(FeO)2FeBO3 nanoparticles attached on interconnected nitrogen-doped carbon nanosheets serving as sulfur hosts for lithium–sulfur batteries
There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO) 2 FeBO 3 nanoparticles (NPs) anchored on i...
Saved in:
Published in | Frontiers of materials science Vol. 18; no. 2 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Higher Education Press
01.06.2024
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO)
2
FeBO
3
nanoparticles (NPs) anchored on interconnected nitrogen-doped carbon nanosheets (NCNs) were synthesized, serving as sulfur carriers for Li–S batteries to solve such issues. NCNs have the cross-linked network structure, which possess good electrical conductivity, large specific surface area, and abundant micropores and mesopores, enabling the cathode to be well infiltrated and permeated by the electrolyte, ensuring the rapid electron/ion transfer, and alleviating the volume expansion during the electrochemical reaction. In addition, polar (FeO)
2
FeBO
3
can enhance the adsorption of polysulfides, effectively alleviating the polysulfide shuttle effect. Under a current density of 1.0 A·g
−1
, the initial discharging and charging specific capacities of the (FeO)
2
FeBO
3
@NCNs-2/S electrode were obtained to be 1113.2 and 1098.3 mA·h·g
−1
, respectively. After 1000 cycles, its capacity maintained at 436.8 mA·h·g
−1
, displaying a decay rate of 0.08% per cycle. Therefore, combining NCNs with (FeO)
2
FeBO
3
NPs is conducive to the performance improvement of Li–S batteries. |
---|---|
AbstractList | There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO)2FeBO3 nanoparticles (NPs) anchored on interconnected nitrogen-doped carbon nanosheets (NCNs) were synthesized, serving as sulfur carriers for Li–S batteries to solve such issues. NCNs have the cross-linked network structure, which possess good electrical conductivity, large specific surface area, and abundant micropores and mesopores, enabling the cathode to be well infiltrated and permeated by the electrolyte, ensuring the rapid electron/ion transfer, and alleviating the volume expansion during the electrochemical reaction. In addition, polar (FeO)2FeBO3 can enhance the adsorption of polysulfides, effectively alleviating the polysulfide shuttle effect. Under a current density of 1.0 A·g−1, the initial discharging and charging specific capacities of the (FeO)2FeBO3@NCNs-2/S electrode were obtained to be 1113.2 and 1098.3 mA·h·g−1, respectively. After 1000 cycles, its capacity maintained at 436.8 mA·h·g−1, displaying a decay rate of 0.08% per cycle. Therefore, combining NCNs with (FeO)2FeBO3 NPs is conducive to the performance improvement of Li–S batteries. There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling to be solved before practical applications of lithium–sulfur (Li–S) batteries. In this work, (FeO) 2 FeBO 3 nanoparticles (NPs) anchored on interconnected nitrogen-doped carbon nanosheets (NCNs) were synthesized, serving as sulfur carriers for Li–S batteries to solve such issues. NCNs have the cross-linked network structure, which possess good electrical conductivity, large specific surface area, and abundant micropores and mesopores, enabling the cathode to be well infiltrated and permeated by the electrolyte, ensuring the rapid electron/ion transfer, and alleviating the volume expansion during the electrochemical reaction. In addition, polar (FeO) 2 FeBO 3 can enhance the adsorption of polysulfides, effectively alleviating the polysulfide shuttle effect. Under a current density of 1.0 A·g −1 , the initial discharging and charging specific capacities of the (FeO) 2 FeBO 3 @NCNs-2/S electrode were obtained to be 1113.2 and 1098.3 mA·h·g −1 , respectively. After 1000 cycles, its capacity maintained at 436.8 mA·h·g −1 , displaying a decay rate of 0.08% per cycle. Therefore, combining NCNs with (FeO) 2 FeBO 3 NPs is conducive to the performance improvement of Li–S batteries. |
ArticleNumber | 240683 |
Author | Wang, Junhai Chen, Chen Huang, Huaqiu Huang, Jiarui Joo, Sang Woo Zheng, Jiandong Cao, Yaxian |
Author_xml | – sequence: 1 givenname: Junhai surname: Wang fullname: Wang, Junhai organization: School of Material and Chemical Engineering, Chuzhou University – sequence: 2 givenname: Huaqiu surname: Huang fullname: Huang, Huaqiu organization: School of Material and Chemical Engineering, Chuzhou University – sequence: 3 givenname: Chen surname: Chen fullname: Chen, Chen email: chen264@mail.ustc.edu.cn organization: College of Mechanical Engineering, Tongling University – sequence: 4 givenname: Jiandong surname: Zheng fullname: Zheng, Jiandong email: zjd071@126.com organization: School of Material and Chemical Engineering, Chuzhou University – sequence: 5 givenname: Yaxian surname: Cao fullname: Cao, Yaxian organization: Key Laboratory of Functional Molecular Solids of the Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University – sequence: 6 givenname: Sang Woo surname: Joo fullname: Joo, Sang Woo email: swjoo@yu.ac.kr organization: School of Mechanical Engineering, Yeungnam University – sequence: 7 givenname: Jiarui surname: Huang fullname: Huang, Jiarui email: jrhuang@ahnu.edu.cn organization: Key Laboratory of Functional Molecular Solids of the Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University |
BookMark | eNp9kM1KAzEUhYNUsFYfwN2AG12M5mdm0llqsSoUulFwF5LMnTYyJjXJCN35AO58Q5_ElIqCoNnk5uR8OeHso4F1FhA6IviMYMzPAyEcVzmmRY6rMcvXO2hIcV0mpRoPvufyYQ8dhvCI0ypJWRdkiN5OpjA_pVO4nLPMSutW0kejOwiZjFHqJTSZs5mxEbx21oKOSbEmercAmzdulY5aepVMGzwsAWLIAvgXYxeZTGPftb3Pli4kvXU-60xcmv7p4_X960qlJPAGwgHabWUX4PBrH6H76dXd5Cafza9vJxezXDNSxbxWpFRFBVrSoh5jzltWA1GEV0DLRindUC45Uy2pigJ4o8easrLkUDGuKDA2Qsfbd1fePfcQonh0vbcpUjDMMU9tFnVyka1LexeCh1asvHmSfi0IFpvexbZ3kXoXm97FOjH8F6NNlNE4G7003b8k3ZIhpdgF-J8__Q19Ag1UnXA |
CitedBy_id | crossref_primary_10_1016_j_surfin_2025_105965 crossref_primary_10_1016_j_jpcs_2024_112330 crossref_primary_10_1016_j_cej_2024_157706 |
Cites_doi | 10.1002/adfm.202011249 10.1002/chem.201900884 10.1039/D0QI01393E 10.1002/smll.201901320 10.1021/acsami.6b08852 10.1016/j.jechem.2020.02.003 10.1002/anie.201411109 10.1021/acs.chemmater.8b01352 10.1016/j.jallcom.2021.161203 10.1016/j.electacta.2019.135287 10.1016/j.apsusc.2022.153687 10.1016/j.cej.2023.141526 10.1002/smtd.202001056 10.1002/cssc.201800242 10.1016/j.jcis.2023.03.169 10.1126/science.aaw7515 10.1016/j.cej.2020.126462 10.1002/ente.202000302 10.1007/s11706-022-0624-6 10.1039/C7TA10272K 10.1002/adfm.201910533 10.1016/j.mseb.2016.05.004 10.1039/D2CC00230B 10.1016/j.jallcom.2017.01.259 10.1016/j.jelechem.2023.117590 10.1002/aenm.202101780 10.1002/smtd.202200049 10.1016/j.jpowsour.2013.11.068 10.1007/s10853-021-05931-0 10.1016/j.jallcom.2022.163625 10.1002/advs.202207470 10.1016/j.electacta.2020.136944 10.1016/j.cej.2023.141811 10.1039/D1SE02052H 10.1002/adfm.202210987 10.1002/admi.201701659 10.1002/anie.201915663 10.1016/j.electacta.2016.11.139 10.1016/j.apsusc.2017.06.288 10.1021/acsaem.1c01943 10.1016/j.cclet.2021.03.014 10.1016/j.micromeso.2017.04.022 10.1039/D2TA06686F 10.1002/adma.202102338 10.1007/s11706-023-0630-3 10.1021/acs.energyfuels.2c03421 10.1016/j.jechem.2023.07.003 10.1021/acsaem.2c00033 10.1039/C5TA01617G 10.1021/jacs.5b04472 10.1039/C8CC06924G 10.1021/acs.energyfuels.1c00476 10.1016/j.nanoen.2018.02.016 10.1021/acsami.9b16418 10.1016/j.electacta.2020.136079 10.1016/j.joule.2017.06.003 10.1016/j.jelechem.2023.117474 10.1016/j.jallcom.2020.155764 10.1002/adma.201904876 10.1016/j.electacta.2019.134849 10.1016/j.cej.2021.132167 |
ContentType | Journal Article |
Copyright | Higher Education Press 2024 Higher Education Press 2024. |
Copyright_xml | – notice: Higher Education Press 2024 – notice: Higher Education Press 2024. |
DBID | AAYXX CITATION |
DOI | 10.1007/s11706-024-0683-y |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2095-0268 |
ExternalDocumentID | 10_1007_s11706_024_0683_y |
GroupedDBID | -58 -5G -BR -EM -~C .VR 06C 06D 0R~ 0VY 1-T 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 40E 5VS 95- 95. 95~ 96X AAAVM AABHQ AACDK AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD B-. BDATZ BGNMA CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~Z J-C JBSCW JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P4S P9N PF0 PT4 QOR R89 R9I ROL RSV S16 S3B SAP SCL SCM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN TSG TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z7R Z7V Z7X Z85 ZMTXR ~A9 -SB -S~ AAPKM AAXDM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CAJEB CITATION Q-- U1G U5L ABRTQ |
ID | FETCH-LOGICAL-c316t-9b15b46eca2498077f39e1b176e25dbbcd27a73bf1644e7dc8c23557e637b2e33 |
IEDL.DBID | U2A |
ISSN | 2095-025X |
IngestDate | Fri Jul 25 10:40:46 EDT 2025 Thu Apr 24 23:00:54 EDT 2025 Tue Jul 01 02:09:54 EDT 2025 Fri Feb 21 02:41:32 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | FeO cathode FeBO nanosheet nitrogen-doped carbon lithium–sulfur battery |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-9b15b46eca2498077f39e1b176e25dbbcd27a73bf1644e7dc8c23557e637b2e33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3070717049 |
PQPubID | 2044428 |
ParticipantIDs | proquest_journals_3070717049 crossref_primary_10_1007_s11706_024_0683_y crossref_citationtrail_10_1007_s11706_024_0683_y springer_journals_10_1007_s11706_024_0683_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing – name: Heidelberg |
PublicationTitle | Frontiers of materials science |
PublicationTitleAbbrev | Front. Mater. Sci |
PublicationYear | 2024 |
Publisher | Higher Education Press Springer Nature B.V |
Publisher_xml | – name: Higher Education Press – name: Springer Nature B.V |
References | Liu, Li, Tian (CR39) 2014; 251 Wang, Liu, Bao (CR22) 2022; 5 Deng, Li, Chen (CR54) 2021; 8 Li, Guan, Zhang (CR14) 2017; 1 Zhu, Dong, Zeng (CR20) 2023; 460 Chmielewská, Tylus, Drábik (CR34) 2017; 248 Saroha, Cho (CR46) 2022; 6 Gao, Sheng, Ren (CR45) 2022; 597 Liu, Zhou, Han (CR49) 2022; 58 Al Salem, Babu, Rao (CR62) 2015; 137 Chen, Zhu, Zhan (CR50) 2022; 57 Shi, Kang, Mi (CR12) 2019; 324 Benítez, Di Lecce, Elia (CR13) 2018; 11 Xu, Du, Yu (CR43) 2023; 37 Duan, Zhao, Chen (CR58) 2021; 886 Cheng, Pan, Rao (CR5) 2022; 901 Zhang, Gao, Li (CR32) 2020; 343 Luna-Lama, Caballero, Morales (CR19) 2022; 6 Chen, Shang, Yuan (CR47) 2020; 8 Ji, Wang, Jia (CR8) 2020; 30 Chen, Zhang, Xiao (CR28) 2021; 5 Xiao, Kong, Song (CR63) 2018; 46 Xu, Luo, Yu (CR29) 2017; 702 Wen, Qin, Meng (CR38) 2016; 213 Meng, Xu, Sun (CR36) 2015; 3 Liu, Zhu, Shen (CR51) 2021; 4 Zhang, Sun, Liang (CR42) 2018; 427 Gu, Hsu, Bai (CR35) 2019; 364 Zhou, Li, Jiang (CR55) 2021; 31 Xu, Pan, Meng (CR59) 2020; 331 Mussa, Arsalan, Alsharaeh (CR52) 2021; 35 Park, Hong, Choi (CR64) 2019; 15 Zhe, Zhu, Wei (CR15) 2022; 10 Li, Liu, Zhu (CR37) 2018; 30 Xu, Zhang, Chen (CR53) 2018; 6 Li, Xu, Yu (CR60) 2020; 12 Li, Shen, Pervaiz (CR61) 2021; 404 Lu, Qin, Shen (CR30) 2021; 11 Pang, Zhang, Wang (CR3) 2023; 17 Dong, Deng, Ling (CR11) 2023; 86 Zhao, Wu, Wu (CR2) 2023; 939 Deng, Dong, Shen (CR25) 2023; 10 Waluś, Barchasz, Bouchet (CR9) 2020; 359 Fang, Chen, Wang (CR48) 2022; 126 Tian, Li, Zhang (CR4) 2020; 32 Dong, Liu, Shen (CR10) 2023; 33 Mohammed, Dong, Zhang (CR44) 2021; 528 Su, Lu, Yang (CR56) 2022; 429 Zhang, Yu, Wang (CR57) 2021; 56 Wu, Qi, Wu (CR31) 2021; 32 Zhao, Bao, Meng (CR23) 2023; 644 Lu, Zhong, Zhou (CR16) 2018; 5 Liu, Chen, Man (CR7) 2020; 842 Wang, Zheng, Gao (CR6) 2023; 942 Ma, Chen, Srinivas (CR17) 2023; 459 Ma, Wang, Wang (CR1) 2022; 16 Song, Gordin, Xu (CR18) 2015; 54 Cai, Zhou, Li (CR41) 2016; 8 Wang, Yin, Zhao (CR21) 2018; 54 Li, Li, Meng (CR27) 2021; 33 Meng, Yao, Liu (CR24) 2020; 47 Ai, Zou, Chen (CR26) 2020; 59 Xiang, Wang, Wu (CR40) 2017; 227 Yi, Li, Chang (CR33) 2019; 25 X J Dong (683_CR10) 2023; 33 R Q Liu (683_CR39) 2014; 251 Z L Li (683_CR27) 2021; 33 X J Dong (683_CR11) 2023; 86 X F Meng (683_CR36) 2015; 3 B Z Wu (683_CR31) 2021; 32 T M Chen (683_CR47) 2020; 8 Q Lu (683_CR16) 2018; 5 Z Y Pang (683_CR3) 2023; 17 L L Gao (683_CR45) 2022; 597 Q Cheng (683_CR5) 2022; 901 W Cai (683_CR41) 2016; 8 D Wang (683_CR22) 2022; 5 L Ji (683_CR8) 2020; 30 Y Lu (683_CR30) 2021; 11 D H Duan (683_CR58) 2021; 886 R R Li (683_CR61) 2021; 404 S Waluś (683_CR9) 2020; 359 Y Tian (683_CR4) 2020; 32 J Gu (683_CR35) 2019; 364 W C Xu (683_CR59) 2020; 331 L N Wen (683_CR38) 2016; 213 G D Park (683_CR64) 2019; 15 F Ma (683_CR17) 2023; 459 L S Meng (683_CR24) 2020; 47 Z Y Ma (683_CR1) 2022; 16 M W Xiang (683_CR40) 2017; 227 J Li (683_CR60) 2020; 12 C Y Xu (683_CR43) 2023; 37 D L Chen (683_CR50) 2022; 57 X Z Zhang (683_CR57) 2021; 56 K Chen (683_CR28) 2021; 5 F Luna-Lama (683_CR19) 2022; 6 L X Fang (683_CR48) 2022; 126 H Zhang (683_CR32) 2020; 343 R Saroha (683_CR46) 2022; 6 H E Wang (683_CR21) 2018; 54 A A Mohammed (683_CR44) 2021; 528 Q Deng (683_CR25) 2023; 10 E Chmielewská (683_CR34) 2017; 248 Y Yi (683_CR33) 2019; 25 J L Zhu (683_CR20) 2023; 460 A Benítez (683_CR13) 2018; 11 C C Li (683_CR37) 2018; 30 J Xu (683_CR53) 2018; 6 J Song (683_CR18) 2015; 54 D H Xu (683_CR29) 2017; 702 J H Wang (683_CR6) 2023; 942 Y Z Zhang (683_CR42) 2018; 427 H Su (683_CR56) 2022; 429 X L Zhao (683_CR2) 2023; 939 S G Deng (683_CR54) 2021; 8 H D Liu (683_CR7) 2020; 842 C Y Zhou (683_CR55) 2021; 31 Z Li (683_CR14) 2017; 1 J N Shi (683_CR12) 2019; 324 J Liu (683_CR49) 2022; 58 Y Mussa (683_CR52) 2021; 35 R J Zhe (683_CR15) 2022; 10 J Y Liu (683_CR51) 2021; 4 Z C Xiao (683_CR63) 2018; 46 X Ai (683_CR26) 2020; 59 Q Zhao (683_CR23) 2023; 644 H Al Salem (683_CR62) 2015; 137 |
References_xml | – volume: 31 start-page: 2011249 issue: 18 year: 2021 ident: CR55 article-title: Pulverizing Fe O nanoparticles for developing Fe C/N-codoped carbon nanoboxes with multiple polysulfide anchoring and converting activity in Li–S batteries publication-title: Advanced Functional Materials doi: 10.1002/adfm.202011249 – volume: 25 start-page: 8112 issue: 34 year: 2019 end-page: 8117 ident: CR33 article-title: Few-layer boron nitride with engineered nitrogen vacancies for promoting conversion of polysulfide as a cathode matrix for lithium–sulfur batteries publication-title: Chemistry doi: 10.1002/chem.201900884 – volume: 8 start-page: 1771 issue: 7 year: 2021 end-page: 1778 ident: CR54 article-title: Dipolar and catalytic effects of an Fe O based nitrogen-doped hollow carbon sphere framework for high performance lithium sulfur batteries publication-title: Inorganic Chemistry Frontiers doi: 10.1039/D0QI01393E – volume: 15 start-page: 1901320 issue: 24 year: 2019 ident: CR64 article-title: Synthesis process of CoSeO microspheres for unordinary Li-ion storage performances and mechanism of their conversion reaction with Li ions publication-title: Small doi: 10.1002/smll.201901320 – volume: 8 start-page: 27679 issue: 41 year: 2016 end-page: 27687 ident: CR41 article-title: B, N-co-doped graphene supported sulfur for superior stable Li–S half cell and Ge–S full battery publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b08852 – volume: 47 start-page: 241 year: 2020 end-page: 247 ident: CR24 article-title: MoSe nanosheets as a functional host for lithium–sulfur batteries publication-title: Journal of Energy Chemistry doi: 10.1016/j.jechem.2020.02.003 – volume: 54 start-page: 4325 issue: 14 year: 2015 end-page: 4329 ident: CR18 article-title: Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium–sulfur battery cathodes publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201411109 – volume: 30 start-page: 6969 issue: 20 year: 2018 end-page: 6977 ident: CR37 article-title: Conductive and polar titanium boride as a sulfur host for advanced lithium–sulfur batteries publication-title: Chemistry of Materials doi: 10.1021/acs.chemmater.8b01352 – volume: 886 start-page: 161203 year: 2021 ident: CR58 article-title: MOF-71 derived layered Co–CoP/C for advanced Li–S batteries publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2021.161203 – volume: 57 start-page: 13527 year: 2022 end-page: 13540 ident: CR50 article-title: Fe, N co-doped mesoporous carbon spheres as barrier layer absorbing and reutilizing polysulfides for high-performance Li–S batteries publication-title: Journal of Materials Science – volume: 331 start-page: 135287 year: 2020 ident: CR59 article-title: Conductive sulfur-hosting material involving ultrafine vanadium nitride nanoparticles for high-performance lithium–sulfur battery publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2019.135287 – volume: 597 start-page: 153687 year: 2022 ident: CR45 article-title: Boron nitride wrapped N-doped carbon nanosheet as a host for advanced lithium–sulfur battery publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2022.153687 – volume: 459 start-page: 141526 year: 2023 ident: CR17 article-title: VN quantum dots anchored N-doped carbon nanosheets as bifunctional interlayer for highperformance lithium–metal and lithium–sulfur batteries publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2023.141526 – volume: 5 start-page: 2001056 issue: 3 year: 2021 ident: CR28 article-title: Polyaniline encapsulated amorphous V O nanowire-modified multi-functional separators for lithium–sulfur batteries publication-title: Small Methods doi: 10.1002/smtd.202001056 – volume: 11 start-page: 1512 issue: 9 year: 2018 end-page: 1520 ident: CR13 article-title: A lithium-ion battery using a 3D-array nanostructured graphene–sulfur cathode and a silicon oxide-based anode publication-title: ChemSusChem doi: 10.1002/cssc.201800242 – volume: 644 start-page: 546 year: 2023 end-page: 555 ident: CR23 article-title: Nitrogen-doped hollow carbon@tin disulfide as a bipolar dynamic host for lithium–sulfur batteries with enhanced kinetics and cyclability publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2023.03.169 – volume: 364 start-page: 1091 issue: 6445 year: 2019 end-page: 1094 ident: CR35 article-title: Atomically dispersed Fe sites catalyze efficient CO electroreduction to CO publication-title: Science doi: 10.1126/science.aaw7515 – volume: 404 start-page: 126462 year: 2021 ident: CR61 article-title: Facile nitrogen-doped carbon coated iron sulfide as green and efficient adsorbent for stable lithium–sulfur batteries publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2020.126462 – volume: 8 start-page: 2000302 issue: 7 year: 2020 ident: CR47 article-title: Rational design of Co–NiSe @N-doped carbon hollow structure for enhanced Li–S battery performance publication-title: Energy Technology doi: 10.1002/ente.202000302 – volume: 16 start-page: 220624 issue: 4 year: 2022 ident: CR1 article-title: High lithium storage performance of Ni Fe O N thin film with NiO-type crystal structure publication-title: Frontiers of Materials Science doi: 10.1007/s11706-022-0624-6 – volume: 6 start-page: 2797 issue: 6 year: 2018 end-page: 2807 ident: CR53 article-title: MOF-derived porous N–Co O @N–C nanododecahedra wrapped with reduced graphene oxide as a high capacity cathode for lithium–sulfur batteries publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability doi: 10.1039/C7TA10272K – volume: 30 start-page: 1910533 issue: 28 year: 2020 ident: CR8 article-title: Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry publication-title: Advanced Functional Materials doi: 10.1002/adfm.201910533 – volume: 213 start-page: 63 year: 2016 end-page: 68 ident: CR38 article-title: Boron oxide–tin oxide/graphene composite as anode materials for lithium ion batteries publication-title: Materials Science and Engineering B doi: 10.1016/j.mseb.2016.05.004 – volume: 58 start-page: 5108 issue: 33 year: 2022 end-page: 5111 ident: CR49 article-title: Engineering a ternary one-dimensional Fe P@SnP @MoS mesostructure through magnetic-field-induced self-assembly as a high-performance lithium-ion battery anode publication-title: Chemical Communications doi: 10.1039/D2CC00230B – volume: 702 start-page: 499 year: 2017 end-page: 508 ident: CR29 article-title: Quadrangular-CNT–Fe O C composite based on quadrilateral carbon nanotubes as anode materials for high performance lithium-ion batteries publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2017.01.259 – volume: 942 start-page: 117590 year: 2023 ident: CR6 article-title: WO nanoparticle anchored hollow carbon spheres enhanced performance of lithium–sulfur battery publication-title: Journal of Electroanalytical Chemistry doi: 10.1016/j.jelechem.2023.117590 – volume: 11 start-page: 2101780 issue: 42 year: 2021 ident: CR30 article-title: Hypercrosslinked polymerization enabled N-doped carbon confined Fe O facilitating Li polysulfides interface conversion for Li–S batteries publication-title: Advanced Energy Materials doi: 10.1002/aenm.202101780 – volume: 6 start-page: 2200049 issue: 5 year: 2022 ident: CR46 article-title: Nanofibers comprising interconnected chainlike hollow N-doped C nanocages as 3D free-standing cathodes for Li–S batteries with super-high sulfur content and lean electrolyte/sulfur ratio publication-title: Small Methods doi: 10.1002/smtd.202200049 – volume: 251 start-page: 279 year: 2014 end-page: 286 ident: CR39 article-title: Promotional role of B O in enhancing hollow SnO anode performance for Li-ion batteries publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2013.11.068 – volume: 56 start-page: 10030 issue: 16 year: 2021 end-page: 10040 ident: CR57 article-title: NC@CoPCo O composite as sulfur cathode for high-energy lithium sulfur batteries publication-title: Journal of Materials Science doi: 10.1007/s10853-021-05931-0 – volume: 901 start-page: 163625 year: 2022 ident: CR5 article-title: Free-standing 3D nitrogen-doped graphene/Co N aerogels with ultrahigh sulfur loading for high volumetric energy density Li–S batteries publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2022.163625 – volume: 10 start-page: 2207470 issue: 9 year: 2023 ident: CR25 article-title: Li–S chemistry of manganese phosphides nanoparticles with optimized phase publication-title: Advanced Science doi: 10.1002/advs.202207470 – volume: 359 start-page: 136944 year: 2020 ident: CR9 article-title: Electrochemical impedance spectroscopy study of lithium–sulfur batteries: useful technique to reveal the Li/S electrochemical mechanism publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2020.136944 – volume: 460 start-page: 141811 year: 2023 ident: CR20 article-title: MnO–Mo C heterogeneous particles supported on porous carbon: accelerating the catalytic conversion of polysulfides publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2023.141811 – volume: 6 start-page: 1568 issue: 6 year: 2022 end-page: 1586 ident: CR19 article-title: Synergistic effect between PPy: PSS copolymers and biomass-derived activated carbons: a simple strategy for designing sustainable highperformance Li–S batteries publication-title: Sustainable Energy & Fuels doi: 10.1039/D1SE02052H – volume: 33 start-page: 2210987 issue: 3 year: 2023 ident: CR10 article-title: Phase evolution of VC–VO heterogeneous particles to facilitate sulfur species conversion in Li–S batteries publication-title: Advanced Functional Materials doi: 10.1002/adfm.202210987 – volume: 5 start-page: 1701659 issue: 9 year: 2018 ident: CR16 article-title: Dodecylamine-induced synthesis of a nitrogen-doped carbon comb for advanced lithium–sulfur battery cathodes publication-title: Advanced Materials Interfaces doi: 10.1002/admi.201701659 – volume: 59 start-page: 3961 issue: 10 year: 2020 end-page: 3965 ident: CR26 article-title: Transition-metal-boron intermetallics with strong interatomic d-sp orbital hybridization for high-performance electrocatalysis publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201915663 – volume: 227 start-page: 7 year: 2017 end-page: 16 ident: CR40 article-title: Natural silk cocoon derived nitrogen-doped porous carbon nanosheets for high performance lithium–sulfur batteries publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2016.11.139 – volume: 427 start-page: 823 year: 2018 end-page: 829 ident: CR42 article-title: N-doped yolk–shell hollow carbon sphere wrapped with graphene as sulfur host for highperformance lithium–sulfur batteries publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2017.06.288 – volume: 4 start-page: 10998 issue: 10 year: 2021 end-page: 11003 ident: CR51 article-title: Novel doughnutlike graphene quantum dot-decorated composites for high-performance Li–S batteries displaying dual immobilization toward polysulfides publication-title: ACS Applied Energy Materials doi: 10.1021/acsaem.1c01943 – volume: 32 start-page: 3113 issue: 10 year: 2021 end-page: 3117 ident: CR31 article-title: FeBO as a low cost and highperformance anode material for sodium-ion batteries publication-title: Chinese Chemical Letters doi: 10.1016/j.cclet.2021.03.014 – volume: 528 start-page: 148032 year: 2021 ident: CR44 article-title: Understanding the high-performance Fe(OH) @GO nanoarchitecture as effective sulfur hosts for the high capacity of lithium–sulfur batteries publication-title: Applied Surface Science – volume: 248 start-page: 222 year: 2017 end-page: 223 ident: CR34 article-title: Structure investigation of nano-FeO(OH) modified clinoptilolite tuff for antimony removal publication-title: Microporous and Mesoporous Materials doi: 10.1016/j.micromeso.2017.04.022 – volume: 10 start-page: 24422 issue: 45 year: 2022 end-page: 24433 ident: CR15 article-title: Graphene oxide wrapped hollow mesoporous carbon spheres as a dynamically bipolar host for lithium–sulfur batteries publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability doi: 10.1039/D2TA06686F – volume: 33 start-page: 2102338 issue: 42 year: 2021 ident: CR27 article-title: The interfacial electronic engineering in binary sulfiphiliccobalt boride heterostructure nanosheets for upgrading energy density and longevity of lithium–sulfur batteries publication-title: Advanced Materials doi: 10.1002/adma.202102338 – volume: 17 start-page: 230630 issue: 1 year: 2023 ident: CR3 article-title: Towards safe lithium–sulfur batteries from liquid-state electrolyte to solid-state electrolyte publication-title: Frontiers of Materials Science doi: 10.1007/s11706-023-0630-3 – volume: 37 start-page: 1318 issue: 2 year: 2023 end-page: 1326 ident: CR43 article-title: Glucose-derived micromesoporous carbon spheres for high-performance lithium–sulfur batteries publication-title: Energy & Fuels doi: 10.1021/acs.energyfuels.2c03421 – volume: 126 start-page: 109137 year: 2022 ident: CR48 article-title: Fabrication of carbon nanofibril/carbon nanotube composites with high sulfur loading from nanocellulose for high-performance lithium–sulfur batteries publication-title: Chemical Communications – volume: 86 start-page: 118 year: 2023 end-page: 134 ident: CR11 article-title: Vanadium-based compounds and heterostructures as functional sulfur catalysts for lithium–sulfur battery cathodes publication-title: Journal of Energy Chemistry doi: 10.1016/j.jechem.2023.07.003 – volume: 5 start-page: 2573 issue: 2 year: 2022 end-page: 2579 ident: CR22 article-title: Macro/mesoporous carbon/defective TiO composite as a functional host for ithium–sulfur batteries publication-title: ACS Applied Energy Materials doi: 10.1021/acsaem.2c00033 – volume: 3 start-page: 12938 issue: 24 year: 2015 end-page: 12946 ident: CR36 article-title: Graphene oxide sheets-induced growth of nanostructured Fe O for a high-performance anode material of lithium ion batteries publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability doi: 10.1039/C5TA01617G – volume: 137 start-page: 11542 issue: 36 year: 2015 end-page: 11545 ident: CR62 article-title: Electrocatalytic polysulfide traps for controlling redox shuttle process of Li–S batteries publication-title: Journal of the American Chemical Society doi: 10.1021/jacs.5b04472 – volume: 54 start-page: 12250 issue: 86 year: 2018 end-page: 12253 ident: CR21 article-title: Coherent TiO /BaTiO heterostructure as a functional reservoir and promoter for polysulfide intermediates publication-title: Chemical Communications doi: 10.1039/C8CC06924G – volume: 35 start-page: 8365 issue: 9 year: 2021 end-page: 8377 ident: CR52 article-title: Cobalt oxide/graphene nanosheets/hexagonal boron nitride (Co3O4/CoO/GNS/h-BN) catalyst for high sulfur utilization in Li–S batteries at elevated temperatures publication-title: Energy & Fuels doi: 10.1021/acs.energyfuels.1c00476 – volume: 46 start-page: 365 year: 2018 end-page: 371 ident: CR63 article-title: A facile Schiff base chemical approach: towards molecular-scale engineering of N–C interface for high performance lithium–sulfur batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.016 – volume: 12 start-page: 4414 issue: 4 year: 2020 end-page: 4422 ident: CR60 article-title: Monodisperse CoSn and NiSn nanoparticles supported on commercial carbon as anode for lithium- and potassium-ion batteries publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b16418 – volume: 343 start-page: 136079 year: 2020 ident: CR32 article-title: A rGO-based Fe O and Mn O binary crystals nanocomposite additive for high performance Li–S battery publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2020.136079 – volume: 1 start-page: 576 issue: 3 year: 2017 end-page: 587 ident: CR14 article-title: A compact nanoconfined sulfur cathode for high-performance lithium–sulfur batteries publication-title: Joule doi: 10.1016/j.joule.2017.06.003 – volume: 939 start-page: 117474 year: 2023 ident: CR2 article-title: A sandwich-structured bifunctional separator for durable and stable lithium–sulfur batteries publication-title: Journal of Electroanalytical Chemistry doi: 10.1016/j.jelechem.2023.117474 – volume: 842 start-page: 155764 year: 2020 ident: CR7 article-title: Template-guided synthesis of porous MoN microrod as an effective sulfur host for highperformance lithium–sulfur batteries publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2020.155764 – volume: 32 start-page: 1904876 issue: 4 year: 2020 ident: CR4 article-title: Low-bandgap Se-deficient antimony selenide as a multifunctional polysulfide barrier toward high-performance lithium–sulfur batteries publication-title: Advanced Materials doi: 10.1002/adma.201904876 – volume: 324 start-page: 134849 year: 2019 ident: CR12 article-title: Nitrogen-doped hollow porous carbon nanotubes for high-sulfur loading Li–S batteries publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2019.134849 – volume: 429 start-page: 132167 year: 2022 ident: CR56 article-title: Decorating CoSe on N-doped carbon nanotubes as catalysts and efficient polysulfides traps for Li–S batteries publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.132167 – volume: 56 start-page: 10030 issue: 16 year: 2021 ident: 683_CR57 publication-title: Journal of Materials Science doi: 10.1007/s10853-021-05931-0 – volume: 6 start-page: 1568 issue: 6 year: 2022 ident: 683_CR19 publication-title: Sustainable Energy & Fuels doi: 10.1039/D1SE02052H – volume: 33 start-page: 2102338 issue: 42 year: 2021 ident: 683_CR27 publication-title: Advanced Materials doi: 10.1002/adma.202102338 – volume: 8 start-page: 27679 issue: 41 year: 2016 ident: 683_CR41 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.6b08852 – volume: 15 start-page: 1901320 issue: 24 year: 2019 ident: 683_CR64 publication-title: Small doi: 10.1002/smll.201901320 – volume: 248 start-page: 222 year: 2017 ident: 683_CR34 publication-title: Microporous and Mesoporous Materials doi: 10.1016/j.micromeso.2017.04.022 – volume: 12 start-page: 4414 issue: 4 year: 2020 ident: 683_CR60 publication-title: ACS Applied Materials & Interfaces doi: 10.1021/acsami.9b16418 – volume: 57 start-page: 13527 year: 2022 ident: 683_CR50 publication-title: Journal of Materials Science – volume: 939 start-page: 117474 year: 2023 ident: 683_CR2 publication-title: Journal of Electroanalytical Chemistry doi: 10.1016/j.jelechem.2023.117474 – volume: 227 start-page: 7 year: 2017 ident: 683_CR40 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2016.11.139 – volume: 6 start-page: 2200049 issue: 5 year: 2022 ident: 683_CR46 publication-title: Small Methods doi: 10.1002/smtd.202200049 – volume: 886 start-page: 161203 year: 2021 ident: 683_CR58 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2021.161203 – volume: 10 start-page: 2207470 issue: 9 year: 2023 ident: 683_CR25 publication-title: Advanced Science doi: 10.1002/advs.202207470 – volume: 331 start-page: 135287 year: 2020 ident: 683_CR59 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2019.135287 – volume: 459 start-page: 141526 year: 2023 ident: 683_CR17 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2023.141526 – volume: 126 start-page: 109137 year: 2022 ident: 683_CR48 publication-title: Chemical Communications – volume: 429 start-page: 132167 year: 2022 ident: 683_CR56 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2021.132167 – volume: 842 start-page: 155764 year: 2020 ident: 683_CR7 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2020.155764 – volume: 11 start-page: 1512 issue: 9 year: 2018 ident: 683_CR13 publication-title: ChemSusChem doi: 10.1002/cssc.201800242 – volume: 17 start-page: 230630 issue: 1 year: 2023 ident: 683_CR3 publication-title: Frontiers of Materials Science doi: 10.1007/s11706-023-0630-3 – volume: 901 start-page: 163625 year: 2022 ident: 683_CR5 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2022.163625 – volume: 1 start-page: 576 issue: 3 year: 2017 ident: 683_CR14 publication-title: Joule doi: 10.1016/j.joule.2017.06.003 – volume: 16 start-page: 220624 issue: 4 year: 2022 ident: 683_CR1 publication-title: Frontiers of Materials Science doi: 10.1007/s11706-022-0624-6 – volume: 213 start-page: 63 year: 2016 ident: 683_CR38 publication-title: Materials Science and Engineering B doi: 10.1016/j.mseb.2016.05.004 – volume: 597 start-page: 153687 year: 2022 ident: 683_CR45 publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2022.153687 – volume: 324 start-page: 134849 year: 2019 ident: 683_CR12 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2019.134849 – volume: 702 start-page: 499 year: 2017 ident: 683_CR29 publication-title: Journal of Alloys and Compounds doi: 10.1016/j.jallcom.2017.01.259 – volume: 364 start-page: 1091 issue: 6445 year: 2019 ident: 683_CR35 publication-title: Science doi: 10.1126/science.aaw7515 – volume: 8 start-page: 2000302 issue: 7 year: 2020 ident: 683_CR47 publication-title: Energy Technology doi: 10.1002/ente.202000302 – volume: 137 start-page: 11542 issue: 36 year: 2015 ident: 683_CR62 publication-title: Journal of the American Chemical Society doi: 10.1021/jacs.5b04472 – volume: 251 start-page: 279 year: 2014 ident: 683_CR39 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2013.11.068 – volume: 31 start-page: 2011249 issue: 18 year: 2021 ident: 683_CR55 publication-title: Advanced Functional Materials doi: 10.1002/adfm.202011249 – volume: 32 start-page: 1904876 issue: 4 year: 2020 ident: 683_CR4 publication-title: Advanced Materials doi: 10.1002/adma.201904876 – volume: 4 start-page: 10998 issue: 10 year: 2021 ident: 683_CR51 publication-title: ACS Applied Energy Materials doi: 10.1021/acsaem.1c01943 – volume: 359 start-page: 136944 year: 2020 ident: 683_CR9 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2020.136944 – volume: 6 start-page: 2797 issue: 6 year: 2018 ident: 683_CR53 publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability doi: 10.1039/C7TA10272K – volume: 30 start-page: 1910533 issue: 28 year: 2020 ident: 683_CR8 publication-title: Advanced Functional Materials doi: 10.1002/adfm.201910533 – volume: 5 start-page: 2573 issue: 2 year: 2022 ident: 683_CR22 publication-title: ACS Applied Energy Materials doi: 10.1021/acsaem.2c00033 – volume: 30 start-page: 6969 issue: 20 year: 2018 ident: 683_CR37 publication-title: Chemistry of Materials doi: 10.1021/acs.chemmater.8b01352 – volume: 3 start-page: 12938 issue: 24 year: 2015 ident: 683_CR36 publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability doi: 10.1039/C5TA01617G – volume: 86 start-page: 118 year: 2023 ident: 683_CR11 publication-title: Journal of Energy Chemistry doi: 10.1016/j.jechem.2023.07.003 – volume: 47 start-page: 241 year: 2020 ident: 683_CR24 publication-title: Journal of Energy Chemistry doi: 10.1016/j.jechem.2020.02.003 – volume: 460 start-page: 141811 year: 2023 ident: 683_CR20 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2023.141811 – volume: 644 start-page: 546 year: 2023 ident: 683_CR23 publication-title: Journal of Colloid and Interface Science doi: 10.1016/j.jcis.2023.03.169 – volume: 37 start-page: 1318 issue: 2 year: 2023 ident: 683_CR43 publication-title: Energy & Fuels doi: 10.1021/acs.energyfuels.2c03421 – volume: 59 start-page: 3961 issue: 10 year: 2020 ident: 683_CR26 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201915663 – volume: 5 start-page: 1701659 issue: 9 year: 2018 ident: 683_CR16 publication-title: Advanced Materials Interfaces doi: 10.1002/admi.201701659 – volume: 25 start-page: 8112 issue: 34 year: 2019 ident: 683_CR33 publication-title: Chemistry doi: 10.1002/chem.201900884 – volume: 46 start-page: 365 year: 2018 ident: 683_CR63 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.02.016 – volume: 54 start-page: 12250 issue: 86 year: 2018 ident: 683_CR21 publication-title: Chemical Communications doi: 10.1039/C8CC06924G – volume: 58 start-page: 5108 issue: 33 year: 2022 ident: 683_CR49 publication-title: Chemical Communications doi: 10.1039/D2CC00230B – volume: 54 start-page: 4325 issue: 14 year: 2015 ident: 683_CR18 publication-title: Angewandte Chemie International Edition doi: 10.1002/anie.201411109 – volume: 35 start-page: 8365 issue: 9 year: 2021 ident: 683_CR52 publication-title: Energy & Fuels doi: 10.1021/acs.energyfuels.1c00476 – volume: 11 start-page: 2101780 issue: 42 year: 2021 ident: 683_CR30 publication-title: Advanced Energy Materials doi: 10.1002/aenm.202101780 – volume: 8 start-page: 1771 issue: 7 year: 2021 ident: 683_CR54 publication-title: Inorganic Chemistry Frontiers doi: 10.1039/D0QI01393E – volume: 33 start-page: 2210987 issue: 3 year: 2023 ident: 683_CR10 publication-title: Advanced Functional Materials doi: 10.1002/adfm.202210987 – volume: 404 start-page: 126462 year: 2021 ident: 683_CR61 publication-title: Chemical Engineering Journal doi: 10.1016/j.cej.2020.126462 – volume: 528 start-page: 148032 year: 2021 ident: 683_CR44 publication-title: Applied Surface Science – volume: 32 start-page: 3113 issue: 10 year: 2021 ident: 683_CR31 publication-title: Chinese Chemical Letters doi: 10.1016/j.cclet.2021.03.014 – volume: 343 start-page: 136079 year: 2020 ident: 683_CR32 publication-title: Electrochimica Acta doi: 10.1016/j.electacta.2020.136079 – volume: 427 start-page: 823 year: 2018 ident: 683_CR42 publication-title: Applied Surface Science doi: 10.1016/j.apsusc.2017.06.288 – volume: 10 start-page: 24422 issue: 45 year: 2022 ident: 683_CR15 publication-title: Journal of Materials Chemistry A: Materials for Energy and Sustainability doi: 10.1039/D2TA06686F – volume: 942 start-page: 117590 year: 2023 ident: 683_CR6 publication-title: Journal of Electroanalytical Chemistry doi: 10.1016/j.jelechem.2023.117590 – volume: 5 start-page: 2001056 issue: 3 year: 2021 ident: 683_CR28 publication-title: Small Methods doi: 10.1002/smtd.202001056 |
SSID | ssj0000515941 |
Score | 2.3372836 |
Snippet | There are still many challenges including low conductivity of cathodes, shuttle effect of polysulfides, and significant volume change of sulfur during cycling... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Carbon Cathodes Chemistry and Materials Science Decay rate Electrical resistivity Lithium sulfur batteries Low conductivity Materials Science Nanoparticles Nanosheets Nitrogen Polysulfides Research Article Sulfur |
Title | (FeO)2FeBO3 nanoparticles attached on interconnected nitrogen-doped carbon nanosheets serving as sulfur hosts for lithium–sulfur batteries |
URI | https://link.springer.com/article/10.1007/s11706-024-0683-y https://www.proquest.com/docview/3070717049 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELZ4LDAgnqK85IGBhywldhw3Y0EUBAIWKpUpsh1HIJUUJenAxg9g4x_yS7hLEwoIkNhi-THkzr7vfL7vCNmV3DNaS8HAHIUsCAPFtOURc4FWGPUDs44JzpdX4VkvOO_Lfp3HXTSv3ZuQZHVST5LdkOmFgU3BQimCPU2TWYmuOyhxj3c-LlawaElUVazkXpV9LPtNNPOnVb7aownI_BYXrcxNd5Es1DiRdsaCXSJTLlsm85_YA1fIy17XXe-Dnh1dC5rpDNzf-pUb1WWJRM0JHWYUCSFyi-9ZLKBLCls4H4LWsGT4CE2rcwODcHpx51xZULymhfWphs_RIB3lFBNBCgrolgJmv7sfPbw9v9ZdpqLnBG97lfS6JzfHZ6wursCs8MOSRcaXJgid1eCAtT2lUhE53_gqdFwmxtiEK62EScGfCpxKbNtywCbKhUIZ7oRYIzPZMHPrhIpUtnlqfZA5sunpSCYaU34Nb7tEJ36LeM0vjm3NPI4FMAbxhDMZpRKDVGKUSvzUIgcfUx7HtBt_Dd5q5BbXO7CI8SwDVxUcoBY5bGQ56f51sY1_jd4kc3ysS8zzt8hMmY_cNqCU0uyQ2c7p7cXJTqWd77mQ4xE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV25TsQwELU4CqBAnGI5XVBwyFJiJ3FSAmK13A0rbRfZjqNFgixKsgUdH0DHH_IlzGQTFhAg0SWK7SIz9rzxzLwhZNfnjlbKFwzMUcC8wJNMGR4x6ymJUT8w61jgfHUddLreec_v1XXcRZPt3oQkq5N6XOyGTC8MbAo2ShHsaZJMAxYIMY-ry48-LlawaUlUdazkTlV97PeaaOZPq3y1R2OQ-S0uWpmb9gKZr3EiPRoJdpFM2GyJzH1iD1wmL3tte7MPenZ8I2imMnB_6yw3qsoSiZoTOsgoEkLkBvNZDKBLCls4H4DWsGTwCK9G5RoG4fSib21ZULymhfWpgsfhfTrMKRaCFBTQLQXM3r8bPrw9v9afdEXPCd72Cum2T29POqxursCMcIOSRdr1tRdYo8ABCx0pUxFZV7sysNxPtDYJl0oKnYI_5VmZmNBwwCbSBkJqboVYJVPZILNrhIrUD3lqXJA5sumpyE8UlvxqHtpEJW6LOM0vjk3NPI4NMO7jMWcySiUGqcQolfipRQ4-pjyOaDf-GrzZyC2ud2AR41kGrio4QC1y2Mhy_PnXxdb_NXqHzHRury7jy7Priw0yy0d6xRx3k0yV-dBuAWIp9Xaloe9yAuRw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF7xkCo4VIWCCFDYAwcoWmHv2t74CC1ReCU9NFJu1r4skMCJbOfAjR_QW_9hfwkzjp20FSBx82ofB8_szjc7O98QchByTysVCgbmKGJBFEimDI-ZC5TEqB-YdUxwvulF3UFwOQyHdZ3Tonnt3oQkpzkNyNKUlSdjm57ME9-Q9YWBfcGiKYI9LpJlOI19VOsBP51dsmABk7iqXsm9KhM5HDaRzZdW-dc2zQHnfzHSyvR0PpGPNWakp1Mhr5EFl62T1b-YBD-TX4cd1z8CnTvrC5qpDFzh-sUbVWWJpM2WjjKK5BC5wbctBpAmhe2cj0CDmB2NoWlUrmEQTi9unSsLile2sD5V8Dm5Tyc5xaSQggLSpYDfb-8mD3-eftdduqLqBM97gww65z-_dVldaIEZ4Ucli7Uf6iByRoEz1vakTEXsfO3LyPHQam0sl0oKnYJvFThpTdtwwCnSRUJq7oTYJEvZKHNbhIo0bPPU-CB_ZNZTcWgVpv9q3nZWWb9FvOYXJ6ZmIcdiGPfJnD8ZpZKAVBKUSvLYIl9nU8ZTCo63Bu82ckvq3VgkeK6B2wrOUIscN7Kcd7-62Pa7Ru-TDz--d5Lri97VDlnhU7Vinr9Llsp84r4AeCn1XqWgz3Q86Kw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%28FeO%292FeBO3+nanoparticles+attached+on+interconnected+nitrogen-doped+carbon+nanosheets+serving+as+sulfur+hosts+for+lithium%E2%80%93sulfur+batteries&rft.jtitle=Frontiers+of+materials+science&rft.au=Wang%2C+Junhai&rft.au=Huang+Huaqiu&rft.au=Chen%2C+Chen&rft.au=Zheng+Jiandong&rft.date=2024-06-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-025X&rft.eissn=2095-0268&rft.volume=18&rft.issue=2&rft_id=info:doi/10.1007%2Fs11706-024-0683-y&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-025X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-025X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-025X&client=summon |