Multi-target prediction: a unifying view on problems and methods
Many problem settings in machine learning are concerned with the simultaneous prediction of multiple target variables of diverse type. Amongst others, such problem settings arise in multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, netwo...
Saved in:
Published in | Data mining and knowledge discovery Vol. 33; no. 2; pp. 293 - 324 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.03.2019
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1384-5810 1573-756X |
DOI | 10.1007/s10618-018-0595-5 |
Cover
Loading…
Abstract | Many problem settings in machine learning are concerned with the simultaneous prediction of multiple target variables of diverse type. Amongst others, such problem settings arise in multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. These subfields of machine learning are typically studied in isolation, without highlighting or exploring important relationships. In this paper, we present a unifying view on what we call multi-target prediction (MTP) problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research. |
---|---|
AbstractList | Many problem settings in machine learning are concerned with the simultaneous prediction of multiple target variables of diverse type. Amongst others, such problem settings arise in multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. These subfields of machine learning are typically studied in isolation, without highlighting or exploring important relationships. In this paper, we present a unifying view on what we call multi-target prediction (MTP) problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research. |
Author | Waegeman, Willem Dembczyński, Krzysztof Hüllermeier, Eyke |
Author_xml | – sequence: 1 givenname: Willem orcidid: 0000-0002-5950-3003 surname: Waegeman fullname: Waegeman, Willem email: willem.waegeman@ugent.be organization: Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University – sequence: 2 givenname: Krzysztof surname: Dembczyński fullname: Dembczyński, Krzysztof organization: Institute of Computing Science, Poznań University of Technology – sequence: 3 givenname: Eyke surname: Hüllermeier fullname: Hüllermeier, Eyke organization: Department of Computer Science, Paderborn University |
BookMark | eNp9kMtKAzEUhoNUsK0-gLsB19FcJpOJK6V4g4obBXchk0lqSpupSUbp25thBEHQxeEcOP93Lv8MTHznDQCnGJ1jhPhFxKjCNURDMMEgOwBTzDiFnFWvk1zTuoSsxugIzGJcI4QYoWgKrh77TXIwqbAyqdgF0zqdXOcvC1X03tm986viw5nPovO53TUbs42F8m2xNemta-MxOLRqE83Jd56Dl9ub58U9XD7dPSyul1BTXCVYN2VJWtGUQmiuucEY08aiSolGGy1aVBNiGqwtYW1VUi6q0hpdGtNaUgsr6BycjXPzEe-9iUmuuz74vFISTDgTiHOaVXxU6dDFGIyV2iU1PJSCchuJkRzskqNdEg2R7ZIsk_gXuQtuq8L-X4aMTMxavzLh56a_oS8EEX63 |
CitedBy_id | crossref_primary_10_1007_s10489_023_04841_9 crossref_primary_10_1109_ACCESS_2019_2927429 crossref_primary_10_1007_s10994_021_06104_5 crossref_primary_10_1007_s11768_021_00061_z crossref_primary_10_1109_TPAMI_2021_3051276 crossref_primary_10_1016_j_automatica_2024_111662 crossref_primary_10_3390_electronics9091492 crossref_primary_10_1007_s10994_021_06127_y crossref_primary_10_1016_j_eswa_2022_119050 crossref_primary_10_1002_adfm_202102606 crossref_primary_10_1016_j_aeue_2024_155453 crossref_primary_10_1016_j_patcog_2021_108211 crossref_primary_10_1186_s12859_024_05684_y crossref_primary_10_1007_s10994_022_06162_3 crossref_primary_10_1016_j_patcog_2021_108393 crossref_primary_10_1088_2632_2153_ac1ee9 crossref_primary_10_1186_s12916_025_03978_3 crossref_primary_10_1002_app_53949 crossref_primary_10_1145_3708532 crossref_primary_10_1016_j_foodres_2023_113105 crossref_primary_10_1016_j_compbiomed_2021_105001 crossref_primary_10_1007_s10494_022_00391_1 crossref_primary_10_1016_j_softx_2023_101516 crossref_primary_10_1038_s42256_023_00785_4 crossref_primary_10_1016_j_isatra_2020_07_002 crossref_primary_10_1016_j_patcog_2020_107507 crossref_primary_10_1007_s13755_023_00254_7 crossref_primary_10_3390_e21090855 crossref_primary_10_1186_s12859_019_3104_y crossref_primary_10_1145_3523055 crossref_primary_10_1021_acsomega_0c00857 crossref_primary_10_1016_j_neucom_2020_05_024 crossref_primary_10_7554_eLife_93242 crossref_primary_10_1109_MIS_2023_3255591 crossref_primary_10_1109_ACCESS_2020_3026758 crossref_primary_10_1093_bioinformatics_btab576 crossref_primary_10_3390_agriculture14081230 crossref_primary_10_7554_eLife_93242_4 crossref_primary_10_1016_j_cor_2022_106122 crossref_primary_10_1063_1_5142636 crossref_primary_10_3389_frai_2021_689398 crossref_primary_10_1016_j_neucom_2023_126873 crossref_primary_10_1186_s12859_020_3379_z crossref_primary_10_1016_j_asoc_2024_111957 crossref_primary_10_3390_math12020346 |
Cites_doi | 10.1016/j.neucom.2013.02.024 10.1016/0047-259X(75)90042-1 10.1007/s10994-016-5552-1 10.1016/S0377-0427(00)00393-9 10.4018/jdwm.2007070101 10.5194/gmd-11-4139-2018 10.1561/2200000036 10.1016/j.neuroimage.2011.09.069 10.1093/bioinformatics/btk048 10.1109/TITS.2012.2217377 10.1016/j.ijar.2011.01.007 10.1109/TCBB.2014.2338308 10.1109/TPAMI.2015.2491929 10.1016/j.neucom.2015.07.118 10.1016/j.artint.2008.08.002 10.1093/nar/gkw1069 10.1007/s10994-009-5127-5 10.1093/bioinformatics/bts360 10.1093/bioinformatics/btv256 10.1007/s10994-016-5546-z 10.1016/S0893-6080(05)80023-1 10.1093/bioinformatics/bti1016 10.1007/s10994-012-5282-y 10.1109/TPAMI.2015.2487986 10.1162/NECO_a_00320 10.1007/s10208-009-9045-5 10.1007/s10994-013-5354-7 10.1007/s10115-011-0407-3 10.1038/nbt.3343 10.1109/TFUZZ.2012.2194151 10.1007/s10994-008-5077-3 10.1111/1467-9868.00054 10.1093/bioinformatics/btn409 10.1038/nmeth.2259 10.1007/s10994-012-5285-8 10.1016/j.ejor.2010.03.018 10.2307/3314667 10.1007/s11222-008-9111-x 10.1186/1471-2105-11-367 10.1023/A:1007379606734 10.1109/ICDM.2009.66 10.1007/978-3-319-46227-1_32 10.1109/CVPRW.2009.5206594 10.1145/2063576.2063734 10.1109/TPAMI.2018.2857768 10.1007/978-3-642-15939-8_9 10.1145/2339530.2339672 10.1007/978-3-662-44851-9_33 10.1145/2783258.2783302 10.1109/ICDM.2010.116 10.1145/1014052.1014067 10.1145/1553374.1553452 10.1109/CVPR.2015.7298911 10.1137/1.9781611972825.35 10.1145/2039320.2039330 10.1145/2020408.2020549 10.1145/2487575.2487644 10.1109/ICDM.2009.16 10.1007/978-3-540-30115-8_31 10.1527/tjsai.27.103 10.1137/1.9781611972795.94 10.1007/3-540-36755-1_37 10.1109/CVPR.2011.5995353 10.1109/CVPRW.2014.131 10.1145/1553374.1553392 10.1145/3178876.3185998 10.1109/CVPR.2016.15 10.1007/978-3-319-31753-3_27 10.1007/978-3-319-10584-0_26 10.1145/2488608.2488693 10.1109/CVPR.2014.222 10.1145/1454008.1454049 10.1145/2339530.2339702 10.1007/978-3-319-10590-1_4 10.1007/978-3-642-38610-7_46 10.1109/CVPR.2014.81 10.1109/ICDM.2010.148 10.1609/aaai.v30i1.10241 10.1609/aaai.v32i1.11996 10.1109/CVPR.2011.5995627 10.1145/1015330.1015394 10.1007/978-3-319-23525-7_14 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved. |
Copyright_xml | – notice: The Author(s) 2018 – notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved. |
DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U |
DOI | 10.1007/s10618-018-0595-5 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Global (Alumni Edition) Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) ProQuest Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic |
DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
DatabaseTitleList | ABI/INFORM Global (Corporate) |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics Computer Science |
EISSN | 1573-756X |
EndPage | 324 |
ExternalDocumentID | 10_1007_s10618_018_0595_5 |
GroupedDBID | -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR -Y2 1SB 2P1 2VQ AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABQSL ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHSBF AHWEU AIXLP AJBLW AMVHM ATHPR AYFIA CAG CITATION COF H13 N2Q O9- OVD PHGZM PHGZT RNI RZC RZE RZK S1Z TEORI 3V. 7SC 7XB 8AL 8FD 8FK ABRTQ JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQGLB PQUKI Q9U |
ID | FETCH-LOGICAL-c316t-8b442d9b499c7c7e1113bf06a9bcec9d0822eb1cf25d6437964fec4eedf289f93 |
IEDL.DBID | U2A |
ISSN | 1384-5810 |
IngestDate | Sat Aug 16 06:20:34 EDT 2025 Tue Jul 01 00:40:31 EDT 2025 Thu Apr 24 23:06:22 EDT 2025 Fri Feb 21 02:33:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Zero-shot learning Collaborative filtering Multi-label classification Multivariate regression Pairwise learning Dyadic prediction Multi-task learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-8b442d9b499c7c7e1113bf06a9bcec9d0822eb1cf25d6437964fec4eedf289f93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5950-3003 |
PQID | 2127590773 |
PQPubID | 43030 |
PageCount | 32 |
ParticipantIDs | proquest_journals_2127590773 crossref_citationtrail_10_1007_s10618_018_0595_5 crossref_primary_10_1007_s10618_018_0595_5 springer_journals_10_1007_s10618_018_0595_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-03-01 |
PublicationDateYYYYMMDD | 2019-03-01 |
PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationTitle | Data mining and knowledge discovery |
PublicationTitleAbbrev | Data Min Knowl Disc |
PublicationYear | 2019 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Jacob, Vert (CR55) 2008; 24 Álvarez, Rosasco, Lawrence (CR7) 2012; 4 CR37 CR36 CR35 Loza Mencía, Janssen (CR72) 2016; 105 CR33 CR32 CR30 Hastie, Tibshirani, Friedman (CR50) 2007 Bielza, Li, Larraòaga (CR18) 2011; 52 CR49 CR48 Aho, Ženko, Džeroski, Elomaa (CR4) 2012; 13 CR47 CR46 CR45 CR44 Breiman, Friedman (CR20) 1997; 69 Evgeniou (CR34) 2005; 6 CR43 CR40 Van Peer, Paepe, Stock, Anckaert, Volders, Vandesompele, Baets, Waegeman (CR117) 2017; 45 Fu, Hospedales, Xiang, Gong (CR38) 2013; 36 Godbole, Sarawagi (CR41) 2004; 2004 Akata, Perronnin, Harchaoui, Schmid (CR6) 2016; 38 Stock, Fober, Hüllermeier, Glinca, Klebe, Pahikkala, Airola, De Baets, Waegeman (CR108) 2014; 11 CR140 Obozinski, Taskar, Jordan (CR79) 2010; 20 CR59 CR58 Bakker, Heskes (CR9) 2003; 4 CR57 CR56 CR137 CR138 Pelossof, Singh, Yang, Weirauch, Hughes, Leslie (CR91) 2015; 33 CR135 CR52 CR136 CR51 CR133 Cheng, Hüllermeier (CR25) 2009; 76 CR132 Dinuzzo (CR31) 2013; 118 Papagiannopoulou, Miralles, Demuzere, Verhoest, Waegeman (CR87) 2018; 11 CR139 Wolpert (CR127) 1992; 5 Pahikkala, Waegeman, Tsivtsivadze, Salakoski, De Baets (CR82) 2010; 206 Van der Merwe, Zidek (CR115) 1980; 8 CR68 Rousu, Saunders, Szedmak, Shawe-Taylor (CR100) 2006; 7 Waegeman, Pahikkala, Airola, Salakoski, Stock, De Baets (CR121) 2012; 20 Dembczyński, Waegeman, Cheng, Hüllermeier (CR27) 2012; 88 CR67 CR66 CR65 CR64 Barutcuoglu, Schapire, Troyanskaya (CR12) 2006; 22 CR63 Mazumder, Hastie, Tibshirani (CR73) 2010; 11 CR61 CR60 Van Loan (CR116) 2000; 123 Read (CR97) 2013; 99 Zhang, Shen (CR134) 2012; 59 Izenman (CR54) 1975; 5 CR78 CR77 CR76 CR113 CR74 CR112 Wei, Xia, Lin, Huang, Ni, Dong, Zhao, Yan (CR124) 2016; 38 CR70 Park, Marcotte (CR90) 2012; 9 CR110 CR2 Vens, Struyf, Schietgat, Dzeroski, Blockeel (CR118) 2008; 73 CR3 CR5 Caruana (CR23) 1997; 28 CR130 Vert, Qiu, Noble (CR119) 2007; 8 Waegeman, Dembczynski, Jachnik, Cheng, Hüllermeier (CR122) 2014; 15 CR89 Liu, Sun, Guan, Zheng, Zhou (CR71) 2015; 31 CR88 CR126 Ando, Zhang (CR8) 2005; 6 CR86 CR85 CR125 Gönen (CR42) 2012; 28 CR84 CR123 CR120 CR81 CR80 CR128 CR129 Menon, Elkan (CR75) 2011; 6912 Candes, Recht (CR21) 2008; 9 Tsoumakas, Katakis (CR114) 2007; 3 CR19 Abernethy, Bach, Evgeniou, Vert (CR1) 2008; 10 CR17 CR15 Baldassarre, Rosasco, Barla, Verri (CR11) 2012; 87 CR13 CR99 CR10 CR98 CR96 Ben-Hur, Noble (CR14) 2005; 21 Rangwala, Naik (CR94) 2017 CR95 Hüllermeier, Fürnkranz, Cheng, Brinker (CR53) 2008; 172 CR93 Xue, Liao, Carin, Krishnapuram (CR131) 2007; 8 CR92 Tai, Lin (CR111) 2012; 24 Silla, Aa (CR104) 2010; 22 Pahikkala, Airola, Stock, Baets, Waegeman (CR83) 2013; 93 CR29 CR28 Liu, Johnson (CR69) 2009; 12 CR26 Spyromitros-Xioufis, Tsoumakas, Groves, Vlahavas (CR107) 2016; 104 Caponnetto, Micchelli, Pontil, Ying (CR22) 2008; 9 CR24 CR105 CR102 Bi, Kwok (CR16) 2012; 25 Kong, Yu (CR62) 2012; 31 CR103 CR101 Gaujoux, Seoighe (CR39) 2010; 11 Spolaôr, Monard, Tsoumakas, Lee (CR106) 2016; 180 CR109 C Bielza (595_CR18) 2011; 52 G Obozinski (595_CR79) 2010; 20 595_CR47 595_CR48 595_CR49 595_CR56 Y Xue (595_CR131) 2007; 8 595_CR57 595_CR51 595_CR52 595_CR140 Z Barutcuoglu (595_CR12) 2006; 22 A Caponnetto (595_CR22) 2008; 9 C Papagiannopoulou (595_CR87) 2018; 11 E Loza Mencía (595_CR72) 2016; 105 A Ben-Hur (595_CR14) 2005; 21 DH Wolpert (595_CR127) 1992; 5 T Evgeniou (595_CR34) 2005; 6 595_CR36 595_CR37 T Pahikkala (595_CR83) 2013; 93 595_CR43 595_CR139 595_CR44 595_CR45 595_CR137 595_CR46 595_CR138 595_CR40 T Hastie (595_CR50) 2007 595_CR132 595_CR130 595_CR135 595_CR136 595_CR133 Y Wei (595_CR124) 2016; 38 M Gönen (595_CR42) 2012; 28 A Merwe Van der (595_CR115) 1980; 8 B Bakker (595_CR9) 2003; 4 E Spyromitros-Xioufis (595_CR107) 2016; 104 595_CR76 595_CR128 595_CR77 595_CR129 595_CR78 595_CR126 595_CR74 595_CR120 R Mazumder (595_CR73) 2010; 11 595_CR70 Y Fu (595_CR38) 2013; 36 L Breiman (595_CR20) 1997; 69 595_CR125 595_CR123 A Izenman (595_CR54) 1975; 5 W Cheng (595_CR25) 2009; 76 J Rousu (595_CR100) 2006; 7 S Godbole (595_CR41) 2004; 2004 595_CR58 R Pelossof (595_CR91) 2015; 33 595_CR59 L Baldassarre (595_CR11) 2012; 87 595_CR2 595_CR65 595_CR66 595_CR67 595_CR3 595_CR68 595_CR61 595_CR63 595_CR64 Z Akata (595_CR6) 2016; 38 595_CR110 595_CR60 595_CR113 595_CR5 595_CR112 W Waegeman (595_CR121) 2012; 20 E Candes (595_CR21) 2008; 9 W Liu (595_CR69) 2009; 12 T Pahikkala (595_CR82) 2010; 206 RK Ando (595_CR8) 2005; 6 595_CR10 595_CR98 595_CR99 D Zhang (595_CR134) 2012; 59 595_CR13 595_CR105 595_CR95 C Vens (595_CR118) 2008; 73 595_CR96 595_CR109 T Aho (595_CR4) 2012; 13 595_CR92 Y Park (595_CR90) 2012; 9 595_CR93 595_CR102 595_CR103 595_CR101 L Jacob (595_CR55) 2008; 24 R Caruana (595_CR23) 1997; 28 A Menon (595_CR75) 2011; 6912 K Dembczyński (595_CR27) 2012; 88 F Dinuzzo (595_CR31) 2013; 118 E Hüllermeier (595_CR53) 2008; 172 595_CR88 F Tai (595_CR111) 2012; 24 X Kong (595_CR62) 2012; 31 595_CR89 595_CR84 595_CR85 G Peer Van (595_CR117) 2017; 45 595_CR86 595_CR80 595_CR81 JP Vert (595_CR119) 2007; 8 J Abernethy (595_CR1) 2008; 10 R Gaujoux (595_CR39) 2010; 11 595_CR29 595_CR26 595_CR28 595_CR32 595_CR33 595_CR35 595_CR30 H Rangwala (595_CR94) 2017 W Waegeman (595_CR122) 2014; 15 J Read (595_CR97) 2013; 99 G Tsoumakas (595_CR114) 2007; 3 595_CR19 CN Silla (595_CR104) 2010; 22 H Liu (595_CR71) 2015; 31 595_CR15 595_CR17 N Spolaôr (595_CR106) 2016; 180 M Stock (595_CR108) 2014; 11 CF Loan Van (595_CR116) 2000; 123 595_CR24 W Bi (595_CR16) 2012; 25 M Álvarez (595_CR7) 2012; 4 |
References_xml | – ident: CR45 – ident: CR68 – ident: CR74 – volume: 6912 start-page: 437 year: 2011 end-page: 452 ident: CR75 article-title: Link prediction via matrix factorization publication-title: Mach Learn Knowl Discov Databases – ident: CR51 – volume: 2004 start-page: 22 year: 2004 end-page: 30 ident: CR41 article-title: Discriminative methods for multi-labeled classification publication-title: PAKDD – volume: 12 start-page: 98 issue: 1 year: 2009 end-page: 107 ident: CR69 article-title: Clustering and its application in multi-target prediction publication-title: Curr Opin Drug Discov Develop – volume: 8 start-page: 1 issue: S–10 year: 2007 end-page: 10 ident: CR119 article-title: A new pairwise kernel for biological network inference with support vector machines publication-title: BMC Bioinform – ident: CR138 – ident: CR135 – ident: CR80 – ident: CR77 – ident: CR129 – ident: CR101 – volume: 10 start-page: 803 year: 2008 end-page: 826 ident: CR1 article-title: A new approach to collaborative filtering: operator estimation with spectral regularization publication-title: J Mach Learn Res – ident: CR19 – volume: 118 start-page: 119 year: 2013 end-page: 126 ident: CR31 article-title: Learning output kernels for multi-task problems publication-title: Neurocomput doi: 10.1016/j.neucom.2013.02.024 – ident: CR92 – volume: 25 start-page: 153 year: 2012 end-page: 161 ident: CR16 article-title: Mandatory leaf node prediction in hierarchical multilabel classification publication-title: Adv Neural Inf Process Syst – ident: CR88 – ident: CR132 – volume: 5 start-page: 248 year: 1975 end-page: 262 ident: CR54 article-title: Reduced-rank regression for the multivariate linear model publication-title: J Multivar Anal doi: 10.1016/0047-259X(75)90042-1 – volume: 105 start-page: 77 issue: 1 year: 2016 end-page: 126 ident: CR72 article-title: Learning rules for multi-label classification: a stacking and a separate-and-conquer approach publication-title: Mach Learn doi: 10.1007/s10994-016-5552-1 – volume: 123 start-page: 85 issue: 1–2 year: 2000 end-page: 100 ident: CR116 article-title: The ubiquitous kronecker product publication-title: J Comput Appl Math doi: 10.1016/S0377-0427(00)00393-9 – volume: 4 start-page: 83 year: 2003 end-page: 99 ident: CR9 article-title: Task clustering and gating for Bayesian multitask learning publication-title: J Mach Learn Res – ident: CR57 – ident: CR60 – ident: CR112 – ident: CR36 – ident: CR85 – ident: CR5 – volume: 3 start-page: 1 issue: 3 year: 2007 end-page: 13 ident: CR114 article-title: Multi label classification: an overview publication-title: Int J Data Warehous Min doi: 10.4018/jdwm.2007070101 – volume: 11 start-page: 4139 year: 2018 end-page: 4153 ident: CR87 article-title: Global hydro-climatic biomes identified via multi-task learning publication-title: Geosci Model Dev doi: 10.5194/gmd-11-4139-2018 – ident: CR109 – ident: CR126 – volume: 4 start-page: 195 issue: 3 year: 2012 end-page: 266 ident: CR7 article-title: Kernels for vector-valued functions: a review publication-title: Found Trends Mach Learn doi: 10.1561/2200000036 – volume: 22 start-page: 31 issue: 1–2 year: 2010 end-page: 72 ident: CR104 article-title: A survey of hierarchical classification across different application domains publication-title: Data Min Knowl Discov – volume: 6 start-page: 615 year: 2005 end-page: 637 ident: CR34 article-title: Learning multiple tasks with kernel methods publication-title: J Mach Learn Res – ident: CR66 – ident: CR47 – volume: 59 start-page: 895 issue: 2 year: 2012 end-page: 907 ident: CR134 article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.069 – volume: 22 start-page: 830 issue: 7 year: 2006 end-page: 836 ident: CR12 article-title: Hierarchical multi-label prediction of gene function publication-title: Bioinformatics doi: 10.1093/bioinformatics/btk048 – volume: 36 start-page: 303 issue: 2 year: 2013 end-page: 316 ident: CR38 article-title: Learning multimodal latent attributes publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TITS.2012.2217377 – ident: CR89 – volume: 52 start-page: 705 issue: 6 year: 2011 end-page: 727 ident: CR18 article-title: Multi-dimensional classification with bayesian networks publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2011.01.007 – ident: CR30 – volume: 13 start-page: 2367 issue: 1 year: 2012 end-page: 2407 ident: CR4 article-title: Multi-target regression with rule ensembles publication-title: J Mach Learn Res – ident: CR10 – ident: CR33 – ident: CR137 – volume: 11 start-page: 1157 issue: 6 year: 2014 end-page: 1169 ident: CR108 article-title: Identification of functionally related enzymes by learning-to-rank methods publication-title: IEEE Trans Comput Biol Bioinform doi: 10.1109/TCBB.2014.2338308 – ident: CR86 – ident: CR63 – volume: 38 start-page: 1901 issue: 9 year: 2016 end-page: 1907 ident: CR124 article-title: Hcp: a flexible cnn framework for multi-label image classification publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2491929 – volume: 180 start-page: 3 issue: C year: 2016 end-page: 15 ident: CR106 article-title: A systematic review of multi-label feature selection and a new method based on label construction publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.118 – ident: CR123 – volume: 172 start-page: 1897 issue: 16–17 year: 2008 end-page: 1916 ident: CR53 article-title: Label ranking by learning pairwise preferences publication-title: Artif Intell doi: 10.1016/j.artint.2008.08.002 – volume: 45 start-page: e51 year: 2017 ident: CR117 article-title: miSTAR: miRNA target prediction through modeling quantitative and qualitative miRNA binding site information in a stacked model structure publication-title: Nucl Acids Res doi: 10.1093/nar/gkw1069 – ident: CR44 – ident: CR103 – volume: 9 start-page: 1615 year: 2008 end-page: 1646 ident: CR22 article-title: Universal multi-task kernels publication-title: J Mach Learn Res – ident: CR3 – volume: 76 start-page: 211 issue: 2–3 year: 2009 end-page: 225 ident: CR25 article-title: Combining instance-based learning and logistic regression for multilabel classification publication-title: Mach Learn doi: 10.1007/s10994-009-5127-5 – ident: CR52 – ident: CR139 – ident: CR13 – volume: 28 start-page: 2304 issue: 18 year: 2012 end-page: 10 ident: CR42 article-title: Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts360 – volume: 31 start-page: i221 issue: 12 year: 2015 end-page: i229 ident: CR71 article-title: Improving compound-protein interaction prediction by building up highly credible negative samples publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv256 – volume: 99 start-page: 1 year: 2013 ident: CR97 article-title: Multi-dimensional classification with super-classes publication-title: IEEE Trans Knowl Data Eng – volume: 104 start-page: 55 issue: 1 year: 2016 end-page: 98 ident: CR107 article-title: Multi-target regression via input space expansion: treating targets as inputs publication-title: Mach Learn doi: 10.1007/s10994-016-5546-z – volume: 5 start-page: 241 issue: 2 year: 1992 end-page: 259 ident: CR127 article-title: Original contribution: stacked generalization publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80023-1 – volume: 11 start-page: 2287 year: 2010 end-page: 2322 ident: CR73 article-title: Spectral regularization algorithms for learning large incomplete matrices publication-title: J Mach Learn Res – volume: 15 start-page: 3333 year: 2014 end-page: 3388 ident: CR122 article-title: On the bayes-optimality of f-measure maximizers publication-title: J Mach Learn Res – volume: 21 start-page: 38 issue: Suppl 1 year: 2005 end-page: 46 ident: CR14 article-title: Kernel methods for predicting protein–protein interactions publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1016 – ident: CR120 – ident: CR24 – ident: CR128 – ident: CR70 – ident: CR125 – ident: CR102 – volume: 87 start-page: 259 issue: 3 year: 2012 end-page: 301 ident: CR11 article-title: Multi-output learning via spectral filtering publication-title: Mach Learn doi: 10.1007/s10994-012-5282-y – ident: CR49 – ident: CR93 – volume: 38 start-page: 1425 issue: 7 year: 2016 end-page: 1438 ident: CR6 article-title: Label-embedding for image classification publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2487986 – volume: 24 start-page: 2508 issue: 9 year: 2012 end-page: 2542 ident: CR111 article-title: Multilabel classification with principal label space transformation publication-title: Neural Comput doi: 10.1162/NECO_a_00320 – ident: CR35 – volume: 9 start-page: 717 year: 2008 end-page: 772 ident: CR21 article-title: Exact low-rank matrix completion via convex optimization publication-title: Found Comput Math doi: 10.1007/s10208-009-9045-5 – ident: CR29 – ident: CR61 – volume: 93 start-page: 321 issue: 2–3 year: 2013 end-page: 356 ident: CR83 article-title: Efficient regularized least-squares algorithms for conditional ranking on relational data publication-title: Mach Learn doi: 10.1007/s10994-013-5354-7 – ident: CR58 – ident: CR84 – volume: 31 start-page: 281 issue: 2 year: 2012 end-page: 305 ident: CR62 article-title: gMLC: a multi-label feature selection framework for graph classification publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0407-3 – ident: CR140 – ident: CR46 – ident: CR96 – ident: CR67 – year: 2007 ident: CR50 publication-title: Elements of statistical learning: data mining, inference, and prediction – volume: 33 start-page: 1242 issue: 12 year: 2015 end-page: 1249 ident: CR91 article-title: Affinity regression predicts the recognition code of nucleic acid-binding proteins publication-title: Nat Biotechnol doi: 10.1038/nbt.3343 – ident: CR15 – ident: CR136 – volume: 20 start-page: 1090 issue: 6 year: 2012 end-page: 1101 ident: CR121 article-title: A kernel-based framework for learning graded relations from data publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2012.2194151 – ident: CR32 – volume: 6 start-page: 1817 year: 2005 end-page: 1853 ident: CR8 article-title: A framework for learning predictive structures from multiple tasks and unlabeled data publication-title: J Mach Learn Res – ident: CR78 – ident: CR81 – ident: CR64 – ident: CR105 – ident: CR26 – ident: CR99 – volume: 73 start-page: 185 issue: 2 year: 2008 end-page: 214 ident: CR118 article-title: Decision trees for hierarchical multi-label classification publication-title: Mach Learn doi: 10.1007/s10994-008-5077-3 – ident: CR95 – ident: CR43 – volume: 69 start-page: 3 year: 1997 end-page: 54 ident: CR20 article-title: Predicting multivariate responses in multiple linear regression publication-title: J R Stat Soc B doi: 10.1111/1467-9868.00054 – ident: CR2 – ident: CR37 – volume: 24 start-page: 2149 issue: 19 year: 2008 end-page: 2156 ident: CR55 article-title: Protein-ligand interaction prediction: an improved chemogenomics approach publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn409 – ident: CR133 – ident: CR113 – volume: 9 start-page: 1134 issue: 12 year: 2012 end-page: 1136 ident: CR90 article-title: Flaws in evaluation schemes for pair-input computational predictions publication-title: Nat Methods doi: 10.1038/nmeth.2259 – year: 2017 ident: CR94 publication-title: Large scale hierarchical classification: foundations, algorithms and applications – ident: CR56 – volume: 88 start-page: 5 year: 2012 end-page: 45 ident: CR27 article-title: On label dependence and loss minimization in multi-label classification publication-title: Mach Learn doi: 10.1007/s10994-012-5285-8 – ident: CR40 – ident: CR98 – volume: 206 start-page: 676 issue: 3 year: 2010 end-page: 685 ident: CR82 article-title: Learning intransitive reciprocal relations with kernel methods publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2010.03.018 – volume: 8 start-page: 27 year: 1980 end-page: 39 ident: CR115 article-title: Multivariate regression analysis and canonical variates publication-title: Can J Stat doi: 10.2307/3314667 – ident: CR48 – ident: CR65 – volume: 8 start-page: 35 year: 2007 end-page: 63 ident: CR131 article-title: Multi-task learning for classification with Dirichlet process priors publication-title: J Mach Learn Res – volume: 7 start-page: 1601 year: 2006 end-page: 1626 ident: CR100 article-title: Kernel-based learning of hierarchical multilabel classification models publication-title: J Mach Learn Res – ident: CR130 – ident: CR17 – volume: 20 start-page: 231 issue: 2 year: 2010 end-page: 252 ident: CR79 article-title: Joint covariate selection and joint subspace selection for multiple classification problems publication-title: Stat Comput doi: 10.1007/s11222-008-9111-x – ident: CR110 – volume: 11 start-page: 367 year: 2010 ident: CR39 article-title: A flexible R package for nonnegative matrix factorization publication-title: BMC Bioinform doi: 10.1186/1471-2105-11-367 – ident: CR59 – ident: CR76 – volume: 28 start-page: 41 year: 1997 end-page: 75 ident: CR23 article-title: Multitask learning: a knowledge-based source of inductive bias publication-title: Mach Learn doi: 10.1023/A:1007379606734 – ident: CR28 – volume: 11 start-page: 2287 year: 2010 ident: 595_CR73 publication-title: J Mach Learn Res – volume: 8 start-page: 35 year: 2007 ident: 595_CR131 publication-title: J Mach Learn Res – ident: 595_CR58 – volume: 206 start-page: 676 issue: 3 year: 2010 ident: 595_CR82 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2010.03.018 – ident: 595_CR109 – ident: 595_CR123 doi: 10.1109/ICDM.2009.66 – volume: 15 start-page: 3333 year: 2014 ident: 595_CR122 publication-title: J Mach Learn Res – ident: 595_CR29 doi: 10.1007/978-3-319-46227-1_32 – volume: 21 start-page: 38 issue: Suppl 1 year: 2005 ident: 595_CR14 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1016 – ident: 595_CR64 – ident: 595_CR65 doi: 10.1109/CVPRW.2009.5206594 – volume: 73 start-page: 185 issue: 2 year: 2008 ident: 595_CR118 publication-title: Mach Learn doi: 10.1007/s10994-008-5077-3 – ident: 595_CR49 – volume: 24 start-page: 2149 issue: 19 year: 2008 ident: 595_CR55 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn409 – volume: 20 start-page: 231 issue: 2 year: 2010 ident: 595_CR79 publication-title: Stat Comput doi: 10.1007/s11222-008-9111-x – ident: 595_CR133 – ident: 595_CR47 doi: 10.1145/2063576.2063734 – ident: 595_CR130 doi: 10.1109/TPAMI.2018.2857768 – volume: 59 start-page: 895 issue: 2 year: 2012 ident: 595_CR134 publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.069 – volume: 28 start-page: 41 year: 1997 ident: 595_CR23 publication-title: Mach Learn doi: 10.1023/A:1007379606734 – ident: 595_CR95 doi: 10.1007/978-3-642-15939-8_9 – volume: 99 start-page: 1 year: 2013 ident: 595_CR97 publication-title: IEEE Trans Knowl Data Eng – volume: 9 start-page: 1134 issue: 12 year: 2012 ident: 595_CR90 publication-title: Nat Methods doi: 10.1038/nmeth.2259 – ident: 595_CR93 – ident: 595_CR76 – volume: 9 start-page: 717 year: 2008 ident: 595_CR21 publication-title: Found Comput Math doi: 10.1007/s10208-009-9045-5 – ident: 595_CR17 – ident: 595_CR43 doi: 10.1145/2339530.2339672 – ident: 595_CR84 doi: 10.1007/978-3-662-44851-9_33 – ident: 595_CR86 doi: 10.1145/2783258.2783302 – ident: 595_CR136 – volume: 2004 start-page: 22 year: 2004 ident: 595_CR41 publication-title: PAKDD – volume: 4 start-page: 83 year: 2003 ident: 595_CR9 publication-title: J Mach Learn Res – volume: 88 start-page: 5 year: 2012 ident: 595_CR27 publication-title: Mach Learn doi: 10.1007/s10994-012-5285-8 – ident: 595_CR10 – ident: 595_CR37 – ident: 595_CR103 doi: 10.1109/ICDM.2010.116 – ident: 595_CR85 – volume: 11 start-page: 1157 issue: 6 year: 2014 ident: 595_CR108 publication-title: IEEE Trans Comput Biol Bioinform doi: 10.1109/TCBB.2014.2338308 – volume: 6 start-page: 615 year: 2005 ident: 595_CR34 publication-title: J Mach Learn Res – ident: 595_CR66 – volume: 123 start-page: 85 issue: 1–2 year: 2000 ident: 595_CR116 publication-title: J Comput Appl Math doi: 10.1016/S0377-0427(00)00393-9 – volume: 38 start-page: 1425 issue: 7 year: 2016 ident: 595_CR6 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2487986 – ident: 595_CR35 doi: 10.1145/1014052.1014067 – ident: 595_CR67 doi: 10.1145/1553374.1553452 – ident: 595_CR5 doi: 10.1109/CVPR.2015.7298911 – ident: 595_CR139 doi: 10.1137/1.9781611972825.35 – volume: 105 start-page: 77 issue: 1 year: 2016 ident: 595_CR72 publication-title: Mach Learn doi: 10.1007/s10994-016-5552-1 – ident: 595_CR36 doi: 10.1145/2039320.2039330 – ident: 595_CR52 – ident: 595_CR137 doi: 10.1145/2020408.2020549 – volume: 11 start-page: 4139 year: 2018 ident: 595_CR87 publication-title: Geosci Model Dev doi: 10.5194/gmd-11-4139-2018 – ident: 595_CR45 doi: 10.1145/2487575.2487644 – ident: 595_CR3 doi: 10.1109/ICDM.2009.16 – volume: 76 start-page: 211 issue: 2–3 year: 2009 ident: 595_CR25 publication-title: Mach Learn doi: 10.1007/s10994-009-5127-5 – volume: 33 start-page: 1242 issue: 12 year: 2015 ident: 595_CR91 publication-title: Nat Biotechnol doi: 10.1038/nbt.3343 – ident: 595_CR63 – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 595_CR127 publication-title: Neural Netw doi: 10.1016/S0893-6080(05)80023-1 – ident: 595_CR88 – ident: 595_CR26 – ident: 595_CR81 doi: 10.1007/978-3-540-30115-8_31 – volume: 7 start-page: 1601 year: 2006 ident: 595_CR100 publication-title: J Mach Learn Res – ident: 595_CR120 – volume: 10 start-page: 803 year: 2008 ident: 595_CR1 publication-title: J Mach Learn Res – ident: 595_CR46 – volume-title: Large scale hierarchical classification: foundations, algorithms and applications year: 2017 ident: 595_CR94 – ident: 595_CR99 – volume: 24 start-page: 2508 issue: 9 year: 2012 ident: 595_CR111 publication-title: Neural Comput doi: 10.1162/NECO_a_00320 – ident: 595_CR51 doi: 10.1527/tjsai.27.103 – ident: 595_CR61 doi: 10.1137/1.9781611972795.94 – volume: 93 start-page: 321 issue: 2–3 year: 2013 ident: 595_CR83 publication-title: Mach Learn doi: 10.1007/s10994-013-5354-7 – ident: 595_CR32 – ident: 595_CR15 – ident: 595_CR60 – volume: 31 start-page: 281 issue: 2 year: 2012 ident: 595_CR62 publication-title: Knowl Inf Syst doi: 10.1007/s10115-011-0407-3 – ident: 595_CR105 – ident: 595_CR113 doi: 10.1007/3-540-36755-1_37 – ident: 595_CR68 – volume: 38 start-page: 1901 issue: 9 year: 2016 ident: 595_CR124 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2015.2491929 – ident: 595_CR140 – ident: 595_CR77 – ident: 595_CR70 doi: 10.1109/CVPR.2011.5995353 – ident: 595_CR96 doi: 10.1109/CVPRW.2014.131 – volume: 9 start-page: 1615 year: 2008 ident: 595_CR22 publication-title: J Mach Learn Res – ident: 595_CR24 doi: 10.1145/1553374.1553392 – ident: 595_CR59 – ident: 595_CR92 doi: 10.1145/3178876.3185998 – volume: 69 start-page: 3 year: 1997 ident: 595_CR20 publication-title: J R Stat Soc B doi: 10.1111/1467-9868.00054 – ident: 595_CR129 doi: 10.1109/CVPR.2016.15 – ident: 595_CR125 – ident: 595_CR126 doi: 10.1007/978-3-319-31753-3_27 – volume: 5 start-page: 248 year: 1975 ident: 595_CR54 publication-title: J Multivar Anal doi: 10.1016/0047-259X(75)90042-1 – volume: 11 start-page: 367 year: 2010 ident: 595_CR39 publication-title: BMC Bioinform doi: 10.1186/1471-2105-11-367 – volume: 172 start-page: 1897 issue: 16–17 year: 2008 ident: 595_CR53 publication-title: Artif Intell doi: 10.1016/j.artint.2008.08.002 – ident: 595_CR48 – ident: 595_CR2 – volume: 45 start-page: e51 year: 2017 ident: 595_CR117 publication-title: Nucl Acids Res doi: 10.1093/nar/gkw1069 – ident: 595_CR132 – volume-title: Elements of statistical learning: data mining, inference, and prediction year: 2007 ident: 595_CR50 – ident: 595_CR56 – volume: 6912 start-page: 437 year: 2011 ident: 595_CR75 publication-title: Mach Learn Knowl Discov Databases – ident: 595_CR44 doi: 10.1007/978-3-319-10584-0_26 – volume: 6 start-page: 1817 year: 2005 ident: 595_CR8 publication-title: J Mach Learn Res – volume: 22 start-page: 830 issue: 7 year: 2006 ident: 595_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btk048 – ident: 595_CR57 doi: 10.1145/2488608.2488693 – ident: 595_CR80 doi: 10.1109/CVPR.2014.222 – volume: 87 start-page: 259 issue: 3 year: 2012 ident: 595_CR11 publication-title: Mach Learn doi: 10.1007/s10994-012-5282-y – ident: 595_CR112 doi: 10.1145/1454008.1454049 – ident: 595_CR138 doi: 10.1145/2339530.2339702 – ident: 595_CR89 – volume: 52 start-page: 705 issue: 6 year: 2011 ident: 595_CR18 publication-title: Int J Approx Reason doi: 10.1016/j.ijar.2011.01.007 – ident: 595_CR30 doi: 10.1007/978-3-319-10590-1_4 – ident: 595_CR135 – volume: 22 start-page: 31 issue: 1–2 year: 2010 ident: 595_CR104 publication-title: Data Min Knowl Discov – ident: 595_CR28 doi: 10.1007/978-3-642-38610-7_46 – ident: 595_CR33 – volume: 28 start-page: 2304 issue: 18 year: 2012 ident: 595_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts360 – volume: 8 start-page: 1 issue: S–10 year: 2007 ident: 595_CR119 publication-title: BMC Bioinform – ident: 595_CR40 doi: 10.1109/CVPR.2014.81 – ident: 595_CR74 doi: 10.1109/ICDM.2010.148 – ident: 595_CR78 doi: 10.1609/aaai.v30i1.10241 – ident: 595_CR128 doi: 10.1609/aaai.v32i1.11996 – ident: 595_CR102 – ident: 595_CR110 – volume: 8 start-page: 27 year: 1980 ident: 595_CR115 publication-title: Can J Stat doi: 10.2307/3314667 – volume: 36 start-page: 303 issue: 2 year: 2013 ident: 595_CR38 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TITS.2012.2217377 – ident: 595_CR98 doi: 10.1109/CVPR.2011.5995627 – volume: 3 start-page: 1 issue: 3 year: 2007 ident: 595_CR114 publication-title: Int J Data Warehous Min doi: 10.4018/jdwm.2007070101 – volume: 13 start-page: 2367 issue: 1 year: 2012 ident: 595_CR4 publication-title: J Mach Learn Res – volume: 20 start-page: 1090 issue: 6 year: 2012 ident: 595_CR121 publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2012.2194151 – volume: 25 start-page: 153 year: 2012 ident: 595_CR16 publication-title: Adv Neural Inf Process Syst – ident: 595_CR13 doi: 10.1145/1015330.1015394 – ident: 595_CR101 doi: 10.1007/978-3-319-23525-7_14 – volume: 104 start-page: 55 issue: 1 year: 2016 ident: 595_CR107 publication-title: Mach Learn doi: 10.1007/s10994-016-5546-z – volume: 4 start-page: 195 issue: 3 year: 2012 ident: 595_CR7 publication-title: Found Trends Mach Learn doi: 10.1561/2200000036 – volume: 118 start-page: 119 year: 2013 ident: 595_CR31 publication-title: Neurocomput doi: 10.1016/j.neucom.2013.02.024 – volume: 31 start-page: i221 issue: 12 year: 2015 ident: 595_CR71 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv256 – volume: 180 start-page: 3 issue: C year: 2016 ident: 595_CR106 publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.07.118 – volume: 12 start-page: 98 issue: 1 year: 2009 ident: 595_CR69 publication-title: Curr Opin Drug Discov Develop – ident: 595_CR19 |
SSID | ssj0005230 |
Score | 2.5248346 |
Snippet | Many problem settings in machine learning are concerned with the simultaneous prediction of multiple target variables of diverse type. Amongst others, such... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 293 |
SubjectTerms | Academic Surveys and Tutorials Artificial Intelligence Chemistry and Earth Sciences Computer Science Data Mining and Knowledge Discovery Identification methods Information Storage and Retrieval Machine learning Multivariate analysis Physics Regression analysis Statistics for Engineering |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vXjxLVar7MGTspg0u2nWiy9aimARsdBb2FdAkLQ27f93Ntk0KuhhT5ssZCa7M9_O4wO4UMYmEh1liq6roAxNKhWCCaqstTqMQhWUzZ6fx_Fowp6mfOov3AqfVlmfieVBbWba3ZFfl53IEcn1o9v5J3WsUS666ik0NqGN8wmCr_bDYPzy-i3JI6rqhBNGeRKu45pV8VwcukQuHFxwyn9apsbd_BUhLQ3PcBe2vcdI7isV78GGzfdhp2ZjIH5zHsBdWUtLq9RuMl-4CIyT-g2RZJW_l_VMxH0kmeXE88gUROaGVCzSxSFMhoO3xxH1_AhUR2G8pIlirGeEQtCi-7pvHWu8yoJYCqWtFsY1c8ejWGc9blx8TsQss5qhVcwQZmUiOoJWPsvtMRAjgthIzXs2SBAgBtJkiCQkZxalxqXsQFDLJtW-ebjjsPhIm7bHTpxp4AaKM-UduFy_Mq86Z_z3cLcWeOo3UZE2Ku_AVa2EZvrPxU7-X-wUttDrEVUiWRday8XKnqFnsVTn_vf5ApIPyQc priority: 102 providerName: ProQuest |
Title | Multi-target prediction: a unifying view on problems and methods |
URI | https://link.springer.com/article/10.1007/s10618-018-0595-5 https://www.proquest.com/docview/2127590773 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60RfDioypWa8nBkxLYR7LdeLJKHygWEQv1tGSTLAiyLd32_zvZR1tFBQ_LHjabw-Qx8zHffANwGWsTSgyUKYaugjJ0qVQIJmhsjFGu78ZOLvb8NAqGY_Yw4ZOyjjur2O5VSjK_qTeK3QLXEq_w4YJTvg11bqE7buKx193gdfhFaXDIKA_dVSrzpym-OqN1hPktKZr7mv4B7JVBIukWq3oIWyZtwH7VgIGU57EBOzl_U2VHcJsX0tKC101mc5t-sSa_IZIs0_e8mInYLACZpqRsIpMRmWpStJDOjmHc773eD2nZHIEq3w0WNIwZ87SIEbGojuoY2zI-TpxAilgZJbRVcsd7WCUe1zY5JwKWGMXQJSaIsRLhn0AtnabmFIgWTqCl4p5xQkSHjtQJwgjJmUH7cSmb4FRWilSpHG4bWHxEa81ja9jIsQ8aNuJNuFr9MitkM_4a3KpMH5UnKIty5XlE7h2_CdfVcqw__zrZ2b9Gn8MuRkCiIJW1oLaYL80FRhmLuA3bYX_Qhnp38PbYw_ddb_T80s732icMS8tB |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5VMMDCG1GeHmABWeRhpzESAgSUlrZMVOoWHNuRkFBaSBHiT_EbOefRAhJsDJ6SeDif75G7-z6A_VibUGKgTDF0FZShS6VCMEFjY4xyfTd2crDn3l3Q6rPbAR_U4KOahbFtlZVNzA21Hir7j_w4RyLHTK7hn42eqWWNstXVikKjUIuOeX_DlC07bV_h-R54XvP6_rJFS1YBqnw3GNMwZszTIsZQXzVUw1iu9ThxAiliZZTQFgIdDZhKPK5tVUsELDGKoS9JMDlJLPgSmvxZ5vvC3qiwefOlpcQvppJDRnnoTqqoxahe4Nq2MVxccMq_-8FpcPujHpu7ueYSLJTxKbkoFGoZaiZdgcWK-4GUpmAVzvPJXVo0kpPRi6332DM-IZK8po_59BSxIiXDlJSsNRmRqSYFZ3W2Bv1_kds6zKTD1GwA0cIJtFTcM06I6agjdYJ5i-TMoNS4lHVwKtlEqoQqt4wZT9EUZNmKM3LsQnFGvA6Hk09GBU7HXy9vVwKPyiubRVMFq8NRdQjTx79utvn3Znsw17rvdaNu-66zBfMYb4mihW0bZsYvr2YHY5pxvJsrEoGH_9bcT7iUBbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5KC-LFt1itmoNelODuNtluBPHZ0vooRRS8rdkkC4Jsq62If81f52QfrQp66yGn3c1hMpnHzsz3AexE2gQSA2WKoaugDF0qFYIJGhljlFt3IycFe77p-u17dvnAH0rwWczC2LbKwiamhlr3lf1HfpAikWMm16gfxHlbRO-idTx4oZZBylZaCzqNTEWuzMc7pm_Do84FnvWu57Wad-dtmjMMUFV3_RENIsY8LSIM-1VDNYzlXY9ix5ciUkYJbeHQ0Zip2OPaVriEz2KjGPqVGBOV2AIxofmvNDArcspQOWt2e7ffGkzq2YxywCgP3HFNNRvc813bRIaLC075T684CXV_VWdTp9dagLk8WiWnmXotQskkSzBfMEGQ3DAsw0k6x0uztnIyeLXVH3vih0SSt-QpnaUiVsCkn5Ccw2ZIZKJJxmA9XIH7qUhuFcpJPzFrQLRwfC0V94wTYHLqSB1jFiM5Myg1LmUVnEI2ocqByy1_xnM4gVy24gwdu1CcIa_C3viTQYba8d_LtULgYX6Bh-FE3aqwXxzC5PGfm63_v9k2zKDWhted7tUGzGLwJbJ-thqUR69vZhMDnFG0lWsSgcdpK-8XUEcLQg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-target+prediction%3A+a+unifying+view+on+problems+and+methods&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Waegeman%2C+Willem&rft.au=Dembczy%C5%84ski%2C+Krzysztof&rft.au=H%C3%BCllermeier%2C+Eyke&rft.date=2019-03-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=33&rft.issue=2&rft.spage=293&rft.epage=324&rft_id=info:doi/10.1007%2Fs10618-018-0595-5&rft.externalDocID=10_1007_s10618_018_0595_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |