Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products
Reducing the size of heterogeneous nanocatalysts is generally conducive to improving their atomic utilization and activities in various catalytic reactions. However, this strategy has proven less effective for Cu-based electrocatalysts for the reduction of CO 2 to multicarbon (C 2+ ) products, owing...
Saved in:
Published in | Nano research Vol. 15; no. 1; pp. 195 - 201 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Reducing the size of heterogeneous nanocatalysts is generally conducive to improving their atomic utilization and activities in various catalytic reactions. However, this strategy has proven less effective for Cu-based electrocatalysts for the reduction of CO
2
to multicarbon (C
2+
) products, owing to the overly strong binding of intermediates on small-sized (< 15 nm) Cu nanoparticles (NPs). Herein, by incorporating pyrenyl-graphdiyne (Pyr-GDY), we successfully endowed ultrafine (∼ 2 nm) Cu NPs with a significantly elevated selectivity for CO
2
-to-C
2+
conversion. The Pyr-GDY can not only help to relax the overly strong binding between adsorbed H* and CO* intermediates on Cu NPs by tailoring the d-band center of the catalyst, but also stabilize the ultrafine Cu NPs through the high affinity between alkyne moieties and Cu NPs. The resulting Pyr-GDY-Cu composite catalyst gave a Faradic efficiency (FE) for C
2+
products up to 74%, significantly higher than those of support-free Cu NPs (C
2+
FE, ~ 2%), carbon nanotube-supported Cu NPs (CNT-Cu, C
2+
FE, ~ 18%), graphene oxide-supported Cu NPs (GO-Cu, C
2+
FE, ~ 8%), and other reported ultrafine Cu NPs. Our results demonstrate the critical influence of graphdiyne on the selectivity of Cu-catalyzed CO
2
electroreduction, and showcase the prospect for ultrafine Cu NPs catalysts to convert CO
2
into value-added C
2+
products. |
---|---|
AbstractList | Reducing the size of heterogeneous nanocatalysts is generally conducive to improving their atomic utilization and activities in various catalytic reactions. However, this strategy has proven less effective for Cu-based electrocatalysts for the reduction of CO2 to multicarbon (C2+) products, owing to the overly strong binding of intermediates on small-sized (< 15 nm) Cu nanoparticles (NPs). Herein, by incorporating pyrenyl-graphdiyne (Pyr-GDY), we successfully endowed ultrafine (∼ 2 nm) Cu NPs with a significantly elevated selectivity for CO2-to-C2+ conversion. The Pyr-GDY can not only help to relax the overly strong binding between adsorbed H* and CO* intermediates on Cu NPs by tailoring the d-band center of the catalyst, but also stabilize the ultrafine Cu NPs through the high affinity between alkyne moieties and Cu NPs. The resulting Pyr-GDY-Cu composite catalyst gave a Faradic efficiency (FE) for C2+ products up to 74%, significantly higher than those of support-free Cu NPs (C2+ FE, ~ 2%), carbon nanotube-supported Cu NPs (CNT-Cu, C2+ FE, ~ 18%), graphene oxide-supported Cu NPs (GO-Cu, C2+ FE, ~ 8%), and other reported ultrafine Cu NPs. Our results demonstrate the critical influence of graphdiyne on the selectivity of Cu-catalyzed CO2 electroreduction, and showcase the prospect for ultrafine Cu NPs catalysts to convert CO2 into value-added C2+ products. Reducing the size of heterogeneous nanocatalysts is generally conducive to improving their atomic utilization and activities in various catalytic reactions. However, this strategy has proven less effective for Cu-based electrocatalysts for the reduction of CO 2 to multicarbon (C 2+ ) products, owing to the overly strong binding of intermediates on small-sized (< 15 nm) Cu nanoparticles (NPs). Herein, by incorporating pyrenyl-graphdiyne (Pyr-GDY), we successfully endowed ultrafine (∼ 2 nm) Cu NPs with a significantly elevated selectivity for CO 2 -to-C 2+ conversion. The Pyr-GDY can not only help to relax the overly strong binding between adsorbed H* and CO* intermediates on Cu NPs by tailoring the d-band center of the catalyst, but also stabilize the ultrafine Cu NPs through the high affinity between alkyne moieties and Cu NPs. The resulting Pyr-GDY-Cu composite catalyst gave a Faradic efficiency (FE) for C 2+ products up to 74%, significantly higher than those of support-free Cu NPs (C 2+ FE, ~ 2%), carbon nanotube-supported Cu NPs (CNT-Cu, C 2+ FE, ~ 18%), graphene oxide-supported Cu NPs (GO-Cu, C 2+ FE, ~ 8%), and other reported ultrafine Cu NPs. Our results demonstrate the critical influence of graphdiyne on the selectivity of Cu-catalyzed CO 2 electroreduction, and showcase the prospect for ultrafine Cu NPs catalysts to convert CO 2 into value-added C 2+ products. |
Author | Lu, Xiu-Li Zhang, Chao Zhang, Wen Chang, Yong-Bin Lu, Tong-Bu |
Author_xml | – sequence: 1 givenname: Yong-Bin surname: Chang fullname: Chang, Yong-Bin organization: Ministry of Education International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology – sequence: 2 givenname: Chao surname: Zhang fullname: Zhang, Chao organization: Ministry of Education International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology – sequence: 3 givenname: Xiu-Li surname: Lu fullname: Lu, Xiu-Li organization: Ministry of Education International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology – sequence: 4 givenname: Wen surname: Zhang fullname: Zhang, Wen email: zhangwen@email.tjut.edu.cn organization: Ministry of Education International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology – sequence: 5 givenname: Tong-Bu surname: Lu fullname: Lu, Tong-Bu email: lutongbu@tjut.edu.cn organization: Ministry of Education International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology |
BookMark | eNp9kEFLxDAQhYOs4O7qD_BW8CjVJM02zVGKrsLCXhS8hWwy0S41rUkq7L83pYogaC4Jb943M3kLNHOdA4TOCb4iGPPrQCjlLMeU5AVblTk9QnMiRJXjdGbfb0LZCVqEsMe4pIRVc_S89qp_Nc0BHGTg1K6FkA1t9Mo2SamHzCnX9crHRo-l2GUBWtCx-YD2kHkwg062LR0rNb3Met8lKYZTdGxVG-Ds616ip7vbx_o-32zXD_XNJtcFKWMuCLEVM8ZaXhS0YMwqYXHFK10CcDDamJUFLAijame4sYSWlpcgDK04LXGxRBdT3zT4fYAQ5b4bvEsjJV0JVglcYpZcfHJp34XgwUrdRBWbzqWfNq0kWI4xyilGmWKUY4ySJpL8InvfvCl_-JehExOS172A_9npb-gTpO-Gpg |
CitedBy_id | crossref_primary_10_1016_j_matchemphys_2022_126660 crossref_primary_10_1039_D1CS00592H crossref_primary_10_1016_j_mcat_2024_114316 crossref_primary_10_1007_s12274_023_5910_9 crossref_primary_10_1007_s12274_022_5228_z crossref_primary_10_1007_s12274_023_5931_4 crossref_primary_10_1039_D3CP00739A crossref_primary_10_1002_aic_18233 crossref_primary_10_1002_adfm_202408013 crossref_primary_10_1016_j_jmst_2023_08_002 crossref_primary_10_1039_D3TA03630H crossref_primary_10_1021_acsanm_4c03194 crossref_primary_10_1007_s12274_022_4476_2 crossref_primary_10_1039_D4TA03676J crossref_primary_10_1002_cssc_202402097 crossref_primary_10_1039_D4SE00533C crossref_primary_10_1039_D3RA03496H crossref_primary_10_1016_S1872_5805_22_60653_X crossref_primary_10_1016_j_jpowsour_2021_230788 crossref_primary_10_1016_j_jechem_2023_09_002 crossref_primary_10_1007_s12274_022_4175_z crossref_primary_10_1021_jacs_2c10976 crossref_primary_10_1007_s12274_023_5430_z crossref_primary_10_1039_D3EE00037K crossref_primary_10_1007_s12274_022_4157_1 crossref_primary_10_1016_j_apcatb_2023_123293 crossref_primary_10_1039_D3DT03432A crossref_primary_10_1016_j_apcatb_2022_121191 crossref_primary_10_1039_D3NJ01809A crossref_primary_10_3390_catal13010115 crossref_primary_10_1016_j_jechem_2022_01_015 crossref_primary_10_1021_acsanm_3c03038 crossref_primary_10_1016_S1872_2067_23_64509_7 crossref_primary_10_1039_D3CY01752D crossref_primary_10_1016_j_fuel_2022_126114 crossref_primary_10_1039_D3CC01428B crossref_primary_10_1016_j_apcatb_2024_124704 crossref_primary_10_1016_j_cej_2024_157636 crossref_primary_10_1007_s12274_023_6073_4 crossref_primary_10_1021_acsaem_1c01624 crossref_primary_10_1016_j_seppur_2024_127915 crossref_primary_10_1039_D4CP03161J crossref_primary_10_1039_D3CP06186H crossref_primary_10_2139_ssrn_4017634 crossref_primary_10_1002_aenm_202200586 crossref_primary_10_1080_14686996_2023_2196240 crossref_primary_10_1007_s12274_023_6166_0 crossref_primary_10_1002_aesr_202200192 crossref_primary_10_1002_adfm_202308601 crossref_primary_10_1002_metm_28 crossref_primary_10_1016_j_checat_2022_04_012 crossref_primary_10_1039_D2RA03145K crossref_primary_10_1002_aenm_202302382 crossref_primary_10_1007_s40242_021_1323_z crossref_primary_10_1002_adfm_202403095 crossref_primary_10_1016_j_nanoen_2022_107277 crossref_primary_10_1002_aenm_202301378 |
Cites_doi | 10.1007/s11426-020-9763-9 10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F 10.1039/C9TA03621K 10.1007/s12274-020-2687-y 10.1039/c0ee00071j 10.1002/aenm.201602114 10.1021/ja500328k 10.1021/acs.chemrev.8b00288 10.1021/jacs.5b04057 10.1038/s41929-020-00504-x 10.1038/s41929-019-0235-5 10.1007/s12274-019-2339-2 10.1021/ja5065284 10.1021/jacs.9b11790 10.1002/anie.202009277 10.1002/anie.201208320 10.1038/s41467-018-03444-0 10.1021/cs500537y 10.1038/s41929-017-0009-x 10.1126/science.aas9100 10.1002/anie.201612214 10.1021/jacs.9b03004 10.1016/j.carbon.2004.03.005 10.1021/acs.jpclett.5b02554 10.1016/j.chempr.2018.05.001 10.1021/jacs.8b11237 10.1039/b922733d 10.1021/acs.accounts.8b00010 10.1016/j.susc.2006.01.075 10.1038/ncomms5948 10.1002/anie.201801834 10.1002/ange.202011836 10.1002/aelm.201700122 10.1007/s12274-019-2345-4 10.1126/science.1240148 10.1007/s12274-019-2526-1 10.1002/anie.202010903 10.1007/s12274-019-2396-6 10.1063/1.5054109 10.1002/adma.201805405 10.1039/C5PY00093A 10.1021/acscatal.6b03147 10.1002/adma.201700421 10.1021/acsami.0c14826 10.1016/j.enchem.2020.100034 10.1039/D0EE01486A 10.1038/s41929-019-0269-8 10.1039/D0TA02256J 10.1021/acs.chemrev.8b00705 10.1021/jacs.9b08259 10.1016/j.tetlet.2011.04.118 10.1073/pnas.1711493114 10.1016/j.nantod.2018.05.001 10.1038/s41929-018-0168-4 10.1039/D0SC01202E 10.1021/acscatal.7b02959 10.1021/jacs.9b11443 10.1038/nmat3471 10.1002/anie.201601582 10.1002/anie.201804817 10.1021/jacs.7b05591 |
ContentType | Journal Article |
Copyright | Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
Copyright_xml | – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021 – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021. |
DBID | AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s12274-021-3456-2 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Materials Science Database (NC LIVE) Advanced Technologies Database with Aerospace ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1998-0000 |
EndPage | 201 |
ExternalDocumentID | 10_1007_s12274_021_3456_2 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 95- 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQGLB PQUKI |
ID | FETCH-LOGICAL-c316t-911f84ddff7332344fa9f0878c6ee7edcdd5fe09142abd7df126f76e9d2872603 |
IEDL.DBID | U2A |
ISSN | 1998-0124 |
IngestDate | Sat Aug 23 14:55:42 EDT 2025 Tue Jul 01 01:46:59 EDT 2025 Thu Apr 24 23:08:51 EDT 2025 Fri Feb 21 02:47:56 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | multicarbon products graphdiyne nanofibers CO reduction electrocatalysis ultrafine copper nanoparticles |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-911f84ddff7332344fa9f0878c6ee7edcdd5fe09142abd7df126f76e9d2872603 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2594890604 |
PQPubID | 326270 |
PageCount | 7 |
ParticipantIDs | proquest_journals_2594890604 crossref_citationtrail_10_1007_s12274_021_3456_2 crossref_primary_10_1007_s12274_021_3456_2 springer_journals_10_1007_s12274_021_3456_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20220100 2022-01-00 20220101 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 1 year: 2022 text: 20220100 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationYear | 2022 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Nitopi, Bertheussen, Scott, Liu, Engstfeld, Horch, Seger, Stephens, Chan, Hahn (CR2) 2019; 119 Xie, Wang, Liang, Li, Sun (CR16) 2018; 21 Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (CR61) 2010; 3 Nie, Esopi, Janik, Asthagiri (CR62) 2013; 52 Liu, Zhong, Lu (CR4) 2020; 2 Zhang, Zhao, Gong (CR3) 2017; 56 Kim, Resasco, Yu, Asiri, Yang (CR52) 2014; 5 Tan, Tackett, He, Lee, Chen, Wong (CR9) 2020; 13 Huang, Li, Wang, Xue, Zuo, Liu, Li (CR33) 2018; 118 Reske, Mistry, Behafarid, Cuenya, Strasser (CR24) 2014; 136 Jiang, Klingan, Pasquini, Dau (CR60) 2019; 150 Kim, Kley, Li, Yang (CR56) 2017; 114 Cao, Wang, Zhu, Xie, Yu, Gong (CR59) 2020; 8 Chen, Chen, Zhou, Pi (CR42) 2005; 23 Zhang, Du, Müller, Amin, Jordan (CR39) 2015; 6 Han, Long, Zhang, Hou, Yuan, Wang, Zhang, Qiu, Zhu, Zhang (CR21) 2020; 11 Zeng, Wang, Wang, Wang, Guo, Hu, He, Wang, Lin (CR51) 2020; 142 Su, Dong, Zhang, Liu, Zhang, Lu (CR58) 2020; 12 Cargnello, Doan-Nguyen, Gordon, Diaz, Stach, Gorte, Fornasiero, Murray (CR38) 2013; 341 Ihm, Kang, Lee, Park, Kim, Kim, Yang, Park (CR46) 2006; 600 Kuang, Guan, Gu, Han, Qian, Zheng (CR11) 2019; 12 Zhong, Meng, Zhang, Liu, Zhang (CR8) 2019; 12 Sun, Xu, Wang, Li (CR10) 2019; 12 Gao, Arán-Ais, Jeon, Cuenya (CR1) 2019; 2 Huang, Handoko, Hirunsit, Yeo (CR20) 2017; 7 Jiang, Wang, Pei, Shang, Zhou, Li, Dong, Wang, Cao, Zhuang (CR6) 2020; 13 Choi, Cheng, Espinosa, Fei, Duan, Goddard, Huang (CR14) 2019; 31 Jung, Lee, Lee, Cho, Won, Kim, Oh, Min, Hwang (CR18) 2019; 141 Yang, Wang, Wang, Li, Zhang, Lu (CR34) 2019; 7 Siemsen, Livingston, Diederich (CR44) 2000; 39 Choi, Kwon, Cheng, Xu, Tieu, Lee, Cai, Lee, Pan, Duan (CR19) 2020; 3 Lei, Zhu, Song, Wei, Liu, Zhang, Yin, Dong, Yao, Wang (CR50) 2020; 142 Reller, Krause, Volkova, Schmid, Neubauer, Rucki, Schuster, Schmid (CR13) 2017; 7 Manthiram, Beberwyck, Alivisatos (CR30) 2014; 136 Zhang, Hou, Dzhagan, Liao, Chai, Löffler, Olianas, Milani, Xu, Tommasini (CR40) 2018; 9 Tang, Lee, Li, Choi, Liu, Lee, Jiang (CR28) 2017; 139 Li, Li, Liu, Guo, Li, Zhu (CR32) 2010; 46 Luc, Fu, Shi, Lv, Jouny, Ko, Xu, Tu, Hu, Wu (CR23) 2019; 2 Zhang, Wang, Yu, Liu, Chen, Li, Rong, Lin, Ji, Zheng (CR5) 2019; 141 Vasileff, Xu, Jiao, Zheng, Qiao (CR15) 2018; 4 Zhuang, Pang, Liang, Wang, Li, Tan, Li, Dinh, De Luna, Hsieh (CR22) 2018; 1 Estrade-Szwarckopf (CR47) 2004; 42 Baturina, Lu, Padilla, Xin, Li, Serov, Artyushkova, Atanassov, Xu, Epshteyn (CR53) 2014; 4 Li, Wang, Zhang, Chang, Li, Zhang, Lu (CR41) 2020; 63 Hu, Han, Wang, Li, Wang, Huang, Yang, Ren, Zhang, Liu (CR29) 2020; 59 Yin, Wang, Tang, Lu, Shu, Si, Lu (CR36) 2018; 57 Prieto, Zečević, Friedrich, De Jong, De Jongh (CR37) 2013; 12 Zhou, Gao, Liu, Xie, Yang, Zhang, Zhang, Liu, Li, Zhang (CR49) 2015; 137 Ren, Wong, Handoko, Huang, Yeo (CR54) 2016; 7 Chen, Song, Cai, Zheng, Han, Wu, Zang, Niu, Liu, Zhu (CR57) 2018; 57 Dinh, Burdyny, Kibria, Seifitokaldani, Gabardo, De Arquer, Kiani, Edwards, De Luna, Bushuyev (CR26) 2018; 360 Li, Wang, He (CR43) 2011; 52 Liu, Zhou, Gao, Li, Xie, Li, Zhang, Tong, Zhang, Liu (CR45) 2017; 3 Lin, Ma, Cheong, Zhang, Zhu, Pei, Zhang, Wang, Liang, Liu (CR55) 2019; 12 Loiudice, Lobaccaro, Kamali, Thao, Huang, Ager, Buonsanti (CR27) 2016; 55 Shang, Wang, Pei, Jiang, Zhou, Wang, Li, Dong, Zhuang, Chen (CR7) 2020; 59 Weekes, Salvatore, Reyes, Huang, Berlinguette (CR25) 2018; 51 Jeon, Kunze, Scholten, Cuenya (CR12) 2018; 8 Li, Xie, Xiong, Li, Huang, Zhang, Zhou, Liu, Gao, Chen (CR48) 2017; 29 Hui, Xue, Yu, Liu, Fang, Xing, Huang, Li (CR35) 2019; 141 Jiang, Sandberg, Akey, Liu, Bell, Nerskov, Chan, Wang (CR17) 2018; 1 Rong, Zou, Zang, Xi, Wei, Long, Hu, Ji, Duan (CR31) 2021; 133 M Kuang (3456_CR11) 2019; 12 Q Lei (3456_CR50) 2020; 142 S Tan (3456_CR9) 2020; 13 G X Li (3456_CR32) 2010; 46 R Liu (3456_CR45) 2017; 3 L L Yang (3456_CR34) 2019; 7 H Estrade-Szwarckopf (3456_CR47) 2004; 42 D Kim (3456_CR52) 2014; 5 T Zhang (3456_CR39) 2015; 6 T Zhang (3456_CR40) 2018; 9 D Kim (3456_CR56) 2017; 114 H X Zhong (3456_CR8) 2019; 12 D M Weekes (3456_CR25) 2018; 51 D F Gao (3456_CR1) 2019; 2 A Vasileff (3456_CR15) 2018; 4 L Z Zeng (3456_CR51) 2020; 142 K Jiang (3456_CR17) 2018; 1 K Manthiram (3456_CR30) 2014; 136 H Xie (3456_CR16) 2018; 21 Z Y Chen (3456_CR57) 2018; 57 S W Cao (3456_CR59) 2020; 8 K Ihm (3456_CR46) 2006; 600 L Chen (3456_CR42) 2005; 23 Q Tang (3456_CR28) 2017; 139 Y Huang (3456_CR20) 2017; 7 T T Sun (3456_CR10) 2019; 12 M Cargnello (3456_CR38) 2013; 341 A A Peterson (3456_CR61) 2010; 3 C S Huang (3456_CR33) 2018; 118 K Su (3456_CR58) 2020; 12 E H Zhang (3456_CR5) 2019; 141 H S Shang (3456_CR7) 2020; 59 G Prieto (3456_CR37) 2013; 12 Y N Li (3456_CR43) 2011; 52 R Lin (3456_CR55) 2019; 12 C Choi (3456_CR19) 2020; 3 S Jiang (3456_CR60) 2019; 150 C Reller (3456_CR13) 2017; 7 W Luc (3456_CR23) 2019; 2 M Li (3456_CR41) 2020; 63 C Choi (3456_CR14) 2019; 31 W F Rong (3456_CR31) 2021; 133 C T Dinh (3456_CR26) 2018; 360 P Siemsen (3456_CR44) 2000; 39 X W Nie (3456_CR62) 2013; 52 J Y Zhou (3456_CR49) 2015; 137 J Y Han (3456_CR21) 2020; 11 L Zhang (3456_CR3) 2017; 56 H Jung (3456_CR18) 2019; 141 T T Zhuang (3456_CR22) 2018; 1 D C Liu (3456_CR4) 2020; 2 H S Jeon (3456_CR12) 2018; 8 R Reske (3456_CR24) 2014; 136 D Ren (3456_CR54) 2016; 7 Q Hu (3456_CR29) 2020; 59 Z L Jiang (3456_CR6) 2020; 13 L Hui (3456_CR35) 2019; 141 X P Yin (3456_CR36) 2018; 57 J Q Li (3456_CR48) 2017; 29 A Loiudice (3456_CR27) 2016; 55 O A Baturina (3456_CR53) 2014; 4 S Nitopi (3456_CR2) 2019; 119 |
References_xml | – volume: 150 start-page: 041718 year: 2019 ident: CR60 article-title: New aspects of operando Raman spectroscopy applied to electrochemical CO reduction on Cu foams publication-title: J. Chem. Phys. – volume: 7 start-page: 20 year: 2016 end-page: 24 ident: CR54 article-title: Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to -propanol publication-title: J. Phys. Chem. Lett. – volume: 29 start-page: 1700421 year: 2017 ident: CR48 article-title: Architecture of β-graphdiyne-containing thin film using modified glaser-hay coupling reaction for enhanced photocatalytic property of TiO publication-title: Adv. Mater. – volume: 1 start-page: 111 year: 2018 end-page: 119 ident: CR17 article-title: Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO reduction publication-title: Nat. Catal. – volume: 141 start-page: 10677 year: 2019 end-page: 10683 ident: CR35 article-title: Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 2318 year: 2019 end-page: 2323 ident: CR8 article-title: Highly efficient and selective CO electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere publication-title: Nano Res. – volume: 7 start-page: 1602114 year: 2017 ident: CR13 article-title: Selective electroreduction of CO toward ethylene on nano dendritic copper catalysts at high current density publication-title: Adv. Energy Mater. – volume: 55 start-page: 5789 year: 2016 end-page: 5792 ident: CR27 article-title: Tailoring copper nanocrystals towards C products in electrochemical CO reduction publication-title: Angew. Chem., Int. Ed. – volume: 136 start-page: 6978 year: 2014 end-page: 6986 ident: CR24 article-title: Particle size effects in the catalytic electroreduction of CO on Cu nanoparticles publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 531 year: 2018 end-page: 535 ident: CR12 article-title: Prism-shaped Cu nanocatalysts for electrochemical CO reduction to ethylene publication-title: ACS Catal. – volume: 57 start-page: 9382 year: 2018 end-page: 9386 ident: CR36 article-title: Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution publication-title: Angew. Chem., Int. Ed. – volume: 52 start-page: 2459 year: 2013 end-page: 2462 ident: CR62 article-title: Selectivity of CO reduction on copper electrodes: The role of the kinetics of elementary steps publication-title: Angew. Chem., Int. Ed. – volume: 12 start-page: 2866 year: 2019 end-page: 2871 ident: CR55 article-title: PdAg bimetallic electrocatalyst for highly selective reduction of CO with low COOH* formation energy and facile CO desorption publication-title: Nano Res. – volume: 141 start-page: 16569 year: 2019 end-page: 16573 ident: CR5 article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO reduction publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 804 year: 2020 end-page: 812 ident: CR19 article-title: Highly active and stable stepped Cu surface for enhanced electrochemical CO reduction to C H publication-title: Nat. Catal. – volume: 4 start-page: 3682 year: 2014 end-page: 3695 ident: CR53 article-title: CO electroreduction to hydrocarbons on carbon-supported Cu nanoparticles publication-title: ACS Catal. – volume: 142 start-page: 75 year: 2020 end-page: 79 ident: CR51 article-title: Photoactivation of Cu centers in metal-organic frameworks for selective CO conversion to ethanol publication-title: J. Am. Chem. Soc. – volume: 21 start-page: 41 year: 2018 end-page: 54 ident: CR16 article-title: Cu-based nanocatalysts for electrochemical reduction of CO publication-title: Nano Today – volume: 6 start-page: 2726 year: 2015 end-page: 2733 ident: CR39 article-title: Surface-initiated Cu(0) mediated controlled radical polymerization (SI-CuCRP) using a copper plate publication-title: Polym. Chem. – volume: 1 start-page: 946 year: 2018 end-page: 951 ident: CR22 article-title: Copper nanocavities confine intermediates for efficient electrosynthesis of C alcohol fuels from carbon monoxide publication-title: Nat. Catal. – volume: 46 start-page: 3256 year: 2010 end-page: 3258 ident: CR32 article-title: Architecture of graphdiyne nanoscale films publication-title: Chem. Commun. – volume: 13 start-page: 1434 year: 2020 end-page: 1443 ident: CR9 article-title: Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W N ) publication-title: Nano Res. – volume: 4 start-page: 1809 year: 2018 end-page: 1831 ident: CR15 article-title: Surface and interface engineering in copper-based bimetallic materials for selective CO electroreduction publication-title: Chem – volume: 11 start-page: 10698 year: 2020 end-page: 10704 ident: CR21 article-title: A reconstructed porous copper surface promotes selectivity and efficiency toward C2 products by electrocatalytic CO reduction publication-title: Chem. Sci. – volume: 360 start-page: 783 year: 2018 end-page: 787 ident: CR26 article-title: CO electroreduction to ethylene via hydroxide-mediated Cu catalysis at an abrupt interface publication-title: Science – volume: 118 start-page: 7744 year: 2018 end-page: 7803 ident: CR33 article-title: Progress in research into 2D graphdiyne-based materials publication-title: Chem. Rev. – volume: 9 start-page: 1140 year: 2018 ident: CR40 article-title: Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes publication-title: Nat. Commun. – volume: 2 start-page: 423 year: 2019 end-page: 430 ident: CR23 article-title: Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate publication-title: Nat. Catal. – volume: 5 start-page: 4948 year: 2014 ident: CR52 article-title: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles publication-title: Nat. Commun. – volume: 137 start-page: 7596 year: 2015 end-page: 7599 ident: CR49 article-title: Synthesis of graphdiyne nanowalls using acetylenic coupling reaction publication-title: J. Am. Chem. Soc. – volume: 12 start-page: 50464 year: 2020 end-page: 50471 ident: CR58 article-title: coating CsPbBr nanocrystals with graphdiyne to boost the activity and stability of photocatalytic CO reduction publication-title: ACS Appl. Mater. Interfaces – volume: 52 start-page: 3485 year: 2011 end-page: 3488 ident: CR43 article-title: Copper(II) chloride-catalyzed glaser oxidative coupling reaction in polyethylene glycol publication-title: Tetrahedron Lett. – volume: 133 start-page: 470 year: 2021 end-page: 476 ident: CR31 article-title: Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO electroreduction publication-title: Angew. Chem., Int. Ed. – volume: 119 start-page: 7610 year: 2019 end-page: 7672 ident: CR2 article-title: Progress and perspectives of electrochemical CO reduction on copper in aqueous electrolyte publication-title: Chem. Rev. – volume: 12 start-page: 2324 year: 2019 end-page: 2329 ident: CR11 article-title: Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO conversion publication-title: Nano Res. – volume: 2 start-page: 100034 year: 2020 ident: CR4 article-title: Non-noble metal-based molecular complexes for CO reduction: From the ligand design perspective publication-title: EnergyChem – volume: 3 start-page: 1311 year: 2010 end-page: 1315 ident: CR61 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energy Environ. Sci. – volume: 141 start-page: 4624 year: 2019 end-page: 4633 ident: CR18 article-title: Electrochemical fragmentation of Cu O nanoparticles enhancing selective C-C coupling from CO reduction reaction publication-title: J. Am. Chem. Soc. – volume: 56 start-page: 11326 year: 2017 end-page: 11353 ident: CR3 article-title: Nanostructured materials for heterogeneous electrocatalytic CO reduction and their related reaction mechanisms publication-title: Angew. Chem., Int. Ed. – volume: 59 start-page: 22465 year: 2020 end-page: 22469 ident: CR7 article-title: Design of a single-atom indium -N interface for efficient electroreduction of CO to formate publication-title: Angew. Chem., Int. Ed. – volume: 31 start-page: 1805405 year: 2019 ident: CR14 article-title: A highly active star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials publication-title: Adv. Mater. – volume: 7 start-page: 1749 year: 2017 end-page: 1756 ident: CR20 article-title: Electrochemical reduction of CO using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene publication-title: ACS Catal. – volume: 59 start-page: 19054 year: 2020 end-page: 19059 ident: CR29 article-title: Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane publication-title: Angew. Chem., Int. Ed. – volume: 142 start-page: 4213 year: 2020 end-page: 4222 ident: CR50 article-title: Investigating the origin of enhanced C selectivity in oxide-/hydroxide-derived copper electrodes during CO electroreduction publication-title: J. Am. Chem. Soc. – volume: 3 start-page: 1700122 year: 2017 ident: CR45 article-title: Graphdiyne filter for decontaminating lead-ion-polluted water publication-title: Adv. Electron. Mater. – volume: 51 start-page: 910 year: 2018 end-page: 918 ident: CR25 article-title: Electrolytic CO reduction in a flow cell publication-title: Acc. Chem. Res. – volume: 12 start-page: 2067 year: 2019 end-page: 2080 ident: CR10 article-title: Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion publication-title: Nano Res. – volume: 7 start-page: 13142 year: 2019 end-page: 13148 ident: CR34 article-title: A Graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity publication-title: J. Mater. Chem. A – volume: 12 start-page: 34 year: 2013 end-page: 39 ident: CR37 article-title: Towards stable catalysts by controlling collective properties of supported metal nanoparticles publication-title: Nat. Mater. – volume: 139 start-page: 9728 year: 2017 end-page: 9736 ident: CR28 article-title: Lattice-hydride mechanism in electrocatalytic CO reduction by structurally precise copper-hydride nanoclusters publication-title: J. Am. Chem. Soc. – volume: 341 start-page: 771 year: 2013 end-page: 773 ident: CR38 article-title: Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts publication-title: Science – volume: 8 start-page: 7671 year: 2020 end-page: 7676 ident: CR59 article-title: Enhanced photochemical CO reduction in the gas phase by graphdiyne publication-title: J. Mater. Chem. A – volume: 600 start-page: 3729 year: 2006 end-page: 3733 ident: CR46 article-title: Oxygen contaminants affecting on the electronic structures of the carbon nano tubes grown by rapid thermal chemical vapor deposition publication-title: Surf. Sci. – volume: 136 start-page: 13319 year: 2014 end-page: 13325 ident: CR30 article-title: Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst publication-title: J. Am. Chem. Soc. – volume: 23 start-page: 598 year: 2005 end-page: 600 ident: CR42 article-title: Preparation of nano copper colloid and its characterization publication-title: J. Mater. Sci. Eng. – volume: 114 start-page: 10560 year: 2017 end-page: 10565 ident: CR56 article-title: Copper nanoparticle ensembles for selective electroreduction of CO to C -C products publication-title: Proc. Natl. Acad. Sci. USA – volume: 39 start-page: 2632 year: 2000 end-page: 2657 ident: CR44 article-title: Acetylenic coupling: A powerful tool in molecular construction publication-title: Angew. Chem., Int. Ed. – volume: 63 start-page: 1040 year: 2020 end-page: 1045 ident: CR41 article-title: Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalyst publication-title: Sci. China Chem. – volume: 57 start-page: 5076 year: 2018 end-page: 5080 ident: CR57 article-title: Tailoring the d-band centers enables Co N nanosheets to Be highly active for hydrogen evolution catalysis publication-title: Angew. Chem., Int. Ed. – volume: 13 start-page: 2856 year: 2020 end-page: 2863 ident: CR6 article-title: Discovery of main group single Sb-N active sites for CO electroreduction to formate with high efficiency publication-title: Energy Environ. Sci. – volume: 2 start-page: 198 year: 2019 end-page: 210 ident: CR1 article-title: Rational catalyst and electrolyte design for CO electroreduction towards multicarbon products publication-title: Nat. Catal. – volume: 42 start-page: 1713 year: 2004 end-page: 1721 ident: CR47 article-title: XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak publication-title: Carbon – volume: 63 start-page: 1040 year: 2020 ident: 3456_CR41 publication-title: Sci. China Chem. doi: 10.1007/s11426-020-9763-9 – volume: 39 start-page: 2632 year: 2000 ident: 3456_CR44 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F – volume: 7 start-page: 13142 year: 2019 ident: 3456_CR34 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03621K – volume: 13 start-page: 1434 year: 2020 ident: 3456_CR9 publication-title: Nano Res. doi: 10.1007/s12274-020-2687-y – volume: 3 start-page: 1311 year: 2010 ident: 3456_CR61 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 7 start-page: 1602114 year: 2017 ident: 3456_CR13 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602114 – volume: 136 start-page: 6978 year: 2014 ident: 3456_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500328k – volume: 118 start-page: 7744 year: 2018 ident: 3456_CR33 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00288 – volume: 137 start-page: 7596 year: 2015 ident: 3456_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b04057 – volume: 3 start-page: 804 year: 2020 ident: 3456_CR19 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00504-x – volume: 2 start-page: 198 year: 2019 ident: 3456_CR1 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0235-5 – volume: 12 start-page: 2318 year: 2019 ident: 3456_CR8 publication-title: Nano Res. doi: 10.1007/s12274-019-2339-2 – volume: 136 start-page: 13319 year: 2014 ident: 3456_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5065284 – volume: 142 start-page: 4213 year: 2020 ident: 3456_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11790 – volume: 59 start-page: 19054 year: 2020 ident: 3456_CR29 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202009277 – volume: 52 start-page: 2459 year: 2013 ident: 3456_CR62 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201208320 – volume: 9 start-page: 1140 year: 2018 ident: 3456_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03444-0 – volume: 4 start-page: 3682 year: 2014 ident: 3456_CR53 publication-title: ACS Catal. doi: 10.1021/cs500537y – volume: 1 start-page: 111 year: 2018 ident: 3456_CR17 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0009-x – volume: 360 start-page: 783 year: 2018 ident: 3456_CR26 publication-title: Science doi: 10.1126/science.aas9100 – volume: 56 start-page: 11326 year: 2017 ident: 3456_CR3 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201612214 – volume: 141 start-page: 10677 year: 2019 ident: 3456_CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03004 – volume: 42 start-page: 1713 year: 2004 ident: 3456_CR47 publication-title: Carbon doi: 10.1016/j.carbon.2004.03.005 – volume: 7 start-page: 20 year: 2016 ident: 3456_CR54 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02554 – volume: 4 start-page: 1809 year: 2018 ident: 3456_CR15 publication-title: Chem doi: 10.1016/j.chempr.2018.05.001 – volume: 141 start-page: 4624 year: 2019 ident: 3456_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11237 – volume: 46 start-page: 3256 year: 2010 ident: 3456_CR32 publication-title: Chem. Commun. doi: 10.1039/b922733d – volume: 23 start-page: 598 year: 2005 ident: 3456_CR42 publication-title: J. Mater. Sci. Eng. – volume: 51 start-page: 910 year: 2018 ident: 3456_CR25 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00010 – volume: 600 start-page: 3729 year: 2006 ident: 3456_CR46 publication-title: Surf. Sci. doi: 10.1016/j.susc.2006.01.075 – volume: 5 start-page: 4948 year: 2014 ident: 3456_CR52 publication-title: Nat. Commun. doi: 10.1038/ncomms5948 – volume: 57 start-page: 5076 year: 2018 ident: 3456_CR57 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201801834 – volume: 133 start-page: 470 year: 2021 ident: 3456_CR31 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/ange.202011836 – volume: 3 start-page: 1700122 year: 2017 ident: 3456_CR45 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201700122 – volume: 12 start-page: 2067 year: 2019 ident: 3456_CR10 publication-title: Nano Res. doi: 10.1007/s12274-019-2345-4 – volume: 341 start-page: 771 year: 2013 ident: 3456_CR38 publication-title: Science doi: 10.1126/science.1240148 – volume: 12 start-page: 2866 year: 2019 ident: 3456_CR55 publication-title: Nano Res. doi: 10.1007/s12274-019-2526-1 – volume: 59 start-page: 22465 year: 2020 ident: 3456_CR7 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202010903 – volume: 12 start-page: 2324 year: 2019 ident: 3456_CR11 publication-title: Nano Res. doi: 10.1007/s12274-019-2396-6 – volume: 150 start-page: 041718 year: 2019 ident: 3456_CR60 publication-title: J. Chem. Phys. doi: 10.1063/1.5054109 – volume: 31 start-page: 1805405 year: 2019 ident: 3456_CR14 publication-title: Adv. Mater. doi: 10.1002/adma.201805405 – volume: 6 start-page: 2726 year: 2015 ident: 3456_CR39 publication-title: Polym. Chem. doi: 10.1039/C5PY00093A – volume: 7 start-page: 1749 year: 2017 ident: 3456_CR20 publication-title: ACS Catal. doi: 10.1021/acscatal.6b03147 – volume: 29 start-page: 1700421 year: 2017 ident: 3456_CR48 publication-title: Adv. Mater. doi: 10.1002/adma.201700421 – volume: 12 start-page: 50464 year: 2020 ident: 3456_CR58 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c14826 – volume: 2 start-page: 100034 year: 2020 ident: 3456_CR4 publication-title: EnergyChem doi: 10.1016/j.enchem.2020.100034 – volume: 13 start-page: 2856 year: 2020 ident: 3456_CR6 publication-title: Energy Environ. Sci. doi: 10.1039/D0EE01486A – volume: 2 start-page: 423 year: 2019 ident: 3456_CR23 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0269-8 – volume: 8 start-page: 7671 year: 2020 ident: 3456_CR59 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02256J – volume: 119 start-page: 7610 year: 2019 ident: 3456_CR2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00705 – volume: 141 start-page: 16569 year: 2019 ident: 3456_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08259 – volume: 52 start-page: 3485 year: 2011 ident: 3456_CR43 publication-title: Tetrahedron Lett. doi: 10.1016/j.tetlet.2011.04.118 – volume: 114 start-page: 10560 year: 2017 ident: 3456_CR56 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1711493114 – volume: 21 start-page: 41 year: 2018 ident: 3456_CR16 publication-title: Nano Today doi: 10.1016/j.nantod.2018.05.001 – volume: 1 start-page: 946 year: 2018 ident: 3456_CR22 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0168-4 – volume: 11 start-page: 10698 year: 2020 ident: 3456_CR21 publication-title: Chem. Sci. doi: 10.1039/D0SC01202E – volume: 8 start-page: 531 year: 2018 ident: 3456_CR12 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02959 – volume: 142 start-page: 75 year: 2020 ident: 3456_CR51 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b11443 – volume: 12 start-page: 34 year: 2013 ident: 3456_CR37 publication-title: Nat. Mater. doi: 10.1038/nmat3471 – volume: 55 start-page: 5789 year: 2016 ident: 3456_CR27 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201601582 – volume: 57 start-page: 9382 year: 2018 ident: 3456_CR36 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201804817 – volume: 139 start-page: 9728 year: 2017 ident: 3456_CR28 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05591 |
SSID | ssj0062148 |
Score | 2.545241 |
Snippet | Reducing the size of heterogeneous nanocatalysts is generally conducive to improving their atomic utilization and activities in various catalytic reactions.... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 195 |
SubjectTerms | Alkynes Atomic/Molecular Structure and Spectra Binding Biomedicine Biotechnology Carbon dioxide Carbon nanotubes Catalysts Chemistry and Materials Science Condensed Matter Physics Electrocatalysts Graphene Intermediates Materials Science Nanoparticles Nanotechnology Research Article Selectivity Ultrafines |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqJQkAcmKovEcWNnQqiiVEjAQqVuUfySkKq0NOnQf4_PSRpAorPPHu7se_q-Q-hWsojLQGuSGGYJiwJBpOaSBFYYGYQyFAYS-q9v8XjCXqaDaZ1wK-pvlY1O9IpazxXkyO8p4IokAPXysPgiMDUKqqv1CI1dtAfQZXCr-XQTcMU09NOzqjYyZ8iaqqZvnaMuHiPwQSFyPgShv-1S62z-qY96szM6Qoe1v4gfKwEfox2Tn6CDHyiCp2j6DKDT-nPt1BY2vheqwKtZucysI8LDFc6z3MXG9Rc4XM5x4affOEU3W-MlgLc6sncKK0Pax4sKBbY4Q5PR08dwTOqBCURFYVyC4rKCaW0tjyIaMWazxAaCCxUbw41WWg-scR4Co5mTiLYhjS2PTaJd3OQCm-gcdfJ5bi4Q1rF7yoJZKqllPNOCSyO5UjbWnCmhuiho2JWqGk0chlrM0hYHGTicOg6nwOGUdtHdZsuigtLYRtxrZJDWr6pI2zvQRf1GLu3yv4ddbj_sCu1TaGrwiZUe6pTLlbl2rkYpb_x9-gZq289Z priority: 102 providerName: ProQuest |
Title | Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products |
URI | https://link.springer.com/article/10.1007/s12274-021-3456-2 https://www.proquest.com/docview/2594890604 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB6YqCwljhs7Y6n6EIiCEJXCFMWxLSFVadWkQ_895zwoIEBiSQZfPNzF9_DdfYfQtWQel45SJNDMEOY5gkjFJXGM0NJxpSu0vdB_mPqTGbsLe2HVx53V1e51SrLQ1NtmNwoRFLElBR5YfQJ6t9mD0N3Wcc1ov1a_PnWLkVll7xhYrzqV-dMWX43R1sP8lhQtbM3oEB1UTiLul1I9Qjs6PUb7n6ADT1A4tkjT6m0DugrrogEqw-t5vooNEOHBGqdxCgFxVfeG8wXOipE3oN3mG7yyiK1A9kjtyoB28bKEfs1O0Ww0fBlMSDUlgSSe6-dWWxnBlDKGex71GDNxYBzBReJrzbVKlOoZDW4BozGIQRmX-ob7OlAQLEE0452hRrpI9TnCyofzK5ihkhrGYyW41JInifEVZ4lIWsip2RUlFYS4nWQxj7bgx5bDEXA4shyOaAvdfHyyLPEz_iJu1zKIqqOURdQCygQW46eFurVctsu_bnbxL-pLtEdtY0NxudJGjXy11lfgbuSyg3Z5yOEpRuMOavbHr_dDeN8Op0_PneLXeweEiNDD |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOVXmJtAV8gAuVxa7trp0DQiiQpvTBpZVyW9YvCSnahOxGVf4Uv5GZfTSARG8922utxuN5zzcAb6yS2ibe82FQkSuZGG69tjyJJtgktakJFNA_v8gmV-rr9Gi6Bb_6Xhgqq-xlYiOo_dxRjPy9IFyRIUG9fFz85DQ1irKr_QiNli1Ow_oaXbbqw8lnvN-3Qoy_XI4mvJsqwJ1Ms5pedzTK-xi1lEIqFYthTIw2LgtBB--8P4oB1agSBf62j6nIos7C0KNzgda_xHPvwX0lUZNTZ_r4uJf8mUibaV1t2xoqzj6L2rTqCfT_OBVESLRZuPhbD26M23_ysY2aG-_CTmefsk8tQz2GrVA-gUd_oBY-hekxgVz7H2sUkyw0vVcVW83qZRFxExutWFmU6It3JXesnrOqmbaDgnW2ZksCi8Vt3wStjMQhW7Sos9UzuLoTUj6H7XJehhfAfIaiw6gorIhKF95oG6x2LmZeK2fcAJKeXLnr0MtpiMYs3-AuE4VzpHBOFM7FAN7dfLJooTtu23zQ30HeveIq3_DcAA77e9ks__ewvdsPew0PJpfnZ_nZycXpPjwU1FDRBHUOYLtersJLNHNq-6rhLQbf75qZfwOdYQ0M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKrggKAtIlBgD-XSalV7vfVuDghB2tBSSKuKSrkZ70tCipwQO0L5a_w6ZvwggERvPe96Jc_Oznu-Adg3MlEmco4PvAxcJpHmxinDo6C9iWITa08B_c_j9OxGfpwcTzbgZ9cLQ2WVnUysBbWbWYqRHwnCFRkQ1MtRaMsirk5Gb-ffOU2QokxrN06jYZELv_qB7lv55vwE7_q1EKPTL8Mz3k4Y4DaJ04peetDSuRBUkohEypAPQqSVtqn3yjvr3HHwqFKlyPEXXIhFGlTqBw4dDfQEEjz3Hmwq8op6sPn-dHx13emBVMT17K6miQ3VaJdTrRv3BHqDnMojErRguPhbK65N3X-ys7XSGz2Ch621yt417PUYNnyxDQ_-wDDcgckHgrx231YoNJmvO7FKtpxWizzgJjZcsiIv0DNvC_BYNWNlPXsHxex0xRYEHYvbLgWtDMUhmzcYtOUu3NwJMZ9Ar5gV_ikwl6Ig0TIII4JUudPKeKOsDalT0mrbh6gjV2ZbLHMaqTHN1ijMROEMKZwRhTPRh4Pfn8wbII_bNu91d5C1b7rM1hzYh8PuXtbL_z3s2e2HvYItZOTs0_n44jncF9RdUUd49qBXLZb-Bdo8lXnZMheDr3fNz78AqSwSng |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphdiyene+enables+ultrafine+Cu+nanoparticles+to+selectively+reduce+CO2+to+C2%2B+products&rft.jtitle=Nano+research&rft.au=Chang%2C+Yong-Bin&rft.au=Zhang%2C+Chao&rft.au=Lu%2C+Xiu-Li&rft.au=Zhang%2C+Wen&rft.date=2022-01-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=1&rft.spage=195&rft.epage=201&rft_id=info:doi/10.1007%2Fs12274-021-3456-2&rft.externalDocID=10_1007_s12274_021_3456_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon |