An Experimental Evaluation of the Best-of-Many Christofides’ Algorithm for the Traveling Salesman Problem

Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant of the well-known Christofides’ algorithm for the TSP, called the Best-of-Many Christofides’ algorithm . The algorithm involves sampling a spanning tree from the solution to the standard LP re...

Full description

Saved in:
Bibliographic Details
Published inAlgorithmica Vol. 78; no. 4; pp. 1109 - 1130
Main Authors Genova, Kyle, Williamson, David P.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.08.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0178-4617
1432-0541
DOI10.1007/s00453-017-0293-5

Cover

Loading…
Abstract Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant of the well-known Christofides’ algorithm for the TSP, called the Best-of-Many Christofides’ algorithm . The algorithm involves sampling a spanning tree from the solution to the standard LP relaxation of the TSP, subject to the condition that each edge is sampled with probability at most its value in the LP relaxation. One then runs Christofides’ algorithm on the tree by computing a minimum-cost matching on the odd-degree vertices in the tree, and shortcutting a traversal of the resulting Eulerian graph to a tour. In this paper we perform an experimental evaluation of the Best-of-Many Christofides’ algorithm to see if there are empirical reasons to believe its performance is better than that of Christofides’ algorithm. Furthermore, several different sampling schemes have been proposed; we implement several different schemes to determine which ones might be the most promising for obtaining improved performance guarantees over that of Christofides’ algorithm. In our experiments, all of the implemented methods perform significantly better than Christofides’ algorithm; an algorithm that samples from a maximum entropy distribution over spanning trees seems to be particularly good, though there are others that perform almost as well.
AbstractList Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant of the well-known Christofides’ algorithm for the TSP, called the Best-of-Many Christofides’ algorithm . The algorithm involves sampling a spanning tree from the solution to the standard LP relaxation of the TSP, subject to the condition that each edge is sampled with probability at most its value in the LP relaxation. One then runs Christofides’ algorithm on the tree by computing a minimum-cost matching on the odd-degree vertices in the tree, and shortcutting a traversal of the resulting Eulerian graph to a tour. In this paper we perform an experimental evaluation of the Best-of-Many Christofides’ algorithm to see if there are empirical reasons to believe its performance is better than that of Christofides’ algorithm. Furthermore, several different sampling schemes have been proposed; we implement several different schemes to determine which ones might be the most promising for obtaining improved performance guarantees over that of Christofides’ algorithm. In our experiments, all of the implemented methods perform significantly better than Christofides’ algorithm; an algorithm that samples from a maximum entropy distribution over spanning trees seems to be particularly good, though there are others that perform almost as well.
Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant of the well-known Christofides’ algorithm for the TSP, called the Best-of-Many Christofides’ algorithm. The algorithm involves sampling a spanning tree from the solution to the standard LP relaxation of the TSP, subject to the condition that each edge is sampled with probability at most its value in the LP relaxation. One then runs Christofides’ algorithm on the tree by computing a minimum-cost matching on the odd-degree vertices in the tree, and shortcutting a traversal of the resulting Eulerian graph to a tour. In this paper we perform an experimental evaluation of the Best-of-Many Christofides’ algorithm to see if there are empirical reasons to believe its performance is better than that of Christofides’ algorithm. Furthermore, several different sampling schemes have been proposed; we implement several different schemes to determine which ones might be the most promising for obtaining improved performance guarantees over that of Christofides’ algorithm. In our experiments, all of the implemented methods perform significantly better than Christofides’ algorithm; an algorithm that samples from a maximum entropy distribution over spanning trees seems to be particularly good, though there are others that perform almost as well.
Author Genova, Kyle
Williamson, David P.
Author_xml – sequence: 1
  givenname: Kyle
  surname: Genova
  fullname: Genova, Kyle
  organization: Department of Computer Science, Princeton University
– sequence: 2
  givenname: David P.
  orcidid: 0000-0002-2884-0058
  surname: Williamson
  fullname: Williamson, David P.
  email: dpw@cs.cornell.edu
  organization: School of Operations Research and Information Engineering, Cornell University
BookMark eNp9kMtOwzAQRS0EEqXwAewssTaM4zyXpSoPCQQSZW05yaQNpHax3Yru-A1-jy_BJSwQEqxmMffMHZ0DsquNRkKOOZxygOzMAcSJYMAzBlEhWLJDBjwWEYMk5rtkEBY5i1Oe7ZMD554AeJQV6YA8jzSdvC7RtgvUXnV0slbdSvnWaGoa6udIz9F5Zhp2q_SGjue2dd40bY3u4-2djrqZsa2fL2hj7Fd8atUau1bP6IPq0C2UpvfWlB0uDsleozqHR99zSB4vJtPxFbu5u7wej25YJXjqWV7xMsnSlAusAUrADGssqlxxJURaZ9AkPM_rsimgjgUUWJZVFBcRYBXVKGoxJCf93aU1L6vwvXwyK6tDpeRFQPMIRBpSvE9V1jhnsZHLIEHZjeQgt05l71QGdXLrVCaByX4xVeu_ZHmr2u5fMupJF1r0DO2Pn_6EPgHGvY66
CitedBy_id crossref_primary_10_1016_j_disopt_2022_100746
crossref_primary_10_1287_opre_2022_2338
crossref_primary_10_1137_22M1524321
crossref_primary_10_3390_app11010177
crossref_primary_10_3390_sym10120663
crossref_primary_10_1088_1758_5090_ac1846
Cites_doi 10.1007/s00224-012-9439-7
10.1145/2739008
10.1137/15M1010531
10.1007/978-3-662-48350-3_48
10.1007/978-3-642-36694-9_31
10.1007/s00493-014-2960-3
10.1145/2818310
10.1016/0167-6377(91)90016-I
10.1109/FOCS.2011.80
10.1145/2487788.2488173
10.1007/978-3-319-33461-5_11
10.1007/BFb0014497
10.1023/A:1009739202898
10.1287/opre.18.6.1138
10.1007/978-1-4612-1098-6
10.1007/0-306-48213-4_9
10.1137/1.9781611973075.32
10.1002/net.3230120103
10.1007/BF01902503
10.1109/FOCS.2016.21
10.1137/14096712X
10.1287/opre.21.2.498
ContentType Journal Article
Copyright Springer Science+Business Media New York 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Springer Science+Business Media New York 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s00453-017-0293-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1432-0541
EndPage 1130
ExternalDocumentID 10_1007_s00453_017_0293_5
GrantInformation_xml – fundername: Division of Computing and Communication Foundations
  grantid: 1115256
  funderid: http://dx.doi.org/10.13039/100000143
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
203
23M
28-
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDPE
ABDZT
ABECU
ABFSI
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
E.L
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9O
PF-
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UQL
UTJUX
UZXMN
VC2
VFIZW
VH1
VXZ
W23
W48
WK8
YLTOR
Z45
Z7X
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
ZY4
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-8c1b576613ed00b0e7ede9c8a1a336d70f5188dbf90d4309ebbc24920ec2de3d3
IEDL.DBID U2A
ISSN 0178-4617
IngestDate Fri Jul 25 03:02:54 EDT 2025
Thu Apr 24 23:03:02 EDT 2025
Tue Jul 01 01:06:19 EDT 2025
Fri Feb 21 02:40:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Christofides’ algorithm
Traveling salesman problem
Approximation algorithms
Maximum entropy
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-8c1b576613ed00b0e7ede9c8a1a336d70f5188dbf90d4309ebbc24920ec2de3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2884-0058
PQID 1918882036
PQPubID 2043795
PageCount 22
ParticipantIDs proquest_journals_1918882036
crossref_primary_10_1007_s00453_017_0293_5
crossref_citationtrail_10_1007_s00453_017_0293_5
springer_journals_10_1007_s00453_017_0293_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-08-01
PublicationDateYYYYMMDD 2017-08-01
PublicationDate_xml – month: 08
  year: 2017
  text: 2017-08-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Algorithmica
PublicationTitleAbbrev Algorithmica
PublicationYear 2017
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Gottschalk, C., Vygen, J.: Better s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}–t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-tours by Gao trees. In: Loveaux, Q., Skutella, M. (eds.) Integer Programming and Combinatorial Optimization, 18th International Conference, IPCO 2016, Lecture Notes in Computer Science, vol. 9682, pp. 126–137. Springer, Berlin (2016)
Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). Accessed 28 Jan 2015
Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 575–584 (2010). See full version at arXiv:0909.4348
Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde 03.12.19 (2003). http://www.math.uwaterloo.ca/tsp/concorde/index.html
Schalekamp, F., van Zuylen, A.: Personal Communication (2015)
Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variants, pp. 369–443. Kluwer, Dordrecht (2002)
Kolmogorov, V., Blossom, V.: A new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1, 43–67 (2009). http://pub.ist.ac.at/~vnk/software.html
HoogeveenJAAnalysis of Christofides’ heuristic: some paths are more difficult than cyclesOper. Res. Lett.199110291295112233210.1016/0167-6377(91)90016-I0748.90071
NagamochiHIbarakiTDeterministic O~(mn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(mn)$$\end{document} time edge-splitting in undirected graphsJ. Comb. Optim.19971546160617310.1023/A:10097392028980895.90172
An, H.C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algorithm for the s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} path TSP. J. ACM 62 (2015). Article 34
LinSKernighanBWAn effective heuristic algorithm for the traveling-salesman problemOper. Res.19732149851635974210.1287/opre.21.2.4980256.90038
An, H.C.: Approximation Algorithms for Traveling Salesman Problems Based on Linear Programming Relaxations. Ph.D. thesis, Department of Computer Science, Cornell University (2012)
Optimization, G.: Gurobi 5.6.3 (2014). www.gurobi.com
Sebő, A., van Zuylen, A.: The salesman’s improved paths: a 3/2+1/34 approximation. In: Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science, pp. 118–127 (2016)
FriezeAGalbiatiGMaffioliFOn the worst-case performance of some algorithms for the asymmetric traveling salesman problemNetworks198212233966726210.1002/net.32301201030478.90070
FrankAConnections in Combinatorial Optimization2011OxfordOxford University Press1228.90001
Oveis Gharan, S., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 550–559 (2011)
LovászLOn some connectivity properties of Eulerian graphsActa Math. Acad. Sci. Hung.19762812913843739110.1007/BF019025030337.05124
Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer, Berlin (1996)
GaoZOn the metric s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}–t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} path traveling salesman problemSIAM J. Discret. Math.20152911331149336998910.1137/14096712X1331.68293
Oveis Gharan, S.: Personal Communication (2014)
HeldMKarpRMThe traveling-salesman problem and minimum spanning treesOper. Res.1971181138116227871010.1287/opre.18.6.11380226.90047
SchrijverACombinatorial Optimization: Polyhedra and Efficiency2003BerlinSpringer1041.90001
Kunegis, J.: KONECT—the Koblenz network collection. In: Proceedings of the International Web Observatory Workshop, pp. 1343–1350 (2013)
VygenJReassembling trees for the traveling salesmanSIAM J. Discret. Math.201630875894349395410.1137/15M10105311345.90079
Christofides, N.: Worst Case Analysis of a New Heuristic for the Traveling Salesman Problem. Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA (1976)
Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)
MuchaM13/9-approximation for graphic TSPTheory Comput. Syst.201455640657325949610.1007/s00224-012-9439-71319.68255
SebőAVygenJShorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphsCombinatorica201434597629328591010.1007/s00493-014-2960-31340.90201
Asadpour, A., Goemans, M.X., Madry, A., Oveis Gharan, S., Saberi, A.: An O(logn/loglogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n/\log \log n)$$\end{document}-approximation algorithm for the asymmetric traveling salesman problem. In: Proceedings of the 21st Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 379–389 (2010)
Mömke, T., Svensson, O.: Removing and adding edges for the traveling salesman problem. J. ACM 63 (2016). Article 2
Genova, K., Williamson, D.P.: An experimental evaluation of the best-of-many Christofides’ algorithm for the traveling salesman problem. In: Bansal, N., Finocchi, I. (eds.) Algorithms-ESA 2015—Proceedings, Lecture Notes in Computer Science, vol. 9294, pp. 570–581. Springer, Berlin (2015)
PreparataFPShamosMIComputational Geometry: An Introduction1985New YorkSpringer10.1007/978-1-4612-1098-60575.68059
Walter, M., Wegmann, N.: Computational study of graphic TSP approximation algorithms (2014). Poster presented at IPCO 2014
Oveis Gharan, S.: New Rounding Techniques for the Design and Analysis of Approximation Algorithms. Ph.D. thesis, Department of Management Science and Engineering, Stanford University (2013)
Sebő, A.: Eight-fifth approximation for the path TSP. In: Goemans, M.X., Correa, J.R. (eds.) Integer Programming and Combinatorial Optimization—16th International Conference (IPCO 2013), Lecture Notes in Computer Science, vol. 7801, pp. 362–374. Springer, Berlin (2013)
Rohe, A.: Instances found at http://www.math.uwaterloo.ca/tsp/vlsi/index.html (2002). Accessed 16 Dec 2014
293_CR30
293_CR6
293_CR4
L Lovász (293_CR19) 1976; 28
293_CR5
293_CR2
293_CR3
A Sebő (293_CR34) 2014; 34
A Frieze (293_CR8) 1982; 12
A Schrijver (293_CR31) 2003
293_CR29
Z Gao (293_CR9) 2015; 29
M Mucha (293_CR21) 2014; 55
293_CR28
293_CR1
293_CR26
293_CR25
JA Hoogeveen (293_CR14) 1991; 10
293_CR24
293_CR23
M Held (293_CR13) 1971; 18
293_CR20
A Frank (293_CR7) 2011
J Vygen (293_CR36) 2016; 30
293_CR17
H Nagamochi (293_CR22) 1997; 1
293_CR16
293_CR15
FP Preparata (293_CR27) 1985
293_CR37
293_CR35
293_CR12
293_CR11
293_CR33
293_CR10
293_CR32
S Lin (293_CR18) 1973; 21
References_xml – reference: LinSKernighanBWAn effective heuristic algorithm for the traveling-salesman problemOper. Res.19732149851635974210.1287/opre.21.2.4980256.90038
– reference: Rohe, A.: Instances found at http://www.math.uwaterloo.ca/tsp/vlsi/index.html (2002). Accessed 16 Dec 2014
– reference: Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer, Berlin (1996)
– reference: MuchaM13/9-approximation for graphic TSPTheory Comput. Syst.201455640657325949610.1007/s00224-012-9439-71319.68255
– reference: An, H.C.: Approximation Algorithms for Traveling Salesman Problems Based on Linear Programming Relaxations. Ph.D. thesis, Department of Computer Science, Cornell University (2012)
– reference: NagamochiHIbarakiTDeterministic O~(mn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(mn)$$\end{document} time edge-splitting in undirected graphsJ. Comb. Optim.19971546160617310.1023/A:10097392028980895.90172
– reference: Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991)
– reference: Gottschalk, C., Vygen, J.: Better s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}–t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-tours by Gao trees. In: Loveaux, Q., Skutella, M. (eds.) Integer Programming and Combinatorial Optimization, 18th International Conference, IPCO 2016, Lecture Notes in Computer Science, vol. 9682, pp. 126–137. Springer, Berlin (2016)
– reference: Oveis Gharan, S.: New Rounding Techniques for the Design and Analysis of Approximation Algorithms. Ph.D. thesis, Department of Management Science and Engineering, Stanford University (2013)
– reference: Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variants, pp. 369–443. Kluwer, Dordrecht (2002)
– reference: Mömke, T., Svensson, O.: Removing and adding edges for the traveling salesman problem. J. ACM 63 (2016). Article 2
– reference: SchrijverACombinatorial Optimization: Polyhedra and Efficiency2003BerlinSpringer1041.90001
– reference: GaoZOn the metric s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}–t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} path traveling salesman problemSIAM J. Discret. Math.20152911331149336998910.1137/14096712X1331.68293
– reference: Kolmogorov, V., Blossom, V.: A new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1, 43–67 (2009). http://pub.ist.ac.at/~vnk/software.html
– reference: VygenJReassembling trees for the traveling salesmanSIAM J. Discret. Math.201630875894349395410.1137/15M10105311345.90079
– reference: FrankAConnections in Combinatorial Optimization2011OxfordOxford University Press1228.90001
– reference: Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde 03.12.19 (2003). http://www.math.uwaterloo.ca/tsp/concorde/index.html
– reference: HoogeveenJAAnalysis of Christofides’ heuristic: some paths are more difficult than cyclesOper. Res. Lett.199110291295112233210.1016/0167-6377(91)90016-I0748.90071
– reference: HeldMKarpRMThe traveling-salesman problem and minimum spanning treesOper. Res.1971181138116227871010.1287/opre.18.6.11380226.90047
– reference: Walter, M., Wegmann, N.: Computational study of graphic TSP approximation algorithms (2014). Poster presented at IPCO 2014
– reference: FriezeAGalbiatiGMaffioliFOn the worst-case performance of some algorithms for the asymmetric traveling salesman problemNetworks198212233966726210.1002/net.32301201030478.90070
– reference: LovászLOn some connectivity properties of Eulerian graphsActa Math. Acad. Sci. Hung.19762812913843739110.1007/BF019025030337.05124
– reference: Sebő, A.: Eight-fifth approximation for the path TSP. In: Goemans, M.X., Correa, J.R. (eds.) Integer Programming and Combinatorial Optimization—16th International Conference (IPCO 2013), Lecture Notes in Computer Science, vol. 7801, pp. 362–374. Springer, Berlin (2013)
– reference: Christofides, N.: Worst Case Analysis of a New Heuristic for the Traveling Salesman Problem. Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA (1976)
– reference: Asadpour, A., Goemans, M.X., Madry, A., Oveis Gharan, S., Saberi, A.: An O(logn/loglogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n/\log \log n)$$\end{document}-approximation algorithm for the asymmetric traveling salesman problem. In: Proceedings of the 21st Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 379–389 (2010)
– reference: Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 575–584 (2010). See full version at arXiv:0909.4348
– reference: Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). Accessed 28 Jan 2015
– reference: SebőAVygenJShorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphsCombinatorica201434597629328591010.1007/s00493-014-2960-31340.90201
– reference: Kunegis, J.: KONECT—the Koblenz network collection. In: Proceedings of the International Web Observatory Workshop, pp. 1343–1350 (2013)
– reference: Optimization, G.: Gurobi 5.6.3 (2014). www.gurobi.com
– reference: An, H.C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algorithm for the s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} path TSP. J. ACM 62 (2015). Article 34
– reference: Sebő, A., van Zuylen, A.: The salesman’s improved paths: a 3/2+1/34 approximation. In: Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science, pp. 118–127 (2016)
– reference: Genova, K., Williamson, D.P.: An experimental evaluation of the best-of-many Christofides’ algorithm for the traveling salesman problem. In: Bansal, N., Finocchi, I. (eds.) Algorithms-ESA 2015—Proceedings, Lecture Notes in Computer Science, vol. 9294, pp. 570–581. Springer, Berlin (2015)
– reference: Schalekamp, F., van Zuylen, A.: Personal Communication (2015)
– reference: Oveis Gharan, S., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 550–559 (2011)
– reference: Oveis Gharan, S.: Personal Communication (2014)
– reference: PreparataFPShamosMIComputational Geometry: An Introduction1985New YorkSpringer10.1007/978-1-4612-1098-60575.68059
– ident: 293_CR25
– ident: 293_CR23
– volume: 55
  start-page: 640
  year: 2014
  ident: 293_CR21
  publication-title: Theory Comput. Syst.
