Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation
Recently, inspired by the migration behavior of monarch butterflies in nature, a metaheuristic optimization algorithm, called monarch butterfly optimization (MBO), was proposed. In the present study, a novel chaotic MBO algorithm (CMBO) is proposed, in which chaos theory is introduced in order to en...
Saved in:
Published in | Memetic computing Vol. 10; no. 2; pp. 135 - 150 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.06.2018
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1865-9284 1865-9292 |
DOI | 10.1007/s12293-016-0211-4 |
Cover
Abstract | Recently, inspired by the migration behavior of monarch butterflies in nature, a metaheuristic optimization algorithm, called monarch butterfly optimization (MBO), was proposed. In the present study, a novel chaotic MBO algorithm (CMBO) is proposed, in which chaos theory is introduced in order to enhance its global optimization ability. Here, 12 one-dimensional classical chaotic maps are used to tune two main migration processes of monarch butterflies. Meanwhile, applying Gaussian mutation operator to some worst individuals can effectively prevent premature convergence of the optimization process. The performance of CMBO is verified and analyzed by three groups of large-scale 0–1 knapsack problems instances. The results show that the introduction of appropriate chaotic map and Gaussian perturbation can significantly improve the solution quality together with the overall performance of the proposed CMBO algorithm. The proposed CMBO can outperform the standard MBO and other eight state-of-the-art canonical algorithms. |
---|---|
AbstractList | Recently, inspired by the migration behavior of monarch butterflies in nature, a metaheuristic optimization algorithm, called monarch butterfly optimization (MBO), was proposed. In the present study, a novel chaotic MBO algorithm (CMBO) is proposed, in which chaos theory is introduced in order to enhance its global optimization ability. Here, 12 one-dimensional classical chaotic maps are used to tune two main migration processes of monarch butterflies. Meanwhile, applying Gaussian mutation operator to some worst individuals can effectively prevent premature convergence of the optimization process. The performance of CMBO is verified and analyzed by three groups of large-scale 0–1 knapsack problems instances. The results show that the introduction of appropriate chaotic map and Gaussian perturbation can significantly improve the solution quality together with the overall performance of the proposed CMBO algorithm. The proposed CMBO can outperform the standard MBO and other eight state-of-the-art canonical algorithms. |
Author | Yang, Juan Lu, Mei Feng, Yanhong Zhao, Xiang-Jun Wu, Congcong |
Author_xml | – sequence: 1 givenname: Yanhong surname: Feng fullname: Feng, Yanhong email: qinfyh@163.com organization: School of Information Engineering, Hebei GEO University – sequence: 2 givenname: Juan surname: Yang fullname: Yang, Juan organization: School of Mathematical Sciences, Kaili University – sequence: 3 givenname: Congcong surname: Wu fullname: Wu, Congcong organization: School of Information Engineering, Hebei GEO University – sequence: 4 givenname: Mei surname: Lu fullname: Lu, Mei organization: School of Computer Science and Technology, Jiangsu Normal University – sequence: 5 givenname: Xiang-Jun surname: Zhao fullname: Zhao, Xiang-Jun organization: School of Computer Science and Technology, Jiangsu Normal University |
BookMark | eNp9kM9OxCAQh4nRRF19AG8knqsMZUs5GuO_xMSDeiYU6S5rCytQzXryHXxDn0S0RhMT5QBz-H3MzLeN1p13BqE9IAdACD-MQKkoCwJVQShAwdbQFtTVtBBU0PXvumabaDfGBcmnpLxmsIUW1757tG6GydvLK-B7p5ZR6Xu8DL7pTB9xs8J6rnyyGvfeqaDnuBlSMqHtVtgvk-3ts0rWO6y6mQ82zXv8lG98poYYrXK4H9JnYAdttKqLZvfrnaDb05Ob4_Pi8urs4vjostAlVKmolTIghGhLUrdC3AHnvOZtw_KK1LCK0Ua0oEvNAdSUiCllwLIFwnnVMjDlBO2P_-YdHgYTk1z4IbjcUlLC6kpkRzSn-JjSwccYTCu1HedMQdlOApEfbuXoVma38sOtZJmEX-Qy2F6F1b8MHZmYs25mws9Mf0Pvl4iONA |
CitedBy_id | crossref_primary_10_1016_j_eswa_2020_114418 crossref_primary_10_3390_a10030107 crossref_primary_10_1007_s00521_016_2795_5 crossref_primary_10_1007_s10489_020_01652_0 crossref_primary_10_3390_e20040239 crossref_primary_10_1007_s00521_020_05210_0 crossref_primary_10_1007_s00521_021_06448_y crossref_primary_10_1080_23311916_2017_1292598 crossref_primary_10_1007_s11047_020_09794_3 crossref_primary_10_1142_S1793830921500762 crossref_primary_10_1007_s00500_021_05591_x crossref_primary_10_1007_s00500_020_05381_x crossref_primary_10_1016_j_cie_2019_106049 crossref_primary_10_1007_s13042_019_01047_9 crossref_primary_10_3390_mca23040055 crossref_primary_10_1007_s11831_024_10090_x crossref_primary_10_1007_s00521_018_3375_7 crossref_primary_10_1007_s12293_019_00288_z crossref_primary_10_1007_s12652_017_0661_7 crossref_primary_10_3390_a17110478 crossref_primary_10_3390_math7050395 crossref_primary_10_1007_s00366_020_01240_3 crossref_primary_10_1016_j_ins_2020_07_013 crossref_primary_10_1515_geo_2019_0031 crossref_primary_10_3390_a11050071 crossref_primary_10_1007_s11356_023_26361_2 crossref_primary_10_1002_mma_6904 crossref_primary_10_1016_j_asoc_2019_105800 crossref_primary_10_1007_s41870_024_02163_8 crossref_primary_10_1007_s10489_020_01981_0 crossref_primary_10_1155_2022_8440165 crossref_primary_10_3233_JIFS_222455 crossref_primary_10_1109_TEVC_2017_2682274 crossref_primary_10_1155_2023_5912191 crossref_primary_10_1016_j_eswa_2018_08_051 crossref_primary_10_1007_s00366_020_00951_x crossref_primary_10_1088_1742_6596_1879_2_022097 crossref_primary_10_1007_s10479_024_06310_z crossref_primary_10_1016_j_cie_2020_106949 crossref_primary_10_1016_j_cie_2020_106946 crossref_primary_10_1007_s11063_023_11171_x crossref_primary_10_1016_j_eswa_2023_120568 crossref_primary_10_3390_mca23030040 crossref_primary_10_1155_2019_4182148 crossref_primary_10_1007_s00500_021_06522_6 crossref_primary_10_1109_ACCESS_2022_3183131 crossref_primary_10_3390_math11081811 crossref_primary_10_1007_s00366_021_01470_z crossref_primary_10_1080_0305215X_2022_2051701 crossref_primary_10_1016_j_jksuci_2024_102093 crossref_primary_10_1007_s00521_023_08358_7 crossref_primary_10_1142_S1469026818500220 crossref_primary_10_1109_ACCESS_2018_2872533 crossref_primary_10_32604_iasc_2022_019473 crossref_primary_10_1007_s00521_021_06654_8 crossref_primary_10_1016_j_aej_2022_12_025 crossref_primary_10_1007_s00521_017_2903_1 crossref_primary_10_1007_s11277_024_11143_x crossref_primary_10_1007_s12530_019_09305_5 crossref_primary_10_1080_21642583_2019_1630687 crossref_primary_10_3390_math9182335 crossref_primary_10_1155_2022_3835319 |
Cites_doi | 10.1109/ISCBI.2015.8 10.1007/s00521-012-1304-8 10.1016/j.chaos.2007.09.063 10.1016/j.neucom.2013.08.031 10.1016/j.chaos.2006.04.057 10.1109/NABIC.2009.5393690 10.1007/s00521-015-2135-1 10.1016/j.amc.2010.03.114 10.1109/ICEC.1995.489178 10.1007/s12293-015-0162-1 10.1103/PhysRevLett.64.821 10.1360/crad20070905 10.1016/j.ins.2014.02.123 10.1007/s10878-014-9717-1 10.1109/4235.687885 10.1007/s12293-016-0180-7 10.1016/j.amc.2006.09.087 10.1007/s00521-015-1923-y 10.1504/IJBIC.2013.053507 10.1016/j.procs.2010.04.160 10.1080/03052150500384759 10.1016/j.eswa.2007.02.002 10.1504/IJBIC.2016.081335 10.1007/s10898-007-9149-x 10.1023/A:1008202821328 10.1504/IJBIC.2015.10004283 10.1504/IJBIC.2015.073165 |
ContentType | Journal Article |
Copyright | Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Nature B.V. 2018 |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Nature B.V. 2018 |
DBID | AAYXX CITATION |
DOI | 10.1007/s12293-016-0211-4 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1865-9292 |
EndPage | 150 |
ExternalDocumentID | 10_1007_s12293_016_0211_4 |
GroupedDBID | -5B -5G -BR -EM -~C 06D 0R~ 0VY 1N0 203 29M 29~ 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 40E 67Z 6NX 875 8TC 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBXA ABDZT ABECU ABFTD ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG AUKKA AXYYD AYJHY BA0 BGNMA CAG COF CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ6 GQ7 GQ8 GXS H13 HF~ HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9P PT4 QOS R89 RIG RLLFE ROL RSV S1Z S27 S3B SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 Z83 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADKFA AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c316t-8aae1999f308f99d177787fb42932e4642b9f1c3c711a509524140070776f41e3 |
IEDL.DBID | AGYKE |
ISSN | 1865-9284 |
IngestDate | Fri Jul 25 04:29:32 EDT 2025 Tue Jul 01 02:52:11 EDT 2025 Thu Apr 24 22:56:26 EDT 2025 Fri Feb 21 02:35:19 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Monarch butterfly optimization 0–1 Knapsack problems Gaussian mutation operator Chaotic maps |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-8aae1999f308f99d177787fb42932e4642b9f1c3c711a509524140070776f41e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2048690212 |
PQPubID | 2044125 |
PageCount | 16 |
ParticipantIDs | proquest_journals_2048690212 crossref_citationtrail_10_1007_s12293_016_0211_4 crossref_primary_10_1007_s12293_016_0211_4 springer_journals_10_1007_s12293_016_0211_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-06-01 |
PublicationDateYYYYMMDD | 2018-06-01 |
PublicationDate_xml | – month: 06 year: 2018 text: 2018-06-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Berlin/Heidelberg |
PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
PublicationTitle | Memetic computing |
PublicationTitleAbbrev | Memetic Comp |
PublicationYear | 2018 |
Publisher | Springer Berlin Heidelberg Springer Nature B.V |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
References | WangGGGandomiAHAlaviAHStud krill herd algorithmNeurocomputing201412836337010.1016/j.neucom.2013.08.031 Tawhid MA, Ali AF (2016) A simplex social spider algorithm for solving integer programming and minimax problems. Mem Comput 1–20. doi:10.1007/s12293-016-0180-7 Gharooni-FardGMoein-DarbariFDeldariHMorvaridiAScheduling of scientific workflows using a chaos-genetic algorithmProc Comput Sci2010111445145410.1016/j.procs.2010.04.160 RudolphGLocal convergence rates of simple evolutionary algorithms with Cauchy mutationsIEEE Trans Evol Comput199714249258119499710.1109/4235.687885 WangGGGuoLHWangHQIncorporating mutation scheme into krill herd algorithm for global numerical optimizationNeural Comput Appl2014243–485387110.1007/s00521-012-1304-8 MathewsGBOn the partition of numbers. Introduction to analysis of the infinite1988New YorkSpringer WangGGGuoLHGandomiAHChaotic krill herd algorithmInf Sci20142741734319802610.1016/j.ins.2014.02.123 Wang GG, Deb S, Coelho LDS (2015) Elephant herding optimization. In: 2015 3rd International symposium on computational and business intelligence (ISCBI 2015), Bali, Indonesia, pp 1–5 StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim1997114341359147955310.1023/A:1008202821328 MartelloSTothPKnapsack problems: algorithms and computer implementations1990AmsterdamWiley0708.68002 He YC, Zhang XL, Li WB et al (2016) Algorithms for randomized time-varying knapsack problems. J Comb Optim 31(1):95–117 KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim2007393459471234617810.1007/s10898-007-9149-x Hinterding R (1995) Gaussian mutation and self-adaption for numeric genetic algorithms. In: Evolutionary computation, IEEE international conference on Feng YH, Wang GG, Deb S et al (2015) Solving 0–1 Knapsack problem by a novel binary monarch butterfly optimization. Neural Comput Appl 1–16. doi:10.1007/s00521-015-2135-1 Wang GG, Deb S, Cui ZH (2015) Monarch butterfly optimization. Neural Comput Appl 1–20. doi:10.1007/s00521-015-1923-y EusuffMLanseyKPashaFShuffled frog-leaping algorithm: a memetic metaheuristic for discrete optimizationEng Optim2006382129154220478310.1080/03052150500384759 YangXSNature-inspired metaheuristic algorithms2010FromeLuniver Press PatvardhanCBansalSSrivastavAQuantum-inspired evolutionary algorithm for difficult knapsack problemsMemetic Comput20157213515510.1007/s12293-015-0162-1 HeYCSongJMZhangJMGouHYResearch on genetic algorithms for solving static and dynamic knapsack problemsAppl Res Comput201532410111015 Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceeding of world congress on nature and biologically inspired computing (NaBIC 2009), IEEE Publications, pp 210–214 Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspir Comput (accepted) WangGGDebSGandomiAHChaotic cuckoo searchSoft Comput20155114 CoelhoLDSMarianiVCUse of chaotic sequences in a biologically inspired algorithm for engineering design optimizationExpert Syst Appl20083431905191310.1016/j.eswa.2007.02.002 AlatasBChaotic harmony search algorithmsAppl Math Comput2010216268726991193.65094 AlatasBAkinEOzerABChaos embedded particle swarm optimization algorithmsChaos Solit Fract200940417151734253125910.1016/j.chaos.2007.09.063 Wang GG, Deb S, Gao XZ, Coelho LDS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio-Inspir Comput (accepted) YangDXLiGChengGDOn the efficiency of chaos optimization algorithms for global optimizationChaos Solit Fract200734413661375228678010.1016/j.chaos.2006.04.057 TavazoeiMSHaeriMComparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithmsAppl Math Comput20071871076108523231141114.65335 HeYCWangXZKouYZA binary differential evolution algorithm with hybrid encodingJ Comput Res Dev20074491476148410.1360/crad20070905 CuiZHFanSZengJArtificial plant optimization algorithm with three-period photosynthesisInt J Bio-Inspir Comput20135213313910.1504/IJBIC.2013.053507 PecoraLCarrollTSynchronization in chaotic systemPhys Rev Lett199064821103826310.1103/PhysRevLett.64.821 KarthikeyanSAsokanPNickolasSPageTA hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problemsInt J Bio-Inspir Comput20157638640110.1504/IJBIC.2015.073165 S Karthikeyan (211_CR3) 2015; 7 M Eusuff (211_CR10) 2006; 38 211_CR27 211_CR2 ZH Cui (211_CR9) 2013; 5 211_CR6 G Rudolph (211_CR26) 1997; 1 211_CR5 211_CR4 R Storn (211_CR15) 1997; 11 G Gharooni-Fard (211_CR20) 2010; 1 B Alatas (211_CR19) 2009; 40 YC He (211_CR28) 2007; 44 YC He (211_CR29) 2015; 32 LDS Coelho (211_CR25) 2008; 34 MS Tavazoei (211_CR24) 2007; 187 S Martello (211_CR30) 1990 B Alatas (211_CR18) 2010; 216 211_CR31 211_CR13 211_CR12 211_CR11 DX Yang (211_CR17) 2007; 34 C Patvardhan (211_CR32) 2015; 7 XS Yang (211_CR1) 2010 GB Mathews (211_CR23) 1988 L Pecora (211_CR16) 1990; 64 GG Wang (211_CR22) 2014; 274 GG Wang (211_CR7) 2014; 24 D Karaboga (211_CR14) 2007; 39 GG Wang (211_CR8) 2014; 128 GG Wang (211_CR21) 2015; 5 |
References_xml | – reference: WangGGGuoLHGandomiAHChaotic krill herd algorithmInf Sci20142741734319802610.1016/j.ins.2014.02.123 – reference: MartelloSTothPKnapsack problems: algorithms and computer implementations1990AmsterdamWiley0708.68002 – reference: YangDXLiGChengGDOn the efficiency of chaos optimization algorithms for global optimizationChaos Solit Fract200734413661375228678010.1016/j.chaos.2006.04.057 – reference: WangGGGandomiAHAlaviAHStud krill herd algorithmNeurocomputing201412836337010.1016/j.neucom.2013.08.031 – reference: MathewsGBOn the partition of numbers. Introduction to analysis of the infinite1988New YorkSpringer – reference: YangXSNature-inspired metaheuristic algorithms2010FromeLuniver Press – reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim2007393459471234617810.1007/s10898-007-9149-x – reference: Hinterding R (1995) Gaussian mutation and self-adaption for numeric genetic algorithms. In: Evolutionary computation, IEEE international conference on – reference: PecoraLCarrollTSynchronization in chaotic systemPhys Rev Lett199064821103826310.1103/PhysRevLett.64.821 – reference: Tawhid MA, Ali AF (2016) A simplex social spider algorithm for solving integer programming and minimax problems. Mem Comput 1–20. doi:10.1007/s12293-016-0180-7 – reference: CoelhoLDSMarianiVCUse of chaotic sequences in a biologically inspired algorithm for engineering design optimizationExpert Syst Appl20083431905191310.1016/j.eswa.2007.02.002 – reference: EusuffMLanseyKPashaFShuffled frog-leaping algorithm: a memetic metaheuristic for discrete optimizationEng Optim2006382129154220478310.1080/03052150500384759 – reference: HeYCSongJMZhangJMGouHYResearch on genetic algorithms for solving static and dynamic knapsack problemsAppl Res Comput201532410111015 – reference: Wang GG, Deb S, Coelho LDS (2015) Elephant herding optimization. In: 2015 3rd International symposium on computational and business intelligence (ISCBI 2015), Bali, Indonesia, pp 1–5 – reference: StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim1997114341359147955310.1023/A:1008202821328 – reference: WangGGGuoLHWangHQIncorporating mutation scheme into krill herd algorithm for global numerical optimizationNeural Comput Appl2014243–485387110.1007/s00521-012-1304-8 – reference: Wang GG, Deb S, Cui ZH (2015) Monarch butterfly optimization. Neural Comput Appl 1–20. doi:10.1007/s00521-015-1923-y – reference: Wang GG, Deb S, Gao XZ, Coelho LDS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio-Inspir Comput (accepted) – reference: PatvardhanCBansalSSrivastavAQuantum-inspired evolutionary algorithm for difficult knapsack problemsMemetic Comput20157213515510.1007/s12293-015-0162-1 – reference: Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceeding of world congress on nature and biologically inspired computing (NaBIC 2009), IEEE Publications, pp 210–214 – reference: Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspir Comput (accepted) – reference: Gharooni-FardGMoein-DarbariFDeldariHMorvaridiAScheduling of scientific workflows using a chaos-genetic algorithmProc Comput Sci2010111445145410.1016/j.procs.2010.04.160 – reference: AlatasBChaotic harmony search algorithmsAppl Math Comput2010216268726991193.65094 – reference: He YC, Zhang XL, Li WB et al (2016) Algorithms for randomized time-varying knapsack problems. J Comb Optim 31(1):95–117 – reference: CuiZHFanSZengJArtificial plant optimization algorithm with three-period photosynthesisInt J Bio-Inspir Comput20135213313910.1504/IJBIC.2013.053507 – reference: TavazoeiMSHaeriMComparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithmsAppl Math Comput20071871076108523231141114.65335 – reference: RudolphGLocal convergence rates of simple evolutionary algorithms with Cauchy mutationsIEEE Trans Evol Comput199714249258119499710.1109/4235.687885 – reference: KarthikeyanSAsokanPNickolasSPageTA hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problemsInt J Bio-Inspir Comput20157638640110.1504/IJBIC.2015.073165 – reference: Feng YH, Wang GG, Deb S et al (2015) Solving 0–1 Knapsack problem by a novel binary monarch butterfly optimization. Neural Comput Appl 1–16. doi:10.1007/s00521-015-2135-1 – reference: AlatasBAkinEOzerABChaos embedded particle swarm optimization algorithmsChaos Solit Fract200940417151734253125910.1016/j.chaos.2007.09.063 – reference: HeYCWangXZKouYZA binary differential evolution algorithm with hybrid encodingJ Comput Res Dev20074491476148410.1360/crad20070905 – reference: WangGGDebSGandomiAHChaotic cuckoo searchSoft Comput20155114 – volume-title: On the partition of numbers. Introduction to analysis of the infinite year: 1988 ident: 211_CR23 – ident: 211_CR6 doi: 10.1109/ISCBI.2015.8 – volume: 24 start-page: 853 issue: 3–4 year: 2014 ident: 211_CR7 publication-title: Neural Comput Appl doi: 10.1007/s00521-012-1304-8 – volume: 40 start-page: 1715 issue: 4 year: 2009 ident: 211_CR19 publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2007.09.063 – volume: 128 start-page: 363 year: 2014 ident: 211_CR8 publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.08.031 – volume: 34 start-page: 1366 issue: 4 year: 2007 ident: 211_CR17 publication-title: Chaos Solit Fract doi: 10.1016/j.chaos.2006.04.057 – ident: 211_CR2 doi: 10.1109/NABIC.2009.5393690 – ident: 211_CR13 doi: 10.1007/s00521-015-2135-1 – volume: 216 start-page: 2687 year: 2010 ident: 211_CR18 publication-title: Appl Math Comput doi: 10.1016/j.amc.2010.03.114 – volume-title: Nature-inspired metaheuristic algorithms year: 2010 ident: 211_CR1 – ident: 211_CR27 doi: 10.1109/ICEC.1995.489178 – volume: 7 start-page: 135 issue: 2 year: 2015 ident: 211_CR32 publication-title: Memetic Comput doi: 10.1007/s12293-015-0162-1 – volume: 64 start-page: 821 year: 1990 ident: 211_CR16 publication-title: Phys Rev Lett doi: 10.1103/PhysRevLett.64.821 – volume: 44 start-page: 1476 issue: 9 year: 2007 ident: 211_CR28 publication-title: J Comput Res Dev doi: 10.1360/crad20070905 – volume: 274 start-page: 17 year: 2014 ident: 211_CR22 publication-title: Inf Sci doi: 10.1016/j.ins.2014.02.123 – volume: 32 start-page: 1011 issue: 4 year: 2015 ident: 211_CR29 publication-title: Appl Res Comput – ident: 211_CR31 doi: 10.1007/s10878-014-9717-1 – volume: 1 start-page: 249 issue: 4 year: 1997 ident: 211_CR26 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.687885 – ident: 211_CR11 doi: 10.1007/s12293-016-0180-7 – volume: 187 start-page: 1076 year: 2007 ident: 211_CR24 publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.09.087 – volume: 5 start-page: 1 year: 2015 ident: 211_CR21 publication-title: Soft Comput – volume-title: Knapsack problems: algorithms and computer implementations year: 1990 ident: 211_CR30 – ident: 211_CR12 doi: 10.1007/s00521-015-1923-y – volume: 5 start-page: 133 issue: 2 year: 2013 ident: 211_CR9 publication-title: Int J Bio-Inspir Comput doi: 10.1504/IJBIC.2013.053507 – volume: 1 start-page: 1445 issue: 1 year: 2010 ident: 211_CR20 publication-title: Proc Comput Sci doi: 10.1016/j.procs.2010.04.160 – volume: 38 start-page: 129 issue: 2 year: 2006 ident: 211_CR10 publication-title: Eng Optim doi: 10.1080/03052150500384759 – volume: 34 start-page: 1905 issue: 3 year: 2008 ident: 211_CR25 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2007.02.002 – ident: 211_CR5 doi: 10.1504/IJBIC.2016.081335 – volume: 39 start-page: 459 issue: 3 year: 2007 ident: 211_CR14 publication-title: J Glob Optim doi: 10.1007/s10898-007-9149-x – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 211_CR15 publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – ident: 211_CR4 doi: 10.1504/IJBIC.2015.10004283 – volume: 7 start-page: 386 issue: 6 year: 2015 ident: 211_CR3 publication-title: Int J Bio-Inspir Comput doi: 10.1504/IJBIC.2015.073165 |
SSID | ssj0000327841 |
Score | 2.3726678 |
Snippet | Recently, inspired by the migration behavior of monarch butterflies in nature, a metaheuristic optimization algorithm, called monarch butterfly optimization... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 135 |
SubjectTerms | Algorithms Applications of Mathematics Artificial Intelligence Bioinformatics Butterflies & moths Chaos theory Complex Systems Control Engineering Gaussian process Global optimization Heuristic methods Mathematical and Computational Engineering Mechatronics Migration Optimization algorithms Regular Research Paper Robotics |
Title | Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation |
URI | https://link.springer.com/article/10.1007/s12293-016-0211-4 https://www.proquest.com/docview/2048690212 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RssBAeYpCqTwwgVLFceIkY4WACgQLrQRT5ASbR9OmatKhTPwH_iG_BDtxCCBA6hzHSny-8-d7fAdw6FBOPIEtQ1AmDNsVWOqcaxkSrDOTCNNhuWvg6pr2BvbFrXOr67jTMtu9DEnmlroqdrMslWuGVdIslhefGiw72PO9Oix3z-8uK9eKSfJomrpqedQxfGmBy3jmb_N8P5EqmPkjMpofOGcN6JefWuSZDDuzLOxELz9YHBf8l3VY0wAUdYsdswFLfLwJjbK5A9K6vgmrX5gKt-D5JomV6wGZ769vGA3HbJKyaIh0P5oUhXMUPbJETorkxlbag8KiB3Y8R4m0SyNd8IlY_JBMn7LHEVI-YHTOZqkq5ESjWZEVsA2Ds9P-Sc_QbRqMiGCaGR5jXJEZCGJ6wvfvsetKKyBCedIRi9vyghP6AkckcjFmEp84EjTYOc2QS4WNOdmB-jgZ811APHJMkwmJAl1i-4Qzx5WyVBQ499TyGG2CWYoqiDSHuWqlEQcV-7Ja2UDlramVDewmHH2-MikIPP4b3CrlH2hdTgNFbUx9RYXfhONSnNXjPyfbW2j0PqxILOYVWWgtqGfTGT-QeCcL23p_t6E2sLofRa_06A |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHtSDD9SIou7Bk6ZJt9vnkRgRFbgICbdmW3dFKZRQOHDzP_gP_SXO9gFq1MRzt3vY2dn55vUNwLllC-ZKamjS5lIzHUlR5xxDQ7DOdSZ1i6ehgVbbbnTNu57Vy_u4k6LavUhJpi_1stnNMFStGVVFsxQdn1VYQyzgqrEFXaO2CKzoLM2lKUfLtS3Nw_e3yGb-tMtXe7QEmd_yoqm5qe_AVo4TSS0T7C6siFEZtosZDCRXyTJsfiIU3IOXhzhSEQKiv7--UTIY8XHCwwHJx8YkJJiTsM9j3JTg_VOXnATZqOpoTmJ8PoZ5Xybh0VM8eZ72h0SFaskNnyWq35IMZ1nyfh-69evOVUPLpyloIaP2VHM5F4pzQDLdlZ73SB0HlVUGaJCYIUz0QwJP0pCFDqUcYYSFtt1M2YAcW5pUsAMojeKROAQiQkvXuUSw5jDTY4JbDh66Yqp5tA2X2xXQizP1w5xqXE28iPwlSbISg6_Ky5QYfLMCF4tfxhnPxl-Lq4Wg_FzlEl8xEKOrj6a4ApeF8Jaff93s6F-rz2C90Wk1_eZt-_4YNhA-uVnhWBVK08lMnCBEmQan6ZX8AOJq2iU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CIiEYuBGFAh6YQBFxnHOsgHIjJKjEFjmpTYE0qUg6dOM_8A_5JTznIIAAiTmOB7_7-h7AjmUL5kpqaNLmUjMdSVHmHENDZ53rTOoWz1MDl1f2Sdc8u7Puyj2nadXtXpUki5kGhdIUZ_vDntyvB98MQ_WdUdVASzEImoQp1MZUMXrXaH8kWXSW19VU0OXaluahLq4qmz_d8tU21Q7ntxppbno6CzBX-oykXRB5ESZEvATz1T4GUornEsx-AhdchsebJFLZAqK_vbxS8hTzYcrDJ1KukElJMCZhnyd4KUFeVAxPgmJtdTQmCaqSQTmjSXh0nzw_ZP0BUWlbcsxHqZq9JINRUchfgW7n6PbgRCs3K2gho3amuZwLhT8gme5Kz-tRx0HBlQEaJ2YIE2OSwJM0ZKFDKUeXwkI7b-bIQI4tTSrYKjTiJBZrQERo6TqX6Lg5zPSY4JaDj65Qa3q24XK7CXr1pn5Ywo6r7ReRXwMmKzL4qtVMkcE3m7D78cuwwNz463CrIpRfil_qKzRiDPvRLDdhryJe_fnXy9b_dXobpq8PO_7F6dX5BsygJ-UWPWQtaGTPI7GJ3koWbOUc-Q6sqt5h |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+0%E2%80%931+knapsack+problems+by+chaotic+monarch+butterfly+optimization+algorithm+with+Gaussian+mutation&rft.jtitle=Memetic+computing&rft.au=Feng%2C+Yanhong&rft.au=Yang%2C+Juan&rft.au=Wu%2C+Congcong&rft.au=Lu%2C+Mei&rft.date=2018-06-01&rft.issn=1865-9284&rft.eissn=1865-9292&rft.volume=10&rft.issue=2&rft.spage=135&rft.epage=150&rft_id=info:doi/10.1007%2Fs12293-016-0211-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12293_016_0211_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-9284&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-9284&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-9284&client=summon |