Survey on SDN based network intrusion detection system using machine learning approaches

Software Defined Networking Technology (SDN) provides a prospect to effectively detect and monitor network security problems ascribing to the emergence of the programmable features. Recently, Machine Learning (ML) approaches have been implemented in the SDN-based Network Intrusion Detection Systems...

Full description

Saved in:
Bibliographic Details
Published inPeer-to-peer networking and applications Vol. 12; no. 2; pp. 493 - 501
Main Authors Sultana, Nasrin, Chilamkurti, Naveen, Peng, Wei, Alhadad, Rabei
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2019
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Software Defined Networking Technology (SDN) provides a prospect to effectively detect and monitor network security problems ascribing to the emergence of the programmable features. Recently, Machine Learning (ML) approaches have been implemented in the SDN-based Network Intrusion Detection Systems (NIDS) to protect computer networks and to overcome network security issues. A stream of advanced machine learning approaches – the deep learning technology (DL) commences to emerge in the SDN context. In this survey, we reviewed various recent works on machine learning (ML) methods that leverage SDN to implement NIDS. More specifically, we evaluated the techniques of deep learning in developing SDN-based NIDS. In the meantime, in this survey, we covered tools that can be used to develop NIDS models in SDN environment. This survey is concluded with a discussion of ongoing challenges in implementing NIDS using ML/DL and future works.
AbstractList Software Defined Networking Technology (SDN) provides a prospect to effectively detect and monitor network security problems ascribing to the emergence of the programmable features. Recently, Machine Learning (ML) approaches have been implemented in the SDN-based Network Intrusion Detection Systems (NIDS) to protect computer networks and to overcome network security issues. A stream of advanced machine learning approaches – the deep learning technology (DL) commences to emerge in the SDN context. In this survey, we reviewed various recent works on machine learning (ML) methods that leverage SDN to implement NIDS. More specifically, we evaluated the techniques of deep learning in developing SDN-based NIDS. In the meantime, in this survey, we covered tools that can be used to develop NIDS models in SDN environment. This survey is concluded with a discussion of ongoing challenges in implementing NIDS using ML/DL and future works.
Author Sultana, Nasrin
Chilamkurti, Naveen
Alhadad, Rabei
Peng, Wei
Author_xml – sequence: 1
  givenname: Nasrin
  surname: Sultana
  fullname: Sultana, Nasrin
  organization: Department of Computer Science and IT, La Trobe University
– sequence: 2
  givenname: Naveen
  surname: Chilamkurti
  fullname: Chilamkurti, Naveen
  email: n.chilamkurti@latrobe.edu.au
  organization: Department of Computer Science and IT, La Trobe University
– sequence: 3
  givenname: Wei
  surname: Peng
  fullname: Peng, Wei
  organization: Department of Accounting and Business Analytics, La Trobe University
– sequence: 4
  givenname: Rabei
  surname: Alhadad
  fullname: Alhadad, Rabei
  organization: Department of Computer Science and IT, La Trobe University
BookMark eNp9kF1LwzAUhoNMcE5_gHcBr6tJ2iTNpcxPGHoxBe9Cmp3Ozi2dSars35tSERH0Koc358kbnkM0cq0DhE4oOaOEyPNAGSnzjFCZEZGTjOyhMVW5yETByeh7LtgBOgxhRYigOWdj9Dzv_DvscOvw_PIeVybAAjuIH61_xY2LvgtNultABBv7KexChA1OsVvijbEvjQO8BuNdH5jt1rcphHCE9muzDnD8dU7Q0_XV4_Q2mz3c3E0vZpnNqYiZKgpS1syWEjjjvGLUACdKWMlZJSslVGXqesGEVNxQYygvKlWVNbEWVCnrfIJOh3dT8VsHIepV23mXKjVViknFFCvTFh22rG9D8FDrrW82xu80JboXqAeBOgnUvUBNEiN_MbaJppcQvWnW_5JsIENqcUvwP_70J_QJR8yHSQ
CitedBy_id crossref_primary_10_1016_j_cose_2023_103462
crossref_primary_10_1016_j_comnet_2020_107743
crossref_primary_10_1002_dac_4524
crossref_primary_10_1093_jigpal_jzz060
crossref_primary_10_1007_s10776_022_00561_y
crossref_primary_10_1016_j_jisa_2019_102419
crossref_primary_10_33461_uybisbbd_972206
crossref_primary_10_1007_s11276_020_02321_3
crossref_primary_10_1007_s10586_024_04596_z
crossref_primary_10_1155_2021_8836057
crossref_primary_10_32604_cmc_2022_017772
crossref_primary_10_1016_j_comnet_2022_109365
crossref_primary_10_1080_23335777_2020_1811383
crossref_primary_10_1109_ACCESS_2019_2927822
crossref_primary_10_47992_IJCSBE_2581_6942_0261
crossref_primary_10_1007_s42979_025_03656_4
crossref_primary_10_32604_cmc_2022_025262
crossref_primary_10_1021_acsomega_3c01684
crossref_primary_10_3390_s22072697
crossref_primary_10_1007_s10207_022_00641_3
crossref_primary_10_1109_ACCESS_2020_2972627
crossref_primary_10_1016_j_comcom_2021_11_014
crossref_primary_10_1007_s12145_024_01369_5
crossref_primary_10_1109_ACCESS_2024_3390968
crossref_primary_10_1016_j_cosrev_2020_100357
crossref_primary_10_1109_TNSM_2024_3382393
crossref_primary_10_3389_fcomp_2024_1387354
crossref_primary_10_3390_electronics10141633
crossref_primary_10_1057_s41284_024_00435_3
crossref_primary_10_1515_comp_2022_0267
crossref_primary_10_1007_s10776_020_00488_2
crossref_primary_10_3390_app131810229
crossref_primary_10_1109_MCOM_005_2100992
crossref_primary_10_3390_s23020890
crossref_primary_10_1109_COMST_2021_3086296
crossref_primary_10_1016_j_comnet_2020_107647
crossref_primary_10_1016_j_jnca_2021_103156
crossref_primary_10_1109_ACCESS_2021_3101650
crossref_primary_10_1155_2021_6634811
crossref_primary_10_32604_cmc_2023_034176
crossref_primary_10_3390_fi15020076
crossref_primary_10_1016_j_icte_2025_01_005
crossref_primary_10_1016_j_micpro_2020_103285
crossref_primary_10_1007_s00521_024_10333_9
crossref_primary_10_1007_s11042_021_10567_y
crossref_primary_10_1002_cpe_7118
crossref_primary_10_1016_j_comnet_2022_109358
crossref_primary_10_1093_comjnl_bxae108
crossref_primary_10_31590_ejosat_1187984
crossref_primary_10_3390_electronics11213529
crossref_primary_10_32604_iasc_2023_026769
crossref_primary_10_1016_j_jnca_2022_103444
crossref_primary_10_1080_02522667_2020_1747193
crossref_primary_10_1002_dac_4782
crossref_primary_10_1016_j_iot_2024_101413
crossref_primary_10_1016_j_iswa_2023_200215
crossref_primary_10_1007_s10776_019_00462_7
crossref_primary_10_1007_s10586_021_03449_3
crossref_primary_10_1007_s10207_022_00632_4
crossref_primary_10_1109_ACCESS_2021_3100706
crossref_primary_10_3390_electronics13204000
crossref_primary_10_1155_2021_5538896
crossref_primary_10_1007_s42979_021_00659_9
crossref_primary_10_1142_S021962202230004X
crossref_primary_10_1016_j_comnet_2020_107706
crossref_primary_10_1109_ACCESS_2023_3340142
crossref_primary_10_1155_2021_3913515
crossref_primary_10_32604_cmes_2022_020724
crossref_primary_10_3390_app13148307
crossref_primary_10_1016_j_comcom_2022_09_012
crossref_primary_10_3390_su15119001
crossref_primary_10_1002_cpe_5927
crossref_primary_10_3390_info12050215
crossref_primary_10_32604_iasc_2022_024668
crossref_primary_10_1080_01969722_2022_2148509
crossref_primary_10_29121_shodhkosh_v5_i3_2024_4437
crossref_primary_10_1007_s11227_021_04145_0
crossref_primary_10_4316_AECE_2024_02004
crossref_primary_10_1111_exsy_13066
crossref_primary_10_1016_j_jnca_2020_102767
crossref_primary_10_1002_eng2_12697
crossref_primary_10_1109_ACCESS_2021_3062909
crossref_primary_10_4018_IJSKD_2020040101
crossref_primary_10_1007_s11277_020_08002_w
crossref_primary_10_1155_2022_7272479
crossref_primary_10_21015_vtse_v10i2_1017
crossref_primary_10_1088_1742_6596_1693_1_012143
crossref_primary_10_3390_electronics10222851
crossref_primary_10_1016_j_neucom_2021_06_093
crossref_primary_10_1016_j_dcan_2022_08_012
crossref_primary_10_1007_s11277_021_08127_6
crossref_primary_10_1109_JAS_2021_1004344
crossref_primary_10_1016_j_jnca_2021_103111
crossref_primary_10_1007_s10586_023_04069_9
crossref_primary_10_1155_2021_5527746
crossref_primary_10_1007_s12652_023_04732_4
crossref_primary_10_1109_ACCESS_2024_3478764
crossref_primary_10_25205_1818_7900_2023_21_1_62_72
crossref_primary_10_1109_ACCESS_2020_3031966
crossref_primary_10_32604_csse_2022_017941
crossref_primary_10_1016_j_knosys_2022_109557
crossref_primary_10_1007_s11042_023_15725_y
crossref_primary_10_1007_s11277_022_10069_6
crossref_primary_10_1007_s11277_021_08542_9
crossref_primary_10_1109_ACCESS_2023_3276238
crossref_primary_10_1007_s10922_024_09841_9
crossref_primary_10_4218_etrij_2019_0109
crossref_primary_10_1016_j_asoc_2022_108692
crossref_primary_10_1109_ACCESS_2022_3171660
crossref_primary_10_3390_app13179488
crossref_primary_10_1108_IJAIM_08_2022_0170
crossref_primary_10_1007_s11334_024_00594_x
crossref_primary_10_1109_ACCESS_2023_3267764
crossref_primary_10_1016_j_engappai_2020_103770
crossref_primary_10_1145_3457904
crossref_primary_10_1109_TSMC_2024_3374280
crossref_primary_10_1016_j_comnet_2022_109528
crossref_primary_10_1016_j_compeleceng_2021_107052
crossref_primary_10_1016_j_ijleo_2022_170044
crossref_primary_10_1016_j_comcom_2021_01_027
crossref_primary_10_1016_j_cose_2025_104392
crossref_primary_10_1186_s13638_021_01893_8
crossref_primary_10_1007_s12652_020_02271_w
crossref_primary_10_1109_ACCESS_2021_3069210
crossref_primary_10_1109_ACCESS_2023_3313630
crossref_primary_10_1007_s10489_021_02901_6
crossref_primary_10_1016_j_jnca_2021_103093
crossref_primary_10_1109_TDSC_2021_3108782
crossref_primary_10_1016_j_mlwa_2022_100351
crossref_primary_10_1038_s41598_024_79001_1
crossref_primary_10_1016_j_eswa_2024_125985
crossref_primary_10_3390_s22207896
crossref_primary_10_1016_j_compbiomed_2024_108036
crossref_primary_10_3390_a14080224
crossref_primary_10_3934_aci_2021004
crossref_primary_10_4018_JDM_338276
crossref_primary_10_1007_s11042_023_15729_8
crossref_primary_10_2478_jaiscr_2021_0008
crossref_primary_10_48084_etasr_9256
crossref_primary_10_1109_TNSM_2023_3298533
crossref_primary_10_32604_iasc_2022_021879
crossref_primary_10_1016_j_jfranklin_2024_107197
crossref_primary_10_3390_network4010003
crossref_primary_10_1109_ACCESS_2023_3333013
crossref_primary_10_1109_COMST_2019_2933899
crossref_primary_10_3233_JIFS_200850
crossref_primary_10_1049_cit2_12003
crossref_primary_10_18267_j_aip_199
crossref_primary_10_1016_j_teler_2023_100053
crossref_primary_10_1109_ACCESS_2021_3099092
crossref_primary_10_4018_IJISMD_313578
crossref_primary_10_1109_ACCESS_2022_3168976
crossref_primary_10_1109_TNSM_2021_3091517
crossref_primary_10_3390_info14010041
crossref_primary_10_3390_s22155551
crossref_primary_10_1109_TC_2021_3077687
crossref_primary_10_1051_itmconf_20257402001
crossref_primary_10_1177_1548512920951275
crossref_primary_10_1109_ACCESS_2022_3168972
crossref_primary_10_32604_csse_2023_034589
crossref_primary_10_1145_3530812
crossref_primary_10_1177_1550147719889906
crossref_primary_10_1016_j_jnca_2020_102947
crossref_primary_10_1007_s10922_021_09591_y
crossref_primary_10_1007_s11277_023_10523_z
crossref_primary_10_1109_ACCESS_2020_3040740
crossref_primary_10_1016_j_array_2022_100136
crossref_primary_10_3390_electronics9122114
crossref_primary_10_1080_19361610_2021_1918500
crossref_primary_10_1002_dac_4815
crossref_primary_10_1109_ACCESS_2022_3214974
crossref_primary_10_1155_2021_9089370
crossref_primary_10_1109_ACCESS_2022_3171226
crossref_primary_10_1007_s10586_024_04430_6
crossref_primary_10_3390_s22010241
crossref_primary_10_1016_j_comnet_2022_109073
crossref_primary_10_1109_ACCESS_2021_3058244
crossref_primary_10_3390_fi13050111
crossref_primary_10_46604_aiti_2020_4286
crossref_primary_10_1109_ACCESS_2020_3009733
crossref_primary_10_1371_journal_pone_0302294
crossref_primary_10_1080_07366981_2024_2360840
crossref_primary_10_1016_j_comnet_2023_110162
crossref_primary_10_1109_ACCESS_2024_3406939
crossref_primary_10_3390_s22031154
crossref_primary_10_1016_j_comnet_2023_110044
crossref_primary_10_1109_ACCESS_2021_3137318
crossref_primary_10_1016_j_cosrev_2024_100717
crossref_primary_10_1109_ACCESS_2024_3367004
crossref_primary_10_4018_IJSI_289172
crossref_primary_10_32604_cmc_2022_021669
crossref_primary_10_3233_IDT_230238
crossref_primary_10_1016_j_iot_2023_100715
crossref_primary_10_53982_ajerd_2024_0702_29_j
crossref_primary_10_1109_JSEN_2020_3012046
crossref_primary_10_1016_j_cose_2025_104341
crossref_primary_10_1051_itmconf_20257001015
crossref_primary_10_32604_cmc_2020_013910
crossref_primary_10_1007_s00607_020_00866_x
crossref_primary_10_3390_sym12010007
crossref_primary_10_1051_itmconf_20246401016
crossref_primary_10_1109_ACCESS_2020_2996214
crossref_primary_10_12720_jait_16_3_283_302
crossref_primary_10_1016_j_comnet_2020_107688
crossref_primary_10_1007_s11042_020_08724_w
crossref_primary_10_1007_s13369_020_05181_3
crossref_primary_10_1002_cpe_5300
crossref_primary_10_1007_s11432_023_4067_x
crossref_primary_10_1155_2020_8850550
crossref_primary_10_1007_s11277_021_08100_3
crossref_primary_10_3390_app122010349
crossref_primary_10_1007_s10207_019_00453_y
crossref_primary_10_3390_s24113339
crossref_primary_10_1145_3703447
crossref_primary_10_1007_s42797_021_00025_1
crossref_primary_10_3390_s20020378
crossref_primary_10_1016_j_compeleceng_2022_107706
crossref_primary_10_3390_fi14020044
crossref_primary_10_1007_s10922_021_09615_7
crossref_primary_10_32604_iasc_2023_034908
crossref_primary_10_1109_ACCESS_2020_3022855
crossref_primary_10_1515_comp_2024_0004
crossref_primary_10_1088_1742_6596_1802_4_042029
crossref_primary_10_1109_ACCESS_2020_3002333
crossref_primary_10_1109_ACCESS_2019_2928564
crossref_primary_10_1007_s12652_020_02099_4
crossref_primary_10_1016_j_eij_2025_100629
Cites_doi 10.1109/NAECON.2015.7443094
10.1109/SURV.2014.012214.00180
10.1016/j.neucom.2012.11.050
10.1109/COMST.2015.2487361
10.5120/14870-3245
10.1109/WCNC.2013.6555301
10.4108/eai.28-12-2017.153515
10.1007/978-3-642-23644-0_9
10.1109/MCOM.2013.6553676
10.4236/jis.2016.73009
10.1007/978-3-642-20505-7_26
10.1561/2000000039
10.1016/j.patrec.2014.05.020
10.1016/j.cose.2008.08.003
10.1515/eletel-2016-0033
10.1109/LCN.2010.5735752
10.1109/ICAEES.2016.7888070
10.1007/s00521-015-2113-7
10.1155/2016/4731953
10.1007/978-3-642-14706-7_19
10.1109/SURV.2013.111313.00244
10.1016/j.cose.2011.12.012
10.1007/978-3-642-30507-8_13
10.1109/ICASSP.2013.6639096
10.5923/j.ijnc.20170701.03
10.1109/ICSMC.2008.4811688
10.1038/nature14539
10.1109/WINCOM.2016.7777224
10.1145/967900.967988
10.1109/ICPRIME.2013.6496489
10.1109/ColComCon.2014.6860403
10.1016/j.eswa.2009.05.029
10.1155/2017/7191647
10.1145/1456377.1456395
10.1007/978-3-642-32129-0_34
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2018
Peer-to-Peer Networking and Applications is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018
– notice: Peer-to-Peer Networking and Applications is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8AO
8FD
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
M2O
M2P
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.1007/s12083-017-0630-0
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Proquest Central
Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Research Library
Science Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Research Library Prep

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1936-6450
EndPage 501
ExternalDocumentID 10_1007_s12083_017_0630_0
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
06D
0R~
0VY
123
1N0
203
29O
29~
2JN
2JY
2KG
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
5VS
67Z
6NX
875
88I
8AO
8FE
8FG
8G5
8TC
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ARAPS
ARCSS
AUKKA
AXYYD
AYJHY
AZQEC
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BPHCQ
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GUQSH
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KOV
LLZTM
M0N
M2O
M2P
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P62
P9P
PQQKQ
PROAC
PT4
Q2X
QOS
R89
RIG
RLLFE
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TH9
TSG
TSK
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c316t-94408f2c87e5255b21ae5096c752b7b969baffd26795a1aa154b9b8f0cce987f3
IEDL.DBID BENPR
ISSN 1936-6442
IngestDate Fri Jul 25 08:41:35 EDT 2025
Thu Apr 24 23:05:31 EDT 2025
Tue Jul 01 01:29:11 EDT 2025
Fri Feb 21 02:34:37 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Deep learning
SDN
NIDS
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-94408f2c87e5255b21ae5096c752b7b969baffd26795a1aa154b9b8f0cce987f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1992792928
PQPubID 54523
PageCount 9
ParticipantIDs proquest_journals_1992792928
crossref_primary_10_1007_s12083_017_0630_0
crossref_citationtrail_10_1007_s12083_017_0630_0
springer_journals_10_1007_s12083_017_0630_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190300
2019-3-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 3
  year: 2019
  text: 20190300
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Norwell
PublicationTitle Peer-to-peer networking and applications
PublicationTitleAbbrev Peer-to-Peer Netw. Appl
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Chen C, Gong Y, Tian Y (2008) Semi-supervised learning methods for network intrusion detection. Int Conf Sys, Man Cybern, IEEE. https://doi.org/10.1109/ICSMC.2008.4811688