  doi: 10.1007/s00224-012-9439-7
– volume-title: Connections in Combinatorial Optimization
  year: 2011
  ident: 293_CR7
– ident: 293_CR20
  doi: 10.1145/2739008
– volume: 30
  start-page: 875
  year: 2016
  ident: 293_CR36
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/15M1010531
– ident: 293_CR10
  doi: 10.1007/978-3-662-48350-3_48
– ident: 293_CR32
  doi: 10.1007/978-3-642-36694-9_31
– ident: 293_CR29
– ident: 293_CR3
– volume: 34
  start-page: 597
  year: 2014
  ident: 293_CR34
  publication-title: Combinatorica
  doi: 10.1007/s00493-014-2960-3
– ident: 293_CR1
– ident: 293_CR12
– ident: 293_CR2
  doi: 10.1145/2818310
– ident: 293_CR5
– volume: 10
  start-page: 291
  year: 1991
  ident: 293_CR14
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(91)90016-I
– ident: 293_CR26
  doi: 10.1109/FOCS.2011.80
– ident: 293_CR17
  doi: 10.1145/2487788.2488173
– ident: 293_CR16
– volume-title: Combinatorial Optimization: Polyhedra and Efficiency
  year: 2003
  ident: 293_CR31
– ident: 293_CR37
– ident: 293_CR24
– ident: 293_CR11
  doi: 10.1007/978-3-319-33461-5_11
– ident: 293_CR35
  doi: 10.1007/BFb0014497
– volume: 1
  start-page: 5
  year: 1997
  ident: 293_CR22
  publication-title: J. Comb. Optim.
  doi: 10.1023/A:1009739202898
– volume: 18
  start-page: 1138
  year: 1971
  ident: 293_CR13
  publication-title: Oper. Res.
  doi: 10.1287/opre.18.6.1138
– volume-title: Computational Geometry: An Introduction
  year: 1985
  ident: 293_CR27
  doi: 10.1007/978-1-4612-1098-6
– ident: 293_CR15
  doi: 10.1007/0-306-48213-4_9
– ident: 293_CR28
– ident: 293_CR4
  doi: 10.1137/1.9781611973075.32
– ident: 293_CR6
– volume: 12
  start-page: 23
  year: 1982
  ident: 293_CR8
  publication-title: Networks
  doi: 10.1002/net.3230120103
– volume: 28
  start-page: 129
  year: 1976
  ident: 293_CR19
  publication-title: Acta Math. Acad. Sci. Hung.
  doi: 10.1007/BF01902503
– ident: 293_CR33
  doi: 10.1109/FOCS.2016.21
– ident: 293_CR30
– volume: 29
  start-page: 1133
  year: 2015
  ident: 293_CR9
  publication-title: SIAM J. Discret. Math.
  doi: 10.1137/14096712X
– volume: 21
  start-page: 498
  year: 1973
  ident: 293_CR18
  publication-title: Oper. Res.
  doi: 10.1287/opre.21.2.498
SSID ssj0012796
Score 2.2624893
Snippet Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant of the well-known Christofides’ algorithm for the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1109
SubjectTerms Algorithm Analysis and Problem Complexity
Algorithms
Approximation
Computer Science
Computer Systems Organization and Communication Networks
Computing costs
Cost engineering
Data Structures and Information Theory
Graph theory
Mathematics of Computing
Maximum entropy
Sampling
Theory of Computation
Traveling salesman problem
Title An Experimental Evaluation of the Best-of-Many Christofides’ Algorithm for the Traveling Salesman Problem
URI https://link.springer.com/article/10.1007/s00453-017-0293-5
https://www.proquest.com/docview/1918882036
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB203bjxLVZrmYUrZWCSTB5dppJalBbBFuoqZB5RsU2kiXt_w9_zS7yTJrGKCq6ymEfgzuPcy517DkKnhlLCFg4ntqIRYUo4JAJUIZ6kEtCBR57S1cjDkTOYsKupPS3ruLPqtXuVkixu6rrYTXsf-u2PS6iezV5HTVuH7rCJJ6Zfpw5MtxDl0rLzhAE-V6nMn6b4CkafHua3pGiBNf1ttFk6idhfruoOWlPJLtqqBBhweR730JOf4GCFoh8HNXc3TmMMvh3uwZ9IGpMhHHpcMgnEj1Jl769v2J_dp4vH_GGOwXUtuo-1GpGuUMe3gBzZPErwzVJyZh9N-sH4YkBK9QQiLMPJiScMDsEEwLWSlHKqXCVVV3iREVmWI10aay42yeMulcyiXcW50PSBVAlTKktaB6iRpIk6RNilEfMY53oAMzj3pAnXUsRgKJUxlS1EKzOGoqQW1woXs7AmRS4sH4LlQ2350G6hs3rI85JX46_O7WptwvKIZSEEmhC96zxqC51X67XS_NtkR__qfYw2zGK_6Cd_bdTIFy_qBNyQnHdQ0-_3eiP9vby7DjrFNvwAlNLYRQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHODCjigU8IETyJKTOEuPAbUq0FZItBI3K14CFW2KmnDnN_g9voRxmoSCAIlz7Ik0Xt5YM_MeQqeW1tKVniCuphFhWnokAlQhgaIK0EFEgTbdyL2-1xmy63v3vujjTstq9zIlmd_UVbObiT5M7Y9PqLHmLqMViAUCU8c1tMMqdWD7uSiXkZ0nDPC5TGX-ZOIrGH1GmN-SojnWtDfRehEk4nC-qltoSSfbaKMUYMDFedxBT2GCWwsU_bhVcXfjaYwhtsMX8CcyjUkPDj0umATikdLp--sbDscP09koe5xgCF3z4QOjRmQ61PEdIEc6iRJ8O5ec2UXDdmtw2SGFegKRjuVlJJCWgMcEwLVWlAqqfa10UwaRFTmOp3waGy42JeImVcyhTS2ENPSBVEtbaUc5e6iWTBO9j7BPIxYwIcwEZgkRKBuupYjBVKpiquqIlm7ksqAWNwoXY16RIuee5-B5bjzP3To6q6Y8z3k1_hrcKNeGF0cs5fDQhNe7yaPW0Xm5XguffzN28K_RJ2i1M-h1efeqf3OI1ux875jyvwaqZbMXfQQhSSaO8y34AV5J2Cg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAdOIAtnT48BWpWlVSVaqbcoXgIVbVI14c5v8Ht8CeNsFARInDN2pLE9b6zxvIfQqSYlt7jNiCVpQEzJbRIAqhBXUAHowAJXqm7kbs_uDM3bkTUqdE6T8rV7WZLMexoUS1OUXsxEeFE1vqlMRL0DcghVM1vLaAWisaa29VD3qjKC7mQCXUqCnpiA1WVZ86cpvgLTZ7b5rUCa4U57E60XCSP28hXeQksy2kYbpRgDLs7mDnr2ItxaoOvHrYrHG8chhjwPX8KfSBySLgQAXLAKhGMhk_fXN-xNHuP5OH2aYkhjM_OBUiZS3er4AVAkmQYR7ufyM7to2G4NrjqkUFIg3NDslLhcY3CxAOiWglJGpSOFbHI30ALDsIVDQ8XLJljYpMI0aFMyxhWVIJVcF9IQxh6qRXEk9xF2aGC6JmNqgKkx5godQlRgwlAqQirqiJZu9HlBM67ULiZ-RZCced4Hz_vK875VR2fVkFnOsfGXcaNcG784bokPl064yauaah2dl-u18Pm3yQ7-ZX2CVvvXbf_-pnd3iNb0bOuol4ANVEvnL_IIspOUHWc78APwrNxk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Experimental+Evaluation+of+the+Best-of-Many+Christofides%E2%80%99+Algorithm+for+the+Traveling+Salesman+Problem&rft.jtitle=Algorithmica&rft.au=Genova%2C+Kyle&rft.au=Williamson%2C+David+P.&rft.date=2017-08-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=78&rft.issue=4&rft.spage=1109&rft.epage=1130&rft_id=info:doi/10.1007%2Fs00453-017-0293-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_017_0293_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon