ident: 675_CR35
  publication-title: J Phys Chem C
  doi: 10.1021/jp209251y
  contributor:
    fullname: V Chegel
– volume: 304
  start-page: 229
  issue: 1-2
  year: 1997
  ident: 675_CR31
  publication-title: Thin Solid Films
  doi: 10.1016/S0040-6090(97)00220-4
  contributor:
    fullname: I Dutta
– volume: 608
  start-page: 275
  year: 2013
  ident: 675_CR41
  publication-title: Surf Sci
  doi: 10.1016/j.susc.2012.10.019
  contributor:
    fullname: OA Yeshchenko
– volume: 30
  start-page: 1928
  issue: 10
  year: 2009
  ident: 675_CR20
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.12.038
  contributor:
    fullname: G Zhang
– volume: 4
  start-page: 1183
  issue: 8
  year: 2008
  ident: 675_CR28
  publication-title: Small
  doi: 10.1002/smll.200701290
  contributor:
    fullname: BG Prevo
– volume: 141
  start-page: 3126
  issue: 11
  year: 2016
  ident: 675_CR2
  publication-title: Analyst
  doi: 10.1039/C6AN00773B
  contributor:
    fullname: XR Song
– volume: 7
  start-page: 1318
  issue: 5
  year: 2007
  ident: 675_CR17
  publication-title: Nano Lett
  doi: 10.1021/nl070345g
  contributor:
    fullname: J Chen
– volume: 44
  start-page: 675
  issue: 8
  year: 2012
  ident: 675_CR37
  publication-title: Lasers Surg Med
  doi: 10.1002/lsm.22072
  contributor:
    fullname: VP Pattani
– volume: 414
  start-page: 345
  year: 2012
  ident: 675_CR32
  publication-title: Colloids Surf A Physicochem Eng Asp
  doi: 10.1016/j.colsurfa.2012.08.043
  contributor:
    fullname: SN Abdollahi
– volume: 10
  start-page: 1609
  issue: 8
  year: 2014
  ident: 675_CR10
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2014.05.006
  contributor:
    fullname: JF Hainfeld
– volume: 7
  start-page: 2068
  issue: 3
  year: 2013
  ident: 675_CR25
  publication-title: ACS Nano
  doi: 10.1021/nn304332s
  contributor:
    fullname: Y Wang
– volume: 112
  start-page: 1959
  issue: 7
  year: 2015
  ident: 675_CR38
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1419622112
  contributor:
    fullname: M Hembury
– volume: 20
  start-page: 425104
  issue: 42
  year: 2009
  ident: 675_CR24
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/42/425104
  contributor:
    fullname: FY Cheng
– volume: 11
  start-page: 361
  issue: 2
  year: 2011
  ident: 675_CR33
  publication-title: IEEE Sensors J
  doi: 10.1109/JSEN.2010.2057418
  contributor:
    fullname: AM Lopatynskyi
– volume: 135
  start-page: 1941
  issue: 5
  year: 2013
  ident: 675_CR29
  publication-title: J Am Chem Soc
  doi: 10.1021/ja311503q
  contributor:
    fullname: Y Wang
– volume: 88
  start-page: 1171
  issue: 9
  year: 2015
  ident: 675_CR3
  publication-title: Bull Chem Soc Jpn
  doi: 10.1246/bcsj.20150143
  contributor:
    fullname: V Malgras
– volume: 2016
  start-page: 5497136
  year: 2016
  ident: 675_CR7
  publication-title: J Nanomater
  contributor:
    fullname: C Yao
– volume: 11
  start-page: 55
  year: 1951
  ident: 675_CR26
  publication-title: Discuss Faraday Soc
  doi: 10.1039/df9511100055
  contributor:
    fullname: J Turkevich
SSID ssj0044464
Score 2.2562258
Snippet The photothermal properties of solid and hollow gold nanostructures represented by colloidal solutions of spherical nanoparticles, nanoshells, and nanocages...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Publisher
StartPage 1659
SubjectTerms Biochemistry
Biological and Medical Physics
Biophysics
Biotechnology
Chemistry
Chemistry and Materials Science
Continuous wave lasers
Controlled release
Drug carriers
Efficiency
Electromagnetic absorption
Gold
Heat generation
Irradiation
Modelling
Nanoparticles
Nanostructure
Nanotechnology
Optical density
Porosity
Thickness
Title Solid and Hollow Gold Nanostructures for Nanomedicine: Comparison of Photothermal Properties
URI https://link.springer.com/article/10.1007/s11468-017-0675-1
https://www.proquest.com/docview/2104678284
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-mQ_TFb3F-jDz4pHQ0bdIP3-Z0DkURdKAglDZpUDZbcRXBv95r2q749bDXpqT07nL5XS73O4ADU1AeK8kNS0XCYHbEDF9h4BqxMHRt7otQd1G4unYGQ3Zxz-8bYE2PLpJRp8pIakdd17rpIqHcqeYg18CIp1nWnTa75w-XZ5X_ZRjg6Fwy565Bfc6rXOZfk3zfjWqI-SMrqjeb_kpRADjRHIX5HZNR5z2LOuLzN4PjDP-xCssl9iTdwljWoBEn67DYq1q-rcOCvg8qJhvweJuOnyUJE0kGaCnpBzlPx5KgL04Lxtl3DNMJAl79qErQH5PetK0hSRW5eUozXeH1gp-9yY_933L-1k0Y9s_uegOjbMRgCJs6meELS3rSDR0hHdNVlkcFLmOF4NL2pG1GnCrGcK_H2CsWLg1jHKFceZ6D7guNwd6C-SRN4m0gzJIIKHwqmRRMeMqTlowdxCjSiXgszBYcVgoJXgu-jaBmVs5FF6Doglx0AW3BXqWyoFx6k8DKs9aIezzWgqNKBfXwv5PtzPT2LiwhdCqYcekezKPo432EJ1nURns8OT3pt0u7bMPc0Op-ASrv3OA
link.rule.ids 315,783,787,27936,27937,41093,41535,42162,42604,52123,52246
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fS8MwEA6iyHwRnYrTqXnwSQk0bdIfvo3hrLqNgRvsQSht0qAwW3ET_30vaWNR9MHXtqRw19x91y_3HULnjqA8V5ITV2WCMC9jJFJQuGYsTQOPRyI1UxRGYz-esbs5n9d93Et72t1SkiZSN81upktIR1WNcgmUPBtaXl0L5s_cng2_DOobQyVzHhAacW6pzN-W-J6MGoT5gxQ1uWawg7ZrkIh7lVd30VpetFGrb2eztdGmObgplnvo8aFcPEucFhLH4NLyA9-UC4khaJaVNOw71NMYkKm5ZJn0K9z_mj-IS4UnT-XKtGK9wGsn-v_8mxZa3UezwfW0H5N6YgIRHvVXJBKuDGWQ-kL6TqDckArYbwpQoBdKz8k4VYxBUoYiKRcBTXO4Q7kKQx_iDHjNO0DrRVnkhwgzV0Lmj6hkUjARqlC6MvcBTEg_47lwOujCmi55rYQxkkYCWds5ATsn2s4J7aCuNW5S75Fl4mp6GQBKyDro0hq8uf3nYkf_evoMteLpaJgMb8f3x2gL8E4lZ0u7aB3ckJ8Aplhlp-Yb-gRKb8GT
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB5kxcfFx6q4PnPwpFQ3bdKHN1l3XV1dFlRQEGqbNChqK25F8Nc7aRsXRQ_itSlpm5lMv-HLfAOw1RSUJ0pyy1axsJgTMytQmLjGLIo8hwciKroonPXd7iU7ueJXVZ_ToTntbijJsqZBqzSl-d6zVHujwreiYkhHWI14LUx_xpkWRqrB-MHRda9tgjHDbKcgljn3LBpwbojNnyb5-msa4c1vFGnx5-nMwq155_LAycPuax7vivdvco7_-Kg5mKlQKTko3WgexpK0DlMt0wyuDhPFSVExXICb8-zxXpIolaSLPpS9kaPsURKM0lmpRfuKCTxBKFxcMtT9Pml9NjwkmSKDuywvar-e8LEDTQi8aGXXRbjstC9aXatq0WAJh7q5FQhb-tKLXCHdpqdsnwrc4Aphp-NLpxlzqhhDFIBZWSI8GiU4QrnyfRcDG7qJswS1NEuTZSDMlgg1AiqZFEz4ype2TFxEL9KNeSKaDdg21gmfSyWOcKS5rJcuxKUL9dKFtAFrxn5htSmHoa35bEREPmvAjjHHaPjXyVb-dPcmTA4OO-Hpcb-3CtOIr0r5XLoGNbRCso4YJo83Kj_9ADZe5z0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solid+and+Hollow+Gold+Nanostructures+for+Nanomedicine%3A+Comparison+of+Photothermal+Properties&rft.jtitle=Plasmonics+%28Norwell%2C+Mass.%29&rft.au=Lopatynskyi%2C+A.+M.&rft.au=Malymon%2C+Y.+O.&rft.au=Lytvyn%2C+V.+K.&rft.au=Mogylnyi%2C+I.+V.&rft.date=2018-10-01&rft.pub=Springer+US&rft.issn=1557-1955&rft.eissn=1557-1963&rft.volume=13&rft.issue=5&rft.spage=1659&rft.epage=1669&rft_id=info:doi/10.1007%2Fs11468-017-0675-1&rft.externalDocID=10_1007_s11468_017_0675_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1557-1955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1557-1955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1557-1955&client=summon