Nguyen HT, Petrovic S, Franke K (2010) A comparison of feature-selection methods for intrusion detection. In: Kotenko I, Skormin V (eds) Computer Network Security. MMM-ACNS 2010. Lecture Notes in Computer Science, vol 6258. Springer, Berlin, Heidelberg, pp 242–255
Braga R, Mota E, Passito A (2010) Lightweight DDoS flooding attack detection using NOX/OpenFlow. 35th Annual IEEE conference on local computer networks, Denver, Colorado
Deep learning stand to benefit to data analytics and HPC expertise http://www.cio.com/article/3180184/analytics/deep-learning- stands-to- benefit-from-data-analytics-and-high-performance-computing-hpc-expertise.html. Accessed 3 July 2017
Mehdi SA, Khalid J, Khaiyam SA (2011) Revisiting traffic anomaly detection using software defined networking. In: Sommer R, Balzarotti D, Maier G (eds) Recent Advances in Intrusion Detection. RAID 2011. Lecture Notes in Computer Science, vol 6961. Springer, Berlin, Heidelberg
Haweliya J, Nigam B (2014) Network intrusion detection using semi supervised support vector machine. Int J Comput Appl 85, 9
Tuan TA, Mhamdi L, Mclernon D, Zaidi SAR, Ghogho M (2016) Deep learning approach for network intrusion detection in software defined networking. Int Conf Wirel Netw Mob Commun. https://doi.org/10.1109/WINCOM.2016.7777224
Syarif I, Prugel-Bennett A, Wills G (2012) Unsupervised clustering approach for network anomaly detection. In: Benlamri R (eds) Networked Digital Technologies. NDT 2012. Communications in Computer and Information Science, vol 293. Springer, Berlin, Heidelberg
Eid HFA, Darwish A, Hassanien AE, Abraham A (2010) Principal components analysis and support vector machine based intrusion detection system. International conference intelligent systems design and applications (ISDA)
Yan Q, Yu FR, Gong Q and Li J (2016) Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: A survey, some research issues, and challenges. IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp 602–622 Firstquarter 2016. https://doi.org/10.1109/COMST.2015.2487361
Open Flow [Online]. Available: http://www.openflow.org/. Accessed 12 July 2017
Wang L, Jones R (2017) Big data analytics for network intrusion detection: a survey. Int J Netw Commun. https://doi.org/10.5923/j.ijnc.20170701.03
Creech G, Hu J (2013) Generation of a new IDS test dataset: time to retire the KDD collection. Wirel Commun Netw Conf (WCNC). https://doi.org/10.1109/WCNC.2013.6555301
Prete LR, Shinoda AA, Schweitzer CM, De Oliveira RLS (2014) Simulation in an SDN network scenario using the POX controller. 2014 I.E. Colombian Conference on Communications and Computing (COLCOM), Bogota, pp 1–6. https://doi.org/10.1109/ColComCon.2014.6860403
Kaur S, Singh J, Ghumman NS (2014) Network programmability using POX controller. International conference on communication, computing & systems, at SBS Staten technical campus, Ferozepur, Punjab, India, volume: 1
Hughes T, Mierle K (2013) Recurrent neural networks for voice activity detection IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, pp 7378–7382. https://doi.org/10.1109/ICASSP.2013.6639096
Kreutz D, Ramos FMV, Verissimo PE, Rothenberg CE, Azodolmolky S (2015) Software-defines network- a comprehensive survey. Published in Proceedings of the IEEE, 103, 1
Zanero S, Savaresi SM (2004) Unsupervised learning techniques for an intrusion detection system. In: Proceedings of the ACM symposium on applied computing. Pages 412–419
Almomani I, Al-Kasasbeh B, Al-Akhras M (2016) WSN-DS: a dataset for intrusion detection systems in wireless sensor networks. J Sens 16p
POX. [Online]. Available: http://www.noxrepo.org/pox/about-pox. Accessed 12 July 2017
Open Networking Foundation (2014) SDN architecture, Issue 1 June 2014 ONF TR-502
Alom MZ, Bontupalli VR, Taha TM (2015) Intrusion detection using deep belief networks. Aerospace and electronics conference, NAECON. IEEE
Convolutional Neural Networks (2017) http://eric-yuan.me/cnn/. Accessed 10 July 2017
Hewlett Packard Enterprise (2015) 2015 cost of cyber crime study: global, independently conducted by Ponemon institute LLC publication, Ponemon Institute research report. Avaiable https://www.accenture.com/t20170926T072837Z__w__/us-en/_acnmedia/PDF-61/Accenture-2017-CostCyberCrimeStudy.pdf. Accessed 26 June 2017
Zamani M, Movahedi M (2015) Machine learning techniques for intrusion detection. CoRR, arXiv preprint arXiv:1312.2177. 2017 Jan 9
Vyas A (2017) Deep learning in natural language processing” in mphasis, deep learning- NL_whitepaper
Bakshi T (2017) State of the art and recent research advances in software defined networking. In Wireless Communications and Mobile Computing, 2017, 1530-8669, Hindawi Publishing Corporation
Supervised and unsupervised machine learning algorithms http://machinelearningmastery.com/supervised-and-unsupervised-machine learning-algorithms/. Accessed 20 June 2017
EidHFSalamaMAHassanienAEKimTHBi-layer behavioral based feature selection approach for network intrusion classificationCommun Comput Inf Sci Book Ser2011259195203
TsaiCHsuYLinCLinWIntrusion detection by machine learning: a reviewExpert Syst Appl200936119941200010.1016/j.eswa.2009.05.029
Hasan MAM, Nasser M, Ahmad S, Molla KH (2016) Feature selection for intrusion detection using random forest. In: Journal of information security, pp 129–140
Gogoil P, Bhuyan MH (2012) Packet and flow-based network intrusion dataset. International conference on contemporary computing IC3, pp 322–334
Tutorial http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/. Accessed June 15 2017
Sezer S, Scott-Hayward S, Chouhan PK (2013) Are we ready for SDN? Implementation challenges for software-defined networks. In: IEEE Communication Magazine, vol. 51, no. 7, pp 36–43. https://doi.org/10.1109/MCOM.2013.6553676
Aburomman AA, Reza MBI (2016) Survey of learning methods in intrusion detection systems. International conference on advances in electrical, electronic and system Engineering(ICAEES), Putrajaya, pp 362–365. https://doi.org/10.1109/ICAEES.2016.7888070
Coates A, Lee H, Ng Andrew Y (2011) An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, PMLR 15:215–223
University of New Brunswick (2017) [Online] available http://www.unb.ca/cic/research/datasets/dos-dataset.html. Accesses 22 June 2017
Survey of Current Network Intrusion Detection Techniques https://www.cse.wustl.edu/~jain/cse571-07/ftp/ids/. Accessed 26 June 2017
Salama MA, Eid HF, Ramadan RA, Darwish A, Hassanien AE (2011) Hybrid intelligent intrusion detection scheme. Soft computing in industrial applications in advances in intelligent and soft computing book series (AINSC, volume 96), pp 293–303
Jankowski D, Amanowwicz M (2016) On efficiency of selected machine learning algorithms for intrusion detection in software defined networks. Int J Electron Telecommun, 62(3):247–252
Atkinson RC, Bellekens XJ, Hodo E, Hamilton A, Tachtatzis C (2017) Shallow and deep networks intrusion detection system: a taxonomy and survey. CoRR, arXiv preprint arXiv:1701.02145. 2017 Jan 9
HuFHaoQBaoKA survey on software-defined network and openFlow: from concept to implementationIEEE communication surveys & tutorial201416410.1109/SURV.2013.111313.00244
Alom MZ, Bontupall VR, Taha TM (2015) Intrusion detection using deep belief networks. In: Aerospace and electronics conference, NAECON
Garcı´a-TeodoroaPDı´az-VerdejoJMacia´-Ferna’ndezGVa´zquezEAnomaly-based network intrusion detection: Techniques, systems and challengesJ Comput Secur2009281-2182810.1016/j.cose.2008.08.003
LeCun Y, Bengio Y, Hinton G (2015) Deep learning review. Weekly journal of science in nature international. Nature 521, doi: https://doi.org/10.1038/nature14539
Thaseen S, Kumar Ch (2013) An analysis of supervised tree based classifiers for intrusion detection system. In: Proceedings of the international conference on pattern recognition, informatics and mobile engineering (P RIME). Pp. 21–22
BennettKPDemirizASemi-supervised support vector machinesNeural Comput & Applic201728596997810.1007/s00521-015-2113-7
LuYCohenIZhouXSTianQFeature selection using principal feature analysisPattern Recogn Lett201449333910.1016/j.patrec.2014.05.020
Kloft M, Brefeld U, Dussel P, Gehl C, Laskov P (2008) Automatic feature selection for anomaly detection. In: Proceedings of the 1st ACM workshop on AISec, Pages 71–76, Alexandria, Virginia, ACM New York, USA
Deng L, Yu D (2014) Deep learning methods and applications. Microsoft Research. Available https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/. Accessed 10 July 2017
FioreUPalmieriFCastiglioneASantisADNetwork anomaly detection with the restricted Boltzmann machineNeurocomputing201312225132310.1016/j.neucom.2012.11.050
Open Networking Foundation, Jun (2014) [Online]. Available: https://www.opennetworking.org/. Accessed 10 July 2017
NOX. [Online]. Available: http://www.noxrepo.org/nox/about-nox/. Accessed 12 July 2017
Open Networking Foundation (2013) SDN architecture overview, Version 1.0. Available https://www.opennetworking.org/images/stories/downloads/sdnresources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf. Accessed 27 June 2017
Niyaz Q, Sun W, Javaid AY, Alam M (2016) A deep learning approach for network intrusion detection system. International conference wireless networks and mobile communications (WINCOM)
ShiraviAShiraviHTavallaeeMGhorbaniAAToward developing a systematic approach to generate benchmark datasets for intrusion detectionComput Secur201231335737410.1016/j.cose.2011.12.012
Nour M, Slay J (2016) The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison
630_CR27
630_CR28
630_CR29
630_CR3
C Tsai (630_CR18) 2009; 36
630_CR4
630_CR6
630_CR7
630_CR8
630_CR9
630_CR30
630_CR32
630_CR33
630_CR34
630_CR35
630_CR1
630_CR36
630_CR2
630_CR37
Y Lu (630_CR50) 2014; 49
630_CR16
630_CR17
KP Bennett (630_CR19) 2017; 28
A Shiravi (630_CR54) 2012; 31
630_CR20
630_CR21
630_CR22
P Garcı´a-Teodoroa (630_CR5) 2009; 28
630_CR23
630_CR24
630_CR25
630_CR26
630_CR49
U Fiore (630_CR31) 2013; 122
630_CR52
630_CR53
630_CR10
630_CR11
630_CR55
630_CR12
630_CR56
630_CR13
630_CR57
630_CR14
HF Eid (630_CR51) 2011; 259
630_CR58
630_CR15
630_CR59
630_CR38
630_CR39
F Hu (630_CR47) 2014; 16
630_CR40
630_CR41
630_CR42
630_CR43
630_CR44
630_CR45
630_CR46
630_CR48
References_xml – reference: Hewlett Packard Enterprise (2015) 2015 cost of cyber crime study: global, independently conducted by Ponemon institute LLC publication, Ponemon Institute research report. Avaiable https://www.accenture.com/t20170926T072837Z__w__/us-en/_acnmedia/PDF-61/Accenture-2017-CostCyberCrimeStudy.pdf. Accessed 26 June 2017
– reference: Aburomman AA, Reza MBI (2016) Survey of learning methods in intrusion detection systems. International conference on advances in electrical, electronic and system Engineering(ICAEES), Putrajaya, pp 362–365. https://doi.org/10.1109/ICAEES.2016.7888070
– reference: Alom MZ, Bontupall VR, Taha TM (2015) Intrusion detection using deep belief networks. In: Aerospace and electronics conference, NAECON
– reference: Alom MZ, Bontupalli VR, Taha TM (2015) Intrusion detection using deep belief networks. Aerospace and electronics conference, NAECON. IEEE
– reference: FioreUPalmieriFCastiglioneASantisADNetwork anomaly detection with the restricted Boltzmann machineNeurocomputing201312225132310.1016/j.neucom.2012.11.050
– reference: Haweliya J, Nigam B (2014) Network intrusion detection using semi supervised support vector machine. Int J Comput Appl 85, 9
– reference: Nour M, Slay J (2016) The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set. Inf Secur J: A Glob Perspec, pp 1–14
– reference: Jankowski D, Amanowwicz M (2016) On efficiency of selected machine learning algorithms for intrusion detection in software defined networks. Int J Electron Telecommun, 62(3):247–252
– reference: Syarif I, Prugel-Bennett A, Wills G (2012) Unsupervised clustering approach for network anomaly detection. In: Benlamri R (eds) Networked Digital Technologies. NDT 2012. Communications in Computer and Information Science, vol 293. Springer, Berlin, Heidelberg
– reference: Open Networking Foundation, Jun (2014) [Online]. Available: https://www.opennetworking.org/. Accessed 10 July 2017
– reference: Sezer S, Scott-Hayward S, Chouhan PK (2013) Are we ready for SDN? Implementation challenges for software-defined networks. In: IEEE Communication Magazine, vol. 51, no. 7, pp 36–43. https://doi.org/10.1109/MCOM.2013.6553676
– reference: HuFHaoQBaoKA survey on software-defined network and openFlow: from concept to implementationIEEE communication surveys & tutorial201416410.1109/SURV.2013.111313.00244
– reference: Creech G, Hu J (2013) Generation of a new IDS test dataset: time to retire the KDD collection. Wirel Commun Netw Conf (WCNC). https://doi.org/10.1109/WCNC.2013.6555301
– reference: Kaur S, Singh J, Ghumman NS (2014) Network programmability using POX controller. International conference on communication, computing & systems, at SBS Staten technical campus, Ferozepur, Punjab, India, volume: 1
– reference: Convolutional Neural Networks (2017) http://eric-yuan.me/cnn/. Accessed 10 July 2017
– reference: Deep learning stand to benefit to data analytics and HPC expertise http://www.cio.com/article/3180184/analytics/deep-learning- stands-to- benefit-from-data-analytics-and-high-performance-computing-hpc-expertise.html. Accessed 3 July 2017
– reference: Niyaz Q, Sun W, Javaid AY (2016) A deep learning based DDoS detection system in software defined networking (SDN). CoRR abs/1611.07400. https://doi.org/10.4108/eai.28-12-2017.153515
– reference: POX. [Online]. Available: http://www.noxrepo.org/pox/about-pox. Accessed 12 July 2017
– reference: TsaiCHsuYLinCLinWIntrusion detection by machine learning: a reviewExpert Syst Appl200936119941200010.1016/j.eswa.2009.05.029
– reference: Tuan TA, Mhamdi L, Mclernon D, Zaidi SAR, Ghogho M (2016) Deep learning approach for network intrusion detection in software defined networking. Int Conf Wirel Netw Mob Commun. https://doi.org/10.1109/WINCOM.2016.7777224
– reference: University of New Brunswick (2017) [Online] available http://www.unb.ca/cic/research/datasets/dos-dataset.html. Accesses 22 June 2017
– reference: Braga R, Mota E, Passito A (2010) Lightweight DDoS flooding attack detection using NOX/OpenFlow. 35th Annual IEEE conference on local computer networks, Denver, Colorado
– reference: Wang L, Jones R (2017) Big data analytics for network intrusion detection: a survey. Int J Netw Commun. https://doi.org/10.5923/j.ijnc.20170701.03
– reference: Kreutz D, Ramos FMV, Verissimo PE, Rothenberg CE, Azodolmolky S (2015) Software-defines network- a comprehensive survey. Published in Proceedings of the IEEE, 103, 1
– reference: Coates A, Lee H, Ng Andrew Y (2011) An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, PMLR 15:215–223
– reference: Vyas A (2017) Deep learning in natural language processing” in mphasis, deep learning- NL_whitepaper
– reference: Chen C, Gong Y, Tian Y (2008) Semi-supervised learning methods for network intrusion detection. Int Conf Sys, Man Cybern, IEEE. https://doi.org/10.1109/ICSMC.2008.4811688
– reference: Atkinson RC, Bellekens XJ, Hodo E, Hamilton A, Tachtatzis C (2017) Shallow and deep networks intrusion detection system: a taxonomy and survey. CoRR, arXiv preprint arXiv:1701.02145. 2017 Jan 9
– reference: ShiraviAShiraviHTavallaeeMGhorbaniAAToward developing a systematic approach to generate benchmark datasets for intrusion detectionComput Secur201231335737410.1016/j.cose.2011.12.012
– reference: Survey of Current Network Intrusion Detection Techniques https://www.cse.wustl.edu/~jain/cse571-07/ftp/ids/. Accessed 26 June 2017
– reference: Deng L, Yu D (2014) Deep learning methods and applications. Microsoft Research. Available https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/. Accessed 10 July 2017
– reference: Zanero S, Savaresi SM (2004) Unsupervised learning techniques for an intrusion detection system. In: Proceedings of the ACM symposium on applied computing. Pages 412–419
– reference: Mehdi SA, Khalid J, Khaiyam SA (2011) Revisiting traffic anomaly detection using software defined networking. In: Sommer R, Balzarotti D, Maier G (eds) Recent Advances in Intrusion Detection. RAID 2011. Lecture Notes in Computer Science, vol 6961. Springer, Berlin, Heidelberg
– reference: Nunes BAA, Mendonca M, Nguyen XN, Obraczka K and Turletti T (2014) A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. In IEEE Communications Surveys & Tutorials, vol 16, no. 3, pp 1617–1634, Third Quarter 2014. https://doi.org/10.1109/SURV.2014.012214.00180
– reference: Gogoil P, Bhuyan MH (2012) Packet and flow-based network intrusion dataset. International conference on contemporary computing IC3, pp 322–334
– reference: NOX. [Online]. Available: http://www.noxrepo.org/nox/about-nox/. Accessed 12 July 2017
– reference: Yan Q, Yu FR, Gong Q and Li J (2016) Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: A survey, some research issues, and challenges. IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp 602–622 Firstquarter 2016. https://doi.org/10.1109/COMST.2015.2487361
– reference: Hughes T, Mierle K (2013) Recurrent neural networks for voice activity detection IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, pp 7378–7382. https://doi.org/10.1109/ICASSP.2013.6639096
– reference: Nguyen HT, Petrovic S, Franke K (2010) A comparison of feature-selection methods for intrusion detection. In: Kotenko I, Skormin V (eds) Computer Network Security. MMM-ACNS 2010. Lecture Notes in Computer Science, vol 6258. Springer, Berlin, Heidelberg, pp 242–255
– reference: EidHFSalamaMAHassanienAEKimTHBi-layer behavioral based feature selection approach for network intrusion classificationCommun Comput Inf Sci Book Ser2011259195203
– reference: Almomani I, Al-Kasasbeh B, Al-Akhras M (2016) WSN-DS: a dataset for intrusion detection systems in wireless sensor networks. J Sens 16p
– reference: BennettKPDemirizASemi-supervised support vector machinesNeural Comput & Applic201728596997810.1007/s00521-015-2113-7
– reference: Garcı´a-TeodoroaPDı´az-VerdejoJMacia´-Ferna’ndezGVa´zquezEAnomaly-based network intrusion detection: Techniques, systems and challengesJ Comput Secur2009281-2182810.1016/j.cose.2008.08.003
– reference: Salama MA, Eid HF, Ramadan RA, Darwish A, Hassanien AE (2011) Hybrid intelligent intrusion detection scheme. Soft computing in industrial applications in advances in intelligent and soft computing book series (AINSC, volume 96), pp 293–303
– reference: Open Networking Foundation (2014) SDN architecture, Issue 1 June 2014 ONF TR-502
– reference: Supervised and unsupervised machine learning algorithms http://machinelearningmastery.com/supervised-and-unsupervised-machine learning-algorithms/. Accessed 20 June 2017
– reference: Thaseen S, Kumar Ch (2013) An analysis of supervised tree based classifiers for intrusion detection system. In: Proceedings of the international conference on pattern recognition, informatics and mobile engineering (P RIME). Pp. 21–22
– reference: Tutorial http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/. Accessed June 15 2017
– reference: Prete LR, Shinoda AA, Schweitzer CM, De Oliveira RLS (2014) Simulation in an SDN network scenario using the POX controller. 2014 I.E. Colombian Conference on Communications and Computing (COLCOM), Bogota, pp 1–6. https://doi.org/10.1109/ColComCon.2014.6860403
– reference: Eid HFA, Darwish A, Hassanien AE, Abraham A (2010) Principal components analysis and support vector machine based intrusion detection system. International conference intelligent systems design and applications (ISDA)
– reference: Hasan MAM, Nasser M, Ahmad S, Molla KH (2016) Feature selection for intrusion detection using random forest. In: Journal of information security, pp 129–140
– reference: Bakshi T (2017) State of the art and recent research advances in software defined networking. In Wireless Communications and Mobile Computing, 2017, 1530-8669, Hindawi Publishing Corporation
– reference: Zamani M, Movahedi M (2015) Machine learning techniques for intrusion detection. CoRR, arXiv preprint arXiv:1312.2177. 2017 Jan 9
– reference: Open Flow [Online]. Available: http://www.openflow.org/. Accessed 12 July 2017
– reference: Open Networking Foundation (2013) SDN architecture overview, Version 1.0. Available https://www.opennetworking.org/images/stories/downloads/sdnresources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf. Accessed 27 June 2017
– reference: LeCun Y, Bengio Y, Hinton G (2015) Deep learning review. Weekly journal of science in nature international. Nature 521, doi: https://doi.org/10.1038/nature14539
– reference: Kloft M, Brefeld U, Dussel P, Gehl C, Laskov P (2008) Automatic feature selection for anomaly detection. In: Proceedings of the 1st ACM workshop on AISec, Pages 71–76, Alexandria, Virginia, ACM New York, USA
– reference: Niyaz Q, Sun W, Javaid AY, Alam M (2016) A deep learning approach for network intrusion detection system. International conference wireless networks and mobile communications (WINCOM)
– reference: LuYCohenIZhouXSTianQFeature selection using principal feature analysisPattern Recogn Lett201449333910.1016/j.patrec.2014.05.020
– ident: 630_CR2
– ident: 630_CR26
  doi: 10.1109/NAECON.2015.7443094
– ident: 630_CR42
– ident: 630_CR32
– ident: 630_CR35
  doi: 10.1109/SURV.2014.012214.00180
– ident: 630_CR55
– volume: 122
  start-page: 13
  issue: 25
  year: 2013
  ident: 630_CR31
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.11.050
– ident: 630_CR37
  doi: 10.1109/COMST.2015.2487361
– ident: 630_CR13
– ident: 630_CR20
  doi: 10.5120/14870-3245
– ident: 630_CR27
– ident: 630_CR56
  doi: 10.1109/WCNC.2013.6555301
– ident: 630_CR8
  doi: 10.4108/eai.28-12-2017.153515
– ident: 630_CR43
– ident: 630_CR1
– ident: 630_CR22
– ident: 630_CR4
  doi: 10.1007/978-3-642-23644-0_9
– ident: 630_CR9
  doi: 10.1109/MCOM.2013.6553676
– volume: 259
  start-page: 195
  year: 2011
  ident: 630_CR51
  publication-title: Commun Comput Inf Sci Book Ser
– ident: 630_CR52
  doi: 10.4236/jis.2016.73009
– ident: 630_CR30
  doi: 10.1007/978-3-642-20505-7_26
– ident: 630_CR12
– ident: 630_CR25
  doi: 10.1561/2000000039
– volume: 49
  start-page: 33
  year: 2014
  ident: 630_CR50
  publication-title: Pattern Recogn Lett
  doi: 10.1016/j.patrec.2014.05.020
– volume: 28
  start-page: 18
  issue: 1-2
  year: 2009
  ident: 630_CR5
  publication-title: J Comput Secur
  doi: 10.1016/j.cose.2008.08.003
– ident: 630_CR59
  doi: 10.1515/eletel-2016-0033
– ident: 630_CR44
– ident: 630_CR38
  doi: 10.1109/LCN.2010.5735752
– ident: 630_CR15
– ident: 630_CR3
  doi: 10.1109/ICAEES.2016.7888070
– volume: 28
  start-page: 969
  issue: 5
  year: 2017
  ident: 630_CR19
  publication-title: Neural Comput & Applic
  doi: 10.1007/s00521-015-2113-7
– ident: 630_CR58
  doi: 10.1155/2016/4731953
– ident: 630_CR57
– ident: 630_CR34
– ident: 630_CR11
– ident: 630_CR45
  doi: 10.1007/978-3-642-14706-7_19
– volume: 16
  start-page: 4
  year: 2014
  ident: 630_CR47
  publication-title: IEEE communication surveys & tutorial
  doi: 10.1109/SURV.2013.111313.00244
– volume: 31
  start-page: 357
  issue: 3
  year: 2012
  ident: 630_CR54
  publication-title: Comput Secur
  doi: 10.1016/j.cose.2011.12.012
– ident: 630_CR17
  doi: 10.1007/978-3-642-30507-8_13
– ident: 630_CR29
  doi: 10.1109/ICASSP.2013.6639096
– ident: 630_CR33
  doi: 10.5923/j.ijnc.20170701.03
– ident: 630_CR21
  doi: 10.1109/ICSMC.2008.4811688
– ident: 630_CR24
– ident: 630_CR41
– ident: 630_CR7
– ident: 630_CR23
  doi: 10.1038/nature14539
– ident: 630_CR39
– ident: 630_CR6
  doi: 10.1109/WINCOM.2016.7777224
– ident: 630_CR16
  doi: 10.1145/967900.967988
– ident: 630_CR14
  doi: 10.1109/ICPRIME.2013.6496489
– ident: 630_CR40
  doi: 10.1109/ColComCon.2014.6860403
– ident: 630_CR10
– volume: 36
  start-page: 11994
  year: 2009
  ident: 630_CR18
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.05.029
– ident: 630_CR36
  doi: 10.1155/2017/7191647
– ident: 630_CR49
– ident: 630_CR53
  doi: 10.1145/1456377.1456395
– ident: 630_CR28
– ident: 630_CR46
  doi: 10.1007/978-3-642-32129-0_34
– ident: 630_CR48
  doi: 10.1109/NAECON.2015.7443094
SSID ssj0061352
Score 2.5774424
Snippet Software Defined Networking Technology (SDN) provides a prospect to effectively detect and monitor network security problems ascribing to the emergence of the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 493
SubjectTerms Artificial intelligence
Challenges and Prospective Smart Solutions
Communications Engineering
Computer Communication Networks
Computer networks
Cybersecurity
Engineering
Environment models
Information Systems and Communication Service
Intrusion detection systems
Machine learning
Networks
Signal,Image and Speech Processing
Software-defined networking
Special Issue on Software Defined Networking: Trends
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1SL3oQP7FaJQdPSqCbbZLNsfhBEeylFnpbkuykCLoVWwX_vZPdja2igufN5jCzm3mPeXlDyJkQkCZCWQbKAxKUrmNWArIU6XrIQLK0sKGjezeUg3HvdiImzT3ueVS7x5ZkdVIvL7txhAssnKrBJ4ohT18XSN2DjmvM-_H4xfJUjdlBYCIZFnseW5k_bfG1GC0R5remaFVrbrbJVgMSab_O6g5Zg3KXbK5YB-6Ryej15Q3e6ayko6shDcWooGWt6aYPZbhKgRGnBSwqrVVJa8tmGnTuU_pUSSiBNjMjpjRai8N8n4xvru8vB6yZksBcmsgF02FmtOcuUyCQH1ieGAieLk4JbpXVUlvjfcGl0sIkxiBmstpmvusc6Ez59IC0ylkJh4QmHEAhn7FIwrBoJdr4wkhnEutBpY63STeGK3eNhXiYZPGYL82PQ4RzjHAeIpx32-T885Xn2j_jr8WdmIO8-ZXmedDHKgRxPGuTi5iXlce_bXb0r9XHZAOhkK7VZR3SwjTBCcKNhT2tPq8P0CrLZA
  priority: 102
  providerName: Springer Nature
Title Survey on SDN based network intrusion detection system using machine learning approaches
URI https://link.springer.com/article/10.1007/s12083-017-0630-0
https://www.proquest.com/docview/1992792928
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8CAeIryqDwwgSwSh8TJhAptQTwqRKlUpih2LggJUqAFiX_POXFoQYIpgxMPd85939nn7wD2fB8915eKo8yQEhRHcxUgZSmBPqIMJPRSZU50r3vB-eDoYugP7Ybb2JZVVjGxCNTpSJs98kNTJikJy0V4_PLKTdcoc7pqW2jMQ51CcBjWoH7S6d3cVrGYsKrouUMsJeCE_KI61ywuzwmiH9xEaaM7xZ2fyDSlm79OSAvg6S7DkmWMrFW6eAXmMF-FxRkdwTUY9t_fPvCTjXLWb_eYQaaU5WWBN3vMzb0KMj9LcVIUXuWs1G9mpuj9gT0X9ZTIbAOJB1bpjON4HQbdzt3pObctE7j23GDCI9NAOhM6lOhTsqCEm6AReNHSF0qqKIhUkmWpCGTkJ26SEIFSkQozR2uMQpl5G1DLRzluAnMFoqTkRlFGRgjmRkmWJoFOXJWh9LRogFOZK9ZWT9y0tXiKp0rIxsIxWTg2Fo6dBux_f_JSimn89_JO5YPY_lfjeLoKGnBQ-WVm-K_Jtv6fbBsWiAhFZW3ZDtTIL7hLZGOimjAfds-aUG-1r6_65nl2f9lp2nVGowPR-gIDY9V0
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB0FegAOqC0gwke7B3oBrbDXsTc-IIRK00A-LoCUm_Gux6hScYAEEH-K38iM7W1opXLjHGcPM-N9bzwzbwB2whADP9RGos6REhTPShMhZSmRbVEG0g4ywxXdwTDqXrROR-GoAc9uFobbKt2dWF7U2djyN_J9bpPUhOWqfXhzK3lrFFdX3QqNKix6-PRIKdvk4OSY_PtNqc6P8-9dWW8VkDbwo6mMecdyrmxbY0h82ig_RdZAsTpURps4ik2a55mKdBymfpoSxzCxaeeetUgJeh7QuXPwoRUQkvNkeuenu_kJGcsNP8SJIkk8Q7kqajmqp4jsSMYEVrmS3t84OCO3_9RjS5jrfITlmp-KoyqgPkEDi8-w9Eq1cAVGZ_d3D_gkxoU4Ox4KxsFMFFU7ufhV8BQHOVtkOC3bvApRqUULbrG_Etdl9yaKel3FlXCq5jhZhYt3MeUazBfjAtdB-ApRUyplKP8jvPTjNM_SyKa-yVEHVjXBc-ZKbK1ezks0ficz3WW2cEIWTtjCideE3T9_uamkO956eMv5IKnf4kkyi7km7Dm_vPr5f4dtvH3YV1jong_6Sf9k2NuERaJgcdXVtgXz5CPcJpozNV_K2BJw-d7B_ALgtwwA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BIiF6QEBbdfn0gV5aWSQOiTcHVNEuK766QqVIe0tjZ4wqlSztLiD-Wn8dM0nMAhLcOCfxYWaS9yZ-fgOwGccYhbE2ErVDalACK02C1KUkdps6kE5UGN7R_d5P9s-2DwfxYAr--7MwLKv038TqQ10MLf8j32KZpCYsV50t18giTrq9L5d_JU-Q4p1WP06jLpEjvL2h9m20c9ClXH9Uqrf389u-bCYMSBuFyVimPG_ZKdvRGBO3NirMkf1QrI6V0SZNUpM7V6hEp3Ee5jnxDZOajgusRWrWXUTrTsOM5q6oBTNf9_onPzwOEE5W836IISWSWIfye6rVwT1F1EcyQrDnlQweo-KE6j7Zna1Ar7cA8w1bFbt1eS3CFJZL8OaBh-FbGJxe_bvGWzEsxWm3LxgVC1HW4nLxu-QzHZR6UeC4En2VovaOFiy4PxcXlZYTRTO84lx4j3McvYOzVwnme2iVwxI_gAgVoqbGylA3SOgZprkr8sTmoXGoI6vaEPhwZbbxMueRGn-yiQszRzijCGcc4Sxow6f7Ry5rI4-Xbl71Ociad3qUTSqwDZ99Xh5cfm6x5ZcX24BZKuTs-KB_tAJzxMfSWuK2Ci1KEa4R5xmb9aa4BPx67Xq-A-QzEZI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+SDN+based+network+intrusion+detection+system+using+machine+learning+approaches&rft.jtitle=Peer-to-peer+networking+and+applications&rft.au=Sultana%2C+Nasrin&rft.au=Chilamkurti%2C+Naveen&rft.au=Peng%2C+Wei&rft.au=Alhadad%2C+Rabei&rft.date=2019-03-01&rft.issn=1936-6442&rft.eissn=1936-6450&rft.volume=12&rft.issue=2&rft.spage=493&rft.epage=501&rft_id=info:doi/10.1007%2Fs12083-017-0630-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12083_017_0630_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-6442&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-6442&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-6442&client=summon