Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products

Reducing the size of heterogeneous nanocatalysts is generally conducive to improving their atomic utilization and activities in various catalytic reactions. However, this strategy has proven less effective for Cu-based electrocatalysts for the reduction of CO 2 to multicarbon (C 2+ ) products, owing...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 15; no. 1; pp. 195 - 201
Main Authors Chang, Yong-Bin, Zhang, Chao, Lu, Xiu-Li, Zhang, Wen, Lu, Tong-Bu
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Reducing the size of heterogeneous nanocatalysts is generally conducive to improving their atomic utilization and activities in various catalytic reactions. However, this strategy has proven less effective for Cu-based electrocatalysts for the reduction of CO 2 to multicarbon (C 2+ ) products, owing to the overly strong binding of intermediates on small-sized (< 15 nm) Cu nanoparticles (NPs). Herein, by incorporating pyrenyl-graphdiyne (Pyr-GDY), we successfully endowed ultrafine (∼ 2 nm) Cu NPs with a significantly elevated selectivity for CO 2 -to-C 2+ conversion. The Pyr-GDY can not only help to relax the overly strong binding between adsorbed H* and CO* intermediates on Cu NPs by tailoring the d-band center of the catalyst, but also stabilize the ultrafine Cu NPs through the high affinity between alkyne moieties and Cu NPs. The resulting Pyr-GDY-Cu composite catalyst gave a Faradic efficiency (FE) for C 2+ products up to 74%, significantly higher than those of support-free Cu NPs (C 2+ FE, ~ 2%), carbon nanotube-supported Cu NPs (CNT-Cu, C 2+ FE, ~ 18%), graphene oxide-supported Cu NPs (GO-Cu, C 2+ FE, ~ 8%), and other reported ultrafine Cu NPs. Our results demonstrate the critical influence of graphdiyne on the selectivity of Cu-catalyzed CO 2 electroreduction, and showcase the prospect for ultrafine Cu NPs catalysts to convert CO 2 into value-added C 2+ products.
AbstractList Reducing the size of heterogeneous nanocatalysts is generally conducive to improving their atomic utilization and activities in various catalytic reactions. However, this strategy has proven less effective for Cu-based electrocatalysts for the reduction of CO2 to multicarbon (C2+) products, owing to the overly strong binding of intermediates on small-sized (< 15 nm) Cu nanoparticles (NPs). Herein, by incorporating pyrenyl-graphdiyne (Pyr-GDY), we successfully endowed ultrafine (∼ 2 nm) Cu NPs with a significantly elevated selectivity for CO2-to-C2+ conversion. The Pyr-GDY can not only help to relax the overly strong binding between adsorbed H* and CO* intermediates on Cu NPs by tailoring the d-band center of the catalyst, but also stabilize the ultrafine Cu NPs through the high affinity between alkyne moieties and Cu NPs. The resulting Pyr-GDY-Cu composite catalyst gave a Faradic efficiency (FE) for C2+ products up to 74%, significantly higher than those of support-free Cu NPs (C2+ FE, ~ 2%), carbon nanotube-supported Cu NPs (CNT-Cu, C2+ FE, ~ 18%), graphene oxide-supported Cu NPs (GO-Cu, C2+ FE, ~ 8%), and other reported ultrafine Cu NPs. Our results demonstrate the critical influence of graphdiyne on the selectivity of Cu-catalyzed CO2 electroreduction, and showcase the prospect for ultrafine Cu NPs catalysts to convert CO2 into value-added C2+ products.
Reducing the size of heterogeneous nanocatalysts is generally conducive to improving their atomic utilization and activities in various catalytic reactions. However, this strategy has proven less effective for Cu-based electrocatalysts for the reduction of CO 2 to multicarbon (C 2+ ) products, owing to the overly strong binding of intermediates on small-sized (< 15 nm) Cu nanoparticles (NPs). Herein, by incorporating pyrenyl-graphdiyne (Pyr-GDY), we successfully endowed ultrafine (∼ 2 nm) Cu NPs with a significantly elevated selectivity for CO 2 -to-C 2+ conversion. The Pyr-GDY can not only help to relax the overly strong binding between adsorbed H* and CO* intermediates on Cu NPs by tailoring the d-band center of the catalyst, but also stabilize the ultrafine Cu NPs through the high affinity between alkyne moieties and Cu NPs. The resulting Pyr-GDY-Cu composite catalyst gave a Faradic efficiency (FE) for C 2+ products up to 74%, significantly higher than those of support-free Cu NPs (C 2+ FE, ~ 2%), carbon nanotube-supported Cu NPs (CNT-Cu, C 2+ FE, ~ 18%), graphene oxide-supported Cu NPs (GO-Cu, C 2+ FE, ~ 8%), and other reported ultrafine Cu NPs. Our results demonstrate the critical influence of graphdiyne on the selectivity of Cu-catalyzed CO 2 electroreduction, and showcase the prospect for ultrafine Cu NPs catalysts to convert CO 2 into value-added C 2+ products.
Author Lu, Xiu-Li
Zhang, Chao
Zhang, Wen
Chang, Yong-Bin
Lu, Tong-Bu
Author_xml – sequence: 1
  givenname: Yong-Bin
  surname: Chang
  fullname: Chang, Yong-Bin
  organization: Ministry of Education International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology
– sequence: 2
  givenname: Chao
  surname: Zhang
  fullname: Zhang, Chao
  organization: Ministry of Education International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology
– sequence: 3
  givenname: Xiu-Li
  surname: Lu
  fullname: Lu, Xiu-Li
  organization: Ministry of Education International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology
– sequence: 4
  givenname: Wen
  surname: Zhang
  fullname: Zhang, Wen
  email: zhangwen@email.tjut.edu.cn
  organization: Ministry of Education International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology
– sequence: 5
  givenname: Tong-Bu
  surname: Lu
  fullname: Lu, Tong-Bu
  email: lutongbu@tjut.edu.cn
  organization: Ministry of Education International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology
BookMark eNp9kEFLxDAQhYOs4O7qD_BW8CjVJM02zVGKrsLCXhS8hWwy0S41rUkq7L83pYogaC4Jb943M3kLNHOdA4TOCb4iGPPrQCjlLMeU5AVblTk9QnMiRJXjdGbfb0LZCVqEsMe4pIRVc_S89qp_Nc0BHGTg1K6FkA1t9Mo2SamHzCnX9crHRo-l2GUBWtCx-YD2kHkwg062LR0rNb3Met8lKYZTdGxVG-Ds616ip7vbx_o-32zXD_XNJtcFKWMuCLEVM8ZaXhS0YMwqYXHFK10CcDDamJUFLAijame4sYSWlpcgDK04LXGxRBdT3zT4fYAQ5b4bvEsjJV0JVglcYpZcfHJp34XgwUrdRBWbzqWfNq0kWI4xyilGmWKUY4ySJpL8InvfvCl_-JehExOS172A_9npb-gTpO-Gpg
CitedBy_id crossref_primary_10_1016_j_matchemphys_2022_126660
crossref_primary_10_1039_D1CS00592H
crossref_primary_10_1016_j_mcat_2024_114316
crossref_primary_10_1007_s12274_023_5910_9
crossref_primary_10_1007_s12274_022_5228_z
crossref_primary_10_1007_s12274_023_5931_4
crossref_primary_10_1039_D3CP00739A
crossref_primary_10_1002_aic_18233
crossref_primary_10_1002_adfm_202408013
crossref_primary_10_1016_j_jmst_2023_08_002
crossref_primary_10_1039_D3TA03630H
crossref_primary_10_1021_acsanm_4c03194
crossref_primary_10_1007_s12274_022_4476_2
crossref_primary_10_1039_D4TA03676J
crossref_primary_10_1002_cssc_202402097
crossref_primary_10_1039_D4SE00533C
crossref_primary_10_1039_D3RA03496H
crossref_primary_10_1016_S1872_5805_22_60653_X
crossref_primary_10_1016_j_jpowsour_2021_230788
crossref_primary_10_1016_j_jechem_2023_09_002
crossref_primary_10_1007_s12274_022_4175_z
crossref_primary_10_1021_jacs_2c10976
crossref_primary_10_1007_s12274_023_5430_z
crossref_primary_10_1039_D3EE00037K
crossref_primary_10_1007_s12274_022_4157_1
crossref_primary_10_1016_j_apcatb_2023_123293
crossref_primary_10_1039_D3DT03432A
crossref_primary_10_1016_j_apcatb_2022_121191
crossref_primary_10_1039_D3NJ01809A
crossref_primary_10_3390_catal13010115
crossref_primary_10_1016_j_jechem_2022_01_015
crossref_primary_10_1021_acsanm_3c03038
crossref_primary_10_1016_S1872_2067_23_64509_7
crossref_primary_10_1039_D3CY01752D
crossref_primary_10_1016_j_fuel_2022_126114
crossref_primary_10_1039_D3CC01428B
crossref_primary_10_1016_j_apcatb_2024_124704
crossref_primary_10_1016_j_cej_2024_157636
crossref_primary_10_1007_s12274_023_6073_4
crossref_primary_10_1021_acsaem_1c01624
crossref_primary_10_1016_j_seppur_2024_127915
crossref_primary_10_1039_D4CP03161J
crossref_primary_10_1039_D3CP06186H
crossref_primary_10_2139_ssrn_4017634
crossref_primary_10_1002_aenm_202200586
crossref_primary_10_1080_14686996_2023_2196240
crossref_primary_10_1007_s12274_023_6166_0
crossref_primary_10_1002_aesr_202200192
crossref_primary_10_1002_adfm_202308601
crossref_primary_10_1002_metm_28
crossref_primary_10_1016_j_checat_2022_04_012
crossref_primary_10_1039_D2RA03145K
crossref_primary_10_1002_aenm_202302382
crossref_primary_10_1007_s40242_021_1323_z
crossref_primary_10_1002_adfm_202403095
crossref_primary_10_1016_j_nanoen_2022_107277
crossref_primary_10_1002_aenm_202301378
Cites_doi 10.1007/s11426-020-9763-9
10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F
10.1039/C9TA03621K
10.1007/s12274-020-2687-y
10.1039/c0ee00071j
10.1002/aenm.201602114
10.1021/ja500328k
10.1021/acs.chemrev.8b00288
10.1021/jacs.5b04057
10.1038/s41929-020-00504-x
10.1038/s41929-019-0235-5
10.1007/s12274-019-2339-2
10.1021/ja5065284
10.1021/jacs.9b11790
10.1002/anie.202009277
10.1002/anie.201208320
10.1038/s41467-018-03444-0
10.1021/cs500537y
10.1038/s41929-017-0009-x
10.1126/science.aas9100
10.1002/anie.201612214
10.1021/jacs.9b03004
10.1016/j.carbon.2004.03.005
10.1021/acs.jpclett.5b02554
10.1016/j.chempr.2018.05.001
10.1021/jacs.8b11237
10.1039/b922733d
10.1021/acs.accounts.8b00010
10.1016/j.susc.2006.01.075
10.1038/ncomms5948
10.1002/anie.201801834
10.1002/ange.202011836
10.1002/aelm.201700122
10.1007/s12274-019-2345-4
10.1126/science.1240148
10.1007/s12274-019-2526-1
10.1002/anie.202010903
10.1007/s12274-019-2396-6
10.1063/1.5054109
10.1002/adma.201805405
10.1039/C5PY00093A
10.1021/acscatal.6b03147
10.1002/adma.201700421
10.1021/acsami.0c14826
10.1016/j.enchem.2020.100034
10.1039/D0EE01486A
10.1038/s41929-019-0269-8
10.1039/D0TA02256J
10.1021/acs.chemrev.8b00705
10.1021/jacs.9b08259
10.1016/j.tetlet.2011.04.118
10.1073/pnas.1711493114
10.1016/j.nantod.2018.05.001
10.1038/s41929-018-0168-4
10.1039/D0SC01202E
10.1021/acscatal.7b02959
10.1021/jacs.9b11443
10.1038/nmat3471
10.1002/anie.201601582
10.1002/anie.201804817
10.1021/jacs.7b05591
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021
– notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2021.
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12274-021-3456-2
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Materials Science Database (NC LIVE)
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList Materials Research Database

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1998-0000
EndPage 201
ExternalDocumentID 10_1007_s12274_021_3456_2
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
95-
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
ID FETCH-LOGICAL-c316t-911f84ddff7332344fa9f0878c6ee7edcdd5fe09142abd7df126f76e9d2872603
IEDL.DBID U2A
ISSN 1998-0124
IngestDate Sat Aug 23 14:55:42 EDT 2025
Tue Jul 01 01:46:59 EDT 2025
Thu Apr 24 23:08:51 EDT 2025
Fri Feb 21 02:47:56 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords multicarbon products
graphdiyne nanofibers
CO
reduction
electrocatalysis
ultrafine copper nanoparticles
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-911f84ddff7332344fa9f0878c6ee7edcdd5fe09142abd7df126f76e9d2872603
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2594890604
PQPubID 326270
PageCount 7
ParticipantIDs proquest_journals_2594890604
crossref_citationtrail_10_1007_s12274_021_3456_2
crossref_primary_10_1007_s12274_021_3456_2
springer_journals_10_1007_s12274_021_3456_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20220100
2022-01-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 1
  year: 2022
  text: 20220100
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationYear 2022
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Nitopi, Bertheussen, Scott, Liu, Engstfeld, Horch, Seger, Stephens, Chan, Hahn (CR2) 2019; 119
Xie, Wang, Liang, Li, Sun (CR16) 2018; 21
Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (CR61) 2010; 3
Nie, Esopi, Janik, Asthagiri (CR62) 2013; 52
Liu, Zhong, Lu (CR4) 2020; 2
Zhang, Zhao, Gong (CR3) 2017; 56
Kim, Resasco, Yu, Asiri, Yang (CR52) 2014; 5
Tan, Tackett, He, Lee, Chen, Wong (CR9) 2020; 13
Huang, Li, Wang, Xue, Zuo, Liu, Li (CR33) 2018; 118
Reske, Mistry, Behafarid, Cuenya, Strasser (CR24) 2014; 136
Jiang, Klingan, Pasquini, Dau (CR60) 2019; 150
Kim, Kley, Li, Yang (CR56) 2017; 114
Cao, Wang, Zhu, Xie, Yu, Gong (CR59) 2020; 8
Chen, Chen, Zhou, Pi (CR42) 2005; 23
Zhang, Du, Müller, Amin, Jordan (CR39) 2015; 6
Han, Long, Zhang, Hou, Yuan, Wang, Zhang, Qiu, Zhu, Zhang (CR21) 2020; 11
Zeng, Wang, Wang, Wang, Guo, Hu, He, Wang, Lin (CR51) 2020; 142
Su, Dong, Zhang, Liu, Zhang, Lu (CR58) 2020; 12
Cargnello, Doan-Nguyen, Gordon, Diaz, Stach, Gorte, Fornasiero, Murray (CR38) 2013; 341
Ihm, Kang, Lee, Park, Kim, Kim, Yang, Park (CR46) 2006; 600
Kuang, Guan, Gu, Han, Qian, Zheng (CR11) 2019; 12
Zhong, Meng, Zhang, Liu, Zhang (CR8) 2019; 12
Sun, Xu, Wang, Li (CR10) 2019; 12
Gao, Arán-Ais, Jeon, Cuenya (CR1) 2019; 2
Huang, Handoko, Hirunsit, Yeo (CR20) 2017; 7
Jiang, Wang, Pei, Shang, Zhou, Li, Dong, Wang, Cao, Zhuang (CR6) 2020; 13
Choi, Cheng, Espinosa, Fei, Duan, Goddard, Huang (CR14) 2019; 31
Jung, Lee, Lee, Cho, Won, Kim, Oh, Min, Hwang (CR18) 2019; 141
Yang, Wang, Wang, Li, Zhang, Lu (CR34) 2019; 7
Siemsen, Livingston, Diederich (CR44) 2000; 39
Choi, Kwon, Cheng, Xu, Tieu, Lee, Cai, Lee, Pan, Duan (CR19) 2020; 3
Lei, Zhu, Song, Wei, Liu, Zhang, Yin, Dong, Yao, Wang (CR50) 2020; 142
Reller, Krause, Volkova, Schmid, Neubauer, Rucki, Schuster, Schmid (CR13) 2017; 7
Manthiram, Beberwyck, Alivisatos (CR30) 2014; 136
Zhang, Hou, Dzhagan, Liao, Chai, Löffler, Olianas, Milani, Xu, Tommasini (CR40) 2018; 9
Tang, Lee, Li, Choi, Liu, Lee, Jiang (CR28) 2017; 139
Li, Li, Liu, Guo, Li, Zhu (CR32) 2010; 46
Luc, Fu, Shi, Lv, Jouny, Ko, Xu, Tu, Hu, Wu (CR23) 2019; 2
Zhang, Wang, Yu, Liu, Chen, Li, Rong, Lin, Ji, Zheng (CR5) 2019; 141
Vasileff, Xu, Jiao, Zheng, Qiao (CR15) 2018; 4
Zhuang, Pang, Liang, Wang, Li, Tan, Li, Dinh, De Luna, Hsieh (CR22) 2018; 1
Estrade-Szwarckopf (CR47) 2004; 42
Baturina, Lu, Padilla, Xin, Li, Serov, Artyushkova, Atanassov, Xu, Epshteyn (CR53) 2014; 4
Li, Wang, Zhang, Chang, Li, Zhang, Lu (CR41) 2020; 63
Hu, Han, Wang, Li, Wang, Huang, Yang, Ren, Zhang, Liu (CR29) 2020; 59
Yin, Wang, Tang, Lu, Shu, Si, Lu (CR36) 2018; 57
Prieto, Zečević, Friedrich, De Jong, De Jongh (CR37) 2013; 12
Zhou, Gao, Liu, Xie, Yang, Zhang, Zhang, Liu, Li, Zhang (CR49) 2015; 137
Ren, Wong, Handoko, Huang, Yeo (CR54) 2016; 7
Chen, Song, Cai, Zheng, Han, Wu, Zang, Niu, Liu, Zhu (CR57) 2018; 57
Dinh, Burdyny, Kibria, Seifitokaldani, Gabardo, De Arquer, Kiani, Edwards, De Luna, Bushuyev (CR26) 2018; 360
Li, Wang, He (CR43) 2011; 52
Liu, Zhou, Gao, Li, Xie, Li, Zhang, Tong, Zhang, Liu (CR45) 2017; 3
Lin, Ma, Cheong, Zhang, Zhu, Pei, Zhang, Wang, Liang, Liu (CR55) 2019; 12
Loiudice, Lobaccaro, Kamali, Thao, Huang, Ager, Buonsanti (CR27) 2016; 55
Shang, Wang, Pei, Jiang, Zhou, Wang, Li, Dong, Zhuang, Chen (CR7) 2020; 59
Weekes, Salvatore, Reyes, Huang, Berlinguette (CR25) 2018; 51
Jeon, Kunze, Scholten, Cuenya (CR12) 2018; 8
Li, Xie, Xiong, Li, Huang, Zhang, Zhou, Liu, Gao, Chen (CR48) 2017; 29
Hui, Xue, Yu, Liu, Fang, Xing, Huang, Li (CR35) 2019; 141
Jiang, Sandberg, Akey, Liu, Bell, Nerskov, Chan, Wang (CR17) 2018; 1
Rong, Zou, Zang, Xi, Wei, Long, Hu, Ji, Duan (CR31) 2021; 133
M Kuang (3456_CR11) 2019; 12
Q Lei (3456_CR50) 2020; 142
S Tan (3456_CR9) 2020; 13
G X Li (3456_CR32) 2010; 46
R Liu (3456_CR45) 2017; 3
L L Yang (3456_CR34) 2019; 7
H Estrade-Szwarckopf (3456_CR47) 2004; 42
D Kim (3456_CR52) 2014; 5
T Zhang (3456_CR39) 2015; 6
T Zhang (3456_CR40) 2018; 9
D Kim (3456_CR56) 2017; 114
H X Zhong (3456_CR8) 2019; 12
D M Weekes (3456_CR25) 2018; 51
D F Gao (3456_CR1) 2019; 2
A Vasileff (3456_CR15) 2018; 4
L Z Zeng (3456_CR51) 2020; 142
K Jiang (3456_CR17) 2018; 1
K Manthiram (3456_CR30) 2014; 136
H Xie (3456_CR16) 2018; 21
Z Y Chen (3456_CR57) 2018; 57
S W Cao (3456_CR59) 2020; 8
K Ihm (3456_CR46) 2006; 600
L Chen (3456_CR42) 2005; 23
Q Tang (3456_CR28) 2017; 139
Y Huang (3456_CR20) 2017; 7
T T Sun (3456_CR10) 2019; 12
M Cargnello (3456_CR38) 2013; 341
A A Peterson (3456_CR61) 2010; 3
C S Huang (3456_CR33) 2018; 118
K Su (3456_CR58) 2020; 12
E H Zhang (3456_CR5) 2019; 141
H S Shang (3456_CR7) 2020; 59
G Prieto (3456_CR37) 2013; 12
Y N Li (3456_CR43) 2011; 52
R Lin (3456_CR55) 2019; 12
C Choi (3456_CR19) 2020; 3
S Jiang (3456_CR60) 2019; 150
C Reller (3456_CR13) 2017; 7
W Luc (3456_CR23) 2019; 2
M Li (3456_CR41) 2020; 63
C Choi (3456_CR14) 2019; 31
W F Rong (3456_CR31) 2021; 133
C T Dinh (3456_CR26) 2018; 360
P Siemsen (3456_CR44) 2000; 39
X W Nie (3456_CR62) 2013; 52
J Y Zhou (3456_CR49) 2015; 137
J Y Han (3456_CR21) 2020; 11
L Zhang (3456_CR3) 2017; 56
H Jung (3456_CR18) 2019; 141
T T Zhuang (3456_CR22) 2018; 1
D C Liu (3456_CR4) 2020; 2
H S Jeon (3456_CR12) 2018; 8
R Reske (3456_CR24) 2014; 136
D Ren (3456_CR54) 2016; 7
Q Hu (3456_CR29) 2020; 59
Z L Jiang (3456_CR6) 2020; 13
L Hui (3456_CR35) 2019; 141
X P Yin (3456_CR36) 2018; 57
J Q Li (3456_CR48) 2017; 29
A Loiudice (3456_CR27) 2016; 55
O A Baturina (3456_CR53) 2014; 4
S Nitopi (3456_CR2) 2019; 119
References_xml – volume: 150
  start-page: 041718
  year: 2019
  ident: CR60
  article-title: New aspects of operando Raman spectroscopy applied to electrochemical CO reduction on Cu foams
  publication-title: J. Chem. Phys.
– volume: 7
  start-page: 20
  year: 2016
  end-page: 24
  ident: CR54
  article-title: Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to -propanol
  publication-title: J. Phys. Chem. Lett.
– volume: 29
  start-page: 1700421
  year: 2017
  ident: CR48
  article-title: Architecture of β-graphdiyne-containing thin film using modified glaser-hay coupling reaction for enhanced photocatalytic property of TiO
  publication-title: Adv. Mater.
– volume: 1
  start-page: 111
  year: 2018
  end-page: 119
  ident: CR17
  article-title: Metal ion cycling of Cu foil for selective C-C coupling in electrochemical CO reduction
  publication-title: Nat. Catal.
– volume: 141
  start-page: 10677
  year: 2019
  end-page: 10683
  ident: CR35
  article-title: Highly efficient and selective generation of ammonia and hydrogen on a graphdiyne-based catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 2318
  year: 2019
  end-page: 2323
  ident: CR8
  article-title: Highly efficient and selective CO electro-reduction with atomic Fe-C-N hybrid coordination on porous carbon nematosphere
  publication-title: Nano Res.
– volume: 7
  start-page: 1602114
  year: 2017
  ident: CR13
  article-title: Selective electroreduction of CO toward ethylene on nano dendritic copper catalysts at high current density
  publication-title: Adv. Energy Mater.
– volume: 55
  start-page: 5789
  year: 2016
  end-page: 5792
  ident: CR27
  article-title: Tailoring copper nanocrystals towards C products in electrochemical CO reduction
  publication-title: Angew. Chem., Int. Ed.
– volume: 136
  start-page: 6978
  year: 2014
  end-page: 6986
  ident: CR24
  article-title: Particle size effects in the catalytic electroreduction of CO on Cu nanoparticles
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 531
  year: 2018
  end-page: 535
  ident: CR12
  article-title: Prism-shaped Cu nanocatalysts for electrochemical CO reduction to ethylene
  publication-title: ACS Catal.
– volume: 57
  start-page: 9382
  year: 2018
  end-page: 9386
  ident: CR36
  article-title: Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution
  publication-title: Angew. Chem., Int. Ed.
– volume: 52
  start-page: 2459
  year: 2013
  end-page: 2462
  ident: CR62
  article-title: Selectivity of CO reduction on copper electrodes: The role of the kinetics of elementary steps
  publication-title: Angew. Chem., Int. Ed.
– volume: 12
  start-page: 2866
  year: 2019
  end-page: 2871
  ident: CR55
  article-title: PdAg bimetallic electrocatalyst for highly selective reduction of CO with low COOH* formation energy and facile CO desorption
  publication-title: Nano Res.
– volume: 141
  start-page: 16569
  year: 2019
  end-page: 16573
  ident: CR5
  article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO reduction
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 804
  year: 2020
  end-page: 812
  ident: CR19
  article-title: Highly active and stable stepped Cu surface for enhanced electrochemical CO reduction to C H
  publication-title: Nat. Catal.
– volume: 4
  start-page: 3682
  year: 2014
  end-page: 3695
  ident: CR53
  article-title: CO electroreduction to hydrocarbons on carbon-supported Cu nanoparticles
  publication-title: ACS Catal.
– volume: 142
  start-page: 75
  year: 2020
  end-page: 79
  ident: CR51
  article-title: Photoactivation of Cu centers in metal-organic frameworks for selective CO conversion to ethanol
  publication-title: J. Am. Chem. Soc.
– volume: 21
  start-page: 41
  year: 2018
  end-page: 54
  ident: CR16
  article-title: Cu-based nanocatalysts for electrochemical reduction of CO
  publication-title: Nano Today
– volume: 6
  start-page: 2726
  year: 2015
  end-page: 2733
  ident: CR39
  article-title: Surface-initiated Cu(0) mediated controlled radical polymerization (SI-CuCRP) using a copper plate
  publication-title: Polym. Chem.
– volume: 1
  start-page: 946
  year: 2018
  end-page: 951
  ident: CR22
  article-title: Copper nanocavities confine intermediates for efficient electrosynthesis of C alcohol fuels from carbon monoxide
  publication-title: Nat. Catal.
– volume: 46
  start-page: 3256
  year: 2010
  end-page: 3258
  ident: CR32
  article-title: Architecture of graphdiyne nanoscale films
  publication-title: Chem. Commun.
– volume: 13
  start-page: 1434
  year: 2020
  end-page: 1443
  ident: CR9
  article-title: Synthesis and electrocatalytic applications of flower-like motifs and associated composites of nitrogen-enriched tungsten nitride (W N )
  publication-title: Nano Res.
– volume: 4
  start-page: 1809
  year: 2018
  end-page: 1831
  ident: CR15
  article-title: Surface and interface engineering in copper-based bimetallic materials for selective CO electroreduction
  publication-title: Chem
– volume: 11
  start-page: 10698
  year: 2020
  end-page: 10704
  ident: CR21
  article-title: A reconstructed porous copper surface promotes selectivity and efficiency toward C2 products by electrocatalytic CO reduction
  publication-title: Chem. Sci.
– volume: 360
  start-page: 783
  year: 2018
  end-page: 787
  ident: CR26
  article-title: CO electroreduction to ethylene via hydroxide-mediated Cu catalysis at an abrupt interface
  publication-title: Science
– volume: 118
  start-page: 7744
  year: 2018
  end-page: 7803
  ident: CR33
  article-title: Progress in research into 2D graphdiyne-based materials
  publication-title: Chem. Rev.
– volume: 9
  start-page: 1140
  year: 2018
  ident: CR40
  article-title: Copper-surface-mediated synthesis of acetylenic carbon-rich nanofibers for active metal-free photocathodes
  publication-title: Nat. Commun.
– volume: 2
  start-page: 423
  year: 2019
  end-page: 430
  ident: CR23
  article-title: Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate
  publication-title: Nat. Catal.
– volume: 5
  start-page: 4948
  year: 2014
  ident: CR52
  article-title: Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles
  publication-title: Nat. Commun.
– volume: 137
  start-page: 7596
  year: 2015
  end-page: 7599
  ident: CR49
  article-title: Synthesis of graphdiyne nanowalls using acetylenic coupling reaction
  publication-title: J. Am. Chem. Soc.
– volume: 12
  start-page: 50464
  year: 2020
  end-page: 50471
  ident: CR58
  article-title: coating CsPbBr nanocrystals with graphdiyne to boost the activity and stability of photocatalytic CO reduction
  publication-title: ACS Appl. Mater. Interfaces
– volume: 52
  start-page: 3485
  year: 2011
  end-page: 3488
  ident: CR43
  article-title: Copper(II) chloride-catalyzed glaser oxidative coupling reaction in polyethylene glycol
  publication-title: Tetrahedron Lett.
– volume: 133
  start-page: 470
  year: 2021
  end-page: 476
  ident: CR31
  article-title: Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO electroreduction
  publication-title: Angew. Chem., Int. Ed.
– volume: 119
  start-page: 7610
  year: 2019
  end-page: 7672
  ident: CR2
  article-title: Progress and perspectives of electrochemical CO reduction on copper in aqueous electrolyte
  publication-title: Chem. Rev.
– volume: 12
  start-page: 2324
  year: 2019
  end-page: 2329
  ident: CR11
  article-title: Enhanced N-doping in mesoporous carbon for efficient electrocatalytic CO conversion
  publication-title: Nano Res.
– volume: 2
  start-page: 100034
  year: 2020
  ident: CR4
  article-title: Non-noble metal-based molecular complexes for CO reduction: From the ligand design perspective
  publication-title: EnergyChem
– volume: 3
  start-page: 1311
  year: 2010
  end-page: 1315
  ident: CR61
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energy Environ. Sci.
– volume: 141
  start-page: 4624
  year: 2019
  end-page: 4633
  ident: CR18
  article-title: Electrochemical fragmentation of Cu O nanoparticles enhancing selective C-C coupling from CO reduction reaction
  publication-title: J. Am. Chem. Soc.
– volume: 56
  start-page: 11326
  year: 2017
  end-page: 11353
  ident: CR3
  article-title: Nanostructured materials for heterogeneous electrocatalytic CO reduction and their related reaction mechanisms
  publication-title: Angew. Chem., Int. Ed.
– volume: 59
  start-page: 22465
  year: 2020
  end-page: 22469
  ident: CR7
  article-title: Design of a single-atom indium -N interface for efficient electroreduction of CO to formate
  publication-title: Angew. Chem., Int. Ed.
– volume: 31
  start-page: 1805405
  year: 2019
  ident: CR14
  article-title: A highly active star decahedron Cu nanocatalyst for hydrocarbon production at low overpotentials
  publication-title: Adv. Mater.
– volume: 7
  start-page: 1749
  year: 2017
  end-page: 1756
  ident: CR20
  article-title: Electrochemical reduction of CO using copper single-crystal surfaces: Effects of CO* coverage on the selective formation of ethylene
  publication-title: ACS Catal.
– volume: 59
  start-page: 19054
  year: 2020
  end-page: 19059
  ident: CR29
  article-title: Facile synthesis of sub-nanometric copper clusters by double confinement enables selective reduction of carbon dioxide to methane
  publication-title: Angew. Chem., Int. Ed.
– volume: 142
  start-page: 4213
  year: 2020
  end-page: 4222
  ident: CR50
  article-title: Investigating the origin of enhanced C selectivity in oxide-/hydroxide-derived copper electrodes during CO electroreduction
  publication-title: J. Am. Chem. Soc.
– volume: 3
  start-page: 1700122
  year: 2017
  ident: CR45
  article-title: Graphdiyne filter for decontaminating lead-ion-polluted water
  publication-title: Adv. Electron. Mater.
– volume: 51
  start-page: 910
  year: 2018
  end-page: 918
  ident: CR25
  article-title: Electrolytic CO reduction in a flow cell
  publication-title: Acc. Chem. Res.
– volume: 12
  start-page: 2067
  year: 2019
  end-page: 2080
  ident: CR10
  article-title: Metal organic frameworks derived single atom catalysts for electrocatalytic energy conversion
  publication-title: Nano Res.
– volume: 7
  start-page: 13142
  year: 2019
  end-page: 13148
  ident: CR34
  article-title: A Graphdiyne-based carbon material for electroless deposition and stabilization of sub-nanometric Pd catalysts with extremely high catalytic activity
  publication-title: J. Mater. Chem. A
– volume: 12
  start-page: 34
  year: 2013
  end-page: 39
  ident: CR37
  article-title: Towards stable catalysts by controlling collective properties of supported metal nanoparticles
  publication-title: Nat. Mater.
– volume: 139
  start-page: 9728
  year: 2017
  end-page: 9736
  ident: CR28
  article-title: Lattice-hydride mechanism in electrocatalytic CO reduction by structurally precise copper-hydride nanoclusters
  publication-title: J. Am. Chem. Soc.
– volume: 341
  start-page: 771
  year: 2013
  end-page: 773
  ident: CR38
  article-title: Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts
  publication-title: Science
– volume: 8
  start-page: 7671
  year: 2020
  end-page: 7676
  ident: CR59
  article-title: Enhanced photochemical CO reduction in the gas phase by graphdiyne
  publication-title: J. Mater. Chem. A
– volume: 600
  start-page: 3729
  year: 2006
  end-page: 3733
  ident: CR46
  article-title: Oxygen contaminants affecting on the electronic structures of the carbon nano tubes grown by rapid thermal chemical vapor deposition
  publication-title: Surf. Sci.
– volume: 136
  start-page: 13319
  year: 2014
  end-page: 13325
  ident: CR30
  article-title: Enhanced electrochemical methanation of carbon dioxide with a dispersible nanoscale copper catalyst
  publication-title: J. Am. Chem. Soc.
– volume: 23
  start-page: 598
  year: 2005
  end-page: 600
  ident: CR42
  article-title: Preparation of nano copper colloid and its characterization
  publication-title: J. Mater. Sci. Eng.
– volume: 114
  start-page: 10560
  year: 2017
  end-page: 10565
  ident: CR56
  article-title: Copper nanoparticle ensembles for selective electroreduction of CO to C -C products
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 39
  start-page: 2632
  year: 2000
  end-page: 2657
  ident: CR44
  article-title: Acetylenic coupling: A powerful tool in molecular construction
  publication-title: Angew. Chem., Int. Ed.
– volume: 63
  start-page: 1040
  year: 2020
  end-page: 1045
  ident: CR41
  article-title: Enhancing the photoelectrocatalytic performance of metal-free graphdiyne-based catalyst
  publication-title: Sci. China Chem.
– volume: 57
  start-page: 5076
  year: 2018
  end-page: 5080
  ident: CR57
  article-title: Tailoring the d-band centers enables Co N nanosheets to Be highly active for hydrogen evolution catalysis
  publication-title: Angew. Chem., Int. Ed.
– volume: 13
  start-page: 2856
  year: 2020
  end-page: 2863
  ident: CR6
  article-title: Discovery of main group single Sb-N active sites for CO electroreduction to formate with high efficiency
  publication-title: Energy Environ. Sci.
– volume: 2
  start-page: 198
  year: 2019
  end-page: 210
  ident: CR1
  article-title: Rational catalyst and electrolyte design for CO electroreduction towards multicarbon products
  publication-title: Nat. Catal.
– volume: 42
  start-page: 1713
  year: 2004
  end-page: 1721
  ident: CR47
  article-title: XPS photoemission in carbonaceous materials: A “defect” peak beside the graphitic asymmetric peak
  publication-title: Carbon
– volume: 63
  start-page: 1040
  year: 2020
  ident: 3456_CR41
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-020-9763-9
– volume: 39
  start-page: 2632
  year: 2000
  ident: 3456_CR44
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/1521-3773(20000804)39:15<2632::AID-ANIE2632>3.0.CO;2-F
– volume: 7
  start-page: 13142
  year: 2019
  ident: 3456_CR34
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03621K
– volume: 13
  start-page: 1434
  year: 2020
  ident: 3456_CR9
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2687-y
– volume: 3
  start-page: 1311
  year: 2010
  ident: 3456_CR61
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 7
  start-page: 1602114
  year: 2017
  ident: 3456_CR13
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602114
– volume: 136
  start-page: 6978
  year: 2014
  ident: 3456_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja500328k
– volume: 118
  start-page: 7744
  year: 2018
  ident: 3456_CR33
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00288
– volume: 137
  start-page: 7596
  year: 2015
  ident: 3456_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b04057
– volume: 3
  start-page: 804
  year: 2020
  ident: 3456_CR19
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00504-x
– volume: 2
  start-page: 198
  year: 2019
  ident: 3456_CR1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0235-5
– volume: 12
  start-page: 2318
  year: 2019
  ident: 3456_CR8
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2339-2
– volume: 136
  start-page: 13319
  year: 2014
  ident: 3456_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5065284
– volume: 142
  start-page: 4213
  year: 2020
  ident: 3456_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11790
– volume: 59
  start-page: 19054
  year: 2020
  ident: 3456_CR29
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202009277
– volume: 52
  start-page: 2459
  year: 2013
  ident: 3456_CR62
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201208320
– volume: 9
  start-page: 1140
  year: 2018
  ident: 3456_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03444-0
– volume: 4
  start-page: 3682
  year: 2014
  ident: 3456_CR53
  publication-title: ACS Catal.
  doi: 10.1021/cs500537y
– volume: 1
  start-page: 111
  year: 2018
  ident: 3456_CR17
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0009-x
– volume: 360
  start-page: 783
  year: 2018
  ident: 3456_CR26
  publication-title: Science
  doi: 10.1126/science.aas9100
– volume: 56
  start-page: 11326
  year: 2017
  ident: 3456_CR3
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201612214
– volume: 141
  start-page: 10677
  year: 2019
  ident: 3456_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03004
– volume: 42
  start-page: 1713
  year: 2004
  ident: 3456_CR47
  publication-title: Carbon
  doi: 10.1016/j.carbon.2004.03.005
– volume: 7
  start-page: 20
  year: 2016
  ident: 3456_CR54
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02554
– volume: 4
  start-page: 1809
  year: 2018
  ident: 3456_CR15
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.05.001
– volume: 141
  start-page: 4624
  year: 2019
  ident: 3456_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11237
– volume: 46
  start-page: 3256
  year: 2010
  ident: 3456_CR32
  publication-title: Chem. Commun.
  doi: 10.1039/b922733d
– volume: 23
  start-page: 598
  year: 2005
  ident: 3456_CR42
  publication-title: J. Mater. Sci. Eng.
– volume: 51
  start-page: 910
  year: 2018
  ident: 3456_CR25
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00010
– volume: 600
  start-page: 3729
  year: 2006
  ident: 3456_CR46
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2006.01.075
– volume: 5
  start-page: 4948
  year: 2014
  ident: 3456_CR52
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5948
– volume: 57
  start-page: 5076
  year: 2018
  ident: 3456_CR57
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201801834
– volume: 133
  start-page: 470
  year: 2021
  ident: 3456_CR31
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/ange.202011836
– volume: 3
  start-page: 1700122
  year: 2017
  ident: 3456_CR45
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201700122
– volume: 12
  start-page: 2067
  year: 2019
  ident: 3456_CR10
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2345-4
– volume: 341
  start-page: 771
  year: 2013
  ident: 3456_CR38
  publication-title: Science
  doi: 10.1126/science.1240148
– volume: 12
  start-page: 2866
  year: 2019
  ident: 3456_CR55
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2526-1
– volume: 59
  start-page: 22465
  year: 2020
  ident: 3456_CR7
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202010903
– volume: 12
  start-page: 2324
  year: 2019
  ident: 3456_CR11
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2396-6
– volume: 150
  start-page: 041718
  year: 2019
  ident: 3456_CR60
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.5054109
– volume: 31
  start-page: 1805405
  year: 2019
  ident: 3456_CR14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805405
– volume: 6
  start-page: 2726
  year: 2015
  ident: 3456_CR39
  publication-title: Polym. Chem.
  doi: 10.1039/C5PY00093A
– volume: 7
  start-page: 1749
  year: 2017
  ident: 3456_CR20
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b03147
– volume: 29
  start-page: 1700421
  year: 2017
  ident: 3456_CR48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700421
– volume: 12
  start-page: 50464
  year: 2020
  ident: 3456_CR58
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c14826
– volume: 2
  start-page: 100034
  year: 2020
  ident: 3456_CR4
  publication-title: EnergyChem
  doi: 10.1016/j.enchem.2020.100034
– volume: 13
  start-page: 2856
  year: 2020
  ident: 3456_CR6
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D0EE01486A
– volume: 2
  start-page: 423
  year: 2019
  ident: 3456_CR23
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0269-8
– volume: 8
  start-page: 7671
  year: 2020
  ident: 3456_CR59
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02256J
– volume: 119
  start-page: 7610
  year: 2019
  ident: 3456_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.8b00705
– volume: 141
  start-page: 16569
  year: 2019
  ident: 3456_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08259
– volume: 52
  start-page: 3485
  year: 2011
  ident: 3456_CR43
  publication-title: Tetrahedron Lett.
  doi: 10.1016/j.tetlet.2011.04.118
– volume: 114
  start-page: 10560
  year: 2017
  ident: 3456_CR56
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1711493114
– volume: 21
  start-page: 41
  year: 2018
  ident: 3456_CR16
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2018.05.001
– volume: 1
  start-page: 946
  year: 2018
  ident: 3456_CR22
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0168-4
– volume: 11
  start-page: 10698
  year: 2020
  ident: 3456_CR21
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC01202E
– volume: 8
  start-page: 531
  year: 2018
  ident: 3456_CR12
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02959
– volume: 142
  start-page: 75
  year: 2020
  ident: 3456_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b11443
– volume: 12
  start-page: 34
  year: 2013
  ident: 3456_CR37
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3471
– volume: 55
  start-page: 5789
  year: 2016
  ident: 3456_CR27
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201601582
– volume: 57
  start-page: 9382
  year: 2018
  ident: 3456_CR36
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201804817
– volume: 139
  start-page: 9728
  year: 2017
  ident: 3456_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05591
SSID ssj0062148
Score 2.545241
Snippet Reducing the size of heterogeneous nanocatalysts is generally conducive to improving their atomic utilization and activities in various catalytic reactions....
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 195
SubjectTerms Alkynes
Atomic/Molecular Structure and Spectra
Binding
Biomedicine
Biotechnology
Carbon dioxide
Carbon nanotubes
Catalysts
Chemistry and Materials Science
Condensed Matter Physics
Electrocatalysts
Graphene
Intermediates
Materials Science
Nanoparticles
Nanotechnology
Research Article
Selectivity
Ultrafines
SummonAdditionalLinks – databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwELagLDAgnqJQkAcmKovEcWNnQqiiVEjAQqVuUfySkKq0NOnQf4_PSRpAorPPHu7se_q-Q-hWsojLQGuSGGYJiwJBpOaSBFYYGYQyFAYS-q9v8XjCXqaDaZ1wK-pvlY1O9IpazxXkyO8p4IokAPXysPgiMDUKqqv1CI1dtAfQZXCr-XQTcMU09NOzqjYyZ8iaqqZvnaMuHiPwQSFyPgShv-1S62z-qY96szM6Qoe1v4gfKwEfox2Tn6CDHyiCp2j6DKDT-nPt1BY2vheqwKtZucysI8LDFc6z3MXG9Rc4XM5x4affOEU3W-MlgLc6sncKK0Pax4sKBbY4Q5PR08dwTOqBCURFYVyC4rKCaW0tjyIaMWazxAaCCxUbw41WWg-scR4Co5mTiLYhjS2PTaJd3OQCm-gcdfJ5bi4Q1rF7yoJZKqllPNOCSyO5UjbWnCmhuiho2JWqGk0chlrM0hYHGTicOg6nwOGUdtHdZsuigtLYRtxrZJDWr6pI2zvQRf1GLu3yv4ddbj_sCu1TaGrwiZUe6pTLlbl2rkYpb_x9-gZq289Z
  priority: 102
  providerName: ProQuest
Title Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products
URI https://link.springer.com/article/10.1007/s12274-021-3456-2
https://www.proquest.com/docview/2594890604
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagXWBAPEWhVB6YqCwljhs7Y6n6EIiCEJXCFMWxLSFVadWkQ_895zwoIEBiSQZfPNzF9_DdfYfQtWQel45SJNDMEOY5gkjFJXGM0NJxpSu0vdB_mPqTGbsLe2HVx53V1e51SrLQ1NtmNwoRFLElBR5YfQJ6t9mD0N3Wcc1ov1a_PnWLkVll7xhYrzqV-dMWX43R1sP8lhQtbM3oEB1UTiLul1I9Qjs6PUb7n6ADT1A4tkjT6m0DugrrogEqw-t5vooNEOHBGqdxCgFxVfeG8wXOipE3oN3mG7yyiK1A9kjtyoB28bKEfs1O0Ww0fBlMSDUlgSSe6-dWWxnBlDKGex71GDNxYBzBReJrzbVKlOoZDW4BozGIQRmX-ob7OlAQLEE0452hRrpI9TnCyofzK5ihkhrGYyW41JInifEVZ4lIWsip2RUlFYS4nWQxj7bgx5bDEXA4shyOaAvdfHyyLPEz_iJu1zKIqqOURdQCygQW46eFurVctsu_bnbxL-pLtEdtY0NxudJGjXy11lfgbuSyg3Z5yOEpRuMOavbHr_dDeN8Op0_PneLXeweEiNDD
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VcgAOVXmJtAV8gAuVxa7trp0DQiiQpvTBpZVyW9YvCSnahOxGVf4Uv5GZfTSARG8922utxuN5zzcAb6yS2ibe82FQkSuZGG69tjyJJtgktakJFNA_v8gmV-rr9Gi6Bb_6Xhgqq-xlYiOo_dxRjPy9IFyRIUG9fFz85DQ1irKr_QiNli1Ow_oaXbbqw8lnvN-3Qoy_XI4mvJsqwJ1Ms5pedzTK-xi1lEIqFYthTIw2LgtBB--8P4oB1agSBf62j6nIos7C0KNzgda_xHPvwX0lUZNTZ_r4uJf8mUibaV1t2xoqzj6L2rTqCfT_OBVESLRZuPhbD26M23_ysY2aG-_CTmefsk8tQz2GrVA-gUd_oBY-hekxgVz7H2sUkyw0vVcVW83qZRFxExutWFmU6It3JXesnrOqmbaDgnW2ZksCi8Vt3wStjMQhW7Sos9UzuLoTUj6H7XJehhfAfIaiw6gorIhKF95oG6x2LmZeK2fcAJKeXLnr0MtpiMYs3-AuE4VzpHBOFM7FAN7dfLJooTtu23zQ30HeveIq3_DcAA77e9ks__ewvdsPew0PJpfnZ_nZycXpPjwU1FDRBHUOYLtersJLNHNq-6rhLQbf75qZfwOdYQ0M
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVKrggKAtIlBgD-XSalV7vfVuDghB2tBSSKuKSrkZ70tCipwQO0L5a_w6ZvwggERvPe96Jc_Oznu-Adg3MlEmco4PvAxcJpHmxinDo6C9iWITa08B_c_j9OxGfpwcTzbgZ9cLQ2WVnUysBbWbWYqRHwnCFRkQ1MtRaMsirk5Gb-ffOU2QokxrN06jYZELv_qB7lv55vwE7_q1EKPTL8Mz3k4Y4DaJ04peetDSuRBUkohEypAPQqSVtqn3yjvr3HHwqFKlyPEXXIhFGlTqBw4dDfQEEjz3Hmwq8op6sPn-dHx13emBVMT17K6miQ3VaJdTrRv3BHqDnMojErRguPhbK65N3X-ys7XSGz2Ch621yt417PUYNnyxDQ_-wDDcgckHgrx231YoNJmvO7FKtpxWizzgJjZcsiIv0DNvC_BYNWNlPXsHxex0xRYEHYvbLgWtDMUhmzcYtOUu3NwJMZ9Ar5gV_ikwl6Ig0TIII4JUudPKeKOsDalT0mrbh6gjV2ZbLHMaqTHN1ijMROEMKZwRhTPRh4Pfn8wbII_bNu91d5C1b7rM1hzYh8PuXtbL_z3s2e2HvYItZOTs0_n44jncF9RdUUd49qBXLZb-Bdo8lXnZMheDr3fNz78AqSwSng
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphdiyene+enables+ultrafine+Cu+nanoparticles+to+selectively+reduce+CO2+to+C2%2B+products&rft.jtitle=Nano+research&rft.au=Chang%2C+Yong-Bin&rft.au=Zhang%2C+Chao&rft.au=Lu%2C+Xiu-Li&rft.au=Zhang%2C+Wen&rft.date=2022-01-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=15&rft.issue=1&rft.spage=195&rft.epage=201&rft_id=info:doi/10.1007%2Fs12274-021-3456-2&rft.externalDocID=10_1007_s12274_021_3456_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon