(FeO)2FeBO3 nanoparticles attached on interconnected nitrogen-doped carbon nanosheets serving as sulfur hosts for lithium–sulfur batteries

There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO) 2 FeBO 3 nanoparticles (NPs) anchored on i...

Full description

Saved in:
Bibliographic Details
Published inFrontiers of materials science Vol. 18; no. 2
Main Authors Wang, Junhai, Huang, Huaqiu, Chen, Chen, Zheng, Jiandong, Cao, Yaxian, Joo, Sang Woo, Huang, Jiarui
Format Journal Article
LanguageEnglish
Published Beijing Higher Education Press 01.06.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO) 2 FeBO 3 nanoparticles (NPs) anchored on interconnected nitrogen-doped carbon nanosheets (NCNs) were synthesized, serving as sulfur carriers for Li–S batteries to solve such issues. NCNs have the cross-linked network structure, which possess good electrical conductivity, large specific surface area, and abundant micropores and mesopores, enabling the cathode to be well infiltrated and permeated by the electrolyte, ensuring the rapid electron/ion transfer, and alleviating the volume expansion during the electrochemical reaction. In addition, polar (FeO) 2 FeBO 3 can enhance the adsorption of polysulfides, effectively alleviating the polysulfide shuttle effect. Under a current density of 1.0 A·g −1 , the initial discharging and charging specific capacities of the (FeO) 2 FeBO 3 @NCNs-2/S electrode were obtained to be 1113.2 and 1098.3 mA·h·g −1 , respectively. After 1000 cycles, its capacity maintained at 436.8 mA·h·g −1 , displaying a decay rate of 0.08% per cycle. Therefore, combining NCNs with (FeO) 2 FeBO 3 NPs is conducive to the performance improvement of Li–S batteries.
AbstractList There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO)2FeBO3 nanoparticles (NPs) anchored on interconnected nitrogen-doped carbon nanosheets (NCNs) were synthesized, serving as sulfur carriers for Li–S batteries to solve such issues. NCNs have the cross-linked network structure, which possess good electrical conductivity, large specific surface area, and abundant micropores and mesopores, enabling the cathode to be well infiltrated and permeated by the electrolyte, ensuring the rapid electron/ion transfer, and alleviating the volume expansion during the electrochemical reaction. In addition, polar (FeO)2FeBO3 can enhance the adsorption of polysulfides, effectively alleviating the polysulfide shuttle effect. Under a current density of 1.0 A·g−1, the initial discharging and charging specific capacities of the (FeO)2FeBO3@NCNs-2/S electrode were obtained to be 1113.2 and 1098.3 mA·h·g−1, respectively. After 1000 cycles, its capacity maintained at 436.8 mA·h·g−1, displaying a decay rate of 0.08% per cycle. Therefore, combining NCNs with (FeO)2FeBO3 NPs is conducive to the performance improvement of Li–S batteries.
There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO) 2 FeBO 3 nanoparticles (NPs) anchored on interconnected nitrogen-doped carbon nanosheets (NCNs) were synthesized, serving as sulfur carriers for Li–S batteries to solve such issues. NCNs have the cross-linked network structure, which possess good electrical conductivity, large specific surface area, and abundant micropores and mesopores, enabling the cathode to be well infiltrated and permeated by the electrolyte, ensuring the rapid electron/ion transfer, and alleviating the volume expansion during the electrochemical reaction. In addition, polar (FeO) 2 FeBO 3 can enhance the adsorption of polysulfides, effectively alleviating the polysulfide shuttle effect. Under a current density of 1.0 A·g −1 , the initial discharging and charging specific capacities of the (FeO) 2 FeBO 3 @NCNs-2/S electrode were obtained to be 1113.2 and 1098.3 mA·h·g −1 , respectively. After 1000 cycles, its capacity maintained at 436.8 mA·h·g −1 , displaying a decay rate of 0.08% per cycle. Therefore, combining NCNs with (FeO) 2 FeBO 3 NPs is conducive to the performance improvement of Li–S batteries.
ArticleNumber 240683
Author Wang, Junhai
Chen, Chen
Huang, Huaqiu
Huang, Jiarui
Joo, Sang Woo
Zheng, Jiandong
Cao, Yaxian
Author_xml – sequence: 1
  givenname: Junhai
  surname: Wang
  fullname: Wang, Junhai
  organization: School of Material and Chemical Engineering, Chuzhou University
– sequence: 2
  givenname: Huaqiu
  surname: Huang
  fullname: Huang, Huaqiu
  organization: School of Material and Chemical Engineering, Chuzhou University
– sequence: 3
  givenname: Chen
  surname: Chen
  fullname: Chen, Chen
  email: chen264@mail.ustc.edu.cn
  organization: College of Mechanical Engineering, Tongling University
– sequence: 4
  givenname: Jiandong
  surname: Zheng
  fullname: Zheng, Jiandong
  email: zjd071@126.com
  organization: School of Material and Chemical Engineering, Chuzhou University
– sequence: 5
  givenname: Yaxian
  surname: Cao
  fullname: Cao, Yaxian
  organization: Key Laboratory of Functional Molecular Solids of the Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University
– sequence: 6
  givenname: Sang Woo
  surname: Joo
  fullname: Joo, Sang Woo
  email: swjoo@yu.ac.kr
  organization: School of Mechanical Engineering, Yeungnam University
– sequence: 7
  givenname: Jiarui
  surname: Huang
  fullname: Huang, Jiarui
  email: jrhuang@ahnu.edu.cn
  organization: Key Laboratory of Functional Molecular Solids of the Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University
BookMark eNp9kM1KAzEUhYNUsFYfwN2AG12M5mdm0llqsSoUulFwF5LMnTYyJjXJCN35AO58Q5_ElIqCoNnk5uR8OeHso4F1FhA6IviMYMzPAyEcVzmmRY6rMcvXO2hIcV0mpRoPvufyYQ8dhvCI0ypJWRdkiN5OpjA_pVO4nLPMSutW0kejOwiZjFHqJTSZs5mxEbx21oKOSbEmercAmzdulY5aepVMGzwsAWLIAvgXYxeZTGPftb3Pli4kvXU-60xcmv7p4_X960qlJPAGwgHabWUX4PBrH6H76dXd5Cafza9vJxezXDNSxbxWpFRFBVrSoh5jzltWA1GEV0DLRindUC45Uy2pigJ4o8easrLkUDGuKDA2Qsfbd1fePfcQonh0vbcpUjDMMU9tFnVyka1LexeCh1asvHmSfi0IFpvexbZ3kXoXm97FOjH8F6NNlNE4G7003b8k3ZIhpdgF-J8__Q19Ag1UnXA
CitedBy_id crossref_primary_10_1016_j_surfin_2025_105965
crossref_primary_10_1016_j_jpcs_2024_112330
crossref_primary_10_1016_j_cej_2024_157706
Cites_doi 10.1002/adfm.202011249
10.1002/chem.201900884
10.1039/D0QI01393E
10.1002/smll.201901320
10.1021/acsami.6b08852
10.1016/j.jechem.2020.02.003
10.1002/anie.201411109
10.1021/acs.chemmater.8b01352
10.1016/j.jallcom.2021.161203
10.1016/j.electacta.2019.135287
10.1016/j.apsusc.2022.153687
10.1016/j.cej.2023.141526
10.1002/smtd.202001056
10.1002/cssc.201800242
10.1016/j.jcis.2023.03.169
10.1126/science.aaw7515
10.1016/j.cej.2020.126462
10.1002/ente.202000302
10.1007/s11706-022-0624-6
10.1039/C7TA10272K
10.1002/adfm.201910533
10.1016/j.mseb.2016.05.004
10.1039/D2CC00230B
10.1016/j.jallcom.2017.01.259
10.1016/j.jelechem.2023.117590
10.1002/aenm.202101780
10.1002/smtd.202200049
10.1016/j.jpowsour.2013.11.068
10.1007/s10853-021-05931-0
10.1016/j.jallcom.2022.163625
10.1002/advs.202207470
10.1016/j.electacta.2020.136944
10.1016/j.cej.2023.141811
10.1039/D1SE02052H
10.1002/adfm.202210987
10.1002/admi.201701659
10.1002/anie.201915663
10.1016/j.electacta.2016.11.139
10.1016/j.apsusc.2017.06.288
10.1021/acsaem.1c01943
10.1016/j.cclet.2021.03.014
10.1016/j.micromeso.2017.04.022
10.1039/D2TA06686F
10.1002/adma.202102338
10.1007/s11706-023-0630-3
10.1021/acs.energyfuels.2c03421
10.1016/j.jechem.2023.07.003
10.1021/acsaem.2c00033
10.1039/C5TA01617G
10.1021/jacs.5b04472
10.1039/C8CC06924G
10.1021/acs.energyfuels.1c00476
10.1016/j.nanoen.2018.02.016
10.1021/acsami.9b16418
10.1016/j.electacta.2020.136079
10.1016/j.joule.2017.06.003
10.1016/j.jelechem.2023.117474
10.1016/j.jallcom.2020.155764
10.1002/adma.201904876
10.1016/j.electacta.2019.134849
10.1016/j.cej.2021.132167
ContentType Journal Article
Copyright Higher Education Press 2024
Higher Education Press 2024.
Copyright_xml – notice: Higher Education Press 2024
– notice: Higher Education Press 2024.
DBID AAYXX
CITATION
DOI 10.1007/s11706-024-0683-y
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2095-0268
ExternalDocumentID 10_1007_s11706_024_0683_y
GroupedDBID -58
-5G
-BR
-EM
-~C
.VR
06C
06D
0R~
0VY
1-T
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
40E
5VS
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
B-.
BDATZ
BGNMA
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P4S
P9N
PF0
PT4
QOR
R89
R9I
ROL
RSV
S16
S3B
SAP
SCL
SCM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TSG
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z7R
Z7V
Z7X
Z85
ZMTXR
~A9
-SB
-S~
AAPKM
AAXDM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CAJEB
CITATION
Q--
U1G
U5L
ABRTQ
ID FETCH-LOGICAL-c316t-9b15b46eca2498077f39e1b176e25dbbcd27a73bf1644e7dc8c23557e637b2e33
IEDL.DBID U2A
ISSN 2095-025X
IngestDate Fri Jul 25 10:40:46 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
Tue Jul 01 02:09:54 EDT 2025
Fri Feb 21 02:41:32 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords FeO
cathode
FeBO
nanosheet
nitrogen-doped carbon
lithium–sulfur battery
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-9b15b46eca2498077f39e1b176e25dbbcd27a73bf1644e7dc8c23557e637b2e33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3070717049
PQPubID 2044428
ParticipantIDs proquest_journals_3070717049
crossref_primary_10_1007_s11706_024_0683_y
crossref_citationtrail_10_1007_s11706_024_0683_y
springer_journals_10_1007_s11706_024_0683_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
– name: Heidelberg
PublicationTitle Frontiers of materials science
PublicationTitleAbbrev Front. Mater. Sci
PublicationYear 2024
Publisher Higher Education Press
Springer Nature B.V
Publisher_xml – name: Higher Education Press
– name: Springer Nature B.V
References Liu, Li, Tian (CR39) 2014; 251
Wang, Liu, Bao (CR22) 2022; 5
Deng, Li, Chen (CR54) 2021; 8
Li, Guan, Zhang (CR14) 2017; 1
Zhu, Dong, Zeng (CR20) 2023; 460
Chmielewská, Tylus, Drábik (CR34) 2017; 248
Saroha, Cho (CR46) 2022; 6
Gao, Sheng, Ren (CR45) 2022; 597
Liu, Zhou, Han (CR49) 2022; 58
Al Salem, Babu, Rao (CR62) 2015; 137
Chen, Zhu, Zhan (CR50) 2022; 57
Shi, Kang, Mi (CR12) 2019; 324
Benítez, Di Lecce, Elia (CR13) 2018; 11
Xu, Du, Yu (CR43) 2023; 37
Duan, Zhao, Chen (CR58) 2021; 886
Cheng, Pan, Rao (CR5) 2022; 901
Zhang, Gao, Li (CR32) 2020; 343
Luna-Lama, Caballero, Morales (CR19) 2022; 6
Chen, Shang, Yuan (CR47) 2020; 8
Ji, Wang, Jia (CR8) 2020; 30
Chen, Zhang, Xiao (CR28) 2021; 5
Xiao, Kong, Song (CR63) 2018; 46
Xu, Luo, Yu (CR29) 2017; 702
Wen, Qin, Meng (CR38) 2016; 213
Meng, Xu, Sun (CR36) 2015; 3
Liu, Zhu, Shen (CR51) 2021; 4
Zhang, Sun, Liang (CR42) 2018; 427
Gu, Hsu, Bai (CR35) 2019; 364
Zhou, Li, Jiang (CR55) 2021; 31
Xu, Pan, Meng (CR59) 2020; 331
Mussa, Arsalan, Alsharaeh (CR52) 2021; 35
Park, Hong, Choi (CR64) 2019; 15
Zhe, Zhu, Wei (CR15) 2022; 10
Li, Liu, Zhu (CR37) 2018; 30
Xu, Zhang, Chen (CR53) 2018; 6
Li, Xu, Yu (CR60) 2020; 12
Li, Shen, Pervaiz (CR61) 2021; 404
Lu, Qin, Shen (CR30) 2021; 11
Pang, Zhang, Wang (CR3) 2023; 17
Dong, Deng, Ling (CR11) 2023; 86
Zhao, Wu, Wu (CR2) 2023; 939
Deng, Dong, Shen (CR25) 2023; 10
Waluś, Barchasz, Bouchet (CR9) 2020; 359
Fang, Chen, Wang (CR48) 2022; 126
Tian, Li, Zhang (CR4) 2020; 32
Dong, Liu, Shen (CR10) 2023; 33
Mohammed, Dong, Zhang (CR44) 2021; 528
Su, Lu, Yang (CR56) 2022; 429
Zhang, Yu, Wang (CR57) 2021; 56
Wu, Qi, Wu (CR31) 2021; 32
Zhao, Bao, Meng (CR23) 2023; 644
Lu, Zhong, Zhou (CR16) 2018; 5
Liu, Chen, Man (CR7) 2020; 842
Wang, Zheng, Gao (CR6) 2023; 942
Ma, Chen, Srinivas (CR17) 2023; 459
Ma, Wang, Wang (CR1) 2022; 16
Song, Gordin, Xu (CR18) 2015; 54
Cai, Zhou, Li (CR41) 2016; 8
Wang, Yin, Zhao (CR21) 2018; 54
Li, Li, Meng (CR27) 2021; 33
Meng, Yao, Liu (CR24) 2020; 47
Ai, Zou, Chen (CR26) 2020; 59
Xiang, Wang, Wu (CR40) 2017; 227
Yi, Li, Chang (CR33) 2019; 25
X J Dong (683_CR10) 2023; 33
R Q Liu (683_CR39) 2014; 251
Z L Li (683_CR27) 2021; 33
X J Dong (683_CR11) 2023; 86
X F Meng (683_CR36) 2015; 3
B Z Wu (683_CR31) 2021; 32
T M Chen (683_CR47) 2020; 8
Q Lu (683_CR16) 2018; 5
Z Y Pang (683_CR3) 2023; 17
L L Gao (683_CR45) 2022; 597
Q Cheng (683_CR5) 2022; 901
W Cai (683_CR41) 2016; 8
D Wang (683_CR22) 2022; 5
L Ji (683_CR8) 2020; 30
Y Lu (683_CR30) 2021; 11
D H Duan (683_CR58) 2021; 886
R R Li (683_CR61) 2021; 404
S Waluś (683_CR9) 2020; 359
Y Tian (683_CR4) 2020; 32
J Gu (683_CR35) 2019; 364
W C Xu (683_CR59) 2020; 331
L N Wen (683_CR38) 2016; 213
G D Park (683_CR64) 2019; 15
F Ma (683_CR17) 2023; 459
L S Meng (683_CR24) 2020; 47
Z Y Ma (683_CR1) 2022; 16
M W Xiang (683_CR40) 2017; 227
J Li (683_CR60) 2020; 12
C Y Xu (683_CR43) 2023; 37
D L Chen (683_CR50) 2022; 57
X Z Zhang (683_CR57) 2021; 56
K Chen (683_CR28) 2021; 5
F Luna-Lama (683_CR19) 2022; 6
L X Fang (683_CR48) 2022; 126
H Zhang (683_CR32) 2020; 343
R Saroha (683_CR46) 2022; 6
H E Wang (683_CR21) 2018; 54
A A Mohammed (683_CR44) 2021; 528
Q Deng (683_CR25) 2023; 10
E Chmielewská (683_CR34) 2017; 248
Y Yi (683_CR33) 2019; 25
J L Zhu (683_CR20) 2023; 460
A Benítez (683_CR13) 2018; 11
C C Li (683_CR37) 2018; 30
J Xu (683_CR53) 2018; 6
J Song (683_CR18) 2015; 54
D H Xu (683_CR29) 2017; 702
J H Wang (683_CR6) 2023; 942
Y Z Zhang (683_CR42) 2018; 427
H Su (683_CR56) 2022; 429
X L Zhao (683_CR2) 2023; 939
S G Deng (683_CR54) 2021; 8
H D Liu (683_CR7) 2020; 842
C Y Zhou (683_CR55) 2021; 31
Z Li (683_CR14) 2017; 1
J N Shi (683_CR12) 2019; 324
J Liu (683_CR49) 2022; 58
Y Mussa (683_CR52) 2021; 35
R J Zhe (683_CR15) 2022; 10
J Y Liu (683_CR51) 2021; 4
Z C Xiao (683_CR63) 2018; 46
X Ai (683_CR26) 2020; 59
Q Zhao (683_CR23) 2023; 644
H Al Salem (683_CR62) 2015; 137
References_xml – volume: 31
  start-page: 2011249
  issue: 18
  year: 2021
  ident: CR55
  article-title: Pulverizing Fe O nanoparticles for developing Fe C/N-codoped carbon nanoboxes with multiple polysulfide anchoring and converting activity in Li–S batteries
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202011249
– volume: 25
  start-page: 8112
  issue: 34
  year: 2019
  end-page: 8117
  ident: CR33
  article-title: Few-layer boron nitride with engineered nitrogen vacancies for promoting conversion of polysulfide as a cathode matrix for lithium–sulfur batteries
  publication-title: Chemistry
  doi: 10.1002/chem.201900884
– volume: 8
  start-page: 1771
  issue: 7
  year: 2021
  end-page: 1778
  ident: CR54
  article-title: Dipolar and catalytic effects of an Fe O based nitrogen-doped hollow carbon sphere framework for high performance lithium sulfur batteries
  publication-title: Inorganic Chemistry Frontiers
  doi: 10.1039/D0QI01393E
– volume: 15
  start-page: 1901320
  issue: 24
  year: 2019
  ident: CR64
  article-title: Synthesis process of CoSeO microspheres for unordinary Li-ion storage performances and mechanism of their conversion reaction with Li ions
  publication-title: Small
  doi: 10.1002/smll.201901320
– volume: 8
  start-page: 27679
  issue: 41
  year: 2016
  end-page: 27687
  ident: CR41
  article-title: B, N-co-doped graphene supported sulfur for superior stable Li–S half cell and Ge–S full battery
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.6b08852
– volume: 47
  start-page: 241
  year: 2020
  end-page: 247
  ident: CR24
  article-title: MoSe nanosheets as a functional host for lithium–sulfur batteries
  publication-title: Journal of Energy Chemistry
  doi: 10.1016/j.jechem.2020.02.003
– volume: 54
  start-page: 4325
  issue: 14
  year: 2015
  end-page: 4329
  ident: CR18
  article-title: Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201411109
– volume: 30
  start-page: 6969
  issue: 20
  year: 2018
  end-page: 6977
  ident: CR37
  article-title: Conductive and polar titanium boride as a sulfur host for advanced lithium–sulfur batteries
  publication-title: Chemistry of Materials
  doi: 10.1021/acs.chemmater.8b01352
– volume: 886
  start-page: 161203
  year: 2021
  ident: CR58
  article-title: MOF-71 derived layered Co–CoP/C for advanced Li–S batteries
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2021.161203
– volume: 57
  start-page: 13527
  year: 2022
  end-page: 13540
  ident: CR50
  article-title: Fe, N co-doped mesoporous carbon spheres as barrier layer absorbing and reutilizing polysulfides for high-performance Li–S batteries
  publication-title: Journal of Materials Science
– volume: 331
  start-page: 135287
  year: 2020
  ident: CR59
  article-title: Conductive sulfur-hosting material involving ultrafine vanadium nitride nanoparticles for high-performance lithium–sulfur battery
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2019.135287
– volume: 597
  start-page: 153687
  year: 2022
  ident: CR45
  article-title: Boron nitride wrapped N-doped carbon nanosheet as a host for advanced lithium–sulfur battery
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2022.153687
– volume: 459
  start-page: 141526
  year: 2023
  ident: CR17
  article-title: VN quantum dots anchored N-doped carbon nanosheets as bifunctional interlayer for highperformance lithium–metal and lithium–sulfur batteries
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2023.141526
– volume: 5
  start-page: 2001056
  issue: 3
  year: 2021
  ident: CR28
  article-title: Polyaniline encapsulated amorphous V O nanowire-modified multi-functional separators for lithium–sulfur batteries
  publication-title: Small Methods
  doi: 10.1002/smtd.202001056
– volume: 11
  start-page: 1512
  issue: 9
  year: 2018
  end-page: 1520
  ident: CR13
  article-title: A lithium-ion battery using a 3D-array nanostructured graphene–sulfur cathode and a silicon oxide-based anode
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201800242
– volume: 644
  start-page: 546
  year: 2023
  end-page: 555
  ident: CR23
  article-title: Nitrogen-doped hollow carbon@tin disulfide as a bipolar dynamic host for lithium–sulfur batteries with enhanced kinetics and cyclability
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1016/j.jcis.2023.03.169
– volume: 364
  start-page: 1091
  issue: 6445
  year: 2019
  end-page: 1094
  ident: CR35
  article-title: Atomically dispersed Fe sites catalyze efficient CO electroreduction to CO
  publication-title: Science
  doi: 10.1126/science.aaw7515
– volume: 404
  start-page: 126462
  year: 2021
  ident: CR61
  article-title: Facile nitrogen-doped carbon coated iron sulfide as green and efficient adsorbent for stable lithium–sulfur batteries
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2020.126462
– volume: 8
  start-page: 2000302
  issue: 7
  year: 2020
  ident: CR47
  article-title: Rational design of Co–NiSe @N-doped carbon hollow structure for enhanced Li–S battery performance
  publication-title: Energy Technology
  doi: 10.1002/ente.202000302
– volume: 16
  start-page: 220624
  issue: 4
  year: 2022
  ident: CR1
  article-title: High lithium storage performance of Ni Fe O N thin film with NiO-type crystal structure
  publication-title: Frontiers of Materials Science
  doi: 10.1007/s11706-022-0624-6
– volume: 6
  start-page: 2797
  issue: 6
  year: 2018
  end-page: 2807
  ident: CR53
  article-title: MOF-derived porous N–Co O @N–C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium–sulfur batteries
  publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability
  doi: 10.1039/C7TA10272K
– volume: 30
  start-page: 1910533
  issue: 28
  year: 2020
  ident: CR8
  article-title: Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201910533
– volume: 213
  start-page: 63
  year: 2016
  end-page: 68
  ident: CR38
  article-title: Boron oxide–tin oxide/graphene composite as anode materials for lithium ion batteries
  publication-title: Materials Science and Engineering B
  doi: 10.1016/j.mseb.2016.05.004
– volume: 58
  start-page: 5108
  issue: 33
  year: 2022
  end-page: 5111
  ident: CR49
  article-title: Engineering a ternary one-dimensional Fe P@SnP @MoS mesostructure through magnetic-field-induced self-assembly as a high-performance lithium-ion battery anode
  publication-title: Chemical Communications
  doi: 10.1039/D2CC00230B
– volume: 702
  start-page: 499
  year: 2017
  end-page: 508
  ident: CR29
  article-title: Quadrangular-CNT–Fe O C composite based on quadrilateral carbon nanotubes as anode materials for high performance lithium-ion batteries
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2017.01.259
– volume: 942
  start-page: 117590
  year: 2023
  ident: CR6
  article-title: WO nanoparticle anchored hollow carbon spheres enhanced performance of lithium–sulfur battery
  publication-title: Journal of Electroanalytical Chemistry
  doi: 10.1016/j.jelechem.2023.117590
– volume: 11
  start-page: 2101780
  issue: 42
  year: 2021
  ident: CR30
  article-title: Hypercrosslinked polymerization enabled N-doped carbon confined Fe O facilitating Li polysulfides interface conversion for Li–S batteries
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202101780
– volume: 6
  start-page: 2200049
  issue: 5
  year: 2022
  ident: CR46
  article-title: Nanofibers comprising interconnected chainlike hollow N-doped C nanocages as 3D free-standing cathodes for Li–S batteries with super-high sulfur content and lean electrolyte/sulfur ratio
  publication-title: Small Methods
  doi: 10.1002/smtd.202200049
– volume: 251
  start-page: 279
  year: 2014
  end-page: 286
  ident: CR39
  article-title: Promotional role of B O in enhancing hollow SnO anode performance for Li-ion batteries
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2013.11.068
– volume: 56
  start-page: 10030
  issue: 16
  year: 2021
  end-page: 10040
  ident: CR57
  article-title: NC@CoPCo O composite as sulfur cathode for high-energy lithium sulfur batteries
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-021-05931-0
– volume: 901
  start-page: 163625
  year: 2022
  ident: CR5
  article-title: Free-standing 3D nitrogen-doped graphene/Co N aerogels with ultrahigh sulfur loading for high volumetric energy density Li–S batteries
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2022.163625
– volume: 10
  start-page: 2207470
  issue: 9
  year: 2023
  ident: CR25
  article-title: Li–S chemistry of manganese phosphides nanoparticles with optimized phase
  publication-title: Advanced Science
  doi: 10.1002/advs.202207470
– volume: 359
  start-page: 136944
  year: 2020
  ident: CR9
  article-title: Electrochemical impedance spectroscopy study of lithium–sulfur batteries: useful technique to reveal the Li/S electrochemical mechanism
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2020.136944
– volume: 460
  start-page: 141811
  year: 2023
  ident: CR20
  article-title: MnO–Mo C heterogeneous particles supported on porous carbon: accelerating the catalytic conversion of polysulfides
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2023.141811
– volume: 6
  start-page: 1568
  issue: 6
  year: 2022
  end-page: 1586
  ident: CR19
  article-title: Synergistic effect between PPy: PSS copolymers and biomass-derived activated carbons: a simple strategy for designing sustainable highperformance Li–S batteries
  publication-title: Sustainable Energy & Fuels
  doi: 10.1039/D1SE02052H
– volume: 33
  start-page: 2210987
  issue: 3
  year: 2023
  ident: CR10
  article-title: Phase evolution of VC–VO heterogeneous particles to facilitate sulfur species conversion in Li–S batteries
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202210987
– volume: 5
  start-page: 1701659
  issue: 9
  year: 2018
  ident: CR16
  article-title: Dodecylamine-induced synthesis of a nitrogen-doped carbon comb for advanced lithium–sulfur battery cathodes
  publication-title: Advanced Materials Interfaces
  doi: 10.1002/admi.201701659
– volume: 59
  start-page: 3961
  issue: 10
  year: 2020
  end-page: 3965
  ident: CR26
  article-title: Transition-metal-boron intermetallics with strong interatomic d-sp orbital hybridization for high-performance electrocatalysis
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201915663
– volume: 227
  start-page: 7
  year: 2017
  end-page: 16
  ident: CR40
  article-title: Natural silk cocoon derived nitrogen-doped porous carbon nanosheets for high performance lithium–sulfur batteries
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2016.11.139
– volume: 427
  start-page: 823
  year: 2018
  end-page: 829
  ident: CR42
  article-title: N-doped yolk–shell hollow carbon sphere wrapped with graphene as sulfur host for highperformance lithium–sulfur batteries
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2017.06.288
– volume: 4
  start-page: 10998
  issue: 10
  year: 2021
  end-page: 11003
  ident: CR51
  article-title: Novel doughnutlike graphene quantum dot-decorated composites for high-performance Li–S batteries displaying dual immobilization toward polysulfides
  publication-title: ACS Applied Energy Materials
  doi: 10.1021/acsaem.1c01943
– volume: 32
  start-page: 3113
  issue: 10
  year: 2021
  end-page: 3117
  ident: CR31
  article-title: FeBO as a low cost and highperformance anode material for sodium-ion batteries
  publication-title: Chinese Chemical Letters
  doi: 10.1016/j.cclet.2021.03.014
– volume: 528
  start-page: 148032
  year: 2021
  ident: CR44
  article-title: Understanding the high-performance Fe(OH) @GO nanoarchitecture as effective sulfur hosts for the high capacity of lithium–sulfur batteries
  publication-title: Applied Surface Science
– volume: 248
  start-page: 222
  year: 2017
  end-page: 223
  ident: CR34
  article-title: Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal
  publication-title: Microporous and Mesoporous Materials
  doi: 10.1016/j.micromeso.2017.04.022
– volume: 10
  start-page: 24422
  issue: 45
  year: 2022
  end-page: 24433
  ident: CR15
  article-title: Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries
  publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability
  doi: 10.1039/D2TA06686F
– volume: 33
  start-page: 2102338
  issue: 42
  year: 2021
  ident: CR27
  article-title: The interfacial electronic engineering in binary sulfiphiliccobalt boride heterostructure nanosheets for upgrading energy density and longevity of lithium–sulfur batteries
  publication-title: Advanced Materials
  doi: 10.1002/adma.202102338
– volume: 17
  start-page: 230630
  issue: 1
  year: 2023
  ident: CR3
  article-title: Towards safe lithium–sulfur batteries from liquid-state electrolyte to solid-state electrolyte
  publication-title: Frontiers of Materials Science
  doi: 10.1007/s11706-023-0630-3
– volume: 37
  start-page: 1318
  issue: 2
  year: 2023
  end-page: 1326
  ident: CR43
  article-title: Glucose-derived micromesoporous carbon spheres for high-performance lithium–sulfur batteries
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.2c03421
– volume: 126
  start-page: 109137
  year: 2022
  ident: CR48
  article-title: Fabrication of carbon nanofibril/carbon nanotube composites with high sulfur loading from nanocellulose for high-performance lithium–sulfur batteries
  publication-title: Chemical Communications
– volume: 86
  start-page: 118
  year: 2023
  end-page: 134
  ident: CR11
  article-title: Vanadium-based compounds and heterostructures as functional sulfur catalysts for lithium–sulfur battery cathodes
  publication-title: Journal of Energy Chemistry
  doi: 10.1016/j.jechem.2023.07.003
– volume: 5
  start-page: 2573
  issue: 2
  year: 2022
  end-page: 2579
  ident: CR22
  article-title: Macro/mesoporous carbon/defective TiO composite as a functional host for ithium–sulfur batteries
  publication-title: ACS Applied Energy Materials
  doi: 10.1021/acsaem.2c00033
– volume: 3
  start-page: 12938
  issue: 24
  year: 2015
  end-page: 12946
  ident: CR36
  article-title: Graphene oxide sheets-induced growth of nanostructured Fe O for a high-performance anode material of lithium ion batteries
  publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability
  doi: 10.1039/C5TA01617G
– volume: 137
  start-page: 11542
  issue: 36
  year: 2015
  end-page: 11545
  ident: CR62
  article-title: Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/jacs.5b04472
– volume: 54
  start-page: 12250
  issue: 86
  year: 2018
  end-page: 12253
  ident: CR21
  article-title: Coherent TiO /BaTiO heterostructure as a functional reservoir and promoter for polysulfide intermediates
  publication-title: Chemical Communications
  doi: 10.1039/C8CC06924G
– volume: 35
  start-page: 8365
  issue: 9
  year: 2021
  end-page: 8377
  ident: CR52
  article-title: Cobalt oxide/graphene nanosheets/hexagonal boron nitride (Co3O4/CoO/GNS/h-BN) catalyst for high sulfur utilization in Li–S batteries at elevated temperatures
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.1c00476
– volume: 46
  start-page: 365
  year: 2018
  end-page: 371
  ident: CR63
  article-title: A facile Schiff base chemical approach: towards molecular-scale engineering of N–C interface for high performance lithium–sulfur batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.016
– volume: 12
  start-page: 4414
  issue: 4
  year: 2020
  end-page: 4422
  ident: CR60
  article-title: Monodisperse CoSn and NiSn nanoparticles supported on commercial carbon as anode for lithium- and potassium-ion batteries
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b16418
– volume: 343
  start-page: 136079
  year: 2020
  ident: CR32
  article-title: A rGO-based Fe O and Mn O binary crystals nanocomposite additive for high performance Li–S battery
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2020.136079
– volume: 1
  start-page: 576
  issue: 3
  year: 2017
  end-page: 587
  ident: CR14
  article-title: A compact nanoconfined sulfur cathode for high-performance lithium–sulfur batteries
  publication-title: Joule
  doi: 10.1016/j.joule.2017.06.003
– volume: 939
  start-page: 117474
  year: 2023
  ident: CR2
  article-title: A sandwich-structured bifunctional separator for durable and stable lithium–sulfur batteries
  publication-title: Journal of Electroanalytical Chemistry
  doi: 10.1016/j.jelechem.2023.117474
– volume: 842
  start-page: 155764
  year: 2020
  ident: CR7
  article-title: Template-guided synthesis of porous MoN microrod as an effective sulfur host for highperformance lithium–sulfur batteries
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2020.155764
– volume: 32
  start-page: 1904876
  issue: 4
  year: 2020
  ident: CR4
  article-title: Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries
  publication-title: Advanced Materials
  doi: 10.1002/adma.201904876
– volume: 324
  start-page: 134849
  year: 2019
  ident: CR12
  article-title: Nitrogen-doped hollow porous carbon nanotubes for high-sulfur loading Li–S batteries
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2019.134849
– volume: 429
  start-page: 132167
  year: 2022
  ident: CR56
  article-title: Decorating CoSe on N-doped carbon nanotubes as catalysts and efficient polysulfides traps for Li–S batteries
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2021.132167
– volume: 56
  start-page: 10030
  issue: 16
  year: 2021
  ident: 683_CR57
  publication-title: Journal of Materials Science
  doi: 10.1007/s10853-021-05931-0
– volume: 6
  start-page: 1568
  issue: 6
  year: 2022
  ident: 683_CR19
  publication-title: Sustainable Energy & Fuels
  doi: 10.1039/D1SE02052H
– volume: 33
  start-page: 2102338
  issue: 42
  year: 2021
  ident: 683_CR27
  publication-title: Advanced Materials
  doi: 10.1002/adma.202102338
– volume: 8
  start-page: 27679
  issue: 41
  year: 2016
  ident: 683_CR41
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.6b08852
– volume: 15
  start-page: 1901320
  issue: 24
  year: 2019
  ident: 683_CR64
  publication-title: Small
  doi: 10.1002/smll.201901320
– volume: 248
  start-page: 222
  year: 2017
  ident: 683_CR34
  publication-title: Microporous and Mesoporous Materials
  doi: 10.1016/j.micromeso.2017.04.022
– volume: 12
  start-page: 4414
  issue: 4
  year: 2020
  ident: 683_CR60
  publication-title: ACS Applied Materials & Interfaces
  doi: 10.1021/acsami.9b16418
– volume: 57
  start-page: 13527
  year: 2022
  ident: 683_CR50
  publication-title: Journal of Materials Science
– volume: 939
  start-page: 117474
  year: 2023
  ident: 683_CR2
  publication-title: Journal of Electroanalytical Chemistry
  doi: 10.1016/j.jelechem.2023.117474
– volume: 227
  start-page: 7
  year: 2017
  ident: 683_CR40
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2016.11.139
– volume: 6
  start-page: 2200049
  issue: 5
  year: 2022
  ident: 683_CR46
  publication-title: Small Methods
  doi: 10.1002/smtd.202200049
– volume: 886
  start-page: 161203
  year: 2021
  ident: 683_CR58
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2021.161203
– volume: 10
  start-page: 2207470
  issue: 9
  year: 2023
  ident: 683_CR25
  publication-title: Advanced Science
  doi: 10.1002/advs.202207470
– volume: 331
  start-page: 135287
  year: 2020
  ident: 683_CR59
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2019.135287
– volume: 459
  start-page: 141526
  year: 2023
  ident: 683_CR17
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2023.141526
– volume: 126
  start-page: 109137
  year: 2022
  ident: 683_CR48
  publication-title: Chemical Communications
– volume: 429
  start-page: 132167
  year: 2022
  ident: 683_CR56
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2021.132167
– volume: 842
  start-page: 155764
  year: 2020
  ident: 683_CR7
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2020.155764
– volume: 11
  start-page: 1512
  issue: 9
  year: 2018
  ident: 683_CR13
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201800242
– volume: 17
  start-page: 230630
  issue: 1
  year: 2023
  ident: 683_CR3
  publication-title: Frontiers of Materials Science
  doi: 10.1007/s11706-023-0630-3
– volume: 901
  start-page: 163625
  year: 2022
  ident: 683_CR5
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2022.163625
– volume: 1
  start-page: 576
  issue: 3
  year: 2017
  ident: 683_CR14
  publication-title: Joule
  doi: 10.1016/j.joule.2017.06.003
– volume: 16
  start-page: 220624
  issue: 4
  year: 2022
  ident: 683_CR1
  publication-title: Frontiers of Materials Science
  doi: 10.1007/s11706-022-0624-6
– volume: 213
  start-page: 63
  year: 2016
  ident: 683_CR38
  publication-title: Materials Science and Engineering B
  doi: 10.1016/j.mseb.2016.05.004
– volume: 597
  start-page: 153687
  year: 2022
  ident: 683_CR45
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2022.153687
– volume: 324
  start-page: 134849
  year: 2019
  ident: 683_CR12
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2019.134849
– volume: 702
  start-page: 499
  year: 2017
  ident: 683_CR29
  publication-title: Journal of Alloys and Compounds
  doi: 10.1016/j.jallcom.2017.01.259
– volume: 364
  start-page: 1091
  issue: 6445
  year: 2019
  ident: 683_CR35
  publication-title: Science
  doi: 10.1126/science.aaw7515
– volume: 8
  start-page: 2000302
  issue: 7
  year: 2020
  ident: 683_CR47
  publication-title: Energy Technology
  doi: 10.1002/ente.202000302
– volume: 137
  start-page: 11542
  issue: 36
  year: 2015
  ident: 683_CR62
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/jacs.5b04472
– volume: 251
  start-page: 279
  year: 2014
  ident: 683_CR39
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2013.11.068
– volume: 31
  start-page: 2011249
  issue: 18
  year: 2021
  ident: 683_CR55
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202011249
– volume: 32
  start-page: 1904876
  issue: 4
  year: 2020
  ident: 683_CR4
  publication-title: Advanced Materials
  doi: 10.1002/adma.201904876
– volume: 4
  start-page: 10998
  issue: 10
  year: 2021
  ident: 683_CR51
  publication-title: ACS Applied Energy Materials
  doi: 10.1021/acsaem.1c01943
– volume: 359
  start-page: 136944
  year: 2020
  ident: 683_CR9
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2020.136944
– volume: 6
  start-page: 2797
  issue: 6
  year: 2018
  ident: 683_CR53
  publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability
  doi: 10.1039/C7TA10272K
– volume: 30
  start-page: 1910533
  issue: 28
  year: 2020
  ident: 683_CR8
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201910533
– volume: 5
  start-page: 2573
  issue: 2
  year: 2022
  ident: 683_CR22
  publication-title: ACS Applied Energy Materials
  doi: 10.1021/acsaem.2c00033
– volume: 30
  start-page: 6969
  issue: 20
  year: 2018
  ident: 683_CR37
  publication-title: Chemistry of Materials
  doi: 10.1021/acs.chemmater.8b01352
– volume: 3
  start-page: 12938
  issue: 24
  year: 2015
  ident: 683_CR36
  publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability
  doi: 10.1039/C5TA01617G
– volume: 86
  start-page: 118
  year: 2023
  ident: 683_CR11
  publication-title: Journal of Energy Chemistry
  doi: 10.1016/j.jechem.2023.07.003
– volume: 47
  start-page: 241
  year: 2020
  ident: 683_CR24
  publication-title: Journal of Energy Chemistry
  doi: 10.1016/j.jechem.2020.02.003
– volume: 460
  start-page: 141811
  year: 2023
  ident: 683_CR20
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2023.141811
– volume: 644
  start-page: 546
  year: 2023
  ident: 683_CR23
  publication-title: Journal of Colloid and Interface Science
  doi: 10.1016/j.jcis.2023.03.169
– volume: 37
  start-page: 1318
  issue: 2
  year: 2023
  ident: 683_CR43
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.2c03421
– volume: 59
  start-page: 3961
  issue: 10
  year: 2020
  ident: 683_CR26
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201915663
– volume: 5
  start-page: 1701659
  issue: 9
  year: 2018
  ident: 683_CR16
  publication-title: Advanced Materials Interfaces
  doi: 10.1002/admi.201701659
– volume: 25
  start-page: 8112
  issue: 34
  year: 2019
  ident: 683_CR33
  publication-title: Chemistry
  doi: 10.1002/chem.201900884
– volume: 46
  start-page: 365
  year: 2018
  ident: 683_CR63
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.02.016
– volume: 54
  start-page: 12250
  issue: 86
  year: 2018
  ident: 683_CR21
  publication-title: Chemical Communications
  doi: 10.1039/C8CC06924G
– volume: 58
  start-page: 5108
  issue: 33
  year: 2022
  ident: 683_CR49
  publication-title: Chemical Communications
  doi: 10.1039/D2CC00230B
– volume: 54
  start-page: 4325
  issue: 14
  year: 2015
  ident: 683_CR18
  publication-title: Angewandte Chemie International Edition
  doi: 10.1002/anie.201411109
– volume: 35
  start-page: 8365
  issue: 9
  year: 2021
  ident: 683_CR52
  publication-title: Energy & Fuels
  doi: 10.1021/acs.energyfuels.1c00476
– volume: 11
  start-page: 2101780
  issue: 42
  year: 2021
  ident: 683_CR30
  publication-title: Advanced Energy Materials
  doi: 10.1002/aenm.202101780
– volume: 8
  start-page: 1771
  issue: 7
  year: 2021
  ident: 683_CR54
  publication-title: Inorganic Chemistry Frontiers
  doi: 10.1039/D0QI01393E
– volume: 33
  start-page: 2210987
  issue: 3
  year: 2023
  ident: 683_CR10
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.202210987
– volume: 404
  start-page: 126462
  year: 2021
  ident: 683_CR61
  publication-title: Chemical Engineering Journal
  doi: 10.1016/j.cej.2020.126462
– volume: 528
  start-page: 148032
  year: 2021
  ident: 683_CR44
  publication-title: Applied Surface Science
– volume: 32
  start-page: 3113
  issue: 10
  year: 2021
  ident: 683_CR31
  publication-title: Chinese Chemical Letters
  doi: 10.1016/j.cclet.2021.03.014
– volume: 343
  start-page: 136079
  year: 2020
  ident: 683_CR32
  publication-title: Electrochimica Acta
  doi: 10.1016/j.electacta.2020.136079
– volume: 427
  start-page: 823
  year: 2018
  ident: 683_CR42
  publication-title: Applied Surface Science
  doi: 10.1016/j.apsusc.2017.06.288
– volume: 10
  start-page: 24422
  issue: 45
  year: 2022
  ident: 683_CR15
  publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability
  doi: 10.1039/D2TA06686F
– volume: 942
  start-page: 117590
  year: 2023
  ident: 683_CR6
  publication-title: Journal of Electroanalytical Chemistry
  doi: 10.1016/j.jelechem.2023.117590
– volume: 5
  start-page: 2001056
  issue: 3
  year: 2021
  ident: 683_CR28
  publication-title: Small Methods
  doi: 10.1002/smtd.202001056
SSID ssj0000515941
Score 2.3372836
Snippet There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Carbon
Cathodes
Chemistry and Materials Science
Decay rate
Electrical resistivity
Lithium sulfur batteries
Low conductivity
Materials Science
Nanoparticles
Nanosheets
Nitrogen
Polysulfides
Research Article
Sulfur
Title (FeO)2FeBO3 nanoparticles attached on interconnected nitrogen-doped carbon nanosheets serving as sulfur hosts for lithium–sulfur batteries
URI https://link.springer.com/article/10.1007/s11706-024-0683-y
https://www.proquest.com/docview/3070717049
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAgnqK85IGBhywldhw3Y0EUBAIWKpUpsh1HIJUUJenAxg9g4x_yS7hLEwoIkNhi-THkzr7vfL7vCNmV3DNaS8HAHIUsCAPFtOURc4FWGPUDs44JzpdX4VkvOO_Lfp3HXTSv3ZuQZHVST5LdkOmFgU3BQimCPU2TWYmuOyhxj3c-LlawaElUVazkXpV9LPtNNPOnVb7aownI_BYXrcxNd5Es1DiRdsaCXSJTLlsm85_YA1fIy17XXe-Dnh1dC5rpDNzf-pUb1WWJRM0JHWYUCSFyi-9ZLKBLCls4H4LWsGT4CE2rcwODcHpx51xZULymhfWphs_RIB3lFBNBCgrolgJmv7sfPbw9v9ZdpqLnBG97lfS6JzfHZ6wursCs8MOSRcaXJgid1eCAtT2lUhE53_gqdFwmxtiEK62EScGfCpxKbNtywCbKhUIZ7oRYIzPZMHPrhIpUtnlqfZA5sunpSCYaU34Nb7tEJ36LeM0vjm3NPI4FMAbxhDMZpRKDVGKUSvzUIgcfUx7HtBt_Dd5q5BbXO7CI8SwDVxUcoBY5bGQ56f51sY1_jd4kc3ysS8zzt8hMmY_cNqCU0uyQ2c7p7cXJTqWd77mQ4xE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwELU4CqBAnGI5XVBwyFJiJ3FSAmK13A0rbRfZjqNFgixKsgUdH0DHH_IlzGQTFhAg0SWK7SIz9rzxzLwhZNfnjlbKFwzMUcC8wJNMGR4x6ymJUT8w61jgfHUddLreec_v1XXcRZPt3oQkq5N6XOyGTC8MbAo2ShHsaZJMAxYIMY-ry48-LlawaUlUdazkTlV97PeaaOZPq3y1R2OQ-S0uWpmb9gKZr3EiPRoJdpFM2GyJzH1iD1wmL3tte7MPenZ8I2imMnB_6yw3qsoSiZoTOsgoEkLkBvNZDKBLCls4H4DWsGTwCK9G5RoG4fSib21ZULymhfWpgsfhfTrMKRaCFBTQLQXM3r8bPrw9v9afdEXPCd72Cum2T29POqxursCMcIOSRdr1tRdYo8ABCx0pUxFZV7sysNxPtDYJl0oKnYI_5VmZmNBwwCbSBkJqboVYJVPZILNrhIrUD3lqXJA5sumpyE8UlvxqHtpEJW6LOM0vjk3NPI4NMO7jMWcySiUGqcQolfipRQ4-pjyOaDf-GrzZyC2ud2AR41kGrio4QC1y2Mhy_PnXxdb_NXqHzHRury7jy7Priw0yy0d6xRx3k0yV-dBuAWIp9Xaloe9yAuRw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF7xkCo4VIWCCFDYAwcoWmHv2t74CC1ReCU9NFJu1r4skMCJbOfAjR_QW_9hfwkzjp20FSBx82ofB8_szjc7O98QchByTysVCgbmKGJBFEimDI-ZC5TEqB-YdUxwvulF3UFwOQyHdZ3Tonnt3oQkpzkNyNKUlSdjm57ME9-Q9YWBfcGiKYI9LpJlOI19VOsBP51dsmABk7iqXsm9KhM5HDaRzZdW-dc2zQHnfzHSyvR0PpGPNWakp1Mhr5EFl62T1b-YBD-TX4cd1z8CnTvrC5qpDFzh-sUbVWWJpM2WjjKK5BC5wbctBpAmhe2cj0CDmB2NoWlUrmEQTi9unSsLile2sD5V8Dm5Tyc5xaSQggLSpYDfb-8mD3-eftdduqLqBM97gww65z-_dVldaIEZ4Ucli7Uf6iByRoEz1vakTEXsfO3LyPHQam0sl0oKnYJvFThpTdtwwCnSRUJq7oTYJEvZKHNbhIo0bPPU-CB_ZNZTcWgVpv9q3nZWWb9FvOYXJ6ZmIcdiGPfJnD8ZpZKAVBKUSvLYIl9nU8ZTCo63Bu82ckvq3VgkeK6B2wrOUIscN7Kcd7-62Pa7Ru-TDz--d5Lri97VDlnhU7Vinr9Llsp84r4AeCn1XqWgz3Q86Kw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28FeO%292FeBO3+nanoparticles+attached+on+interconnected+nitrogen-doped+carbon+nanosheets+serving+as+sulfur+hosts+for+lithium%E2%80%93sulfur+batteries&rft.jtitle=Frontiers+of+materials+science&rft.au=Wang%2C+Junhai&rft.au=Huang+Huaqiu&rft.au=Chen%2C+Chen&rft.au=Zheng+Jiandong&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1007%2Fs11706-024-0683-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon