Survey on SDN based network intrusion detection system using machine learning approaches
Software Defined Networking Technology (SDN) provides a prospect to effectively detect and monitor network security problems ascribing to the emergence of the programmable features. Recently, Machine Learning (ML) approaches have been implemented in the SDN-based Network Intrusion Detection Systems...
Saved in:
Published in | Peer-to-peer networking and applications Vol. 12; no. 2; pp. 493 - 501 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Software Defined Networking Technology (SDN) provides a prospect to effectively detect and monitor network security problems ascribing to the emergence of the programmable features. Recently, Machine Learning (ML) approaches have been implemented in the SDN-based Network Intrusion Detection Systems (NIDS) to protect computer networks and to overcome network security issues. A stream of advanced machine learning approaches – the deep learning technology (DL) commences to emerge in the SDN context. In this survey, we reviewed various recent works on machine learning (ML) methods that leverage SDN to implement NIDS. More specifically, we evaluated the techniques of deep learning in developing SDN-based NIDS. In the meantime, in this survey, we covered tools that can be used to develop NIDS models in SDN environment. This survey is concluded with a discussion of ongoing challenges in implementing NIDS using ML/DL and future works. |
---|---|
AbstractList | Software Defined Networking Technology (SDN) provides a prospect to effectively detect and monitor network security problems ascribing to the emergence of the programmable features. Recently, Machine Learning (ML) approaches have been implemented in the SDN-based Network Intrusion Detection Systems (NIDS) to protect computer networks and to overcome network security issues. A stream of advanced machine learning approaches – the deep learning technology (DL) commences to emerge in the SDN context. In this survey, we reviewed various recent works on machine learning (ML) methods that leverage SDN to implement NIDS. More specifically, we evaluated the techniques of deep learning in developing SDN-based NIDS. In the meantime, in this survey, we covered tools that can be used to develop NIDS models in SDN environment. This survey is concluded with a discussion of ongoing challenges in implementing NIDS using ML/DL and future works. |
Author | Sultana, Nasrin Chilamkurti, Naveen Alhadad, Rabei Peng, Wei |
Author_xml | – sequence: 1 givenname: Nasrin surname: Sultana fullname: Sultana, Nasrin organization: Department of Computer Science and IT, La Trobe University – sequence: 2 givenname: Naveen surname: Chilamkurti fullname: Chilamkurti, Naveen email: n.chilamkurti@latrobe.edu.au organization: Department of Computer Science and IT, La Trobe University – sequence: 3 givenname: Wei surname: Peng fullname: Peng, Wei organization: Department of Accounting and Business Analytics, La Trobe University – sequence: 4 givenname: Rabei surname: Alhadad fullname: Alhadad, Rabei organization: Department of Computer Science and IT, La Trobe University |
BookMark | eNp9kF1LwzAUhoNMcE5_gHcBr6tJ2iTNpcxPGHoxBe9Cmp3Ozi2dSars35tSERH0Koc358kbnkM0cq0DhE4oOaOEyPNAGSnzjFCZEZGTjOyhMVW5yETByeh7LtgBOgxhRYigOWdj9Dzv_DvscOvw_PIeVybAAjuIH61_xY2LvgtNultABBv7KexChA1OsVvijbEvjQO8BuNdH5jt1rcphHCE9muzDnD8dU7Q0_XV4_Q2mz3c3E0vZpnNqYiZKgpS1syWEjjjvGLUACdKWMlZJSslVGXqesGEVNxQYygvKlWVNbEWVCnrfIJOh3dT8VsHIepV23mXKjVViknFFCvTFh22rG9D8FDrrW82xu80JboXqAeBOgnUvUBNEiN_MbaJppcQvWnW_5JsIENqcUvwP_70J_QJR8yHSQ |
CitedBy_id | crossref_primary_10_1016_j_cose_2023_103462 crossref_primary_10_1016_j_comnet_2020_107743 crossref_primary_10_1002_dac_4524 crossref_primary_10_1093_jigpal_jzz060 crossref_primary_10_1007_s10776_022_00561_y crossref_primary_10_1016_j_jisa_2019_102419 crossref_primary_10_33461_uybisbbd_972206 crossref_primary_10_1007_s11276_020_02321_3 crossref_primary_10_1007_s10586_024_04596_z crossref_primary_10_1155_2021_8836057 crossref_primary_10_32604_cmc_2022_017772 crossref_primary_10_1016_j_comnet_2022_109365 crossref_primary_10_1080_23335777_2020_1811383 crossref_primary_10_1109_ACCESS_2019_2927822 crossref_primary_10_47992_IJCSBE_2581_6942_0261 crossref_primary_10_1007_s42979_025_03656_4 crossref_primary_10_32604_cmc_2022_025262 crossref_primary_10_1021_acsomega_3c01684 crossref_primary_10_3390_s22072697 crossref_primary_10_1007_s10207_022_00641_3 crossref_primary_10_1109_ACCESS_2020_2972627 crossref_primary_10_1016_j_comcom_2021_11_014 crossref_primary_10_1007_s12145_024_01369_5 crossref_primary_10_1109_ACCESS_2024_3390968 crossref_primary_10_1016_j_cosrev_2020_100357 crossref_primary_10_1109_TNSM_2024_3382393 crossref_primary_10_3389_fcomp_2024_1387354 crossref_primary_10_3390_electronics10141633 crossref_primary_10_1057_s41284_024_00435_3 crossref_primary_10_1515_comp_2022_0267 crossref_primary_10_1007_s10776_020_00488_2 crossref_primary_10_3390_app131810229 crossref_primary_10_1109_MCOM_005_2100992 crossref_primary_10_3390_s23020890 crossref_primary_10_1109_COMST_2021_3086296 crossref_primary_10_1016_j_comnet_2020_107647 crossref_primary_10_1016_j_jnca_2021_103156 crossref_primary_10_1109_ACCESS_2021_3101650 crossref_primary_10_1155_2021_6634811 crossref_primary_10_32604_cmc_2023_034176 crossref_primary_10_3390_fi15020076 crossref_primary_10_1016_j_icte_2025_01_005 crossref_primary_10_1016_j_micpro_2020_103285 crossref_primary_10_1007_s00521_024_10333_9 crossref_primary_10_1007_s11042_021_10567_y crossref_primary_10_1002_cpe_7118 crossref_primary_10_1016_j_comnet_2022_109358 crossref_primary_10_1093_comjnl_bxae108 crossref_primary_10_31590_ejosat_1187984 crossref_primary_10_3390_electronics11213529 crossref_primary_10_32604_iasc_2023_026769 crossref_primary_10_1016_j_jnca_2022_103444 crossref_primary_10_1080_02522667_2020_1747193 crossref_primary_10_1002_dac_4782 crossref_primary_10_1016_j_iot_2024_101413 crossref_primary_10_1016_j_iswa_2023_200215 crossref_primary_10_1007_s10776_019_00462_7 crossref_primary_10_1007_s10586_021_03449_3 crossref_primary_10_1007_s10207_022_00632_4 crossref_primary_10_1109_ACCESS_2021_3100706 crossref_primary_10_3390_electronics13204000 crossref_primary_10_1155_2021_5538896 crossref_primary_10_1007_s42979_021_00659_9 crossref_primary_10_1142_S021962202230004X crossref_primary_10_1016_j_comnet_2020_107706 crossref_primary_10_1109_ACCESS_2023_3340142 crossref_primary_10_1155_2021_3913515 crossref_primary_10_32604_cmes_2022_020724 crossref_primary_10_3390_app13148307 crossref_primary_10_1016_j_comcom_2022_09_012 crossref_primary_10_3390_su15119001 crossref_primary_10_1002_cpe_5927 crossref_primary_10_3390_info12050215 crossref_primary_10_32604_iasc_2022_024668 crossref_primary_10_1080_01969722_2022_2148509 crossref_primary_10_29121_shodhkosh_v5_i3_2024_4437 crossref_primary_10_1007_s11227_021_04145_0 crossref_primary_10_4316_AECE_2024_02004 crossref_primary_10_1111_exsy_13066 crossref_primary_10_1016_j_jnca_2020_102767 crossref_primary_10_1002_eng2_12697 crossref_primary_10_1109_ACCESS_2021_3062909 crossref_primary_10_4018_IJSKD_2020040101 crossref_primary_10_1007_s11277_020_08002_w crossref_primary_10_1155_2022_7272479 crossref_primary_10_21015_vtse_v10i2_1017 crossref_primary_10_1088_1742_6596_1693_1_012143 crossref_primary_10_3390_electronics10222851 crossref_primary_10_1016_j_neucom_2021_06_093 crossref_primary_10_1016_j_dcan_2022_08_012 crossref_primary_10_1007_s11277_021_08127_6 crossref_primary_10_1109_JAS_2021_1004344 crossref_primary_10_1016_j_jnca_2021_103111 crossref_primary_10_1007_s10586_023_04069_9 crossref_primary_10_1155_2021_5527746 crossref_primary_10_1007_s12652_023_04732_4 crossref_primary_10_1109_ACCESS_2024_3478764 crossref_primary_10_25205_1818_7900_2023_21_1_62_72 crossref_primary_10_1109_ACCESS_2020_3031966 crossref_primary_10_32604_csse_2022_017941 crossref_primary_10_1016_j_knosys_2022_109557 crossref_primary_10_1007_s11042_023_15725_y crossref_primary_10_1007_s11277_022_10069_6 crossref_primary_10_1007_s11277_021_08542_9 crossref_primary_10_1109_ACCESS_2023_3276238 crossref_primary_10_1007_s10922_024_09841_9 crossref_primary_10_4218_etrij_2019_0109 crossref_primary_10_1016_j_asoc_2022_108692 crossref_primary_10_1109_ACCESS_2022_3171660 crossref_primary_10_3390_app13179488 crossref_primary_10_1108_IJAIM_08_2022_0170 crossref_primary_10_1007_s11334_024_00594_x crossref_primary_10_1109_ACCESS_2023_3267764 crossref_primary_10_1016_j_engappai_2020_103770 crossref_primary_10_1145_3457904 crossref_primary_10_1109_TSMC_2024_3374280 crossref_primary_10_1016_j_comnet_2022_109528 crossref_primary_10_1016_j_compeleceng_2021_107052 crossref_primary_10_1016_j_ijleo_2022_170044 crossref_primary_10_1016_j_comcom_2021_01_027 crossref_primary_10_1016_j_cose_2025_104392 crossref_primary_10_1186_s13638_021_01893_8 crossref_primary_10_1007_s12652_020_02271_w crossref_primary_10_1109_ACCESS_2021_3069210 crossref_primary_10_1109_ACCESS_2023_3313630 crossref_primary_10_1007_s10489_021_02901_6 crossref_primary_10_1016_j_jnca_2021_103093 crossref_primary_10_1109_TDSC_2021_3108782 crossref_primary_10_1016_j_mlwa_2022_100351 crossref_primary_10_1038_s41598_024_79001_1 crossref_primary_10_1016_j_eswa_2024_125985 crossref_primary_10_3390_s22207896 crossref_primary_10_1016_j_compbiomed_2024_108036 crossref_primary_10_3390_a14080224 crossref_primary_10_3934_aci_2021004 crossref_primary_10_4018_JDM_338276 crossref_primary_10_1007_s11042_023_15729_8 crossref_primary_10_2478_jaiscr_2021_0008 crossref_primary_10_48084_etasr_9256 crossref_primary_10_1109_TNSM_2023_3298533 crossref_primary_10_32604_iasc_2022_021879 crossref_primary_10_1016_j_jfranklin_2024_107197 crossref_primary_10_3390_network4010003 crossref_primary_10_1109_ACCESS_2023_3333013 crossref_primary_10_1109_COMST_2019_2933899 crossref_primary_10_3233_JIFS_200850 crossref_primary_10_1049_cit2_12003 crossref_primary_10_18267_j_aip_199 crossref_primary_10_1016_j_teler_2023_100053 crossref_primary_10_1109_ACCESS_2021_3099092 crossref_primary_10_4018_IJISMD_313578 crossref_primary_10_1109_ACCESS_2022_3168976 crossref_primary_10_1109_TNSM_2021_3091517 crossref_primary_10_3390_info14010041 crossref_primary_10_3390_s22155551 crossref_primary_10_1109_TC_2021_3077687 crossref_primary_10_1051_itmconf_20257402001 crossref_primary_10_1177_1548512920951275 crossref_primary_10_1109_ACCESS_2022_3168972 crossref_primary_10_32604_csse_2023_034589 crossref_primary_10_1145_3530812 crossref_primary_10_1177_1550147719889906 crossref_primary_10_1016_j_jnca_2020_102947 crossref_primary_10_1007_s10922_021_09591_y crossref_primary_10_1007_s11277_023_10523_z crossref_primary_10_1109_ACCESS_2020_3040740 crossref_primary_10_1016_j_array_2022_100136 crossref_primary_10_3390_electronics9122114 crossref_primary_10_1080_19361610_2021_1918500 crossref_primary_10_1002_dac_4815 crossref_primary_10_1109_ACCESS_2022_3214974 crossref_primary_10_1155_2021_9089370 crossref_primary_10_1109_ACCESS_2022_3171226 crossref_primary_10_1007_s10586_024_04430_6 crossref_primary_10_3390_s22010241 crossref_primary_10_1016_j_comnet_2022_109073 crossref_primary_10_1109_ACCESS_2021_3058244 crossref_primary_10_3390_fi13050111 crossref_primary_10_46604_aiti_2020_4286 crossref_primary_10_1109_ACCESS_2020_3009733 crossref_primary_10_1371_journal_pone_0302294 crossref_primary_10_1080_07366981_2024_2360840 crossref_primary_10_1016_j_comnet_2023_110162 crossref_primary_10_1109_ACCESS_2024_3406939 crossref_primary_10_3390_s22031154 crossref_primary_10_1016_j_comnet_2023_110044 crossref_primary_10_1109_ACCESS_2021_3137318 crossref_primary_10_1016_j_cosrev_2024_100717 crossref_primary_10_1109_ACCESS_2024_3367004 crossref_primary_10_4018_IJSI_289172 crossref_primary_10_32604_cmc_2022_021669 crossref_primary_10_3233_IDT_230238 crossref_primary_10_1016_j_iot_2023_100715 crossref_primary_10_53982_ajerd_2024_0702_29_j crossref_primary_10_1109_JSEN_2020_3012046 crossref_primary_10_1016_j_cose_2025_104341 crossref_primary_10_1051_itmconf_20257001015 crossref_primary_10_32604_cmc_2020_013910 crossref_primary_10_1007_s00607_020_00866_x crossref_primary_10_3390_sym12010007 crossref_primary_10_1051_itmconf_20246401016 crossref_primary_10_1109_ACCESS_2020_2996214 crossref_primary_10_12720_jait_16_3_283_302 crossref_primary_10_1016_j_comnet_2020_107688 crossref_primary_10_1007_s11042_020_08724_w crossref_primary_10_1007_s13369_020_05181_3 crossref_primary_10_1002_cpe_5300 crossref_primary_10_1007_s11432_023_4067_x crossref_primary_10_1155_2020_8850550 crossref_primary_10_1007_s11277_021_08100_3 crossref_primary_10_3390_app122010349 crossref_primary_10_1007_s10207_019_00453_y crossref_primary_10_3390_s24113339 crossref_primary_10_1145_3703447 crossref_primary_10_1007_s42797_021_00025_1 crossref_primary_10_3390_s20020378 crossref_primary_10_1016_j_compeleceng_2022_107706 crossref_primary_10_3390_fi14020044 crossref_primary_10_1007_s10922_021_09615_7 crossref_primary_10_32604_iasc_2023_034908 crossref_primary_10_1109_ACCESS_2020_3022855 crossref_primary_10_1515_comp_2024_0004 crossref_primary_10_1088_1742_6596_1802_4_042029 crossref_primary_10_1109_ACCESS_2020_3002333 crossref_primary_10_1109_ACCESS_2019_2928564 crossref_primary_10_1007_s12652_020_02099_4 crossref_primary_10_1016_j_eij_2025_100629 |
Cites_doi | 10.1109/NAECON.2015.7443094 10.1109/SURV.2014.012214.00180 10.1016/j.neucom.2012.11.050 10.1109/COMST.2015.2487361 10.5120/14870-3245 10.1109/WCNC.2013.6555301 10.4108/eai.28-12-2017.153515 10.1007/978-3-642-23644-0_9 10.1109/MCOM.2013.6553676 10.4236/jis.2016.73009 10.1007/978-3-642-20505-7_26 10.1561/2000000039 10.1016/j.patrec.2014.05.020 10.1016/j.cose.2008.08.003 10.1515/eletel-2016-0033 10.1109/LCN.2010.5735752 10.1109/ICAEES.2016.7888070 10.1007/s00521-015-2113-7 10.1155/2016/4731953 10.1007/978-3-642-14706-7_19 10.1109/SURV.2013.111313.00244 10.1016/j.cose.2011.12.012 10.1007/978-3-642-30507-8_13 10.1109/ICASSP.2013.6639096 10.5923/j.ijnc.20170701.03 10.1109/ICSMC.2008.4811688 10.1038/nature14539 10.1109/WINCOM.2016.7777224 10.1145/967900.967988 10.1109/ICPRIME.2013.6496489 10.1109/ColComCon.2014.6860403 10.1016/j.eswa.2009.05.029 10.1155/2017/7191647 10.1145/1456377.1456395 10.1007/978-3-642-32129-0_34 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2018 Peer-to-Peer Networking and Applications is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2018 – notice: Peer-to-Peer Networking and Applications is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8AO 8FD 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- L7M L~C L~D M0N M2O M2P MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
DOI | 10.1007/s12083-017-0630-0 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Proquest Central Technology Collection ProQuest One ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Research Library Science Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Research Library Prep |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1936-6450 |
EndPage | 501 |
ExternalDocumentID | 10_1007_s12083_017_0630_0 |
GroupedDBID | -5B -5G -BR -EM -Y2 -~C .4S .86 .DC 06D 0R~ 0VY 123 1N0 203 29O 29~ 2JN 2JY 2KG 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 5VS 67Z 6NX 875 88I 8AO 8FE 8FG 8G5 8TC 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ARAPS ARCSS AUKKA AXYYD AYJHY AZQEC B-. BA0 BDATZ BENPR BGLVJ BGNMA BPHCQ CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GUQSH GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KOV LLZTM M0N M2O M2P M4Y MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P62 P9P PQQKQ PROAC PT4 Q2X QOS R89 RIG RLLFE RNS ROL RPX RSV S16 S1Z S27 S3B SAP SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TH9 TSG TSK TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7X Z83 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI PRINS Q9U |
ID | FETCH-LOGICAL-c316t-94408f2c87e5255b21ae5096c752b7b969baffd26795a1aa154b9b8f0cce987f3 |
IEDL.DBID | BENPR |
ISSN | 1936-6442 |
IngestDate | Fri Jul 25 08:41:35 EDT 2025 Thu Apr 24 23:05:31 EDT 2025 Tue Jul 01 01:29:11 EDT 2025 Fri Feb 21 02:34:37 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Deep learning SDN NIDS Machine learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-94408f2c87e5255b21ae5096c752b7b969baffd26795a1aa154b9b8f0cce987f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1992792928 |
PQPubID | 54523 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1992792928 crossref_primary_10_1007_s12083_017_0630_0 crossref_citationtrail_10_1007_s12083_017_0630_0 springer_journals_10_1007_s12083_017_0630_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20190300 2019-3-00 20190301 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 3 year: 2019 text: 20190300 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Norwell |
PublicationTitle | Peer-to-peer networking and applications |
PublicationTitleAbbrev | Peer-to-Peer Netw. Appl |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Chen C, Gong Y, Tian Y (2008) Semi-supervised learning methods for network intrusion detection. Int Conf Sys, Man Cybern, IEEE. https://doi.org/10.1109/ICSMC.2008.4811688 Nguyen HT, Petrovic S, Franke K (2010) A comparison of feature-selection methods for intrusion detection. In: Kotenko I, Skormin V (eds) Computer Network Security. MMM-ACNS 2010. Lecture Notes in Computer Science, vol 6258. Springer, Berlin, Heidelberg, pp 242–255 Braga R, Mota E, Passito A (2010) Lightweight DDoS flooding attack detection using NOX/OpenFlow. 35th Annual IEEE conference on local computer networks, Denver, Colorado Deep learning stand to benefit to data analytics and HPC expertise http://www.cio.com/article/3180184/analytics/deep-learning- stands-to- benefit-from-data-analytics-and-high-performance-computing-hpc-expertise.html. Accessed 3 July 2017 Mehdi SA, Khalid J, Khaiyam SA (2011) Revisiting traffic anomaly detection using software defined networking. In: Sommer R, Balzarotti D, Maier G (eds) Recent Advances in Intrusion Detection. RAID 2011. Lecture Notes in Computer Science, vol 6961. Springer, Berlin, Heidelberg Haweliya J, Nigam B (2014) Network intrusion detection using semi supervised support vector machine. Int J Comput Appl 85, 9 Tuan TA, Mhamdi L, Mclernon D, Zaidi SAR, Ghogho M (2016) Deep learning approach for network intrusion detection in software defined networking. Int Conf Wirel Netw Mob Commun. https://doi.org/10.1109/WINCOM.2016.7777224 Syarif I, Prugel-Bennett A, Wills G (2012) Unsupervised clustering approach for network anomaly detection. In: Benlamri R (eds) Networked Digital Technologies. NDT 2012. Communications in Computer and Information Science, vol 293. Springer, Berlin, Heidelberg Eid HFA, Darwish A, Hassanien AE, Abraham A (2010) Principal components analysis and support vector machine based intrusion detection system. International conference intelligent systems design and applications (ISDA) Yan Q, Yu FR, Gong Q and Li J (2016) Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: A survey, some research issues, and challenges. IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp 602–622 Firstquarter 2016. https://doi.org/10.1109/COMST.2015.2487361 Open Flow [Online]. Available: http://www.openflow.org/. Accessed 12 July 2017 Wang L, Jones R (2017) Big data analytics for network intrusion detection: a survey. Int J Netw Commun. https://doi.org/10.5923/j.ijnc.20170701.03 Creech G, Hu J (2013) Generation of a new IDS test dataset: time to retire the KDD collection. Wirel Commun Netw Conf (WCNC). https://doi.org/10.1109/WCNC.2013.6555301 Prete LR, Shinoda AA, Schweitzer CM, De Oliveira RLS (2014) Simulation in an SDN network scenario using the POX controller. 2014 I.E. Colombian Conference on Communications and Computing (COLCOM), Bogota, pp 1–6. https://doi.org/10.1109/ColComCon.2014.6860403 Kaur S, Singh J, Ghumman NS (2014) Network programmability using POX controller. International conference on communication, computing & systems, at SBS Staten technical campus, Ferozepur, Punjab, India, volume: 1 Hughes T, Mierle K (2013) Recurrent neural networks for voice activity detection IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, pp 7378–7382. https://doi.org/10.1109/ICASSP.2013.6639096 Kreutz D, Ramos FMV, Verissimo PE, Rothenberg CE, Azodolmolky S (2015) Software-defines network- a comprehensive survey. Published in Proceedings of the IEEE, 103, 1 Zanero S, Savaresi SM (2004) Unsupervised learning techniques for an intrusion detection system. In: Proceedings of the ACM symposium on applied computing. Pages 412–419 Almomani I, Al-Kasasbeh B, Al-Akhras M (2016) WSN-DS: a dataset for intrusion detection systems in wireless sensor networks. J Sens 16p POX. [Online]. Available: http://www.noxrepo.org/pox/about-pox. Accessed 12 July 2017 Open Networking Foundation (2014) SDN architecture, Issue 1 June 2014 ONF TR-502 Alom MZ, Bontupalli VR, Taha TM (2015) Intrusion detection using deep belief networks. Aerospace and electronics conference, NAECON. IEEE Convolutional Neural Networks (2017) http://eric-yuan.me/cnn/. Accessed 10 July 2017 Hewlett Packard Enterprise (2015) 2015 cost of cyber crime study: global, independently conducted by Ponemon institute LLC publication, Ponemon Institute research report. Avaiable https://www.accenture.com/t20170926T072837Z__w__/us-en/_acnmedia/PDF-61/Accenture-2017-CostCyberCrimeStudy.pdf. Accessed 26 June 2017 Zamani M, Movahedi M (2015) Machine learning techniques for intrusion detection. CoRR, arXiv preprint arXiv:1312.2177. 2017 Jan 9 Vyas A (2017) Deep learning in natural language processing” in mphasis, deep learning- NL_whitepaper Bakshi T (2017) State of the art and recent research advances in software defined networking. In Wireless Communications and Mobile Computing, 2017, 1530-8669, Hindawi Publishing Corporation Supervised and unsupervised machine learning algorithms http://machinelearningmastery.com/supervised-and-unsupervised-machine learning-algorithms/. Accessed 20 June 2017 EidHFSalamaMAHassanienAEKimTHBi-layer behavioral based feature selection approach for network intrusion classificationCommun Comput Inf Sci Book Ser2011259195203 TsaiCHsuYLinCLinWIntrusion detection by machine learning: a reviewExpert Syst Appl200936119941200010.1016/j.eswa.2009.05.029 Hasan MAM, Nasser M, Ahmad S, Molla KH (2016) Feature selection for intrusion detection using random forest. In: Journal of information security, pp 129–140 Gogoil P, Bhuyan MH (2012) Packet and flow-based network intrusion dataset. International conference on contemporary computing IC3, pp 322–334 Tutorial http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/. Accessed June 15 2017 Sezer S, Scott-Hayward S, Chouhan PK (2013) Are we ready for SDN? Implementation challenges for software-defined networks. In: IEEE Communication Magazine, vol. 51, no. 7, pp 36–43. https://doi.org/10.1109/MCOM.2013.6553676 Aburomman AA, Reza MBI (2016) Survey of learning methods in intrusion detection systems. International conference on advances in electrical, electronic and system Engineering(ICAEES), Putrajaya, pp 362–365. https://doi.org/10.1109/ICAEES.2016.7888070 Coates A, Lee H, Ng Andrew Y (2011) An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, PMLR 15:215–223 University of New Brunswick (2017) [Online] available http://www.unb.ca/cic/research/datasets/dos-dataset.html. Accesses 22 June 2017 Survey of Current Network Intrusion Detection Techniques https://www.cse.wustl.edu/~jain/cse571-07/ftp/ids/. Accessed 26 June 2017 Salama MA, Eid HF, Ramadan RA, Darwish A, Hassanien AE (2011) Hybrid intelligent intrusion detection scheme. Soft computing in industrial applications in advances in intelligent and soft computing book series (AINSC, volume 96), pp 293–303 Jankowski D, Amanowwicz M (2016) On efficiency of selected machine learning algorithms for intrusion detection in software defined networks. Int J Electron Telecommun, 62(3):247–252 Atkinson RC, Bellekens XJ, Hodo E, Hamilton A, Tachtatzis C (2017) Shallow and deep networks intrusion detection system: a taxonomy and survey. CoRR, arXiv preprint arXiv:1701.02145. 2017 Jan 9 HuFHaoQBaoKA survey on software-defined network and openFlow: from concept to implementationIEEE communication surveys & tutorial201416410.1109/SURV.2013.111313.00244 Alom MZ, Bontupall VR, Taha TM (2015) Intrusion detection using deep belief networks. In: Aerospace and electronics conference, NAECON Garcı´a-TeodoroaPDı´az-VerdejoJMacia´-Ferna’ndezGVa´zquezEAnomaly-based network intrusion detection: Techniques, systems and challengesJ Comput Secur2009281-2182810.1016/j.cose.2008.08.003 LeCun Y, Bengio Y, Hinton G (2015) Deep learning review. Weekly journal of science in nature international. Nature 521, doi: https://doi.org/10.1038/nature14539 Thaseen S, Kumar Ch (2013) An analysis of supervised tree based classifiers for intrusion detection system. In: Proceedings of the international conference on pattern recognition, informatics and mobile engineering (P RIME). Pp. 21–22 BennettKPDemirizASemi-supervised support vector machinesNeural Comput & Applic201728596997810.1007/s00521-015-2113-7 LuYCohenIZhouXSTianQFeature selection using principal feature analysisPattern Recogn Lett201449333910.1016/j.patrec.2014.05.020 Kloft M, Brefeld U, Dussel P, Gehl C, Laskov P (2008) Automatic feature selection for anomaly detection. In: Proceedings of the 1st ACM workshop on AISec, Pages 71–76, Alexandria, Virginia, ACM New York, USA Deng L, Yu D (2014) Deep learning methods and applications. Microsoft Research. Available https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/. Accessed 10 July 2017 FioreUPalmieriFCastiglioneASantisADNetwork anomaly detection with the restricted Boltzmann machineNeurocomputing201312225132310.1016/j.neucom.2012.11.050 Open Networking Foundation, Jun (2014) [Online]. Available: https://www.opennetworking.org/. Accessed 10 July 2017 NOX. [Online]. Available: http://www.noxrepo.org/nox/about-nox/. Accessed 12 July 2017 Open Networking Foundation (2013) SDN architecture overview, Version 1.0. Available https://www.opennetworking.org/images/stories/downloads/sdnresources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf. Accessed 27 June 2017 Niyaz Q, Sun W, Javaid AY, Alam M (2016) A deep learning approach for network intrusion detection system. International conference wireless networks and mobile communications (WINCOM) ShiraviAShiraviHTavallaeeMGhorbaniAAToward developing a systematic approach to generate benchmark datasets for intrusion detectionComput Secur201231335737410.1016/j.cose.2011.12.012 Nour M, Slay J (2016) The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison 630_CR27 630_CR28 630_CR29 630_CR3 C Tsai (630_CR18) 2009; 36 630_CR4 630_CR6 630_CR7 630_CR8 630_CR9 630_CR30 630_CR32 630_CR33 630_CR34 630_CR35 630_CR1 630_CR36 630_CR2 630_CR37 Y Lu (630_CR50) 2014; 49 630_CR16 630_CR17 KP Bennett (630_CR19) 2017; 28 A Shiravi (630_CR54) 2012; 31 630_CR20 630_CR21 630_CR22 P Garcı´a-Teodoroa (630_CR5) 2009; 28 630_CR23 630_CR24 630_CR25 630_CR26 630_CR49 U Fiore (630_CR31) 2013; 122 630_CR52 630_CR53 630_CR10 630_CR11 630_CR55 630_CR12 630_CR56 630_CR13 630_CR57 630_CR14 HF Eid (630_CR51) 2011; 259 630_CR58 630_CR15 630_CR59 630_CR38 630_CR39 F Hu (630_CR47) 2014; 16 630_CR40 630_CR41 630_CR42 630_CR43 630_CR44 630_CR45 630_CR46 630_CR48 |
References_xml | – reference: Hewlett Packard Enterprise (2015) 2015 cost of cyber crime study: global, independently conducted by Ponemon institute LLC publication, Ponemon Institute research report. Avaiable https://www.accenture.com/t20170926T072837Z__w__/us-en/_acnmedia/PDF-61/Accenture-2017-CostCyberCrimeStudy.pdf. Accessed 26 June 2017 – reference: Aburomman AA, Reza MBI (2016) Survey of learning methods in intrusion detection systems. International conference on advances in electrical, electronic and system Engineering(ICAEES), Putrajaya, pp 362–365. https://doi.org/10.1109/ICAEES.2016.7888070 – reference: Alom MZ, Bontupall VR, Taha TM (2015) Intrusion detection using deep belief networks. In: Aerospace and electronics conference, NAECON – reference: Alom MZ, Bontupalli VR, Taha TM (2015) Intrusion detection using deep belief networks. Aerospace and electronics conference, NAECON. IEEE – reference: FioreUPalmieriFCastiglioneASantisADNetwork anomaly detection with the restricted Boltzmann machineNeurocomputing201312225132310.1016/j.neucom.2012.11.050 – reference: Haweliya J, Nigam B (2014) Network intrusion detection using semi supervised support vector machine. Int J Comput Appl 85, 9 – reference: Nour M, Slay J (2016) The evaluation of network anomaly detection systems: statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set. Inf Secur J: A Glob Perspec, pp 1–14 – reference: Jankowski D, Amanowwicz M (2016) On efficiency of selected machine learning algorithms for intrusion detection in software defined networks. Int J Electron Telecommun, 62(3):247–252 – reference: Syarif I, Prugel-Bennett A, Wills G (2012) Unsupervised clustering approach for network anomaly detection. In: Benlamri R (eds) Networked Digital Technologies. NDT 2012. Communications in Computer and Information Science, vol 293. Springer, Berlin, Heidelberg – reference: Open Networking Foundation, Jun (2014) [Online]. Available: https://www.opennetworking.org/. Accessed 10 July 2017 – reference: Sezer S, Scott-Hayward S, Chouhan PK (2013) Are we ready for SDN? Implementation challenges for software-defined networks. In: IEEE Communication Magazine, vol. 51, no. 7, pp 36–43. https://doi.org/10.1109/MCOM.2013.6553676 – reference: HuFHaoQBaoKA survey on software-defined network and openFlow: from concept to implementationIEEE communication surveys & tutorial201416410.1109/SURV.2013.111313.00244 – reference: Creech G, Hu J (2013) Generation of a new IDS test dataset: time to retire the KDD collection. Wirel Commun Netw Conf (WCNC). https://doi.org/10.1109/WCNC.2013.6555301 – reference: Kaur S, Singh J, Ghumman NS (2014) Network programmability using POX controller. International conference on communication, computing & systems, at SBS Staten technical campus, Ferozepur, Punjab, India, volume: 1 – reference: Convolutional Neural Networks (2017) http://eric-yuan.me/cnn/. Accessed 10 July 2017 – reference: Deep learning stand to benefit to data analytics and HPC expertise http://www.cio.com/article/3180184/analytics/deep-learning- stands-to- benefit-from-data-analytics-and-high-performance-computing-hpc-expertise.html. Accessed 3 July 2017 – reference: Niyaz Q, Sun W, Javaid AY (2016) A deep learning based DDoS detection system in software defined networking (SDN). CoRR abs/1611.07400. https://doi.org/10.4108/eai.28-12-2017.153515 – reference: POX. [Online]. Available: http://www.noxrepo.org/pox/about-pox. Accessed 12 July 2017 – reference: TsaiCHsuYLinCLinWIntrusion detection by machine learning: a reviewExpert Syst Appl200936119941200010.1016/j.eswa.2009.05.029 – reference: Tuan TA, Mhamdi L, Mclernon D, Zaidi SAR, Ghogho M (2016) Deep learning approach for network intrusion detection in software defined networking. Int Conf Wirel Netw Mob Commun. https://doi.org/10.1109/WINCOM.2016.7777224 – reference: University of New Brunswick (2017) [Online] available http://www.unb.ca/cic/research/datasets/dos-dataset.html. Accesses 22 June 2017 – reference: Braga R, Mota E, Passito A (2010) Lightweight DDoS flooding attack detection using NOX/OpenFlow. 35th Annual IEEE conference on local computer networks, Denver, Colorado – reference: Wang L, Jones R (2017) Big data analytics for network intrusion detection: a survey. Int J Netw Commun. https://doi.org/10.5923/j.ijnc.20170701.03 – reference: Kreutz D, Ramos FMV, Verissimo PE, Rothenberg CE, Azodolmolky S (2015) Software-defines network- a comprehensive survey. Published in Proceedings of the IEEE, 103, 1 – reference: Coates A, Lee H, Ng Andrew Y (2011) An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics, PMLR 15:215–223 – reference: Vyas A (2017) Deep learning in natural language processing” in mphasis, deep learning- NL_whitepaper – reference: Chen C, Gong Y, Tian Y (2008) Semi-supervised learning methods for network intrusion detection. Int Conf Sys, Man Cybern, IEEE. https://doi.org/10.1109/ICSMC.2008.4811688 – reference: Atkinson RC, Bellekens XJ, Hodo E, Hamilton A, Tachtatzis C (2017) Shallow and deep networks intrusion detection system: a taxonomy and survey. CoRR, arXiv preprint arXiv:1701.02145. 2017 Jan 9 – reference: ShiraviAShiraviHTavallaeeMGhorbaniAAToward developing a systematic approach to generate benchmark datasets for intrusion detectionComput Secur201231335737410.1016/j.cose.2011.12.012 – reference: Survey of Current Network Intrusion Detection Techniques https://www.cse.wustl.edu/~jain/cse571-07/ftp/ids/. Accessed 26 June 2017 – reference: Deng L, Yu D (2014) Deep learning methods and applications. Microsoft Research. Available https://www.microsoft.com/en-us/research/publication/deep-learning-methods-and-applications/. Accessed 10 July 2017 – reference: Zanero S, Savaresi SM (2004) Unsupervised learning techniques for an intrusion detection system. In: Proceedings of the ACM symposium on applied computing. Pages 412–419 – reference: Mehdi SA, Khalid J, Khaiyam SA (2011) Revisiting traffic anomaly detection using software defined networking. In: Sommer R, Balzarotti D, Maier G (eds) Recent Advances in Intrusion Detection. RAID 2011. Lecture Notes in Computer Science, vol 6961. Springer, Berlin, Heidelberg – reference: Nunes BAA, Mendonca M, Nguyen XN, Obraczka K and Turletti T (2014) A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. In IEEE Communications Surveys & Tutorials, vol 16, no. 3, pp 1617–1634, Third Quarter 2014. https://doi.org/10.1109/SURV.2014.012214.00180 – reference: Gogoil P, Bhuyan MH (2012) Packet and flow-based network intrusion dataset. International conference on contemporary computing IC3, pp 322–334 – reference: NOX. [Online]. Available: http://www.noxrepo.org/nox/about-nox/. Accessed 12 July 2017 – reference: Yan Q, Yu FR, Gong Q and Li J (2016) Software-defined networking (SDN) and distributed denial of service (DDoS) attacks in cloud computing environments: A survey, some research issues, and challenges. IEEE Communications Surveys & Tutorials, vol. 18, no. 1, pp 602–622 Firstquarter 2016. https://doi.org/10.1109/COMST.2015.2487361 – reference: Hughes T, Mierle K (2013) Recurrent neural networks for voice activity detection IEEE International Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, pp 7378–7382. https://doi.org/10.1109/ICASSP.2013.6639096 – reference: Nguyen HT, Petrovic S, Franke K (2010) A comparison of feature-selection methods for intrusion detection. In: Kotenko I, Skormin V (eds) Computer Network Security. MMM-ACNS 2010. Lecture Notes in Computer Science, vol 6258. Springer, Berlin, Heidelberg, pp 242–255 – reference: EidHFSalamaMAHassanienAEKimTHBi-layer behavioral based feature selection approach for network intrusion classificationCommun Comput Inf Sci Book Ser2011259195203 – reference: Almomani I, Al-Kasasbeh B, Al-Akhras M (2016) WSN-DS: a dataset for intrusion detection systems in wireless sensor networks. J Sens 16p – reference: BennettKPDemirizASemi-supervised support vector machinesNeural Comput & Applic201728596997810.1007/s00521-015-2113-7 – reference: Garcı´a-TeodoroaPDı´az-VerdejoJMacia´-Ferna’ndezGVa´zquezEAnomaly-based network intrusion detection: Techniques, systems and challengesJ Comput Secur2009281-2182810.1016/j.cose.2008.08.003 – reference: Salama MA, Eid HF, Ramadan RA, Darwish A, Hassanien AE (2011) Hybrid intelligent intrusion detection scheme. Soft computing in industrial applications in advances in intelligent and soft computing book series (AINSC, volume 96), pp 293–303 – reference: Open Networking Foundation (2014) SDN architecture, Issue 1 June 2014 ONF TR-502 – reference: Supervised and unsupervised machine learning algorithms http://machinelearningmastery.com/supervised-and-unsupervised-machine learning-algorithms/. Accessed 20 June 2017 – reference: Thaseen S, Kumar Ch (2013) An analysis of supervised tree based classifiers for intrusion detection system. In: Proceedings of the international conference on pattern recognition, informatics and mobile engineering (P RIME). Pp. 21–22 – reference: Tutorial http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/. Accessed June 15 2017 – reference: Prete LR, Shinoda AA, Schweitzer CM, De Oliveira RLS (2014) Simulation in an SDN network scenario using the POX controller. 2014 I.E. Colombian Conference on Communications and Computing (COLCOM), Bogota, pp 1–6. https://doi.org/10.1109/ColComCon.2014.6860403 – reference: Eid HFA, Darwish A, Hassanien AE, Abraham A (2010) Principal components analysis and support vector machine based intrusion detection system. International conference intelligent systems design and applications (ISDA) – reference: Hasan MAM, Nasser M, Ahmad S, Molla KH (2016) Feature selection for intrusion detection using random forest. In: Journal of information security, pp 129–140 – reference: Bakshi T (2017) State of the art and recent research advances in software defined networking. In Wireless Communications and Mobile Computing, 2017, 1530-8669, Hindawi Publishing Corporation – reference: Zamani M, Movahedi M (2015) Machine learning techniques for intrusion detection. CoRR, arXiv preprint arXiv:1312.2177. 2017 Jan 9 – reference: Open Flow [Online]. Available: http://www.openflow.org/. Accessed 12 July 2017 – reference: Open Networking Foundation (2013) SDN architecture overview, Version 1.0. Available https://www.opennetworking.org/images/stories/downloads/sdnresources/technical-reports/TR_SDN-ARCH-Overview-1.1-11112014.02.pdf. Accessed 27 June 2017 – reference: LeCun Y, Bengio Y, Hinton G (2015) Deep learning review. Weekly journal of science in nature international. Nature 521, doi: https://doi.org/10.1038/nature14539 – reference: Kloft M, Brefeld U, Dussel P, Gehl C, Laskov P (2008) Automatic feature selection for anomaly detection. In: Proceedings of the 1st ACM workshop on AISec, Pages 71–76, Alexandria, Virginia, ACM New York, USA – reference: Niyaz Q, Sun W, Javaid AY, Alam M (2016) A deep learning approach for network intrusion detection system. International conference wireless networks and mobile communications (WINCOM) – reference: LuYCohenIZhouXSTianQFeature selection using principal feature analysisPattern Recogn Lett201449333910.1016/j.patrec.2014.05.020 – ident: 630_CR2 – ident: 630_CR26 doi: 10.1109/NAECON.2015.7443094 – ident: 630_CR42 – ident: 630_CR32 – ident: 630_CR35 doi: 10.1109/SURV.2014.012214.00180 – ident: 630_CR55 – volume: 122 start-page: 13 issue: 25 year: 2013 ident: 630_CR31 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.11.050 – ident: 630_CR37 doi: 10.1109/COMST.2015.2487361 – ident: 630_CR13 – ident: 630_CR20 doi: 10.5120/14870-3245 – ident: 630_CR27 – ident: 630_CR56 doi: 10.1109/WCNC.2013.6555301 – ident: 630_CR8 doi: 10.4108/eai.28-12-2017.153515 – ident: 630_CR43 – ident: 630_CR1 – ident: 630_CR22 – ident: 630_CR4 doi: 10.1007/978-3-642-23644-0_9 – ident: 630_CR9 doi: 10.1109/MCOM.2013.6553676 – volume: 259 start-page: 195 year: 2011 ident: 630_CR51 publication-title: Commun Comput Inf Sci Book Ser – ident: 630_CR52 doi: 10.4236/jis.2016.73009 – ident: 630_CR30 doi: 10.1007/978-3-642-20505-7_26 – ident: 630_CR12 – ident: 630_CR25 doi: 10.1561/2000000039 – volume: 49 start-page: 33 year: 2014 ident: 630_CR50 publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2014.05.020 – volume: 28 start-page: 18 issue: 1-2 year: 2009 ident: 630_CR5 publication-title: J Comput Secur doi: 10.1016/j.cose.2008.08.003 – ident: 630_CR59 doi: 10.1515/eletel-2016-0033 – ident: 630_CR44 – ident: 630_CR38 doi: 10.1109/LCN.2010.5735752 – ident: 630_CR15 – ident: 630_CR3 doi: 10.1109/ICAEES.2016.7888070 – volume: 28 start-page: 969 issue: 5 year: 2017 ident: 630_CR19 publication-title: Neural Comput & Applic doi: 10.1007/s00521-015-2113-7 – ident: 630_CR58 doi: 10.1155/2016/4731953 – ident: 630_CR57 – ident: 630_CR34 – ident: 630_CR11 – ident: 630_CR45 doi: 10.1007/978-3-642-14706-7_19 – volume: 16 start-page: 4 year: 2014 ident: 630_CR47 publication-title: IEEE communication surveys & tutorial doi: 10.1109/SURV.2013.111313.00244 – volume: 31 start-page: 357 issue: 3 year: 2012 ident: 630_CR54 publication-title: Comput Secur doi: 10.1016/j.cose.2011.12.012 – ident: 630_CR17 doi: 10.1007/978-3-642-30507-8_13 – ident: 630_CR29 doi: 10.1109/ICASSP.2013.6639096 – ident: 630_CR33 doi: 10.5923/j.ijnc.20170701.03 – ident: 630_CR21 doi: 10.1109/ICSMC.2008.4811688 – ident: 630_CR24 – ident: 630_CR41 – ident: 630_CR7 – ident: 630_CR23 doi: 10.1038/nature14539 – ident: 630_CR39 – ident: 630_CR6 doi: 10.1109/WINCOM.2016.7777224 – ident: 630_CR16 doi: 10.1145/967900.967988 – ident: 630_CR14 doi: 10.1109/ICPRIME.2013.6496489 – ident: 630_CR40 doi: 10.1109/ColComCon.2014.6860403 – ident: 630_CR10 – volume: 36 start-page: 11994 year: 2009 ident: 630_CR18 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.05.029 – ident: 630_CR36 doi: 10.1155/2017/7191647 – ident: 630_CR49 – ident: 630_CR53 doi: 10.1145/1456377.1456395 – ident: 630_CR28 – ident: 630_CR46 doi: 10.1007/978-3-642-32129-0_34 – ident: 630_CR48 doi: 10.1109/NAECON.2015.7443094 |
SSID | ssj0061352 |
Score | 2.5774424 |
Snippet | Software Defined Networking Technology (SDN) provides a prospect to effectively detect and monitor network security problems ascribing to the emergence of the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 493 |
SubjectTerms | Artificial intelligence Challenges and Prospective Smart Solutions Communications Engineering Computer Communication Networks Computer networks Cybersecurity Engineering Environment models Information Systems and Communication Service Intrusion detection systems Machine learning Networks Signal,Image and Speech Processing Software-defined networking Special Issue on Software Defined Networking: Trends |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NSwMxEA1SL3oQP7FaJQdPSqCbbZLNsfhBEeylFnpbkuykCLoVWwX_vZPdja2igufN5jCzm3mPeXlDyJkQkCZCWQbKAxKUrmNWArIU6XrIQLK0sKGjezeUg3HvdiImzT3ueVS7x5ZkdVIvL7txhAssnKrBJ4ohT18XSN2DjmvM-_H4xfJUjdlBYCIZFnseW5k_bfG1GC0R5remaFVrbrbJVgMSab_O6g5Zg3KXbK5YB-6Ryej15Q3e6ayko6shDcWooGWt6aYPZbhKgRGnBSwqrVVJa8tmGnTuU_pUSSiBNjMjpjRai8N8n4xvru8vB6yZksBcmsgF02FmtOcuUyCQH1ieGAieLk4JbpXVUlvjfcGl0sIkxiBmstpmvusc6Ez59IC0ylkJh4QmHEAhn7FIwrBoJdr4wkhnEutBpY63STeGK3eNhXiYZPGYL82PQ4RzjHAeIpx32-T885Xn2j_jr8WdmIO8-ZXmedDHKgRxPGuTi5iXlce_bXb0r9XHZAOhkK7VZR3SwjTBCcKNhT2tPq8P0CrLZA priority: 102 providerName: Springer Nature |
Title | Survey on SDN based network intrusion detection system using machine learning approaches |
URI | https://link.springer.com/article/10.1007/s12083-017-0630-0 https://www.proquest.com/docview/1992792928 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED5Bu8CAeIryqDwwgSwSh8TJhAptQTwqRKlUpih2LggJUqAFiX_POXFoQYIpgxMPd85939nn7wD2fB8915eKo8yQEhRHcxUgZSmBPqIMJPRSZU50r3vB-eDoYugP7Ybb2JZVVjGxCNTpSJs98kNTJikJy0V4_PLKTdcoc7pqW2jMQ51CcBjWoH7S6d3cVrGYsKrouUMsJeCE_KI61ywuzwmiH9xEaaM7xZ2fyDSlm79OSAvg6S7DkmWMrFW6eAXmMF-FxRkdwTUY9t_fPvCTjXLWb_eYQaaU5WWBN3vMzb0KMj9LcVIUXuWs1G9mpuj9gT0X9ZTIbAOJB1bpjON4HQbdzt3pObctE7j23GDCI9NAOhM6lOhTsqCEm6AReNHSF0qqKIhUkmWpCGTkJ26SEIFSkQozR2uMQpl5G1DLRzluAnMFoqTkRlFGRgjmRkmWJoFOXJWh9LRogFOZK9ZWT9y0tXiKp0rIxsIxWTg2Fo6dBux_f_JSimn89_JO5YPY_lfjeLoKGnBQ-WVm-K_Jtv6fbBsWiAhFZW3ZDtTIL7hLZGOimjAfds-aUG-1r6_65nl2f9lp2nVGowPR-gIDY9V0 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9tAEB0FegAOqC0gwke7B3oBrbDXsTc-IIRK00A-LoCUm_Gux6hScYAEEH-K38iM7W1opXLjHGcPM-N9bzwzbwB2whADP9RGos6REhTPShMhZSmRbVEG0g4ywxXdwTDqXrROR-GoAc9uFobbKt2dWF7U2djyN_J9bpPUhOWqfXhzK3lrFFdX3QqNKix6-PRIKdvk4OSY_PtNqc6P8-9dWW8VkDbwo6mMecdyrmxbY0h82ig_RdZAsTpURps4ik2a55mKdBymfpoSxzCxaeeetUgJeh7QuXPwoRUQkvNkeuenu_kJGcsNP8SJIkk8Q7kqajmqp4jsSMYEVrmS3t84OCO3_9RjS5jrfITlmp-KoyqgPkEDi8-w9Eq1cAVGZ_d3D_gkxoU4Ox4KxsFMFFU7ufhV8BQHOVtkOC3bvApRqUULbrG_Etdl9yaKel3FlXCq5jhZhYt3MeUazBfjAtdB-ApRUyplKP8jvPTjNM_SyKa-yVEHVjXBc-ZKbK1ezks0ficz3WW2cEIWTtjCideE3T9_uamkO956eMv5IKnf4kkyi7km7Dm_vPr5f4dtvH3YV1jong_6Sf9k2NuERaJgcdXVtgXz5CPcJpozNV_K2BJw-d7B_ALgtwwA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NT9wwEB3BIiF6QEBbdfn0gV5aWSQOiTcHVNEuK766QqVIe0tjZ4wqlSztLiD-Wn8dM0nMAhLcOCfxYWaS9yZ-fgOwGccYhbE2ErVDalACK02C1KUkdps6kE5UGN7R_d5P9s-2DwfxYAr--7MwLKv038TqQ10MLf8j32KZpCYsV50t18giTrq9L5d_JU-Q4p1WP06jLpEjvL2h9m20c9ClXH9Uqrf389u-bCYMSBuFyVimPG_ZKdvRGBO3NirMkf1QrI6V0SZNUpM7V6hEp3Ee5jnxDZOajgusRWrWXUTrTsOM5q6oBTNf9_onPzwOEE5W836IISWSWIfye6rVwT1F1EcyQrDnlQweo-KE6j7Zna1Ar7cA8w1bFbt1eS3CFJZL8OaBh-FbGJxe_bvGWzEsxWm3LxgVC1HW4nLxu-QzHZR6UeC4En2VovaOFiy4PxcXlZYTRTO84lx4j3McvYOzVwnme2iVwxI_gAgVoqbGylA3SOgZprkr8sTmoXGoI6vaEPhwZbbxMueRGn-yiQszRzijCGcc4Sxow6f7Ry5rI4-Xbl71Ociad3qUTSqwDZ99Xh5cfm6x5ZcX24BZKuTs-KB_tAJzxMfSWuK2Ci1KEa4R5xmb9aa4BPx67Xq-A-QzEZI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Survey+on+SDN+based+network+intrusion+detection+system+using+machine+learning+approaches&rft.jtitle=Peer-to-peer+networking+and+applications&rft.au=Sultana%2C+Nasrin&rft.au=Chilamkurti%2C+Naveen&rft.au=Peng%2C+Wei&rft.au=Alhadad%2C+Rabei&rft.date=2019-03-01&rft.issn=1936-6442&rft.eissn=1936-6450&rft.volume=12&rft.issue=2&rft.spage=493&rft.epage=501&rft_id=info:doi/10.1007%2Fs12083-017-0630-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12083_017_0630_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1936-6442&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1936-6442&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1936-6442&client=summon |