Multi-target prediction: a unifying view on problems and methods

Many problem settings in machine learning are concerned with the simultaneous prediction of multiple target variables of diverse type. Amongst others, such problem settings arise in multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, netwo...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 33; no. 2; pp. 293 - 324
Main Authors Waegeman, Willem, Dembczyński, Krzysztof, Hüllermeier, Eyke
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
DOI10.1007/s10618-018-0595-5

Cover

Loading…
Abstract Many problem settings in machine learning are concerned with the simultaneous prediction of multiple target variables of diverse type. Amongst others, such problem settings arise in multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. These subfields of machine learning are typically studied in isolation, without highlighting or exploring important relationships. In this paper, we present a unifying view on what we call multi-target prediction (MTP) problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research.
AbstractList Many problem settings in machine learning are concerned with the simultaneous prediction of multiple target variables of diverse type. Amongst others, such problem settings arise in multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. These subfields of machine learning are typically studied in isolation, without highlighting or exploring important relationships. In this paper, we present a unifying view on what we call multi-target prediction (MTP) problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research.
Author Waegeman, Willem
Dembczyński, Krzysztof
Hüllermeier, Eyke
Author_xml – sequence: 1
  givenname: Willem
  orcidid: 0000-0002-5950-3003
  surname: Waegeman
  fullname: Waegeman, Willem
  email: willem.waegeman@ugent.be
  organization: Department of Mathematical Modelling, Statistics and Bioinformatics, Ghent University
– sequence: 2
  givenname: Krzysztof
  surname: Dembczyński
  fullname: Dembczyński, Krzysztof
  organization: Institute of Computing Science, Poznań University of Technology
– sequence: 3
  givenname: Eyke
  surname: Hüllermeier
  fullname: Hüllermeier, Eyke
  organization: Department of Computer Science, Paderborn University
BookMark eNp9kMtKAzEUhoNUsK0-gLsB19FcJpOJK6V4g4obBXchk0lqSpupSUbp25thBEHQxeEcOP93Lv8MTHznDQCnGJ1jhPhFxKjCNURDMMEgOwBTzDiFnFWvk1zTuoSsxugIzGJcI4QYoWgKrh77TXIwqbAyqdgF0zqdXOcvC1X03tm986viw5nPovO53TUbs42F8m2xNemta-MxOLRqE83Jd56Dl9ub58U9XD7dPSyul1BTXCVYN2VJWtGUQmiuucEY08aiSolGGy1aVBNiGqwtYW1VUi6q0hpdGtNaUgsr6BycjXPzEe-9iUmuuz74vFISTDgTiHOaVXxU6dDFGIyV2iU1PJSCchuJkRzskqNdEg2R7ZIsk_gXuQtuq8L-X4aMTMxavzLh56a_oS8EEX63
CitedBy_id crossref_primary_10_1007_s10489_023_04841_9
crossref_primary_10_1109_ACCESS_2019_2927429
crossref_primary_10_1007_s10994_021_06104_5
crossref_primary_10_1007_s11768_021_00061_z
crossref_primary_10_1109_TPAMI_2021_3051276
crossref_primary_10_1016_j_automatica_2024_111662
crossref_primary_10_3390_electronics9091492
crossref_primary_10_1007_s10994_021_06127_y
crossref_primary_10_1016_j_eswa_2022_119050
crossref_primary_10_1002_adfm_202102606
crossref_primary_10_1016_j_aeue_2024_155453
crossref_primary_10_1016_j_patcog_2021_108211
crossref_primary_10_1186_s12859_024_05684_y
crossref_primary_10_1007_s10994_022_06162_3
crossref_primary_10_1016_j_patcog_2021_108393
crossref_primary_10_1088_2632_2153_ac1ee9
crossref_primary_10_1186_s12916_025_03978_3
crossref_primary_10_1002_app_53949
crossref_primary_10_1145_3708532
crossref_primary_10_1016_j_foodres_2023_113105
crossref_primary_10_1016_j_compbiomed_2021_105001
crossref_primary_10_1007_s10494_022_00391_1
crossref_primary_10_1016_j_softx_2023_101516
crossref_primary_10_1038_s42256_023_00785_4
crossref_primary_10_1016_j_isatra_2020_07_002
crossref_primary_10_1016_j_patcog_2020_107507
crossref_primary_10_1007_s13755_023_00254_7
crossref_primary_10_3390_e21090855
crossref_primary_10_1186_s12859_019_3104_y
crossref_primary_10_1145_3523055
crossref_primary_10_1021_acsomega_0c00857
crossref_primary_10_1016_j_neucom_2020_05_024
crossref_primary_10_7554_eLife_93242
crossref_primary_10_1109_MIS_2023_3255591
crossref_primary_10_1109_ACCESS_2020_3026758
crossref_primary_10_1093_bioinformatics_btab576
crossref_primary_10_3390_agriculture14081230
crossref_primary_10_7554_eLife_93242_4
crossref_primary_10_1016_j_cor_2022_106122
crossref_primary_10_1063_1_5142636
crossref_primary_10_3389_frai_2021_689398
crossref_primary_10_1016_j_neucom_2023_126873
crossref_primary_10_1186_s12859_020_3379_z
crossref_primary_10_1016_j_asoc_2024_111957
crossref_primary_10_3390_math12020346
Cites_doi 10.1016/j.neucom.2013.02.024
10.1016/0047-259X(75)90042-1
10.1007/s10994-016-5552-1
10.1016/S0377-0427(00)00393-9
10.4018/jdwm.2007070101
10.5194/gmd-11-4139-2018
10.1561/2200000036
10.1016/j.neuroimage.2011.09.069
10.1093/bioinformatics/btk048
10.1109/TITS.2012.2217377
10.1016/j.ijar.2011.01.007
10.1109/TCBB.2014.2338308
10.1109/TPAMI.2015.2491929
10.1016/j.neucom.2015.07.118
10.1016/j.artint.2008.08.002
10.1093/nar/gkw1069
10.1007/s10994-009-5127-5
10.1093/bioinformatics/bts360
10.1093/bioinformatics/btv256
10.1007/s10994-016-5546-z
10.1016/S0893-6080(05)80023-1
10.1093/bioinformatics/bti1016
10.1007/s10994-012-5282-y
10.1109/TPAMI.2015.2487986
10.1162/NECO_a_00320
10.1007/s10208-009-9045-5
10.1007/s10994-013-5354-7
10.1007/s10115-011-0407-3
10.1038/nbt.3343
10.1109/TFUZZ.2012.2194151
10.1007/s10994-008-5077-3
10.1111/1467-9868.00054
10.1093/bioinformatics/btn409
10.1038/nmeth.2259
10.1007/s10994-012-5285-8
10.1016/j.ejor.2010.03.018
10.2307/3314667
10.1007/s11222-008-9111-x
10.1186/1471-2105-11-367
10.1023/A:1007379606734
10.1109/ICDM.2009.66
10.1007/978-3-319-46227-1_32
10.1109/CVPRW.2009.5206594
10.1145/2063576.2063734
10.1109/TPAMI.2018.2857768
10.1007/978-3-642-15939-8_9
10.1145/2339530.2339672
10.1007/978-3-662-44851-9_33
10.1145/2783258.2783302
10.1109/ICDM.2010.116
10.1145/1014052.1014067
10.1145/1553374.1553452
10.1109/CVPR.2015.7298911
10.1137/1.9781611972825.35
10.1145/2039320.2039330
10.1145/2020408.2020549
10.1145/2487575.2487644
10.1109/ICDM.2009.16
10.1007/978-3-540-30115-8_31
10.1527/tjsai.27.103
10.1137/1.9781611972795.94
10.1007/3-540-36755-1_37
10.1109/CVPR.2011.5995353
10.1109/CVPRW.2014.131
10.1145/1553374.1553392
10.1145/3178876.3185998
10.1109/CVPR.2016.15
10.1007/978-3-319-31753-3_27
10.1007/978-3-319-10584-0_26
10.1145/2488608.2488693
10.1109/CVPR.2014.222
10.1145/1454008.1454049
10.1145/2339530.2339702
10.1007/978-3-319-10590-1_4
10.1007/978-3-642-38610-7_46
10.1109/CVPR.2014.81
10.1109/ICDM.2010.148
10.1609/aaai.v30i1.10241
10.1609/aaai.v32i1.11996
10.1109/CVPR.2011.5995627
10.1145/1015330.1015394
10.1007/978-3-319-23525-7_14
ContentType Journal Article
Copyright The Author(s) 2018
Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2018
– notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
DOI 10.1007/s10618-018-0595-5
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Global (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
ProQuest Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 324
ExternalDocumentID 10_1007_s10618_018_0595_5
GroupedDBID -59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
-Y2
1SB
2P1
2VQ
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
CAG
CITATION
COF
H13
N2Q
O9-
OVD
PHGZM
PHGZT
RNI
RZC
RZE
RZK
S1Z
TEORI
3V.
7SC
7XB
8AL
8FD
8FK
ABRTQ
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQGLB
PQUKI
Q9U
ID FETCH-LOGICAL-c316t-8b442d9b499c7c7e1113bf06a9bcec9d0822eb1cf25d6437964fec4eedf289f93
IEDL.DBID U2A
ISSN 1384-5810
IngestDate Sat Aug 16 06:20:34 EDT 2025
Tue Jul 01 00:40:31 EDT 2025
Thu Apr 24 23:06:22 EDT 2025
Fri Feb 21 02:33:29 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Zero-shot learning
Collaborative filtering
Multi-label classification
Multivariate regression
Pairwise learning
Dyadic prediction
Multi-task learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-8b442d9b499c7c7e1113bf06a9bcec9d0822eb1cf25d6437964fec4eedf289f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5950-3003
PQID 2127590773
PQPubID 43030
PageCount 32
ParticipantIDs proquest_journals_2127590773
crossref_citationtrail_10_1007_s10618_018_0595_5
crossref_primary_10_1007_s10618_018_0595_5
springer_journals_10_1007_s10618_018_0595_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Jacob, Vert (CR55) 2008; 24
Álvarez, Rosasco, Lawrence (CR7) 2012; 4
CR37
CR36
CR35
Loza Mencía, Janssen (CR72) 2016; 105
CR33
CR32
CR30
Hastie, Tibshirani, Friedman (CR50) 2007
Bielza, Li, Larraòaga (CR18) 2011; 52
CR49
CR48
Aho, Ženko, Džeroski, Elomaa (CR4) 2012; 13
CR47
CR46
CR45
CR44
Breiman, Friedman (CR20) 1997; 69
Evgeniou (CR34) 2005; 6
CR43
CR40
Van Peer, Paepe, Stock, Anckaert, Volders, Vandesompele, Baets, Waegeman (CR117) 2017; 45
Fu, Hospedales, Xiang, Gong (CR38) 2013; 36
Godbole, Sarawagi (CR41) 2004; 2004
Akata, Perronnin, Harchaoui, Schmid (CR6) 2016; 38
Stock, Fober, Hüllermeier, Glinca, Klebe, Pahikkala, Airola, De Baets, Waegeman (CR108) 2014; 11
CR140
Obozinski, Taskar, Jordan (CR79) 2010; 20
CR59
CR58
Bakker, Heskes (CR9) 2003; 4
CR57
CR56
CR137
CR138
Pelossof, Singh, Yang, Weirauch, Hughes, Leslie (CR91) 2015; 33
CR135
CR52
CR136
CR51
CR133
Cheng, Hüllermeier (CR25) 2009; 76
CR132
Dinuzzo (CR31) 2013; 118
Papagiannopoulou, Miralles, Demuzere, Verhoest, Waegeman (CR87) 2018; 11
CR139
Wolpert (CR127) 1992; 5
Pahikkala, Waegeman, Tsivtsivadze, Salakoski, De Baets (CR82) 2010; 206
Van der Merwe, Zidek (CR115) 1980; 8
CR68
Rousu, Saunders, Szedmak, Shawe-Taylor (CR100) 2006; 7
Waegeman, Pahikkala, Airola, Salakoski, Stock, De Baets (CR121) 2012; 20
Dembczyński, Waegeman, Cheng, Hüllermeier (CR27) 2012; 88
CR67
CR66
CR65
CR64
Barutcuoglu, Schapire, Troyanskaya (CR12) 2006; 22
CR63
Mazumder, Hastie, Tibshirani (CR73) 2010; 11
CR61
CR60
Van Loan (CR116) 2000; 123
Read (CR97) 2013; 99
Zhang, Shen (CR134) 2012; 59
Izenman (CR54) 1975; 5
CR78
CR77
CR76
CR113
CR74
CR112
Wei, Xia, Lin, Huang, Ni, Dong, Zhao, Yan (CR124) 2016; 38
CR70
Park, Marcotte (CR90) 2012; 9
CR110
CR2
Vens, Struyf, Schietgat, Dzeroski, Blockeel (CR118) 2008; 73
CR3
CR5
Caruana (CR23) 1997; 28
CR130
Vert, Qiu, Noble (CR119) 2007; 8
Waegeman, Dembczynski, Jachnik, Cheng, Hüllermeier (CR122) 2014; 15
CR89
Liu, Sun, Guan, Zheng, Zhou (CR71) 2015; 31
CR88
CR126
Ando, Zhang (CR8) 2005; 6
CR86
CR85
CR125
Gönen (CR42) 2012; 28
CR84
CR123
CR120
CR81
CR80
CR128
CR129
Menon, Elkan (CR75) 2011; 6912
Candes, Recht (CR21) 2008; 9
Tsoumakas, Katakis (CR114) 2007; 3
CR19
Abernethy, Bach, Evgeniou, Vert (CR1) 2008; 10
CR17
CR15
Baldassarre, Rosasco, Barla, Verri (CR11) 2012; 87
CR13
CR99
CR10
CR98
CR96
Ben-Hur, Noble (CR14) 2005; 21
Rangwala, Naik (CR94) 2017
CR95
Hüllermeier, Fürnkranz, Cheng, Brinker (CR53) 2008; 172
CR93
Xue, Liao, Carin, Krishnapuram (CR131) 2007; 8
CR92
Tai, Lin (CR111) 2012; 24
Silla, Aa (CR104) 2010; 22
Pahikkala, Airola, Stock, Baets, Waegeman (CR83) 2013; 93
CR29
CR28
Liu, Johnson (CR69) 2009; 12
CR26
Spyromitros-Xioufis, Tsoumakas, Groves, Vlahavas (CR107) 2016; 104
Caponnetto, Micchelli, Pontil, Ying (CR22) 2008; 9
CR24
CR105
CR102
Bi, Kwok (CR16) 2012; 25
Kong, Yu (CR62) 2012; 31
CR103
CR101
Gaujoux, Seoighe (CR39) 2010; 11
Spolaôr, Monard, Tsoumakas, Lee (CR106) 2016; 180
CR109
C Bielza (595_CR18) 2011; 52
G Obozinski (595_CR79) 2010; 20
595_CR47
595_CR48
595_CR49
595_CR56
Y Xue (595_CR131) 2007; 8
595_CR57
595_CR51
595_CR52
595_CR140
Z Barutcuoglu (595_CR12) 2006; 22
A Caponnetto (595_CR22) 2008; 9
C Papagiannopoulou (595_CR87) 2018; 11
E Loza Mencía (595_CR72) 2016; 105
A Ben-Hur (595_CR14) 2005; 21
DH Wolpert (595_CR127) 1992; 5
T Evgeniou (595_CR34) 2005; 6
595_CR36
595_CR37
T Pahikkala (595_CR83) 2013; 93
595_CR43
595_CR139
595_CR44
595_CR45
595_CR137
595_CR46
595_CR138
595_CR40
T Hastie (595_CR50) 2007
595_CR132
595_CR130
595_CR135
595_CR136
595_CR133
Y Wei (595_CR124) 2016; 38
M Gönen (595_CR42) 2012; 28
A Merwe Van der (595_CR115) 1980; 8
B Bakker (595_CR9) 2003; 4
E Spyromitros-Xioufis (595_CR107) 2016; 104
595_CR76
595_CR128
595_CR77
595_CR129
595_CR78
595_CR126
595_CR74
595_CR120
R Mazumder (595_CR73) 2010; 11
595_CR70
Y Fu (595_CR38) 2013; 36
L Breiman (595_CR20) 1997; 69
595_CR125
595_CR123
A Izenman (595_CR54) 1975; 5
W Cheng (595_CR25) 2009; 76
J Rousu (595_CR100) 2006; 7
S Godbole (595_CR41) 2004; 2004
595_CR58
R Pelossof (595_CR91) 2015; 33
595_CR59
L Baldassarre (595_CR11) 2012; 87
595_CR2
595_CR65
595_CR66
595_CR67
595_CR3
595_CR68
595_CR61
595_CR63
595_CR64
Z Akata (595_CR6) 2016; 38
595_CR110
595_CR60
595_CR113
595_CR5
595_CR112
W Waegeman (595_CR121) 2012; 20
E Candes (595_CR21) 2008; 9
W Liu (595_CR69) 2009; 12
T Pahikkala (595_CR82) 2010; 206
RK Ando (595_CR8) 2005; 6
595_CR10
595_CR98
595_CR99
D Zhang (595_CR134) 2012; 59
595_CR13
595_CR105
595_CR95
C Vens (595_CR118) 2008; 73
595_CR96
595_CR109
T Aho (595_CR4) 2012; 13
595_CR92
Y Park (595_CR90) 2012; 9
595_CR93
595_CR102
595_CR103
595_CR101
L Jacob (595_CR55) 2008; 24
R Caruana (595_CR23) 1997; 28
A Menon (595_CR75) 2011; 6912
K Dembczyński (595_CR27) 2012; 88
F Dinuzzo (595_CR31) 2013; 118
E Hüllermeier (595_CR53) 2008; 172
595_CR88
F Tai (595_CR111) 2012; 24
X Kong (595_CR62) 2012; 31
595_CR89
595_CR84
595_CR85
G Peer Van (595_CR117) 2017; 45
595_CR86
595_CR80
595_CR81
JP Vert (595_CR119) 2007; 8
J Abernethy (595_CR1) 2008; 10
R Gaujoux (595_CR39) 2010; 11
595_CR29
595_CR26
595_CR28
595_CR32
595_CR33
595_CR35
595_CR30
H Rangwala (595_CR94) 2017
W Waegeman (595_CR122) 2014; 15
J Read (595_CR97) 2013; 99
G Tsoumakas (595_CR114) 2007; 3
595_CR19
CN Silla (595_CR104) 2010; 22
H Liu (595_CR71) 2015; 31
595_CR15
595_CR17
N Spolaôr (595_CR106) 2016; 180
M Stock (595_CR108) 2014; 11
CF Loan Van (595_CR116) 2000; 123
595_CR24
W Bi (595_CR16) 2012; 25
M Álvarez (595_CR7) 2012; 4
References_xml – ident: CR45
– ident: CR68
– ident: CR74
– volume: 6912
  start-page: 437
  year: 2011
  end-page: 452
  ident: CR75
  article-title: Link prediction via matrix factorization
  publication-title: Mach Learn Knowl Discov Databases
– ident: CR51
– volume: 2004
  start-page: 22
  year: 2004
  end-page: 30
  ident: CR41
  article-title: Discriminative methods for multi-labeled classification
  publication-title: PAKDD
– volume: 12
  start-page: 98
  issue: 1
  year: 2009
  end-page: 107
  ident: CR69
  article-title: Clustering and its application in multi-target prediction
  publication-title: Curr Opin Drug Discov Develop
– volume: 8
  start-page: 1
  issue: S–10
  year: 2007
  end-page: 10
  ident: CR119
  article-title: A new pairwise kernel for biological network inference with support vector machines
  publication-title: BMC Bioinform
– ident: CR138
– ident: CR135
– ident: CR80
– ident: CR77
– ident: CR129
– ident: CR101
– volume: 10
  start-page: 803
  year: 2008
  end-page: 826
  ident: CR1
  article-title: A new approach to collaborative filtering: operator estimation with spectral regularization
  publication-title: J Mach Learn Res
– ident: CR19
– volume: 118
  start-page: 119
  year: 2013
  end-page: 126
  ident: CR31
  article-title: Learning output kernels for multi-task problems
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2013.02.024
– ident: CR92
– volume: 25
  start-page: 153
  year: 2012
  end-page: 161
  ident: CR16
  article-title: Mandatory leaf node prediction in hierarchical multilabel classification
  publication-title: Adv Neural Inf Process Syst
– ident: CR88
– ident: CR132
– volume: 5
  start-page: 248
  year: 1975
  end-page: 262
  ident: CR54
  article-title: Reduced-rank regression for the multivariate linear model
  publication-title: J Multivar Anal
  doi: 10.1016/0047-259X(75)90042-1
– volume: 105
  start-page: 77
  issue: 1
  year: 2016
  end-page: 126
  ident: CR72
  article-title: Learning rules for multi-label classification: a stacking and a separate-and-conquer approach
  publication-title: Mach Learn
  doi: 10.1007/s10994-016-5552-1
– volume: 123
  start-page: 85
  issue: 1–2
  year: 2000
  end-page: 100
  ident: CR116
  article-title: The ubiquitous kronecker product
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(00)00393-9
– volume: 4
  start-page: 83
  year: 2003
  end-page: 99
  ident: CR9
  article-title: Task clustering and gating for Bayesian multitask learning
  publication-title: J Mach Learn Res
– ident: CR57
– ident: CR60
– ident: CR112
– ident: CR36
– ident: CR85
– ident: CR5
– volume: 3
  start-page: 1
  issue: 3
  year: 2007
  end-page: 13
  ident: CR114
  article-title: Multi label classification: an overview
  publication-title: Int J Data Warehous Min
  doi: 10.4018/jdwm.2007070101
– volume: 11
  start-page: 4139
  year: 2018
  end-page: 4153
  ident: CR87
  article-title: Global hydro-climatic biomes identified via multi-task learning
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-11-4139-2018
– ident: CR109
– ident: CR126
– volume: 4
  start-page: 195
  issue: 3
  year: 2012
  end-page: 266
  ident: CR7
  article-title: Kernels for vector-valued functions: a review
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000036
– volume: 22
  start-page: 31
  issue: 1–2
  year: 2010
  end-page: 72
  ident: CR104
  article-title: A survey of hierarchical classification across different application domains
  publication-title: Data Min Knowl Discov
– volume: 6
  start-page: 615
  year: 2005
  end-page: 637
  ident: CR34
  article-title: Learning multiple tasks with kernel methods
  publication-title: J Mach Learn Res
– ident: CR66
– ident: CR47
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  end-page: 907
  ident: CR134
  article-title: Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.069
– volume: 22
  start-page: 830
  issue: 7
  year: 2006
  end-page: 836
  ident: CR12
  article-title: Hierarchical multi-label prediction of gene function
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btk048
– volume: 36
  start-page: 303
  issue: 2
  year: 2013
  end-page: 316
  ident: CR38
  article-title: Learning multimodal latent attributes
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TITS.2012.2217377
– ident: CR89
– volume: 52
  start-page: 705
  issue: 6
  year: 2011
  end-page: 727
  ident: CR18
  article-title: Multi-dimensional classification with bayesian networks
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2011.01.007
– ident: CR30
– volume: 13
  start-page: 2367
  issue: 1
  year: 2012
  end-page: 2407
  ident: CR4
  article-title: Multi-target regression with rule ensembles
  publication-title: J Mach Learn Res
– ident: CR10
– ident: CR33
– ident: CR137
– volume: 11
  start-page: 1157
  issue: 6
  year: 2014
  end-page: 1169
  ident: CR108
  article-title: Identification of functionally related enzymes by learning-to-rank methods
  publication-title: IEEE Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2014.2338308
– ident: CR86
– ident: CR63
– volume: 38
  start-page: 1901
  issue: 9
  year: 2016
  end-page: 1907
  ident: CR124
  article-title: Hcp: a flexible cnn framework for multi-label image classification
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2491929
– volume: 180
  start-page: 3
  issue: C
  year: 2016
  end-page: 15
  ident: CR106
  article-title: A systematic review of multi-label feature selection and a new method based on label construction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.118
– ident: CR123
– volume: 172
  start-page: 1897
  issue: 16–17
  year: 2008
  end-page: 1916
  ident: CR53
  article-title: Label ranking by learning pairwise preferences
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2008.08.002
– volume: 45
  start-page: e51
  year: 2017
  ident: CR117
  article-title: miSTAR: miRNA target prediction through modeling quantitative and qualitative miRNA binding site information in a stacked model structure
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkw1069
– ident: CR44
– ident: CR103
– volume: 9
  start-page: 1615
  year: 2008
  end-page: 1646
  ident: CR22
  article-title: Universal multi-task kernels
  publication-title: J Mach Learn Res
– ident: CR3
– volume: 76
  start-page: 211
  issue: 2–3
  year: 2009
  end-page: 225
  ident: CR25
  article-title: Combining instance-based learning and logistic regression for multilabel classification
  publication-title: Mach Learn
  doi: 10.1007/s10994-009-5127-5
– ident: CR52
– ident: CR139
– ident: CR13
– volume: 28
  start-page: 2304
  issue: 18
  year: 2012
  end-page: 10
  ident: CR42
  article-title: Predicting drug-target interactions from chemical and genomic kernels using Bayesian matrix factorization
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts360
– volume: 31
  start-page: i221
  issue: 12
  year: 2015
  end-page: i229
  ident: CR71
  article-title: Improving compound-protein interaction prediction by building up highly credible negative samples
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv256
– volume: 99
  start-page: 1
  year: 2013
  ident: CR97
  article-title: Multi-dimensional classification with super-classes
  publication-title: IEEE Trans Knowl Data Eng
– volume: 104
  start-page: 55
  issue: 1
  year: 2016
  end-page: 98
  ident: CR107
  article-title: Multi-target regression via input space expansion: treating targets as inputs
  publication-title: Mach Learn
  doi: 10.1007/s10994-016-5546-z
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  end-page: 259
  ident: CR127
  article-title: Original contribution: stacked generalization
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 11
  start-page: 2287
  year: 2010
  end-page: 2322
  ident: CR73
  article-title: Spectral regularization algorithms for learning large incomplete matrices
  publication-title: J Mach Learn Res
– volume: 15
  start-page: 3333
  year: 2014
  end-page: 3388
  ident: CR122
  article-title: On the bayes-optimality of f-measure maximizers
  publication-title: J Mach Learn Res
– volume: 21
  start-page: 38
  issue: Suppl 1
  year: 2005
  end-page: 46
  ident: CR14
  article-title: Kernel methods for predicting protein–protein interactions
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1016
– ident: CR120
– ident: CR24
– ident: CR128
– ident: CR70
– ident: CR125
– ident: CR102
– volume: 87
  start-page: 259
  issue: 3
  year: 2012
  end-page: 301
  ident: CR11
  article-title: Multi-output learning via spectral filtering
  publication-title: Mach Learn
  doi: 10.1007/s10994-012-5282-y
– ident: CR49
– ident: CR93
– volume: 38
  start-page: 1425
  issue: 7
  year: 2016
  end-page: 1438
  ident: CR6
  article-title: Label-embedding for image classification
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2487986
– volume: 24
  start-page: 2508
  issue: 9
  year: 2012
  end-page: 2542
  ident: CR111
  article-title: Multilabel classification with principal label space transformation
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00320
– ident: CR35
– volume: 9
  start-page: 717
  year: 2008
  end-page: 772
  ident: CR21
  article-title: Exact low-rank matrix completion via convex optimization
  publication-title: Found Comput Math
  doi: 10.1007/s10208-009-9045-5
– ident: CR29
– ident: CR61
– volume: 93
  start-page: 321
  issue: 2–3
  year: 2013
  end-page: 356
  ident: CR83
  article-title: Efficient regularized least-squares algorithms for conditional ranking on relational data
  publication-title: Mach Learn
  doi: 10.1007/s10994-013-5354-7
– ident: CR58
– ident: CR84
– volume: 31
  start-page: 281
  issue: 2
  year: 2012
  end-page: 305
  ident: CR62
  article-title: gMLC: a multi-label feature selection framework for graph classification
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0407-3
– ident: CR140
– ident: CR46
– ident: CR96
– ident: CR67
– year: 2007
  ident: CR50
  publication-title: Elements of statistical learning: data mining, inference, and prediction
– volume: 33
  start-page: 1242
  issue: 12
  year: 2015
  end-page: 1249
  ident: CR91
  article-title: Affinity regression predicts the recognition code of nucleic acid-binding proteins
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3343
– ident: CR15
– ident: CR136
– volume: 20
  start-page: 1090
  issue: 6
  year: 2012
  end-page: 1101
  ident: CR121
  article-title: A kernel-based framework for learning graded relations from data
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2012.2194151
– ident: CR32
– volume: 6
  start-page: 1817
  year: 2005
  end-page: 1853
  ident: CR8
  article-title: A framework for learning predictive structures from multiple tasks and unlabeled data
  publication-title: J Mach Learn Res
– ident: CR78
– ident: CR81
– ident: CR64
– ident: CR105
– ident: CR26
– ident: CR99
– volume: 73
  start-page: 185
  issue: 2
  year: 2008
  end-page: 214
  ident: CR118
  article-title: Decision trees for hierarchical multi-label classification
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5077-3
– ident: CR95
– ident: CR43
– volume: 69
  start-page: 3
  year: 1997
  end-page: 54
  ident: CR20
  article-title: Predicting multivariate responses in multiple linear regression
  publication-title: J R Stat Soc B
  doi: 10.1111/1467-9868.00054
– ident: CR2
– ident: CR37
– volume: 24
  start-page: 2149
  issue: 19
  year: 2008
  end-page: 2156
  ident: CR55
  article-title: Protein-ligand interaction prediction: an improved chemogenomics approach
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn409
– ident: CR133
– ident: CR113
– volume: 9
  start-page: 1134
  issue: 12
  year: 2012
  end-page: 1136
  ident: CR90
  article-title: Flaws in evaluation schemes for pair-input computational predictions
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2259
– year: 2017
  ident: CR94
  publication-title: Large scale hierarchical classification: foundations, algorithms and applications
– ident: CR56
– volume: 88
  start-page: 5
  year: 2012
  end-page: 45
  ident: CR27
  article-title: On label dependence and loss minimization in multi-label classification
  publication-title: Mach Learn
  doi: 10.1007/s10994-012-5285-8
– ident: CR40
– ident: CR98
– volume: 206
  start-page: 676
  issue: 3
  year: 2010
  end-page: 685
  ident: CR82
  article-title: Learning intransitive reciprocal relations with kernel methods
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.03.018
– volume: 8
  start-page: 27
  year: 1980
  end-page: 39
  ident: CR115
  article-title: Multivariate regression analysis and canonical variates
  publication-title: Can J Stat
  doi: 10.2307/3314667
– ident: CR48
– ident: CR65
– volume: 8
  start-page: 35
  year: 2007
  end-page: 63
  ident: CR131
  article-title: Multi-task learning for classification with Dirichlet process priors
  publication-title: J Mach Learn Res
– volume: 7
  start-page: 1601
  year: 2006
  end-page: 1626
  ident: CR100
  article-title: Kernel-based learning of hierarchical multilabel classification models
  publication-title: J Mach Learn Res
– ident: CR130
– ident: CR17
– volume: 20
  start-page: 231
  issue: 2
  year: 2010
  end-page: 252
  ident: CR79
  article-title: Joint covariate selection and joint subspace selection for multiple classification problems
  publication-title: Stat Comput
  doi: 10.1007/s11222-008-9111-x
– ident: CR110
– volume: 11
  start-page: 367
  year: 2010
  ident: CR39
  article-title: A flexible R package for nonnegative matrix factorization
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-367
– ident: CR59
– ident: CR76
– volume: 28
  start-page: 41
  year: 1997
  end-page: 75
  ident: CR23
  article-title: Multitask learning: a knowledge-based source of inductive bias
  publication-title: Mach Learn
  doi: 10.1023/A:1007379606734
– ident: CR28
– volume: 11
  start-page: 2287
  year: 2010
  ident: 595_CR73
  publication-title: J Mach Learn Res
– volume: 8
  start-page: 35
  year: 2007
  ident: 595_CR131
  publication-title: J Mach Learn Res
– ident: 595_CR58
– volume: 206
  start-page: 676
  issue: 3
  year: 2010
  ident: 595_CR82
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2010.03.018
– ident: 595_CR109
– ident: 595_CR123
  doi: 10.1109/ICDM.2009.66
– volume: 15
  start-page: 3333
  year: 2014
  ident: 595_CR122
  publication-title: J Mach Learn Res
– ident: 595_CR29
  doi: 10.1007/978-3-319-46227-1_32
– volume: 21
  start-page: 38
  issue: Suppl 1
  year: 2005
  ident: 595_CR14
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti1016
– ident: 595_CR64
– ident: 595_CR65
  doi: 10.1109/CVPRW.2009.5206594
– volume: 73
  start-page: 185
  issue: 2
  year: 2008
  ident: 595_CR118
  publication-title: Mach Learn
  doi: 10.1007/s10994-008-5077-3
– ident: 595_CR49
– volume: 24
  start-page: 2149
  issue: 19
  year: 2008
  ident: 595_CR55
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn409
– volume: 20
  start-page: 231
  issue: 2
  year: 2010
  ident: 595_CR79
  publication-title: Stat Comput
  doi: 10.1007/s11222-008-9111-x
– ident: 595_CR133
– ident: 595_CR47
  doi: 10.1145/2063576.2063734
– ident: 595_CR130
  doi: 10.1109/TPAMI.2018.2857768
– volume: 59
  start-page: 895
  issue: 2
  year: 2012
  ident: 595_CR134
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.069
– volume: 28
  start-page: 41
  year: 1997
  ident: 595_CR23
  publication-title: Mach Learn
  doi: 10.1023/A:1007379606734
– ident: 595_CR95
  doi: 10.1007/978-3-642-15939-8_9
– volume: 99
  start-page: 1
  year: 2013
  ident: 595_CR97
  publication-title: IEEE Trans Knowl Data Eng
– volume: 9
  start-page: 1134
  issue: 12
  year: 2012
  ident: 595_CR90
  publication-title: Nat Methods
  doi: 10.1038/nmeth.2259
– ident: 595_CR93
– ident: 595_CR76
– volume: 9
  start-page: 717
  year: 2008
  ident: 595_CR21
  publication-title: Found Comput Math
  doi: 10.1007/s10208-009-9045-5
– ident: 595_CR17
– ident: 595_CR43
  doi: 10.1145/2339530.2339672
– ident: 595_CR84
  doi: 10.1007/978-3-662-44851-9_33
– ident: 595_CR86
  doi: 10.1145/2783258.2783302
– ident: 595_CR136
– volume: 2004
  start-page: 22
  year: 2004
  ident: 595_CR41
  publication-title: PAKDD
– volume: 4
  start-page: 83
  year: 2003
  ident: 595_CR9
  publication-title: J Mach Learn Res
– volume: 88
  start-page: 5
  year: 2012
  ident: 595_CR27
  publication-title: Mach Learn
  doi: 10.1007/s10994-012-5285-8
– ident: 595_CR10
– ident: 595_CR37
– ident: 595_CR103
  doi: 10.1109/ICDM.2010.116
– ident: 595_CR85
– volume: 11
  start-page: 1157
  issue: 6
  year: 2014
  ident: 595_CR108
  publication-title: IEEE Trans Comput Biol Bioinform
  doi: 10.1109/TCBB.2014.2338308
– volume: 6
  start-page: 615
  year: 2005
  ident: 595_CR34
  publication-title: J Mach Learn Res
– ident: 595_CR66
– volume: 123
  start-page: 85
  issue: 1–2
  year: 2000
  ident: 595_CR116
  publication-title: J Comput Appl Math
  doi: 10.1016/S0377-0427(00)00393-9
– volume: 38
  start-page: 1425
  issue: 7
  year: 2016
  ident: 595_CR6
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2487986
– ident: 595_CR35
  doi: 10.1145/1014052.1014067
– ident: 595_CR67
  doi: 10.1145/1553374.1553452
– ident: 595_CR5
  doi: 10.1109/CVPR.2015.7298911
– ident: 595_CR139
  doi: 10.1137/1.9781611972825.35
– volume: 105
  start-page: 77
  issue: 1
  year: 2016
  ident: 595_CR72
  publication-title: Mach Learn
  doi: 10.1007/s10994-016-5552-1
– ident: 595_CR36
  doi: 10.1145/2039320.2039330
– ident: 595_CR52
– ident: 595_CR137
  doi: 10.1145/2020408.2020549
– volume: 11
  start-page: 4139
  year: 2018
  ident: 595_CR87
  publication-title: Geosci Model Dev
  doi: 10.5194/gmd-11-4139-2018
– ident: 595_CR45
  doi: 10.1145/2487575.2487644
– ident: 595_CR3
  doi: 10.1109/ICDM.2009.16
– volume: 76
  start-page: 211
  issue: 2–3
  year: 2009
  ident: 595_CR25
  publication-title: Mach Learn
  doi: 10.1007/s10994-009-5127-5
– volume: 33
  start-page: 1242
  issue: 12
  year: 2015
  ident: 595_CR91
  publication-title: Nat Biotechnol
  doi: 10.1038/nbt.3343
– ident: 595_CR63
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 595_CR127
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(05)80023-1
– ident: 595_CR88
– ident: 595_CR26
– ident: 595_CR81
  doi: 10.1007/978-3-540-30115-8_31
– volume: 7
  start-page: 1601
  year: 2006
  ident: 595_CR100
  publication-title: J Mach Learn Res
– ident: 595_CR120
– volume: 10
  start-page: 803
  year: 2008
  ident: 595_CR1
  publication-title: J Mach Learn Res
– ident: 595_CR46
– volume-title: Large scale hierarchical classification: foundations, algorithms and applications
  year: 2017
  ident: 595_CR94
– ident: 595_CR99
– volume: 24
  start-page: 2508
  issue: 9
  year: 2012
  ident: 595_CR111
  publication-title: Neural Comput
  doi: 10.1162/NECO_a_00320
– ident: 595_CR51
  doi: 10.1527/tjsai.27.103
– ident: 595_CR61
  doi: 10.1137/1.9781611972795.94
– volume: 93
  start-page: 321
  issue: 2–3
  year: 2013
  ident: 595_CR83
  publication-title: Mach Learn
  doi: 10.1007/s10994-013-5354-7
– ident: 595_CR32
– ident: 595_CR15
– ident: 595_CR60
– volume: 31
  start-page: 281
  issue: 2
  year: 2012
  ident: 595_CR62
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-011-0407-3
– ident: 595_CR105
– ident: 595_CR113
  doi: 10.1007/3-540-36755-1_37
– ident: 595_CR68
– volume: 38
  start-page: 1901
  issue: 9
  year: 2016
  ident: 595_CR124
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2491929
– ident: 595_CR140
– ident: 595_CR77
– ident: 595_CR70
  doi: 10.1109/CVPR.2011.5995353
– ident: 595_CR96
  doi: 10.1109/CVPRW.2014.131
– volume: 9
  start-page: 1615
  year: 2008
  ident: 595_CR22
  publication-title: J Mach Learn Res
– ident: 595_CR24
  doi: 10.1145/1553374.1553392
– ident: 595_CR59
– ident: 595_CR92
  doi: 10.1145/3178876.3185998
– volume: 69
  start-page: 3
  year: 1997
  ident: 595_CR20
  publication-title: J R Stat Soc B
  doi: 10.1111/1467-9868.00054
– ident: 595_CR129
  doi: 10.1109/CVPR.2016.15
– ident: 595_CR125
– ident: 595_CR126
  doi: 10.1007/978-3-319-31753-3_27
– volume: 5
  start-page: 248
  year: 1975
  ident: 595_CR54
  publication-title: J Multivar Anal
  doi: 10.1016/0047-259X(75)90042-1
– volume: 11
  start-page: 367
  year: 2010
  ident: 595_CR39
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-11-367
– volume: 172
  start-page: 1897
  issue: 16–17
  year: 2008
  ident: 595_CR53
  publication-title: Artif Intell
  doi: 10.1016/j.artint.2008.08.002
– ident: 595_CR48
– ident: 595_CR2
– volume: 45
  start-page: e51
  year: 2017
  ident: 595_CR117
  publication-title: Nucl Acids Res
  doi: 10.1093/nar/gkw1069
– ident: 595_CR132
– volume-title: Elements of statistical learning: data mining, inference, and prediction
  year: 2007
  ident: 595_CR50
– ident: 595_CR56
– volume: 6912
  start-page: 437
  year: 2011
  ident: 595_CR75
  publication-title: Mach Learn Knowl Discov Databases
– ident: 595_CR44
  doi: 10.1007/978-3-319-10584-0_26
– volume: 6
  start-page: 1817
  year: 2005
  ident: 595_CR8
  publication-title: J Mach Learn Res
– volume: 22
  start-page: 830
  issue: 7
  year: 2006
  ident: 595_CR12
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btk048
– ident: 595_CR57
  doi: 10.1145/2488608.2488693
– ident: 595_CR80
  doi: 10.1109/CVPR.2014.222
– volume: 87
  start-page: 259
  issue: 3
  year: 2012
  ident: 595_CR11
  publication-title: Mach Learn
  doi: 10.1007/s10994-012-5282-y
– ident: 595_CR112
  doi: 10.1145/1454008.1454049
– ident: 595_CR138
  doi: 10.1145/2339530.2339702
– ident: 595_CR89
– volume: 52
  start-page: 705
  issue: 6
  year: 2011
  ident: 595_CR18
  publication-title: Int J Approx Reason
  doi: 10.1016/j.ijar.2011.01.007
– ident: 595_CR30
  doi: 10.1007/978-3-319-10590-1_4
– ident: 595_CR135
– volume: 22
  start-page: 31
  issue: 1–2
  year: 2010
  ident: 595_CR104
  publication-title: Data Min Knowl Discov
– ident: 595_CR28
  doi: 10.1007/978-3-642-38610-7_46
– ident: 595_CR33
– volume: 28
  start-page: 2304
  issue: 18
  year: 2012
  ident: 595_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts360
– volume: 8
  start-page: 1
  issue: S–10
  year: 2007
  ident: 595_CR119
  publication-title: BMC Bioinform
– ident: 595_CR40
  doi: 10.1109/CVPR.2014.81
– ident: 595_CR74
  doi: 10.1109/ICDM.2010.148
– ident: 595_CR78
  doi: 10.1609/aaai.v30i1.10241
– ident: 595_CR128
  doi: 10.1609/aaai.v32i1.11996
– ident: 595_CR102
– ident: 595_CR110
– volume: 8
  start-page: 27
  year: 1980
  ident: 595_CR115
  publication-title: Can J Stat
  doi: 10.2307/3314667
– volume: 36
  start-page: 303
  issue: 2
  year: 2013
  ident: 595_CR38
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TITS.2012.2217377
– ident: 595_CR98
  doi: 10.1109/CVPR.2011.5995627
– volume: 3
  start-page: 1
  issue: 3
  year: 2007
  ident: 595_CR114
  publication-title: Int J Data Warehous Min
  doi: 10.4018/jdwm.2007070101
– volume: 13
  start-page: 2367
  issue: 1
  year: 2012
  ident: 595_CR4
  publication-title: J Mach Learn Res
– volume: 20
  start-page: 1090
  issue: 6
  year: 2012
  ident: 595_CR121
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2012.2194151
– volume: 25
  start-page: 153
  year: 2012
  ident: 595_CR16
  publication-title: Adv Neural Inf Process Syst
– ident: 595_CR13
  doi: 10.1145/1015330.1015394
– ident: 595_CR101
  doi: 10.1007/978-3-319-23525-7_14
– volume: 104
  start-page: 55
  issue: 1
  year: 2016
  ident: 595_CR107
  publication-title: Mach Learn
  doi: 10.1007/s10994-016-5546-z
– volume: 4
  start-page: 195
  issue: 3
  year: 2012
  ident: 595_CR7
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000036
– volume: 118
  start-page: 119
  year: 2013
  ident: 595_CR31
  publication-title: Neurocomput
  doi: 10.1016/j.neucom.2013.02.024
– volume: 31
  start-page: i221
  issue: 12
  year: 2015
  ident: 595_CR71
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv256
– volume: 180
  start-page: 3
  issue: C
  year: 2016
  ident: 595_CR106
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.07.118
– volume: 12
  start-page: 98
  issue: 1
  year: 2009
  ident: 595_CR69
  publication-title: Curr Opin Drug Discov Develop
– ident: 595_CR19
SSID ssj0005230
Score 2.5248346
Snippet Many problem settings in machine learning are concerned with the simultaneous prediction of multiple target variables of diverse type. Amongst others, such...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 293
SubjectTerms Academic Surveys and Tutorials
Artificial Intelligence
Chemistry and Earth Sciences
Computer Science
Data Mining and Knowledge Discovery
Identification methods
Information Storage and Retrieval
Machine learning
Multivariate analysis
Physics
Regression analysis
Statistics for Engineering
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LS8NAEB60vXjxLVar7MGTspg0u2nWiy9aimARsdBb2FdAkLQ27f93Ntk0KuhhT5ssZCa7M9_O4wO4UMYmEh1liq6roAxNKhWCCaqstTqMQhWUzZ6fx_Fowp6mfOov3AqfVlmfieVBbWba3ZFfl53IEcn1o9v5J3WsUS666ik0NqGN8wmCr_bDYPzy-i3JI6rqhBNGeRKu45pV8VwcukQuHFxwyn9apsbd_BUhLQ3PcBe2vcdI7isV78GGzfdhp2ZjIH5zHsBdWUtLq9RuMl-4CIyT-g2RZJW_l_VMxH0kmeXE88gUROaGVCzSxSFMhoO3xxH1_AhUR2G8pIlirGeEQtCi-7pvHWu8yoJYCqWtFsY1c8ejWGc9blx8TsQss5qhVcwQZmUiOoJWPsvtMRAjgthIzXs2SBAgBtJkiCQkZxalxqXsQFDLJtW-ebjjsPhIm7bHTpxp4AaKM-UduFy_Mq86Z_z3cLcWeOo3UZE2Ku_AVa2EZvrPxU7-X-wUttDrEVUiWRday8XKnqFnsVTn_vf5ApIPyQc
  priority: 102
  providerName: ProQuest
Title Multi-target prediction: a unifying view on problems and methods
URI https://link.springer.com/article/10.1007/s10618-018-0595-5
https://www.proquest.com/docview/2127590773
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60RfDioypWa8nBkxLYR7LdeLJKHygWEQv1tGSTLAiyLd32_zvZR1tFBQ_LHjabw-Qx8zHffANwGWsTSgyUKYaugjJ0qVQIJmhsjFGu78ZOLvb8NAqGY_Yw4ZOyjjur2O5VSjK_qTeK3QLXEq_w4YJTvg11bqE7buKx193gdfhFaXDIKA_dVSrzpym-OqN1hPktKZr7mv4B7JVBIukWq3oIWyZtwH7VgIGU57EBOzl_U2VHcJsX0tKC101mc5t-sSa_IZIs0_e8mInYLACZpqRsIpMRmWpStJDOjmHc773eD2nZHIEq3w0WNIwZ87SIEbGojuoY2zI-TpxAilgZJbRVcsd7WCUe1zY5JwKWGMXQJSaIsRLhn0AtnabmFIgWTqCl4p5xQkSHjtQJwgjJmUH7cSmb4FRWilSpHG4bWHxEa81ja9jIsQ8aNuJNuFr9MitkM_4a3KpMH5UnKIty5XlE7h2_CdfVcqw__zrZ2b9Gn8MuRkCiIJW1oLaYL80FRhmLuA3bYX_Qhnp38PbYw_ddb_T80s732icMS8tB
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07T8MwED5VMMDCG1GeHmABWeRhpzESAgSUlrZMVOoWHNuRkFBaSBHiT_EbOefRAhJsDJ6SeDif75G7-z6A_VibUGKgTDF0FZShS6VCMEFjY4xyfTd2crDn3l3Q6rPbAR_U4KOahbFtlZVNzA21Hir7j_w4RyLHTK7hn42eqWWNstXVikKjUIuOeX_DlC07bV_h-R54XvP6_rJFS1YBqnw3GNMwZszTIsZQXzVUw1iu9ThxAiliZZTQFgIdDZhKPK5tVUsELDGKoS9JMDlJLPgSmvxZ5vvC3qiwefOlpcQvppJDRnnoTqqoxahe4Nq2MVxccMq_-8FpcPujHpu7ueYSLJTxKbkoFGoZaiZdgcWK-4GUpmAVzvPJXVo0kpPRi6332DM-IZK8po_59BSxIiXDlJSsNRmRqSYFZ3W2Bv1_kds6zKTD1GwA0cIJtFTcM06I6agjdYJ5i-TMoNS4lHVwKtlEqoQqt4wZT9EUZNmKM3LsQnFGvA6Hk09GBU7HXy9vVwKPyiubRVMFq8NRdQjTx79utvn3Znsw17rvdaNu-66zBfMYb4mihW0bZsYvr2YHY5pxvJsrEoGH_9bcT7iUBbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LSwMxEB5KC-LFt1itmoNelODuNtluBPHZ0vooRRS8rdkkC4Jsq62If81f52QfrQp66yGn3c1hMpnHzsz3AexE2gQSA2WKoaugDF0qFYIJGhljlFt3IycFe77p-u17dvnAH0rwWczC2LbKwiamhlr3lf1HfpAikWMm16gfxHlbRO-idTx4oZZBylZaCzqNTEWuzMc7pm_Do84FnvWu57Wad-dtmjMMUFV3_RENIsY8LSIM-1VDNYzlXY9ix5ciUkYJbeHQ0Zip2OPaVriEz2KjGPqVGBOV2AIxofmvNDArcspQOWt2e7ffGkzq2YxywCgP3HFNNRvc813bRIaLC075T684CXV_VWdTp9dagLk8WiWnmXotQskkSzBfMEGQ3DAsw0k6x0uztnIyeLXVH3vih0SSt-QpnaUiVsCkn5Ccw2ZIZKJJxmA9XIH7qUhuFcpJPzFrQLRwfC0V94wTYHLqSB1jFiM5Myg1LmUVnEI2ocqByy1_xnM4gVy24gwdu1CcIa_C3viTQYba8d_LtULgYX6Bh-FE3aqwXxzC5PGfm63_v9k2zKDWhted7tUGzGLwJbJ-thqUR69vZhMDnFG0lWsSgcdpK-8XUEcLQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-target+prediction%3A+a+unifying+view+on+problems+and+methods&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Waegeman%2C+Willem&rft.au=Dembczy%C5%84ski%2C+Krzysztof&rft.au=H%C3%BCllermeier%2C+Eyke&rft.date=2019-03-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=33&rft.issue=2&rft.spage=293&rft.epage=324&rft_id=info:doi/10.1007%2Fs10618-018-0595-5&rft.externalDocID=10_1007_s10618_018_0595_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon