Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation

Recently, inspired by the migration behavior of monarch butterflies in nature, a metaheuristic optimization algorithm, called monarch butterfly optimization (MBO), was proposed. In the present study, a novel chaotic MBO algorithm (CMBO) is proposed, in which chaos theory is introduced in order to en...

Full description

Saved in:
Bibliographic Details
Published inMemetic computing Vol. 10; no. 2; pp. 135 - 150
Main Authors Feng, Yanhong, Yang, Juan, Wu, Congcong, Lu, Mei, Zhao, Xiang-Jun
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2018
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1865-9284
1865-9292
DOI10.1007/s12293-016-0211-4

Cover

Abstract Recently, inspired by the migration behavior of monarch butterflies in nature, a metaheuristic optimization algorithm, called monarch butterfly optimization (MBO), was proposed. In the present study, a novel chaotic MBO algorithm (CMBO) is proposed, in which chaos theory is introduced in order to enhance its global optimization ability. Here, 12 one-dimensional classical chaotic maps are used to tune two main migration processes of monarch butterflies. Meanwhile, applying Gaussian mutation operator to some worst individuals can effectively prevent premature convergence of the optimization process. The performance of CMBO is verified and analyzed by three groups of large-scale 0–1 knapsack problems instances. The results show that the introduction of appropriate chaotic map and Gaussian perturbation can significantly improve the solution quality together with the overall performance of the proposed CMBO algorithm. The proposed CMBO can outperform the standard MBO and other eight state-of-the-art canonical algorithms.
AbstractList Recently, inspired by the migration behavior of monarch butterflies in nature, a metaheuristic optimization algorithm, called monarch butterfly optimization (MBO), was proposed. In the present study, a novel chaotic MBO algorithm (CMBO) is proposed, in which chaos theory is introduced in order to enhance its global optimization ability. Here, 12 one-dimensional classical chaotic maps are used to tune two main migration processes of monarch butterflies. Meanwhile, applying Gaussian mutation operator to some worst individuals can effectively prevent premature convergence of the optimization process. The performance of CMBO is verified and analyzed by three groups of large-scale 0–1 knapsack problems instances. The results show that the introduction of appropriate chaotic map and Gaussian perturbation can significantly improve the solution quality together with the overall performance of the proposed CMBO algorithm. The proposed CMBO can outperform the standard MBO and other eight state-of-the-art canonical algorithms.
Author Yang, Juan
Lu, Mei
Feng, Yanhong
Zhao, Xiang-Jun
Wu, Congcong
Author_xml – sequence: 1
  givenname: Yanhong
  surname: Feng
  fullname: Feng, Yanhong
  email: qinfyh@163.com
  organization: School of Information Engineering, Hebei GEO University
– sequence: 2
  givenname: Juan
  surname: Yang
  fullname: Yang, Juan
  organization: School of Mathematical Sciences, Kaili University
– sequence: 3
  givenname: Congcong
  surname: Wu
  fullname: Wu, Congcong
  organization: School of Information Engineering, Hebei GEO University
– sequence: 4
  givenname: Mei
  surname: Lu
  fullname: Lu, Mei
  organization: School of Computer Science and Technology, Jiangsu Normal University
– sequence: 5
  givenname: Xiang-Jun
  surname: Zhao
  fullname: Zhao, Xiang-Jun
  organization: School of Computer Science and Technology, Jiangsu Normal University
BookMark eNp9kM9OxCAQh4nRRF19AG8knqsMZUs5GuO_xMSDeiYU6S5rCytQzXryHXxDn0S0RhMT5QBz-H3MzLeN1p13BqE9IAdACD-MQKkoCwJVQShAwdbQFtTVtBBU0PXvumabaDfGBcmnpLxmsIUW1757tG6GydvLK-B7p5ZR6Xu8DL7pTB9xs8J6rnyyGvfeqaDnuBlSMqHtVtgvk-3ts0rWO6y6mQ82zXv8lG98poYYrXK4H9JnYAdttKqLZvfrnaDb05Ob4_Pi8urs4vjostAlVKmolTIghGhLUrdC3AHnvOZtw_KK1LCK0Ua0oEvNAdSUiCllwLIFwnnVMjDlBO2P_-YdHgYTk1z4IbjcUlLC6kpkRzSn-JjSwccYTCu1HedMQdlOApEfbuXoVma38sOtZJmEX-Qy2F6F1b8MHZmYs25mws9Mf0Pvl4iONA
CitedBy_id crossref_primary_10_1016_j_eswa_2020_114418
crossref_primary_10_3390_a10030107
crossref_primary_10_1007_s00521_016_2795_5
crossref_primary_10_1007_s10489_020_01652_0
crossref_primary_10_3390_e20040239
crossref_primary_10_1007_s00521_020_05210_0
crossref_primary_10_1007_s00521_021_06448_y
crossref_primary_10_1080_23311916_2017_1292598
crossref_primary_10_1007_s11047_020_09794_3
crossref_primary_10_1142_S1793830921500762
crossref_primary_10_1007_s00500_021_05591_x
crossref_primary_10_1007_s00500_020_05381_x
crossref_primary_10_1016_j_cie_2019_106049
crossref_primary_10_1007_s13042_019_01047_9
crossref_primary_10_3390_mca23040055
crossref_primary_10_1007_s11831_024_10090_x
crossref_primary_10_1007_s00521_018_3375_7
crossref_primary_10_1007_s12293_019_00288_z
crossref_primary_10_1007_s12652_017_0661_7
crossref_primary_10_3390_a17110478
crossref_primary_10_3390_math7050395
crossref_primary_10_1007_s00366_020_01240_3
crossref_primary_10_1016_j_ins_2020_07_013
crossref_primary_10_1515_geo_2019_0031
crossref_primary_10_3390_a11050071
crossref_primary_10_1007_s11356_023_26361_2
crossref_primary_10_1002_mma_6904
crossref_primary_10_1016_j_asoc_2019_105800
crossref_primary_10_1007_s41870_024_02163_8
crossref_primary_10_1007_s10489_020_01981_0
crossref_primary_10_1155_2022_8440165
crossref_primary_10_3233_JIFS_222455
crossref_primary_10_1109_TEVC_2017_2682274
crossref_primary_10_1155_2023_5912191
crossref_primary_10_1016_j_eswa_2018_08_051
crossref_primary_10_1007_s00366_020_00951_x
crossref_primary_10_1088_1742_6596_1879_2_022097
crossref_primary_10_1007_s10479_024_06310_z
crossref_primary_10_1016_j_cie_2020_106949
crossref_primary_10_1016_j_cie_2020_106946
crossref_primary_10_1007_s11063_023_11171_x
crossref_primary_10_1016_j_eswa_2023_120568
crossref_primary_10_3390_mca23030040
crossref_primary_10_1155_2019_4182148
crossref_primary_10_1007_s00500_021_06522_6
crossref_primary_10_1109_ACCESS_2022_3183131
crossref_primary_10_3390_math11081811
crossref_primary_10_1007_s00366_021_01470_z
crossref_primary_10_1080_0305215X_2022_2051701
crossref_primary_10_1016_j_jksuci_2024_102093
crossref_primary_10_1007_s00521_023_08358_7
crossref_primary_10_1142_S1469026818500220
crossref_primary_10_1109_ACCESS_2018_2872533
crossref_primary_10_32604_iasc_2022_019473
crossref_primary_10_1007_s00521_021_06654_8
crossref_primary_10_1016_j_aej_2022_12_025
crossref_primary_10_1007_s00521_017_2903_1
crossref_primary_10_1007_s11277_024_11143_x
crossref_primary_10_1007_s12530_019_09305_5
crossref_primary_10_1080_21642583_2019_1630687
crossref_primary_10_3390_math9182335
crossref_primary_10_1155_2022_3835319
Cites_doi 10.1109/ISCBI.2015.8
10.1007/s00521-012-1304-8
10.1016/j.chaos.2007.09.063
10.1016/j.neucom.2013.08.031
10.1016/j.chaos.2006.04.057
10.1109/NABIC.2009.5393690
10.1007/s00521-015-2135-1
10.1016/j.amc.2010.03.114
10.1109/ICEC.1995.489178
10.1007/s12293-015-0162-1
10.1103/PhysRevLett.64.821
10.1360/crad20070905
10.1016/j.ins.2014.02.123
10.1007/s10878-014-9717-1
10.1109/4235.687885
10.1007/s12293-016-0180-7
10.1016/j.amc.2006.09.087
10.1007/s00521-015-1923-y
10.1504/IJBIC.2013.053507
10.1016/j.procs.2010.04.160
10.1080/03052150500384759
10.1016/j.eswa.2007.02.002
10.1504/IJBIC.2016.081335
10.1007/s10898-007-9149-x
10.1023/A:1008202821328
10.1504/IJBIC.2015.10004283
10.1504/IJBIC.2015.073165
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Nature B.V. 2018
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Nature B.V. 2018
DBID AAYXX
CITATION
DOI 10.1007/s12293-016-0211-4
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1865-9292
EndPage 150
ExternalDocumentID 10_1007_s12293_016_0211_4
GroupedDBID -5B
-5G
-BR
-EM
-~C
06D
0R~
0VY
1N0
203
29M
29~
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
40E
67Z
6NX
875
8TC
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
AUKKA
AXYYD
AYJHY
BA0
BGNMA
CAG
COF
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ6
GQ7
GQ8
GXS
H13
HF~
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P2P
P9P
PT4
QOS
R89
RIG
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
Z83
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c316t-8aae1999f308f99d177787fb42932e4642b9f1c3c711a509524140070776f41e3
IEDL.DBID AGYKE
ISSN 1865-9284
IngestDate Fri Jul 25 04:29:32 EDT 2025
Tue Jul 01 02:52:11 EDT 2025
Thu Apr 24 22:56:26 EDT 2025
Fri Feb 21 02:35:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Monarch butterfly optimization
0–1 Knapsack problems
Gaussian mutation operator
Chaotic maps
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-8aae1999f308f99d177787fb42932e4642b9f1c3c711a509524140070776f41e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2048690212
PQPubID 2044125
PageCount 16
ParticipantIDs proquest_journals_2048690212
crossref_citationtrail_10_1007_s12293_016_0211_4
crossref_primary_10_1007_s12293_016_0211_4
springer_journals_10_1007_s12293_016_0211_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-01
PublicationDateYYYYMMDD 2018-06-01
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Memetic computing
PublicationTitleAbbrev Memetic Comp
PublicationYear 2018
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References WangGGGandomiAHAlaviAHStud krill herd algorithmNeurocomputing201412836337010.1016/j.neucom.2013.08.031
Tawhid MA, Ali AF (2016) A simplex social spider algorithm for solving integer programming and minimax problems. Mem Comput 1–20. doi:10.1007/s12293-016-0180-7
Gharooni-FardGMoein-DarbariFDeldariHMorvaridiAScheduling of scientific workflows using a chaos-genetic algorithmProc Comput Sci2010111445145410.1016/j.procs.2010.04.160
RudolphGLocal convergence rates of simple evolutionary algorithms with Cauchy mutationsIEEE Trans Evol Comput199714249258119499710.1109/4235.687885
WangGGGuoLHWangHQIncorporating mutation scheme into krill herd algorithm for global numerical optimizationNeural Comput Appl2014243–485387110.1007/s00521-012-1304-8
MathewsGBOn the partition of numbers. Introduction to analysis of the infinite1988New YorkSpringer
WangGGGuoLHGandomiAHChaotic krill herd algorithmInf Sci20142741734319802610.1016/j.ins.2014.02.123
Wang GG, Deb S, Coelho LDS (2015) Elephant herding optimization. In: 2015 3rd International symposium on computational and business intelligence (ISCBI 2015), Bali, Indonesia, pp 1–5
StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim1997114341359147955310.1023/A:1008202821328
MartelloSTothPKnapsack problems: algorithms and computer implementations1990AmsterdamWiley0708.68002
He YC, Zhang XL, Li WB et al (2016) Algorithms for randomized time-varying knapsack problems. J Comb Optim 31(1):95–117
KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim2007393459471234617810.1007/s10898-007-9149-x
Hinterding R (1995) Gaussian mutation and self-adaption for numeric genetic algorithms. In: Evolutionary computation, IEEE international conference on
Feng YH, Wang GG, Deb S et al (2015) Solving 0–1 Knapsack problem by a novel binary monarch butterfly optimization. Neural Comput Appl 1–16. doi:10.1007/s00521-015-2135-1
Wang GG, Deb S, Cui ZH (2015) Monarch butterfly optimization. Neural Comput Appl 1–20. doi:10.1007/s00521-015-1923-y
EusuffMLanseyKPashaFShuffled frog-leaping algorithm: a memetic metaheuristic for discrete optimizationEng Optim2006382129154220478310.1080/03052150500384759
YangXSNature-inspired metaheuristic algorithms2010FromeLuniver Press
PatvardhanCBansalSSrivastavAQuantum-inspired evolutionary algorithm for difficult knapsack problemsMemetic Comput20157213515510.1007/s12293-015-0162-1
HeYCSongJMZhangJMGouHYResearch on genetic algorithms for solving static and dynamic knapsack problemsAppl Res Comput201532410111015
Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceeding of world congress on nature and biologically inspired computing (NaBIC 2009), IEEE Publications, pp 210–214
Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspir Comput (accepted)
WangGGDebSGandomiAHChaotic cuckoo searchSoft Comput20155114
CoelhoLDSMarianiVCUse of chaotic sequences in a biologically inspired algorithm for engineering design optimizationExpert Syst Appl20083431905191310.1016/j.eswa.2007.02.002
AlatasBChaotic harmony search algorithmsAppl Math Comput2010216268726991193.65094
AlatasBAkinEOzerABChaos embedded particle swarm optimization algorithmsChaos Solit Fract200940417151734253125910.1016/j.chaos.2007.09.063
Wang GG, Deb S, Gao XZ, Coelho LDS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio-Inspir Comput (accepted)
YangDXLiGChengGDOn the efficiency of chaos optimization algorithms for global optimizationChaos Solit Fract200734413661375228678010.1016/j.chaos.2006.04.057
TavazoeiMSHaeriMComparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithmsAppl Math Comput20071871076108523231141114.65335
HeYCWangXZKouYZA binary differential evolution algorithm with hybrid encodingJ Comput Res Dev20074491476148410.1360/crad20070905
CuiZHFanSZengJArtificial plant optimization algorithm with three-period photosynthesisInt J Bio-Inspir Comput20135213313910.1504/IJBIC.2013.053507
PecoraLCarrollTSynchronization in chaotic systemPhys Rev Lett199064821103826310.1103/PhysRevLett.64.821
KarthikeyanSAsokanPNickolasSPageTA hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problemsInt J Bio-Inspir Comput20157638640110.1504/IJBIC.2015.073165
S Karthikeyan (211_CR3) 2015; 7
M Eusuff (211_CR10) 2006; 38
211_CR27
211_CR2
ZH Cui (211_CR9) 2013; 5
211_CR6
G Rudolph (211_CR26) 1997; 1
211_CR5
211_CR4
R Storn (211_CR15) 1997; 11
G Gharooni-Fard (211_CR20) 2010; 1
B Alatas (211_CR19) 2009; 40
YC He (211_CR28) 2007; 44
YC He (211_CR29) 2015; 32
LDS Coelho (211_CR25) 2008; 34
MS Tavazoei (211_CR24) 2007; 187
S Martello (211_CR30) 1990
B Alatas (211_CR18) 2010; 216
211_CR31
211_CR13
211_CR12
211_CR11
DX Yang (211_CR17) 2007; 34
C Patvardhan (211_CR32) 2015; 7
XS Yang (211_CR1) 2010
GB Mathews (211_CR23) 1988
L Pecora (211_CR16) 1990; 64
GG Wang (211_CR22) 2014; 274
GG Wang (211_CR7) 2014; 24
D Karaboga (211_CR14) 2007; 39
GG Wang (211_CR8) 2014; 128
GG Wang (211_CR21) 2015; 5
References_xml – reference: WangGGGuoLHGandomiAHChaotic krill herd algorithmInf Sci20142741734319802610.1016/j.ins.2014.02.123
– reference: MartelloSTothPKnapsack problems: algorithms and computer implementations1990AmsterdamWiley0708.68002
– reference: YangDXLiGChengGDOn the efficiency of chaos optimization algorithms for global optimizationChaos Solit Fract200734413661375228678010.1016/j.chaos.2006.04.057
– reference: WangGGGandomiAHAlaviAHStud krill herd algorithmNeurocomputing201412836337010.1016/j.neucom.2013.08.031
– reference: MathewsGBOn the partition of numbers. Introduction to analysis of the infinite1988New YorkSpringer
– reference: YangXSNature-inspired metaheuristic algorithms2010FromeLuniver Press
– reference: KarabogaDBasturkBA powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithmJ Glob Optim2007393459471234617810.1007/s10898-007-9149-x
– reference: Hinterding R (1995) Gaussian mutation and self-adaption for numeric genetic algorithms. In: Evolutionary computation, IEEE international conference on
– reference: PecoraLCarrollTSynchronization in chaotic systemPhys Rev Lett199064821103826310.1103/PhysRevLett.64.821
– reference: Tawhid MA, Ali AF (2016) A simplex social spider algorithm for solving integer programming and minimax problems. Mem Comput 1–20. doi:10.1007/s12293-016-0180-7
– reference: CoelhoLDSMarianiVCUse of chaotic sequences in a biologically inspired algorithm for engineering design optimizationExpert Syst Appl20083431905191310.1016/j.eswa.2007.02.002
– reference: EusuffMLanseyKPashaFShuffled frog-leaping algorithm: a memetic metaheuristic for discrete optimizationEng Optim2006382129154220478310.1080/03052150500384759
– reference: HeYCSongJMZhangJMGouHYResearch on genetic algorithms for solving static and dynamic knapsack problemsAppl Res Comput201532410111015
– reference: Wang GG, Deb S, Coelho LDS (2015) Elephant herding optimization. In: 2015 3rd International symposium on computational and business intelligence (ISCBI 2015), Bali, Indonesia, pp 1–5
– reference: StornRPriceKDifferential evolution-a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim1997114341359147955310.1023/A:1008202821328
– reference: WangGGGuoLHWangHQIncorporating mutation scheme into krill herd algorithm for global numerical optimizationNeural Comput Appl2014243–485387110.1007/s00521-012-1304-8
– reference: Wang GG, Deb S, Cui ZH (2015) Monarch butterfly optimization. Neural Comput Appl 1–20. doi:10.1007/s00521-015-1923-y
– reference: Wang GG, Deb S, Gao XZ, Coelho LDS (2016) A new metaheuristic optimization algorithm motivated by elephant herding behavior. Int J Bio-Inspir Comput (accepted)
– reference: PatvardhanCBansalSSrivastavAQuantum-inspired evolutionary algorithm for difficult knapsack problemsMemetic Comput20157213515510.1007/s12293-015-0162-1
– reference: Yang XS, Deb S (2009) Cuckoo search via Lévy flights. In: Proceeding of world congress on nature and biologically inspired computing (NaBIC 2009), IEEE Publications, pp 210–214
– reference: Wang GG, Deb S, Coelho LDS (2015) Earthworm optimization algorithm: a bio-inspired metaheuristic algorithm for global optimization problems. Int J Bio-Inspir Comput (accepted)
– reference: Gharooni-FardGMoein-DarbariFDeldariHMorvaridiAScheduling of scientific workflows using a chaos-genetic algorithmProc Comput Sci2010111445145410.1016/j.procs.2010.04.160
– reference: AlatasBChaotic harmony search algorithmsAppl Math Comput2010216268726991193.65094
– reference: He YC, Zhang XL, Li WB et al (2016) Algorithms for randomized time-varying knapsack problems. J Comb Optim 31(1):95–117
– reference: CuiZHFanSZengJArtificial plant optimization algorithm with three-period photosynthesisInt J Bio-Inspir Comput20135213313910.1504/IJBIC.2013.053507
– reference: TavazoeiMSHaeriMComparison of different one-dimensional maps as chaotic search pattern in chaos optimization algorithmsAppl Math Comput20071871076108523231141114.65335
– reference: RudolphGLocal convergence rates of simple evolutionary algorithms with Cauchy mutationsIEEE Trans Evol Comput199714249258119499710.1109/4235.687885
– reference: KarthikeyanSAsokanPNickolasSPageTA hybrid discrete firefly algorithm for solving multi-objective flexible job shop scheduling problemsInt J Bio-Inspir Comput20157638640110.1504/IJBIC.2015.073165
– reference: Feng YH, Wang GG, Deb S et al (2015) Solving 0–1 Knapsack problem by a novel binary monarch butterfly optimization. Neural Comput Appl 1–16. doi:10.1007/s00521-015-2135-1
– reference: AlatasBAkinEOzerABChaos embedded particle swarm optimization algorithmsChaos Solit Fract200940417151734253125910.1016/j.chaos.2007.09.063
– reference: HeYCWangXZKouYZA binary differential evolution algorithm with hybrid encodingJ Comput Res Dev20074491476148410.1360/crad20070905
– reference: WangGGDebSGandomiAHChaotic cuckoo searchSoft Comput20155114
– volume-title: On the partition of numbers. Introduction to analysis of the infinite
  year: 1988
  ident: 211_CR23
– ident: 211_CR6
  doi: 10.1109/ISCBI.2015.8
– volume: 24
  start-page: 853
  issue: 3–4
  year: 2014
  ident: 211_CR7
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-012-1304-8
– volume: 40
  start-page: 1715
  issue: 4
  year: 2009
  ident: 211_CR19
  publication-title: Chaos Solit Fract
  doi: 10.1016/j.chaos.2007.09.063
– volume: 128
  start-page: 363
  year: 2014
  ident: 211_CR8
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.08.031
– volume: 34
  start-page: 1366
  issue: 4
  year: 2007
  ident: 211_CR17
  publication-title: Chaos Solit Fract
  doi: 10.1016/j.chaos.2006.04.057
– ident: 211_CR2
  doi: 10.1109/NABIC.2009.5393690
– ident: 211_CR13
  doi: 10.1007/s00521-015-2135-1
– volume: 216
  start-page: 2687
  year: 2010
  ident: 211_CR18
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2010.03.114
– volume-title: Nature-inspired metaheuristic algorithms
  year: 2010
  ident: 211_CR1
– ident: 211_CR27
  doi: 10.1109/ICEC.1995.489178
– volume: 7
  start-page: 135
  issue: 2
  year: 2015
  ident: 211_CR32
  publication-title: Memetic Comput
  doi: 10.1007/s12293-015-0162-1
– volume: 64
  start-page: 821
  year: 1990
  ident: 211_CR16
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.64.821
– volume: 44
  start-page: 1476
  issue: 9
  year: 2007
  ident: 211_CR28
  publication-title: J Comput Res Dev
  doi: 10.1360/crad20070905
– volume: 274
  start-page: 17
  year: 2014
  ident: 211_CR22
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.02.123
– volume: 32
  start-page: 1011
  issue: 4
  year: 2015
  ident: 211_CR29
  publication-title: Appl Res Comput
– ident: 211_CR31
  doi: 10.1007/s10878-014-9717-1
– volume: 1
  start-page: 249
  issue: 4
  year: 1997
  ident: 211_CR26
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.687885
– ident: 211_CR11
  doi: 10.1007/s12293-016-0180-7
– volume: 187
  start-page: 1076
  year: 2007
  ident: 211_CR24
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.09.087
– volume: 5
  start-page: 1
  year: 2015
  ident: 211_CR21
  publication-title: Soft Comput
– volume-title: Knapsack problems: algorithms and computer implementations
  year: 1990
  ident: 211_CR30
– ident: 211_CR12
  doi: 10.1007/s00521-015-1923-y
– volume: 5
  start-page: 133
  issue: 2
  year: 2013
  ident: 211_CR9
  publication-title: Int J Bio-Inspir Comput
  doi: 10.1504/IJBIC.2013.053507
– volume: 1
  start-page: 1445
  issue: 1
  year: 2010
  ident: 211_CR20
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2010.04.160
– volume: 38
  start-page: 129
  issue: 2
  year: 2006
  ident: 211_CR10
  publication-title: Eng Optim
  doi: 10.1080/03052150500384759
– volume: 34
  start-page: 1905
  issue: 3
  year: 2008
  ident: 211_CR25
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2007.02.002
– ident: 211_CR5
  doi: 10.1504/IJBIC.2016.081335
– volume: 39
  start-page: 459
  issue: 3
  year: 2007
  ident: 211_CR14
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 211_CR15
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– ident: 211_CR4
  doi: 10.1504/IJBIC.2015.10004283
– volume: 7
  start-page: 386
  issue: 6
  year: 2015
  ident: 211_CR3
  publication-title: Int J Bio-Inspir Comput
  doi: 10.1504/IJBIC.2015.073165
SSID ssj0000327841
Score 2.3726678
Snippet Recently, inspired by the migration behavior of monarch butterflies in nature, a metaheuristic optimization algorithm, called monarch butterfly optimization...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 135
SubjectTerms Algorithms
Applications of Mathematics
Artificial Intelligence
Bioinformatics
Butterflies & moths
Chaos theory
Complex Systems
Control
Engineering
Gaussian process
Global optimization
Heuristic methods
Mathematical and Computational Engineering
Mechatronics
Migration
Optimization algorithms
Regular Research Paper
Robotics
Title Solving 0–1 knapsack problems by chaotic monarch butterfly optimization algorithm with Gaussian mutation
URI https://link.springer.com/article/10.1007/s12293-016-0211-4
https://www.proquest.com/docview/2048690212
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED7RssBAeYpCqTwwgVLFceIkY4WACgQLrQRT5ASbR9OmatKhTPwH_iG_BDtxCCBA6hzHSny-8-d7fAdw6FBOPIEtQ1AmDNsVWOqcaxkSrDOTCNNhuWvg6pr2BvbFrXOr67jTMtu9DEnmlroqdrMslWuGVdIslhefGiw72PO9Oix3z-8uK9eKSfJomrpqedQxfGmBy3jmb_N8P5EqmPkjMpofOGcN6JefWuSZDDuzLOxELz9YHBf8l3VY0wAUdYsdswFLfLwJjbK5A9K6vgmrX5gKt-D5JomV6wGZ769vGA3HbJKyaIh0P5oUhXMUPbJETorkxlbag8KiB3Y8R4m0SyNd8IlY_JBMn7LHEVI-YHTOZqkq5ESjWZEVsA2Ds9P-Sc_QbRqMiGCaGR5jXJEZCGJ6wvfvsetKKyBCedIRi9vyghP6AkckcjFmEp84EjTYOc2QS4WNOdmB-jgZ811APHJMkwmJAl1i-4Qzx5WyVBQ499TyGG2CWYoqiDSHuWqlEQcV-7Ja2UDlramVDewmHH2-MikIPP4b3CrlH2hdTgNFbUx9RYXfhONSnNXjPyfbW2j0PqxILOYVWWgtqGfTGT-QeCcL23p_t6E2sLofRa_06A
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8JAEJ4oHtSDD9SIou7Bk6ZJt9vnkRgRFbgICbdmW3dFKZRQOHDzP_gP_SXO9gFq1MRzt3vY2dn55vUNwLllC-ZKamjS5lIzHUlR5xxDQ7DOdSZ1i6ehgVbbbnTNu57Vy_u4k6LavUhJpi_1stnNMFStGVVFsxQdn1VYQyzgqrEFXaO2CKzoLM2lKUfLtS3Nw_e3yGb-tMtXe7QEmd_yoqm5qe_AVo4TSS0T7C6siFEZtosZDCRXyTJsfiIU3IOXhzhSEQKiv7--UTIY8XHCwwHJx8YkJJiTsM9j3JTg_VOXnATZqOpoTmJ8PoZ5Xybh0VM8eZ72h0SFaskNnyWq35IMZ1nyfh-69evOVUPLpyloIaP2VHM5F4pzQDLdlZ73SB0HlVUGaJCYIUz0QwJP0pCFDqUcYYSFtt1M2YAcW5pUsAMojeKROAQiQkvXuUSw5jDTY4JbDh66Yqp5tA2X2xXQizP1w5xqXE28iPwlSbISg6_Ky5QYfLMCF4tfxhnPxl-Lq4Wg_FzlEl8xEKOrj6a4ApeF8Jaff93s6F-rz2C90Wk1_eZt-_4YNhA-uVnhWBVK08lMnCBEmQan6ZX8AOJq2iU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwFH6CIiEYuBGFAh6YQBFxnHOsgHIjJKjEFjmpTYE0qUg6dOM_8A_5JTznIIAAiTmOB7_7-h7AjmUL5kpqaNLmUjMdSVHmHENDZ53rTOoWz1MDl1f2Sdc8u7Puyj2nadXtXpUki5kGhdIUZ_vDntyvB98MQ_WdUdVASzEImoQp1MZUMXrXaH8kWXSW19VU0OXaluahLq4qmz_d8tU21Q7ntxppbno6CzBX-oykXRB5ESZEvATz1T4GUornEsx-AhdchsebJFLZAqK_vbxS8hTzYcrDJ1KukElJMCZhnyd4KUFeVAxPgmJtdTQmCaqSQTmjSXh0nzw_ZP0BUWlbcsxHqZq9JINRUchfgW7n6PbgRCs3K2gho3amuZwLhT8gme5Kz-tRx0HBlQEaJ2YIE2OSwJM0ZKFDKUeXwkI7b-bIQI4tTSrYKjTiJBZrQERo6TqX6Lg5zPSY4JaDj65Qa3q24XK7CXr1pn5Ywo6r7ReRXwMmKzL4qtVMkcE3m7D78cuwwNz463CrIpRfil_qKzRiDPvRLDdhryJe_fnXy9b_dXobpq8PO_7F6dX5BsygJ-UWPWQtaGTPI7GJ3koWbOUc-Q6sqt5h
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+0%E2%80%931+knapsack+problems+by+chaotic+monarch+butterfly+optimization+algorithm+with+Gaussian+mutation&rft.jtitle=Memetic+computing&rft.au=Feng%2C+Yanhong&rft.au=Yang%2C+Juan&rft.au=Wu%2C+Congcong&rft.au=Lu%2C+Mei&rft.date=2018-06-01&rft.issn=1865-9284&rft.eissn=1865-9292&rft.volume=10&rft.issue=2&rft.spage=135&rft.epage=150&rft_id=info:doi/10.1007%2Fs12293-016-0211-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12293_016_0211_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1865-9284&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1865-9284&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1865-9284&client=summon