An Experimental Evaluation of the Best-of-Many Christofides’ Algorithm for the Traveling Salesman Problem
Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant of the well-known Christofides’ algorithm for the TSP, called the Best-of-Many Christofides’ algorithm . The algorithm involves sampling a spanning tree from the solution to the standard LP re...
Saved in:
Published in | Algorithmica Vol. 78; no. 4; pp. 1109 - 1130 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.08.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0178-4617 1432-0541 |
DOI | 10.1007/s00453-017-0293-5 |
Cover
Loading…
Abstract | Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant of the well-known Christofides’ algorithm for the TSP, called the
Best-of-Many Christofides’ algorithm
. The algorithm involves sampling a spanning tree from the solution to the standard LP relaxation of the TSP, subject to the condition that each edge is sampled with probability at most its value in the LP relaxation. One then runs Christofides’ algorithm on the tree by computing a minimum-cost matching on the odd-degree vertices in the tree, and shortcutting a traversal of the resulting Eulerian graph to a tour. In this paper we perform an experimental evaluation of the Best-of-Many Christofides’ algorithm to see if there are empirical reasons to believe its performance is better than that of Christofides’ algorithm. Furthermore, several different sampling schemes have been proposed; we implement several different schemes to determine which ones might be the most promising for obtaining improved performance guarantees over that of Christofides’ algorithm. In our experiments, all of the implemented methods perform significantly better than Christofides’ algorithm; an algorithm that samples from a maximum entropy distribution over spanning trees seems to be particularly good, though there are others that perform almost as well. |
---|---|
AbstractList | Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant of the well-known Christofides’ algorithm for the TSP, called the
Best-of-Many Christofides’ algorithm
. The algorithm involves sampling a spanning tree from the solution to the standard LP relaxation of the TSP, subject to the condition that each edge is sampled with probability at most its value in the LP relaxation. One then runs Christofides’ algorithm on the tree by computing a minimum-cost matching on the odd-degree vertices in the tree, and shortcutting a traversal of the resulting Eulerian graph to a tour. In this paper we perform an experimental evaluation of the Best-of-Many Christofides’ algorithm to see if there are empirical reasons to believe its performance is better than that of Christofides’ algorithm. Furthermore, several different sampling schemes have been proposed; we implement several different schemes to determine which ones might be the most promising for obtaining improved performance guarantees over that of Christofides’ algorithm. In our experiments, all of the implemented methods perform significantly better than Christofides’ algorithm; an algorithm that samples from a maximum entropy distribution over spanning trees seems to be particularly good, though there are others that perform almost as well. Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant of the well-known Christofides’ algorithm for the TSP, called the Best-of-Many Christofides’ algorithm. The algorithm involves sampling a spanning tree from the solution to the standard LP relaxation of the TSP, subject to the condition that each edge is sampled with probability at most its value in the LP relaxation. One then runs Christofides’ algorithm on the tree by computing a minimum-cost matching on the odd-degree vertices in the tree, and shortcutting a traversal of the resulting Eulerian graph to a tour. In this paper we perform an experimental evaluation of the Best-of-Many Christofides’ algorithm to see if there are empirical reasons to believe its performance is better than that of Christofides’ algorithm. Furthermore, several different sampling schemes have been proposed; we implement several different schemes to determine which ones might be the most promising for obtaining improved performance guarantees over that of Christofides’ algorithm. In our experiments, all of the implemented methods perform significantly better than Christofides’ algorithm; an algorithm that samples from a maximum entropy distribution over spanning trees seems to be particularly good, though there are others that perform almost as well. |
Author | Genova, Kyle Williamson, David P. |
Author_xml | – sequence: 1 givenname: Kyle surname: Genova fullname: Genova, Kyle organization: Department of Computer Science, Princeton University – sequence: 2 givenname: David P. orcidid: 0000-0002-2884-0058 surname: Williamson fullname: Williamson, David P. email: dpw@cs.cornell.edu organization: School of Operations Research and Information Engineering, Cornell University |
BookMark | eNp9kMtOwzAQRS0EEqXwAewssTaM4zyXpSoPCQQSZW05yaQNpHax3Yru-A1-jy_BJSwQEqxmMffMHZ0DsquNRkKOOZxygOzMAcSJYMAzBlEhWLJDBjwWEYMk5rtkEBY5i1Oe7ZMD554AeJQV6YA8jzSdvC7RtgvUXnV0slbdSvnWaGoa6udIz9F5Zhp2q_SGjue2dd40bY3u4-2djrqZsa2fL2hj7Fd8atUau1bP6IPq0C2UpvfWlB0uDsleozqHR99zSB4vJtPxFbu5u7wej25YJXjqWV7xMsnSlAusAUrADGssqlxxJURaZ9AkPM_rsimgjgUUWJZVFBcRYBXVKGoxJCf93aU1L6vwvXwyK6tDpeRFQPMIRBpSvE9V1jhnsZHLIEHZjeQgt05l71QGdXLrVCaByX4xVeu_ZHmr2u5fMupJF1r0DO2Pn_6EPgHGvY66 |
CitedBy_id | crossref_primary_10_1016_j_disopt_2022_100746 crossref_primary_10_1287_opre_2022_2338 crossref_primary_10_1137_22M1524321 crossref_primary_10_3390_app11010177 crossref_primary_10_3390_sym10120663 crossref_primary_10_1088_1758_5090_ac1846 |
Cites_doi | 10.1007/s00224-012-9439-7 10.1145/2739008 10.1137/15M1010531 10.1007/978-3-662-48350-3_48 10.1007/978-3-642-36694-9_31 10.1007/s00493-014-2960-3 10.1145/2818310 10.1016/0167-6377(91)90016-I 10.1109/FOCS.2011.80 10.1145/2487788.2488173 10.1007/978-3-319-33461-5_11 10.1007/BFb0014497 10.1023/A:1009739202898 10.1287/opre.18.6.1138 10.1007/978-1-4612-1098-6 10.1007/0-306-48213-4_9 10.1137/1.9781611973075.32 10.1002/net.3230120103 10.1007/BF01902503 10.1109/FOCS.2016.21 10.1137/14096712X 10.1287/opre.21.2.498 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2017 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Springer Science+Business Media New York 2017 – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION |
DOI | 10.1007/s00453-017-0293-5 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1432-0541 |
EndPage | 1130 |
ExternalDocumentID | 10_1007_s00453_017_0293_5 |
GrantInformation_xml | – fundername: Division of Computing and Communication Foundations grantid: 1115256 funderid: http://dx.doi.org/10.13039/100000143 |
GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 203 23M 28- 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDPE ABDZT ABECU ABFSI ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP E.L EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P9O PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UQL UTJUX UZXMN VC2 VFIZW VH1 VXZ W23 W48 WK8 YLTOR Z45 Z7X Z83 Z88 Z8R Z8W Z92 ZMTXR ZY4 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-8c1b576613ed00b0e7ede9c8a1a336d70f5188dbf90d4309ebbc24920ec2de3d3 |
IEDL.DBID | U2A |
ISSN | 0178-4617 |
IngestDate | Fri Jul 25 03:02:54 EDT 2025 Thu Apr 24 23:03:02 EDT 2025 Tue Jul 01 01:06:19 EDT 2025 Fri Feb 21 02:40:20 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | Christofides’ algorithm Traveling salesman problem Approximation algorithms Maximum entropy |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-8c1b576613ed00b0e7ede9c8a1a336d70f5188dbf90d4309ebbc24920ec2de3d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2884-0058 |
PQID | 1918882036 |
PQPubID | 2043795 |
PageCount | 22 |
ParticipantIDs | proquest_journals_1918882036 crossref_primary_10_1007_s00453_017_0293_5 crossref_citationtrail_10_1007_s00453_017_0293_5 springer_journals_10_1007_s00453_017_0293_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-01 |
PublicationDateYYYYMMDD | 2017-08-01 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Algorithmica |
PublicationTitleAbbrev | Algorithmica |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Gottschalk, C., Vygen, J.: Better s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}–t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-tours by Gao trees. In: Loveaux, Q., Skutella, M. (eds.) Integer Programming and Combinatorial Optimization, 18th International Conference, IPCO 2016, Lecture Notes in Computer Science, vol. 9682, pp. 126–137. Springer, Berlin (2016) Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). Accessed 28 Jan 2015 Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 575–584 (2010). See full version at arXiv:0909.4348 Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde 03.12.19 (2003). http://www.math.uwaterloo.ca/tsp/concorde/index.html Schalekamp, F., van Zuylen, A.: Personal Communication (2015) Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variants, pp. 369–443. Kluwer, Dordrecht (2002) Kolmogorov, V., Blossom, V.: A new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1, 43–67 (2009). http://pub.ist.ac.at/~vnk/software.html HoogeveenJAAnalysis of Christofides’ heuristic: some paths are more difficult than cyclesOper. Res. Lett.199110291295112233210.1016/0167-6377(91)90016-I0748.90071 NagamochiHIbarakiTDeterministic O~(mn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(mn)$$\end{document} time edge-splitting in undirected graphsJ. Comb. Optim.19971546160617310.1023/A:10097392028980895.90172 An, H.C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algorithm for the s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} path TSP. J. ACM 62 (2015). Article 34 LinSKernighanBWAn effective heuristic algorithm for the traveling-salesman problemOper. Res.19732149851635974210.1287/opre.21.2.4980256.90038 An, H.C.: Approximation Algorithms for Traveling Salesman Problems Based on Linear Programming Relaxations. Ph.D. thesis, Department of Computer Science, Cornell University (2012) Optimization, G.: Gurobi 5.6.3 (2014). www.gurobi.com Sebő, A., van Zuylen, A.: The salesman’s improved paths: a 3/2+1/34 approximation. In: Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science, pp. 118–127 (2016) FriezeAGalbiatiGMaffioliFOn the worst-case performance of some algorithms for the asymmetric traveling salesman problemNetworks198212233966726210.1002/net.32301201030478.90070 FrankAConnections in Combinatorial Optimization2011OxfordOxford University Press1228.90001 Oveis Gharan, S., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 550–559 (2011) LovászLOn some connectivity properties of Eulerian graphsActa Math. Acad. Sci. Hung.19762812913843739110.1007/BF019025030337.05124 Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer, Berlin (1996) GaoZOn the metric s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}–t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} path traveling salesman problemSIAM J. Discret. Math.20152911331149336998910.1137/14096712X1331.68293 Oveis Gharan, S.: Personal Communication (2014) HeldMKarpRMThe traveling-salesman problem and minimum spanning treesOper. Res.1971181138116227871010.1287/opre.18.6.11380226.90047 SchrijverACombinatorial Optimization: Polyhedra and Efficiency2003BerlinSpringer1041.90001 Kunegis, J.: KONECT—the Koblenz network collection. In: Proceedings of the International Web Observatory Workshop, pp. 1343–1350 (2013) VygenJReassembling trees for the traveling salesmanSIAM J. Discret. Math.201630875894349395410.1137/15M10105311345.90079 Christofides, N.: Worst Case Analysis of a New Heuristic for the Traveling Salesman Problem. Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA (1976) Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991) MuchaM13/9-approximation for graphic TSPTheory Comput. Syst.201455640657325949610.1007/s00224-012-9439-71319.68255 SebőAVygenJShorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphsCombinatorica201434597629328591010.1007/s00493-014-2960-31340.90201 Asadpour, A., Goemans, M.X., Madry, A., Oveis Gharan, S., Saberi, A.: An O(logn/loglogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n/\log \log n)$$\end{document}-approximation algorithm for the asymmetric traveling salesman problem. In: Proceedings of the 21st Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 379–389 (2010) Mömke, T., Svensson, O.: Removing and adding edges for the traveling salesman problem. J. ACM 63 (2016). Article 2 Genova, K., Williamson, D.P.: An experimental evaluation of the best-of-many Christofides’ algorithm for the traveling salesman problem. In: Bansal, N., Finocchi, I. (eds.) Algorithms-ESA 2015—Proceedings, Lecture Notes in Computer Science, vol. 9294, pp. 570–581. Springer, Berlin (2015) PreparataFPShamosMIComputational Geometry: An Introduction1985New YorkSpringer10.1007/978-1-4612-1098-60575.68059 Walter, M., Wegmann, N.: Computational study of graphic TSP approximation algorithms (2014). Poster presented at IPCO 2014 Oveis Gharan, S.: New Rounding Techniques for the Design and Analysis of Approximation Algorithms. Ph.D. thesis, Department of Management Science and Engineering, Stanford University (2013) Sebő, A.: Eight-fifth approximation for the path TSP. In: Goemans, M.X., Correa, J.R. (eds.) Integer Programming and Combinatorial Optimization—16th International Conference (IPCO 2013), Lecture Notes in Computer Science, vol. 7801, pp. 362–374. Springer, Berlin (2013) Rohe, A.: Instances found at http://www.math.uwaterloo.ca/tsp/vlsi/index.html (2002). Accessed 16 Dec 2014 293_CR30 293_CR6 293_CR4 L Lovász (293_CR19) 1976; 28 293_CR5 293_CR2 293_CR3 A Sebő (293_CR34) 2014; 34 A Frieze (293_CR8) 1982; 12 A Schrijver (293_CR31) 2003 293_CR29 Z Gao (293_CR9) 2015; 29 M Mucha (293_CR21) 2014; 55 293_CR28 293_CR1 293_CR26 293_CR25 JA Hoogeveen (293_CR14) 1991; 10 293_CR24 293_CR23 M Held (293_CR13) 1971; 18 293_CR20 A Frank (293_CR7) 2011 J Vygen (293_CR36) 2016; 30 293_CR17 H Nagamochi (293_CR22) 1997; 1 293_CR16 293_CR15 FP Preparata (293_CR27) 1985 293_CR37 293_CR35 293_CR12 293_CR11 293_CR33 293_CR10 293_CR32 S Lin (293_CR18) 1973; 21 |
References_xml | – reference: LinSKernighanBWAn effective heuristic algorithm for the traveling-salesman problemOper. Res.19732149851635974210.1287/opre.21.2.4980256.90038 – reference: Rohe, A.: Instances found at http://www.math.uwaterloo.ca/tsp/vlsi/index.html (2002). Accessed 16 Dec 2014 – reference: Shewchuk, J.R.: Triangle: Engineering a 2D quality mesh generator and Delaunay triangulator. In: Lin, M.C., Manocha, D. (eds.) Applied Computational Geometry: Towards Geometric Engineering, Lecture Notes in Computer Science, vol. 1148, pp. 203–222. Springer, Berlin (1996) – reference: MuchaM13/9-approximation for graphic TSPTheory Comput. Syst.201455640657325949610.1007/s00224-012-9439-71319.68255 – reference: An, H.C.: Approximation Algorithms for Traveling Salesman Problems Based on Linear Programming Relaxations. Ph.D. thesis, Department of Computer Science, Cornell University (2012) – reference: NagamochiHIbarakiTDeterministic O~(mn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tilde{O}(mn)$$\end{document} time edge-splitting in undirected graphsJ. Comb. Optim.19971546160617310.1023/A:10097392028980895.90172 – reference: Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3, 376–384 (1991) – reference: Gottschalk, C., Vygen, J.: Better s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}–t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document}-tours by Gao trees. In: Loveaux, Q., Skutella, M. (eds.) Integer Programming and Combinatorial Optimization, 18th International Conference, IPCO 2016, Lecture Notes in Computer Science, vol. 9682, pp. 126–137. Springer, Berlin (2016) – reference: Oveis Gharan, S.: New Rounding Techniques for the Design and Analysis of Approximation Algorithms. Ph.D. thesis, Department of Management Science and Engineering, Stanford University (2013) – reference: Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A. (eds.) The Traveling Salesman Problem and its Variants, pp. 369–443. Kluwer, Dordrecht (2002) – reference: Mömke, T., Svensson, O.: Removing and adding edges for the traveling salesman problem. J. ACM 63 (2016). Article 2 – reference: SchrijverACombinatorial Optimization: Polyhedra and Efficiency2003BerlinSpringer1041.90001 – reference: GaoZOn the metric s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}–t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} path traveling salesman problemSIAM J. Discret. Math.20152911331149336998910.1137/14096712X1331.68293 – reference: Kolmogorov, V., Blossom, V.: A new implementation of a minimum cost perfect matching algorithm. Math. Program. Comput. 1, 43–67 (2009). http://pub.ist.ac.at/~vnk/software.html – reference: VygenJReassembling trees for the traveling salesmanSIAM J. Discret. Math.201630875894349395410.1137/15M10105311345.90079 – reference: FrankAConnections in Combinatorial Optimization2011OxfordOxford University Press1228.90001 – reference: Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde 03.12.19 (2003). http://www.math.uwaterloo.ca/tsp/concorde/index.html – reference: HoogeveenJAAnalysis of Christofides’ heuristic: some paths are more difficult than cyclesOper. Res. Lett.199110291295112233210.1016/0167-6377(91)90016-I0748.90071 – reference: HeldMKarpRMThe traveling-salesman problem and minimum spanning treesOper. Res.1971181138116227871010.1287/opre.18.6.11380226.90047 – reference: Walter, M., Wegmann, N.: Computational study of graphic TSP approximation algorithms (2014). Poster presented at IPCO 2014 – reference: FriezeAGalbiatiGMaffioliFOn the worst-case performance of some algorithms for the asymmetric traveling salesman problemNetworks198212233966726210.1002/net.32301201030478.90070 – reference: LovászLOn some connectivity properties of Eulerian graphsActa Math. Acad. Sci. Hung.19762812913843739110.1007/BF019025030337.05124 – reference: Sebő, A.: Eight-fifth approximation for the path TSP. In: Goemans, M.X., Correa, J.R. (eds.) Integer Programming and Combinatorial Optimization—16th International Conference (IPCO 2013), Lecture Notes in Computer Science, vol. 7801, pp. 362–374. Springer, Berlin (2013) – reference: Christofides, N.: Worst Case Analysis of a New Heuristic for the Traveling Salesman Problem. Report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA (1976) – reference: Asadpour, A., Goemans, M.X., Madry, A., Oveis Gharan, S., Saberi, A.: An O(logn/loglogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(\log n/\log \log n)$$\end{document}-approximation algorithm for the asymmetric traveling salesman problem. In: Proceedings of the 21st Annual ACM–SIAM Symposium on Discrete Algorithms, pp. 379–389 (2010) – reference: Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pp. 575–584 (2010). See full version at arXiv:0909.4348 – reference: Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). Accessed 28 Jan 2015 – reference: SebőAVygenJShorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphsCombinatorica201434597629328591010.1007/s00493-014-2960-31340.90201 – reference: Kunegis, J.: KONECT—the Koblenz network collection. In: Proceedings of the International Web Observatory Workshop, pp. 1343–1350 (2013) – reference: Optimization, G.: Gurobi 5.6.3 (2014). www.gurobi.com – reference: An, H.C., Kleinberg, R., Shmoys, D.B.: Improving Christofides’ algorithm for the s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s$$\end{document}-t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} path TSP. J. ACM 62 (2015). Article 34 – reference: Sebő, A., van Zuylen, A.: The salesman’s improved paths: a 3/2+1/34 approximation. In: Proceedings of the 57th Annual IEEE Symposium on Foundations of Computer Science, pp. 118–127 (2016) – reference: Genova, K., Williamson, D.P.: An experimental evaluation of the best-of-many Christofides’ algorithm for the traveling salesman problem. In: Bansal, N., Finocchi, I. (eds.) Algorithms-ESA 2015—Proceedings, Lecture Notes in Computer Science, vol. 9294, pp. 570–581. Springer, Berlin (2015) – reference: Schalekamp, F., van Zuylen, A.: Personal Communication (2015) – reference: Oveis Gharan, S., Saberi, A., Singh, M.: A randomized rounding approach to the traveling salesman problem. In: Proceedings of the 52nd Annual IEEE Symposium on Foundations of Computer Science, pp. 550–559 (2011) – reference: Oveis Gharan, S.: Personal Communication (2014) – reference: PreparataFPShamosMIComputational Geometry: An Introduction1985New YorkSpringer10.1007/978-1-4612-1098-60575.68059 – ident: 293_CR25 – ident: 293_CR23 – volume: 55 start-page: 640 year: 2014 ident: 293_CR21 publication-title: Theory Comput. Syst. doi: 10.1007/s00224-012-9439-7 – volume-title: Connections in Combinatorial Optimization year: 2011 ident: 293_CR7 – ident: 293_CR20 doi: 10.1145/2739008 – volume: 30 start-page: 875 year: 2016 ident: 293_CR36 publication-title: SIAM J. Discret. Math. doi: 10.1137/15M1010531 – ident: 293_CR10 doi: 10.1007/978-3-662-48350-3_48 – ident: 293_CR32 doi: 10.1007/978-3-642-36694-9_31 – ident: 293_CR29 – ident: 293_CR3 – volume: 34 start-page: 597 year: 2014 ident: 293_CR34 publication-title: Combinatorica doi: 10.1007/s00493-014-2960-3 – ident: 293_CR1 – ident: 293_CR12 – ident: 293_CR2 doi: 10.1145/2818310 – ident: 293_CR5 – volume: 10 start-page: 291 year: 1991 ident: 293_CR14 publication-title: Oper. Res. Lett. doi: 10.1016/0167-6377(91)90016-I – ident: 293_CR26 doi: 10.1109/FOCS.2011.80 – ident: 293_CR17 doi: 10.1145/2487788.2488173 – ident: 293_CR16 – volume-title: Combinatorial Optimization: Polyhedra and Efficiency year: 2003 ident: 293_CR31 – ident: 293_CR37 – ident: 293_CR24 – ident: 293_CR11 doi: 10.1007/978-3-319-33461-5_11 – ident: 293_CR35 doi: 10.1007/BFb0014497 – volume: 1 start-page: 5 year: 1997 ident: 293_CR22 publication-title: J. Comb. Optim. doi: 10.1023/A:1009739202898 – volume: 18 start-page: 1138 year: 1971 ident: 293_CR13 publication-title: Oper. Res. doi: 10.1287/opre.18.6.1138 – volume-title: Computational Geometry: An Introduction year: 1985 ident: 293_CR27 doi: 10.1007/978-1-4612-1098-6 – ident: 293_CR15 doi: 10.1007/0-306-48213-4_9 – ident: 293_CR28 – ident: 293_CR4 doi: 10.1137/1.9781611973075.32 – ident: 293_CR6 – volume: 12 start-page: 23 year: 1982 ident: 293_CR8 publication-title: Networks doi: 10.1002/net.3230120103 – volume: 28 start-page: 129 year: 1976 ident: 293_CR19 publication-title: Acta Math. Acad. Sci. Hung. doi: 10.1007/BF01902503 – ident: 293_CR33 doi: 10.1109/FOCS.2016.21 – ident: 293_CR30 – volume: 29 start-page: 1133 year: 2015 ident: 293_CR9 publication-title: SIAM J. Discret. Math. doi: 10.1137/14096712X – volume: 21 start-page: 498 year: 1973 ident: 293_CR18 publication-title: Oper. Res. doi: 10.1287/opre.21.2.498 |
SSID | ssj0012796 |
Score | 2.2624893 |
Snippet | Recent papers on approximation algorithms for the traveling salesman problem (TSP) have given a new variant of the well-known Christofides’ algorithm for the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1109 |
SubjectTerms | Algorithm Analysis and Problem Complexity Algorithms Approximation Computer Science Computer Systems Organization and Communication Networks Computing costs Cost engineering Data Structures and Information Theory Graph theory Mathematics of Computing Maximum entropy Sampling Theory of Computation Traveling salesman problem |
Title | An Experimental Evaluation of the Best-of-Many Christofides’ Algorithm for the Traveling Salesman Problem |
URI | https://link.springer.com/article/10.1007/s00453-017-0293-5 https://www.proquest.com/docview/1918882036 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LSsNAFB203bjxLVZrmYUrZWCSTB5dppJalBbBFuoqZB5RsU2kiXt_w9_zS7yTJrGKCq6ymEfgzuPcy517DkKnhlLCFg4ntqIRYUo4JAJUIZ6kEtCBR57S1cjDkTOYsKupPS3ruLPqtXuVkixu6rrYTXsf-u2PS6iezV5HTVuH7rCJJ6Zfpw5MtxDl0rLzhAE-V6nMn6b4CkafHua3pGiBNf1ttFk6idhfruoOWlPJLtqqBBhweR730JOf4GCFoh8HNXc3TmMMvh3uwZ9IGpMhHHpcMgnEj1Jl769v2J_dp4vH_GGOwXUtuo-1GpGuUMe3gBzZPErwzVJyZh9N-sH4YkBK9QQiLMPJiScMDsEEwLWSlHKqXCVVV3iREVmWI10aay42yeMulcyiXcW50PSBVAlTKktaB6iRpIk6RNilEfMY53oAMzj3pAnXUsRgKJUxlS1EKzOGoqQW1woXs7AmRS4sH4LlQ2350G6hs3rI85JX46_O7WptwvKIZSEEmhC96zxqC51X67XS_NtkR__qfYw2zGK_6Cd_bdTIFy_qBNyQnHdQ0-_3eiP9vby7DjrFNvwAlNLYRQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgHODCjigU8IETyJKTOEuPAbUq0FZItBI3K14CFW2KmnDnN_g9voRxmoSCAIlz7Ik0Xt5YM_MeQqeW1tKVniCuphFhWnokAlQhgaIK0EFEgTbdyL2-1xmy63v3vujjTstq9zIlmd_UVbObiT5M7Y9PqLHmLqMViAUCU8c1tMMqdWD7uSiXkZ0nDPC5TGX-ZOIrGH1GmN-SojnWtDfRehEk4nC-qltoSSfbaKMUYMDFedxBT2GCWwsU_bhVcXfjaYwhtsMX8CcyjUkPDj0umATikdLp--sbDscP09koe5xgCF3z4QOjRmQ61PEdIEc6iRJ8O5ec2UXDdmtw2SGFegKRjuVlJJCWgMcEwLVWlAqqfa10UwaRFTmOp3waGy42JeImVcyhTS2ENPSBVEtbaUc5e6iWTBO9j7BPIxYwIcwEZgkRKBuupYjBVKpiquqIlm7ksqAWNwoXY16RIuee5-B5bjzP3To6q6Y8z3k1_hrcKNeGF0cs5fDQhNe7yaPW0Xm5XguffzN28K_RJ2i1M-h1efeqf3OI1ux875jyvwaqZbMXfQQhSSaO8y34AV5J2Cg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELWgSIgLO6JQwAdOIAtnT48BWpWlVSVaqbcoXgIVbVI14c5v8Ht8CeNsFARInDN2pLE9b6zxvIfQqSYlt7jNiCVpQEzJbRIAqhBXUAHowAJXqm7kbs_uDM3bkTUqdE6T8rV7WZLMexoUS1OUXsxEeFE1vqlMRL0DcghVM1vLaAWisaa29VD3qjKC7mQCXUqCnpiA1WVZ86cpvgLTZ7b5rUCa4U57E60XCSP28hXeQksy2kYbpRgDLs7mDnr2ItxaoOvHrYrHG8chhjwPX8KfSBySLgQAXLAKhGMhk_fXN-xNHuP5OH2aYkhjM_OBUiZS3er4AVAkmQYR7ufyM7to2G4NrjqkUFIg3NDslLhcY3CxAOiWglJGpSOFbHI30ALDsIVDQ8XLJljYpMI0aFMyxhWVIJVcF9IQxh6qRXEk9xF2aGC6JmNqgKkx5godQlRgwlAqQirqiJZu9HlBM67ULiZ-RZCced4Hz_vK875VR2fVkFnOsfGXcaNcG784bokPl064yauaah2dl-u18Pm3yQ7-ZX2CVvvXbf_-pnd3iNb0bOuol4ANVEvnL_IIspOUHWc78APwrNxk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Experimental+Evaluation+of+the+Best-of-Many+Christofides%E2%80%99+Algorithm+for+the+Traveling+Salesman+Problem&rft.jtitle=Algorithmica&rft.au=Genova%2C+Kyle&rft.au=Williamson%2C+David+P.&rft.date=2017-08-01&rft.issn=0178-4617&rft.eissn=1432-0541&rft.volume=78&rft.issue=4&rft.spage=1109&rft.epage=1130&rft_id=info:doi/10.1007%2Fs00453-017-0293-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00453_017_0293_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0178-4617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0178-4617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0178-4617&client=summon |