Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides

Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the ambient may influence the device stability of 2D TMDs over time. Engineering the doping of 2D TMDs, especially hole doping is highly desirable...

Full description

Saved in:
Bibliographic Details
Published inNano research Vol. 13; no. 12; pp. 3439 - 3444
Main Authors Liang, Qijie, Gou, Jian, Arramel, Zhang, Qian, Zhang, Wenjing, Wee, Andrew Thye Shen
Format Journal Article
LanguageEnglish
Published Beijing Tsinghua University Press 01.12.2020
Subjects
Online AccessGet full text
ISSN1998-0124
1998-0000
DOI10.1007/s12274-020-3038-8

Cover

Loading…
Abstract Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the ambient may influence the device stability of 2D TMDs over time. Engineering the doping of 2D TMDs, especially hole doping is highly desirable towards their device function. Herein, controllable oxygen-induced p-type doping in a range of hexagonal (MoTe 2 , WSe 2 , MoSe 2 and PtSe 2 ) and pentagonal (PdSe 2 ) 2D TMDs are demonstrated. Scanning tunneling microscopy, electrical transport and X-ray photoelectron spectroscopy are used to probe the origin of oxygen-derived hole doping. Three mechanisms are postulated that contribute to the hole doping in 2D TMDs, namely charge transfer from absorbed oxygen molecules, surface oxides, and chalcogen atom substitution. This work provides insights into the doping effects of oxygen, enabling the engineering of 2D TMDs properties for nanoelectronic applications.
AbstractList Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the ambient may influence the device stability of 2D TMDs over time. Engineering the doping of 2D TMDs, especially hole doping is highly desirable towards their device function. Herein, controllable oxygen-induced p-type doping in a range of hexagonal (MoTe 2 , WSe 2 , MoSe 2 and PtSe 2 ) and pentagonal (PdSe 2 ) 2D TMDs are demonstrated. Scanning tunneling microscopy, electrical transport and X-ray photoelectron spectroscopy are used to probe the origin of oxygen-derived hole doping. Three mechanisms are postulated that contribute to the hole doping in 2D TMDs, namely charge transfer from absorbed oxygen molecules, surface oxides, and chalcogen atom substitution. This work provides insights into the doping effects of oxygen, enabling the engineering of 2D TMDs properties for nanoelectronic applications.
Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the ambient may influence the device stability of 2D TMDs over time. Engineering the doping of 2D TMDs, especially hole doping is highly desirable towards their device function. Herein, controllable oxygen-induced p-type doping in a range of hexagonal (MoTe2, WSe2, MoSe2 and PtSe2) and pentagonal (PdSe2) 2D TMDs are demonstrated. Scanning tunneling microscopy, electrical transport and X-ray photoelectron spectroscopy are used to probe the origin of oxygen-derived hole doping. Three mechanisms are postulated that contribute to the hole doping in 2D TMDs, namely charge transfer from absorbed oxygen molecules, surface oxides, and chalcogen atom substitution. This work provides insights into the doping effects of oxygen, enabling the engineering of 2D TMDs properties for nanoelectronic applications.
Author Zhang, Qian
Gou, Jian
Zhang, Wenjing
Arramel
Wee, Andrew Thye Shen
Liang, Qijie
Author_xml – sequence: 1
  givenname: Qijie
  surname: Liang
  fullname: Liang, Qijie
  organization: SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Department of Physics, National University of Singapore
– sequence: 2
  givenname: Jian
  surname: Gou
  fullname: Gou, Jian
  organization: Department of Physics, National University of Singapore
– sequence: 3
  surname: Arramel
  fullname: Arramel
  organization: Department of Physics, National University of Singapore
– sequence: 4
  givenname: Qian
  surname: Zhang
  fullname: Zhang, Qian
  email: elezhqi@nus.edu.sg
  organization: Department of Materials Science and Engineering, National University of Singapore
– sequence: 5
  givenname: Wenjing
  surname: Zhang
  fullname: Zhang, Wenjing
  email: wjzhang@szu.edu.cn
  organization: SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University
– sequence: 6
  givenname: Andrew Thye Shen
  surname: Wee
  fullname: Wee, Andrew Thye Shen
  email: phyweets@nus.edu.sg
  organization: Department of Physics, National University of Singapore, Centre for Advanced 2D Materials, National University of Singapore
BookMark eNp9kE1LAzEQhoMoWD9-gLeA5-gkGzfZo9RPKHjRqyFNsjVlm6xJCvbfm1JFEHQuM4f3mZn3PUL7IQaH0BmFCwogLjNlTHACDEgDjSRyD01o10kCtfa_Z8r4ITrKeQnQMsrlBL0-fWwWLhAf7No4i00MJcVh0PPB4ZGUzeiwjaMPC-wDZjc4u5WvoqouMeGSdMi--BjwyhU9YOvNmx5MrDu9dfkEHfR6yO70qx-jl7vb5-kDmT3dP06vZ8Q0tC1EikbwXohu3oCEK2E6B0wwyww1PbS81VdWWugEl71gTWN1Z4RruYC5mPcdb47R-W7vmOL72uWilnGdQj2pWAuccSlFV1V0pzIp5pxcr8bkVzptFAW1jVHtYlQ1RrWNUcnKiF-M8UVvHVfvfviXZDsy1yth4dLPT39Dn3XniMk
CitedBy_id crossref_primary_10_1002_smll_202402727
crossref_primary_10_1002_admi_202200569
crossref_primary_10_1007_s40820_024_01378_5
crossref_primary_10_1021_acs_chemrev_3c00147
crossref_primary_10_1063_5_0165837
crossref_primary_10_1002_anie_202414209
crossref_primary_10_1088_2752_5724_ad7c6c
crossref_primary_10_1063_5_0062633
crossref_primary_10_1007_s12274_024_6949_y
crossref_primary_10_3390_nano13233034
crossref_primary_10_1007_s12274_021_3414_7
crossref_primary_10_1016_j_apsusc_2023_157958
crossref_primary_10_1002_adpr_202200231
crossref_primary_10_1021_acsami_3c07806
crossref_primary_10_1088_2516_1075_ad46b8
crossref_primary_10_3390_nano14191573
crossref_primary_10_1016_j_apcatb_2025_125061
crossref_primary_10_1002_adma_202410783
crossref_primary_10_1002_smtd_202300345
crossref_primary_10_1016_j_jallcom_2022_168697
crossref_primary_10_1002_adma_202407098
crossref_primary_10_1088_1361_6528_ac0d7c
crossref_primary_10_1103_PhysRevB_106_115433
crossref_primary_10_3390_app12083840
crossref_primary_10_35848_1882_0786_acdbb9
crossref_primary_10_1002_adfm_202105722
crossref_primary_10_3390_ijms252313104
crossref_primary_10_1007_s12274_023_6196_7
crossref_primary_10_1021_acsnano_3c08996
crossref_primary_10_1016_j_isci_2022_105346
crossref_primary_10_1002_adma_202206816
crossref_primary_10_1039_D1TC01245B
crossref_primary_10_1063_5_0031151
crossref_primary_10_1002_aelm_202100449
crossref_primary_10_1016_j_triboint_2022_107951
crossref_primary_10_1002_smll_202306068
crossref_primary_10_1021_acs_nanolett_4c02654
crossref_primary_10_1016_j_apsusc_2022_155160
crossref_primary_10_1021_acsanm_2c01957
crossref_primary_10_1002_advs_202407175
crossref_primary_10_1016_j_isci_2021_103532
crossref_primary_10_1016_j_physb_2023_415314
crossref_primary_10_1002_adma_202104935
crossref_primary_10_1002_ange_202414209
crossref_primary_10_1002_adfm_202007587
crossref_primary_10_3390_nano11040832
crossref_primary_10_1002_admi_202202016
crossref_primary_10_1002_adfm_202203555
crossref_primary_10_1007_s12274_021_3434_8
crossref_primary_10_1103_PhysRevLett_133_236201
crossref_primary_10_1002_adfm_202316733
crossref_primary_10_3390_nano12111936
crossref_primary_10_1039_D2NR04196K
crossref_primary_10_1016_j_mser_2025_100946
crossref_primary_10_1063_5_0156077
crossref_primary_10_1016_j_cap_2023_01_003
crossref_primary_10_1021_acsnano_0c09666
crossref_primary_10_1002_adfm_202108061
crossref_primary_10_1021_acsanm_2c01458
crossref_primary_10_1103_PhysRevB_111_094107
crossref_primary_10_1016_j_cclet_2021_12_080
crossref_primary_10_1002_adfm_202205567
crossref_primary_10_1007_s12598_021_01794_1
Cites_doi 10.1021/nl4043505
10.1002/adma.201906646
10.1021/nn500532f
10.1063/1.443047
10.1038/ncomms7485
10.1126/science.1256815
10.1002/adma.201601991
10.1021/jp506964m
10.1002/adma.201806411
10.1039/C9NR04212A
10.1021/nn5048712
10.1002/adfm.201704539
10.1039/C5CP07194A
10.1038/s41467-018-03354-1
10.1002/adma.201601002
10.1038/ncomms15881
10.1038/s41557-018-0136-2
10.1021/acsnano.7b08261
10.1002/adma.201706995
10.1038/nphys3183
10.1021/acsnano.8b09130
10.1038/nmat2318
10.1021/acsnano.5b06529
10.1002/adma.201807609
10.1021/jacs.7b04865
10.1021/acsnano.9b03239
10.1021/acs.nanolett.7b01322
10.1002/adma.201606793
10.1063/1.4933302
10.1007/s12274-018-2090-0
10.1021/acsnano.7b04984
10.1021/acsnano.0c00180
10.1038/nphoton.2015.282
10.1038/nnano.2017.100
10.1002/anie.201512038
10.1038/s41467-019-11342-2
ContentType Journal Article
Copyright Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
Copyright_xml – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020
– notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020.
DBID AAYXX
CITATION
3V.
7QF
7QO
7QQ
7SE
7SR
7U5
7X7
7XB
8AO
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H8G
HCIFZ
JG9
K9.
KB.
L7M
LK8
M0S
M7P
P64
PDBOC
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.1007/s12274-020-3038-8
DatabaseName CrossRef
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Corrosion Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest Pharma Collection
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Biological Science Database
Biotechnology and BioEngineering Abstracts
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Materials Research Database
ProQuest Central Student
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
ProQuest Central (New)
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Copper Technical Reference Library
Biotechnology Research Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Materials Science Database
Advanced Technologies Database with Aerospace
ProQuest Materials Science Collection
ProQuest SciTech Collection
METADEX
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
DatabaseTitleList
Materials Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1998-0000
EndPage 3444
ExternalDocumentID 10_1007_s12274_020_3038_8
GroupedDBID -58
-5G
-BR
-EM
-~C
06C
06D
0R~
0VY
123
1N0
29M
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
3V.
4.4
406
408
40D
6NX
7X7
8AO
8FE
8FG
8FH
8FI
8FJ
95-
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACCUX
ACGFO
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACZOJ
ADBBV
ADFRT
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEUYN
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ASPBG
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
CW9
D1I
DDRTE
DNIVK
DPUIP
DU5
E3Z
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRJ
FRP
FRRFC
FSGXE
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HCIFZ
HF~
HG6
HH5
HMCUK
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
J-C
JBSCW
JZLTJ
KB.
KOV
LK8
LLZTM
M4Y
M7P
N2Q
NPVJJ
NQJWS
NU0
O9-
O9J
OK1
P2P
P9N
PDBOC
PQQKQ
PROAC
PT4
Q2X
QOR
R89
R9I
RNS
ROL
RSV
S1Z
S27
S3B
SCL
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
U2A
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
Z7R
Z7S
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABFSG
ACMFV
ACSTC
ADHKG
AEZWR
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
TGP
7QF
7QO
7QQ
7SE
7SR
7U5
7XB
8BQ
8FD
8FK
AZQEC
DWQXO
FR3
GNUQQ
H8G
JG9
K9.
L7M
P64
PKEHL
PQEST
PQGLB
PQUKI
PUEGO
ID FETCH-LOGICAL-c316t-87374f779b308057c9e0272d2c1cf0646a5d8d09748f7233da9c7e6470b7bf943
IEDL.DBID 7X7
ISSN 1998-0124
IngestDate Sat Aug 23 14:32:01 EDT 2025
Tue Jul 01 01:46:57 EDT 2025
Thu Apr 24 22:57:27 EDT 2025
Fri Feb 21 02:47:36 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords two-dimensional
transition metal dichalcogenides
oxygen substitution
oxygen induced doping
charge transfer
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c316t-87374f779b308057c9e0272d2c1cf0646a5d8d09748f7233da9c7e6470b7bf943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2604248879
PQPubID 326270
PageCount 6
ParticipantIDs proquest_journals_2604248879
crossref_primary_10_1007_s12274_020_3038_8
crossref_citationtrail_10_1007_s12274_020_3038_8
springer_journals_10_1007_s12274_020_3038_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201200
2020-12-00
20201201
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 20201200
PublicationDecade 2020
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Nano research
PublicationTitleAbbrev Nano Res
PublicationYear 2020
Publisher Tsinghua University Press
Publisher_xml – name: Tsinghua University Press
References Oyedele, Yang, Liang, Puretzky, Wang, Zhang, Yu, Pudasaini, Ghosh, Liu (CR25) 2017; 139
Li, Wang, Fan, Zhang, Zhang, Li, Mao, Wang, Lin, Du (CR27) 2018; 11
Qian, Liu, Fu, Li (CR5) 2014; 346
Zhang, Liao, Kang, Liu, Ou, Du, Xiao, Gao, Shan, Luo (CR20) 2019; 13
Cai, McClellan, Koh, Li, Yalon, Pop, Zheng (CR35) 2017; 17
Sun, Shi, Siegrist, Singh (CR26) 2015; 107
Pető, Ollár, Vancsó, Popov, Magda, Dobrik, Hwang, Sorokin, Tapaszto (CR15) 2018; 10
Lu, Zhu, Xiao, Chuu, Han, Chiu, Cheng, Yang, Wei, Yang (CR2) 2017; 12
Nan, Wang, Wang, Liang, Lu, Chen, He, Tan, Miao, Wang (CR14) 2014; 8
Wang, Zhao, Giustiniano, Eda (CR21) 2016; 18
Xiang, Han, Wu, Zhong, Liu, Lin, Zhang, Hu, Özyilmaz, Neto (CR36) 2015; 6
Zhuang, Ge, Yang, Li, Jia, Yao, Zhu (CR11) 2017; 29
Nipane, Karmakar, Kaushik, Karande, Lodha (CR30) 2016; 10
Chuang, Battaglia, Azcatl, McDonnell, Kang, Yin, Tosun, Kapadia, Fang, Wallace (CR34) 2014; 14
Li, Lin, Basile, Hus, Puretzky, Lee, Kuo, Chang, Wang, Idrobo (CR33) 2016; 28
Liang, Wang, Zhang, Wei, Lim, Zhu, Hu, Wei, Lee, Sow (CR24) 2019; 31
Zhu, Wang, Cheng, Addou, Kim, Kim, Wallace (CR31) 2017; 11
Zhao, Wang, Huang, Xiao, Xu, Guo, Xie, Shao, Sun, Han (CR9) 2016; 55
Park, Dugasani, Kang, Jeon, Jang, Lee, Roh, Park, Park (CR18) 2014; 8
Sipos, Kusmartseva, Akrap, Berger, Forró, Tutiš (CR4) 2008; 7
Fleisch, Mains (CR32) 1982; 76
Mak, Shan (CR1) 2016; 10
Zheng, Wei, Liu, Wang, Shi, Yang, Peng, Deng, Luo, Zhao (CR23) 2019; 11
Tang, Yu, Huang, Chai, Wong, Deng, Yang, Gong, Wang, Ang (CR29) 2018; 12
Berghäuser, Bernal-Villamil, Schmidt, Schneider, Niehues, Erhart, De Vasconcellos, Bratschitsch, Knorr, Malic (CR3) 2018; 9
Gao, Liao, Zhang, Liu, Gu, Liu, Du, Ou, Xiao, Kang (CR8) 2020; 32
Shim, Oh, Kang, Oh, Jang, Jeon, Jeon, Kim, Choi, Lee (CR13) 2016; 28
Barja, Refaely-Abramson, Schuler, Qiu, Pulkin, Wickenburg, Ryu, Ugeda, Kastl, Chen (CR28) 2019; 10
Liang, Zhang, Gou, Song, Arramel, Chen, Yang, Lim, Wang, Zhu (CR22) 2020; 14
López-Polín, Gómez-Navarro, Parente, Guinea, Katsnelson, Pérez-Murano, Gómez-Herrero (CR10) 2015; 11
Chang, Yang, Lin, Chen, Lien, Jian, Ueno, Suen, Tsukagoshi, Lin (CR17) 2018; 30
Kang, Paudel, Leuenberger, Tetard, Khondaker (CR12) 2014; 118
Liu, Liao, Zhang, Du, Ou, Xiao, Kang, Zhang, Zhang (CR7) 2019; 13
Luo, Zhu, Peng, Zheng, Miao, Bai, Zhang, Qin (CR16) 2018; 28
Zhang, Liao, Liu, Kang, Zhang, Du, Li, Zhang, Xiao, Liu (CR19) 2017; 8
Zhang, Lin, Liao, Kang, Si, Zhang (CR6) 2019; 31
X M Zheng (3038_CR23) 2019; 11
K F Mak (3038_CR1) 2016; 10
G Berghäuser (3038_CR3) 2018; 9
L Z Zhuang (3038_CR11) 2017; 29
Q J Liang (3038_CR22) 2020; 14
X F Li (3038_CR33) 2016; 28
B S Liu (3038_CR7) 2019; 13
L L Cai (3038_CR35) 2017; 17
Y M Chang (3038_CR17) 2018; 30
J F Sun (3038_CR26) 2015; 107
H Y Nan (3038_CR14) 2014; 8
J Shim (3038_CR13) 2016; 28
J Pető (3038_CR15) 2018; 10
E Li (3038_CR27) 2018; 11
A Y Lu (3038_CR2) 2017; 12
W Luo (3038_CR16) 2018; 28
B Sipos (3038_CR4) 2008; 7
D Xiang (3038_CR36) 2015; 6
X K Zhang (3038_CR19) 2017; 8
A Nipane (3038_CR30) 2016; 10
X F Qian (3038_CR5) 2014; 346
L Gao (3038_CR8) 2020; 32
N Kang (3038_CR12) 2014; 118
X K Zhang (3038_CR20) 2019; 13
Z Zhang (3038_CR6) 2019; 31
H Zhu (3038_CR31) 2017; 11
H Y Park (3038_CR18) 2014; 8
T H Fleisch (3038_CR32) 1982; 76
S Chuang (3038_CR34) 2014; 14
G López-Polín (3038_CR10) 2015; 11
A D Oyedele (3038_CR25) 2017; 139
Q J Liang (3038_CR24) 2019; 31
S Barja (3038_CR28) 2019; 10
B S Tang (3038_CR29) 2018; 12
Y T Zhao (3038_CR9) 2016; 55
S F Wang (3038_CR21) 2016; 18
References_xml – volume: 14
  start-page: 1337
  year: 2014
  end-page: 1342
  ident: CR34
  article-title: MoS P-type transistors and diodes enabled by high work function MoO contacts
  publication-title: Nano Lett.
  doi: 10.1021/nl4043505
– volume: 32
  start-page: 1906646
  year: 2020
  ident: CR8
  article-title: Defect-engineered atomically thin MoS homogeneous electronics for logic inverters
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906646
– volume: 8
  start-page: 5738
  year: 2014
  end-page: 5745
  ident: CR14
  article-title: Strong photoluminescence enhancement of MoS through defect engineering and oxygen bonding
  publication-title: ACS Nano
  doi: 10.1021/nn500532f
– volume: 76
  start-page: 780
  year: 1982
  end-page: 786
  ident: CR32
  article-title: An XPS study of the UV reduction and photochromism of MoO and WO
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.443047
– volume: 6
  start-page: 6485
  year: 2015
  ident: CR36
  article-title: Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7485
– volume: 346
  start-page: 1344
  year: 2014
  end-page: 1347
  ident: CR5
  article-title: Quantum spin Hall effect in two-dimensional transition metal dichalcogenides
  publication-title: Science
  doi: 10.1126/science.1256815
– volume: 28
  start-page: 8240
  year: 2016
  end-page: 8247
  ident: CR33
  article-title: Isoelectronic tungsten doping in monolayer MoSe for carrier type modulation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601991
– volume: 118
  start-page: 21258
  year: 2014
  end-page: 21263
  ident: CR12
  article-title: Photoluminescence quenching in single-layer MoS via oxygen plasma treatment
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp506964m
– volume: 31
  start-page: 1806411
  year: 2019
  ident: CR6
  article-title: Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806411
– volume: 11
  start-page: 13469
  year: 2019
  end-page: 13476
  ident: CR23
  article-title: A homogeneous p-n junction diode by selective doping of few layer MoSe using ultraviolet ozone for high-performance photovoltaic devices
  publication-title: Nanoscale
  doi: 10.1039/C9NR04212A
– volume: 8
  start-page: 11603
  year: 2014
  end-page: 11613
  ident: CR18
  article-title: N- and P-type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides
  publication-title: ACS Nano
  doi: 10.1021/nn5048712
– volume: 28
  start-page: 1704539
  year: 2018
  ident: CR16
  article-title: Carrier modulation of ambipolar few-layer MoTe transistors by MgO surface charge transfer doping
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704539
– volume: 18
  start-page: 4304
  year: 2016
  end-page: 4309
  ident: CR21
  article-title: Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe field effect transistors
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07194A
– volume: 9
  start-page: 971
  year: 2018
  ident: CR3
  article-title: Inverted valley polarization in optically excited transition metal dichalcogenides
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03354-1
– volume: 28
  start-page: 6985
  year: 2016
  end-page: 6992
  ident: CR13
  article-title: High-performance 2D rhenium disulfide (ReS ) transistors and photodetectors by oxygen plasma treatment
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601002
– volume: 8
  start-page: 15881
  year: 2017
  ident: CR19
  article-title: Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS homojunction photodiode
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15881
– volume: 10
  start-page: 1246
  year: 2018
  end-page: 1251
  ident: CR15
  article-title: Spontaneous doping of the basal plane of MoS single layers through oxygen substitution under ambient conditions
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0136-2
– volume: 12
  start-page: 2506
  year: 2018
  end-page: 2513
  ident: CR29
  article-title: Direct n- to p-Type channel conversion in monolayer/few-layer WS field-effect transistors by atomic nitrogen treatment
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08261
– volume: 30
  start-page: 1706995
  year: 2018
  ident: CR17
  article-title: Reversible and precisely controllable p/n-Type doping of MoTe transistors through electrothermal doping
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706995
– volume: 11
  start-page: 26
  year: 2015
  end-page: 31
  ident: CR10
  article-title: Increasing the elastic modulus of graphene by controlled defect creation
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3183
– volume: 13
  start-page: 3280
  year: 2019
  end-page: 3291
  ident: CR20
  article-title: Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09130
– volume: 7
  start-page: 960
  year: 2008
  end-page: 965
  ident: CR4
  article-title: From Mott state to superconductivity in 1T-TaS
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2318
– volume: 10
  start-page: 2128
  year: 2016
  end-page: 2137
  ident: CR30
  article-title: Few-layer MoS p-Type devices enabled by selective doping using low energy phosphorus implantation
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06529
– volume: 31
  start-page: 1807609
  year: 2019
  ident: CR24
  article-title: High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807609
– volume: 139
  start-page: 14090
  year: 2017
  end-page: 14097
  ident: CR25
  article-title: PdSe : Pentagonal two-dimensional layers with high air stability for electronics
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04865
– volume: 13
  start-page: 9057
  year: 2019
  end-page: 9066
  ident: CR7
  article-title: Strain-engineered van der waals interfaces of mixed-dimensional heterostructure arrays
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03239
– volume: 17
  start-page: 3854
  year: 2017
  end-page: 3861
  ident: CR35
  article-title: Rapid flame synthesis of atomically thin MoO down to monolayer thickness for effective hole doping of WSe
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01322
– volume: 29
  start-page: 1606793
  year: 2017
  ident: CR11
  article-title: Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606793
– volume: 107
  start-page: 153902
  year: 2015
  ident: CR26
  article-title: Electronic, transport, and optical properties of bulk and mono-layer PdSe
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4933302
– volume: 11
  start-page: 5858
  year: 2018
  end-page: 5865
  ident: CR27
  article-title: Construction of bilayer PdSe on epitaxial graphene
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2090-0
– volume: 11
  start-page: 11005
  year: 2017
  end-page: 11014
  ident: CR31
  article-title: Defects and surface structural stability of MoTe under vacuum annealing
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04984
– volume: 14
  start-page: 5668
  year: 2020
  end-page: 5677
  ident: CR22
  article-title: Performance improvement by ozone treatment of 2D PdSe
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00180
– volume: 10
  start-page: 216
  year: 2016
  end-page: 226
  ident: CR1
  article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2015.282
– volume: 12
  start-page: 744
  year: 2017
  end-page: 749
  ident: CR2
  article-title: Janus monolayers of transition metal dichalcogenides
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2017.100
– volume: 55
  start-page: 5003
  year: 2016
  end-page: 5007
  ident: CR9
  article-title: Surface coordination of black phosphorus for robust air and water stability
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201512038
– volume: 10
  start-page: 3382
  year: 2019
  ident: CR28
  article-title: Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11342-2
– volume: 10
  start-page: 2128
  year: 2016
  ident: 3038_CR30
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06529
– volume: 28
  start-page: 6985
  year: 2016
  ident: 3038_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601002
– volume: 13
  start-page: 9057
  year: 2019
  ident: 3038_CR7
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03239
– volume: 31
  start-page: 1806411
  year: 2019
  ident: 3038_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806411
– volume: 8
  start-page: 5738
  year: 2014
  ident: 3038_CR14
  publication-title: ACS Nano
  doi: 10.1021/nn500532f
– volume: 55
  start-page: 5003
  year: 2016
  ident: 3038_CR9
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201512038
– volume: 11
  start-page: 13469
  year: 2019
  ident: 3038_CR23
  publication-title: Nanoscale
  doi: 10.1039/C9NR04212A
– volume: 12
  start-page: 2506
  year: 2018
  ident: 3038_CR29
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b08261
– volume: 29
  start-page: 1606793
  year: 2017
  ident: 3038_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606793
– volume: 10
  start-page: 3382
  year: 2019
  ident: 3038_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11342-2
– volume: 11
  start-page: 11005
  year: 2017
  ident: 3038_CR31
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04984
– volume: 10
  start-page: 216
  year: 2016
  ident: 3038_CR1
  publication-title: Nat. Photon.
  doi: 10.1038/nphoton.2015.282
– volume: 13
  start-page: 3280
  year: 2019
  ident: 3038_CR20
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b09130
– volume: 17
  start-page: 3854
  year: 2017
  ident: 3038_CR35
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01322
– volume: 32
  start-page: 1906646
  year: 2020
  ident: 3038_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201906646
– volume: 11
  start-page: 26
  year: 2015
  ident: 3038_CR10
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3183
– volume: 7
  start-page: 960
  year: 2008
  ident: 3038_CR4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2318
– volume: 14
  start-page: 5668
  year: 2020
  ident: 3038_CR22
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c00180
– volume: 18
  start-page: 4304
  year: 2016
  ident: 3038_CR21
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP07194A
– volume: 11
  start-page: 5858
  year: 2018
  ident: 3038_CR27
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2090-0
– volume: 28
  start-page: 8240
  year: 2016
  ident: 3038_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601991
– volume: 107
  start-page: 153902
  year: 2015
  ident: 3038_CR26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4933302
– volume: 10
  start-page: 1246
  year: 2018
  ident: 3038_CR15
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0136-2
– volume: 28
  start-page: 1704539
  year: 2018
  ident: 3038_CR16
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704539
– volume: 139
  start-page: 14090
  year: 2017
  ident: 3038_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04865
– volume: 76
  start-page: 780
  year: 1982
  ident: 3038_CR32
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.443047
– volume: 346
  start-page: 1344
  year: 2014
  ident: 3038_CR5
  publication-title: Science
  doi: 10.1126/science.1256815
– volume: 30
  start-page: 1706995
  year: 2018
  ident: 3038_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706995
– volume: 9
  start-page: 971
  year: 2018
  ident: 3038_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03354-1
– volume: 6
  start-page: 6485
  year: 2015
  ident: 3038_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7485
– volume: 12
  start-page: 744
  year: 2017
  ident: 3038_CR2
  publication-title: Nat. Nanotech.
  doi: 10.1038/nnano.2017.100
– volume: 8
  start-page: 11603
  year: 2014
  ident: 3038_CR18
  publication-title: ACS Nano
  doi: 10.1021/nn5048712
– volume: 8
  start-page: 15881
  year: 2017
  ident: 3038_CR19
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15881
– volume: 118
  start-page: 21258
  year: 2014
  ident: 3038_CR12
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp506964m
– volume: 31
  start-page: 1807609
  year: 2019
  ident: 3038_CR24
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201807609
– volume: 14
  start-page: 1337
  year: 2014
  ident: 3038_CR34
  publication-title: Nano Lett.
  doi: 10.1021/nl4043505
SSID ssj0062148
Score 2.5260355
Snippet Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3439
SubjectTerms Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chalcogenides
Charge transfer
Chemical properties
Chemistry and Materials Science
Collaboration
Condensed Matter Physics
Doping
Electrodes
Engineering
Materials Science
Microscopy
Nanotechnology
Oxygen
P-type semiconductors
Photoelectron spectroscopy
Photoelectrons
Research Article
Scanning tunneling microscopy
Science
Spectrum analysis
Transition metal compounds
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPnF1lRw8KYE2SZvkuKiLCOrFhT0Z2iSFhbW72Ar6751kW6uigudOc5iZznxf5xGETnOZuIw5RUThcsINYDjpOCcydRm4k41Z2Ftwe5dej_nNJJk0c9xV2-3eliRDpO6G3SgwKOLpDoRdSeQqWkuAunu3HtNhG35TGocrs5azY5C92lLmT0d8TUYdwvxWFA25ZrSFNhuQiIdLq26jFVfuoI1PqwN30eP96xvYngClBuNY3LScz_wkFF4Q_2cV2zAMhaclppe48l3wcy8NLBvXPkWFbi385AB_Y-vb52dmDmdOrav20Hh09XBxTZq7EohhcVpDUGOCF0KonAEGTIRRDggntdTEpgDYkWaJlTYC9iALQRmzmTLCpVxEucgLxdk-6pXz0h0gDFyb8oKmQDUsL-JIWZXlKmORNQoAk-ijqFWaNs0icX-fxUx3K5C9njXoWXs9a9lHZx-vLJZbNP4SHrSW0M0HVWmgXZxCsBGqj85b63SPfz3s8F_SR2ideu8I7SoD1KufX9wxgI46PwlO9g7wL8zG
  priority: 102
  providerName: Springer Nature
Title Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides
URI https://link.springer.com/article/10.1007/s12274-020-3038-8
https://www.proquest.com/docview/2604248879
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ULnowfkYUSQ-eNI1bW9b2ZFBBohGNkQQvLlvbJSQIKJjof-9r2UBN5LIlW9fDe2-vv1_7PhA6TmXdJswqIjKbEq4Bw0nLOZGRTcCcTMh83YK7TtTu8ptevZdvuE3ysMrCJ3pHbUba7ZGfAe7mFKxNqPPxG3Fdo9zpat5CYxWVXekyR75Eb064Ihr67lmzNDJYyIpTTZ86R4GPEUeewIlLIn-vSwuw-ed81C87rU20keNF3JgpeAut2OE2Wv9RRXAHvdx_foEZEGDXoCeD8-jzgUuKwmPiNlmx8XlRuD_E9ApPXED8yI0Gwo2nbrXygVv41QIUx8ZF0g_0CObsGzvZRd1W8-myTfK2CUSzMJqCf2OCZ0KolAEcrAutLHBPaqgOdQYIJErqRpoAiITMBGXMJEoLG3ERpCLNFGd7qDQcDe0-wkC7Kc9oBKzD8CwMlFFJqhIWGK0AO4kKCgqhxTqvKe5aWwziRTVkJ-cY5Bw7Oceygk7mn4xnBTWWDa4Wmojzf2sSLyyhgk4L7Sxe_zvZwfLJDtEadebgQ1WqqDR9_7BHADimac1bFVxl67qGyo3r59sm3C-anYdHeNqljW-R-NVY
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFL0KYQFdVOUl0gd4ARuQxYztjO1FVVUNISFp2bRSVgwztkeKFJK0martT_Ube-3MNIBEdlmPx4vrY99z7PsA-JCrtsu401QWLqfCIIdTTgiqEpchnGzMQ92C07OkdyG-j9qjBtzXuTA-rLI-E8NBbWfG35F_Qd4tGKJN6qP5JfVdo_zrat1CYwmLgbu7Qcm2OOx3cH0_Mtb9en7So1VXAWp4nJS4_bkUhZQ658iW2tJoh9KMWWZiU6CDTrK2VTZCnq0KyTi3mTbSJUJGucwLLTjO-wSeCs61DyFU3W_1yZ-wOHTrWqatoeOsX1FDqh5D_Ue9WEOnoaj62w-uyO0_77HBzXV3YLvip-R4CagX0HDTl7D1R9XCV_Dzx-0dwo6imkdcWFJFu098EhaZU3-pS2zIwyLjKWEdsvAB-DM_GgU-Kb13DIFi5LdD6k-sj9yfmBnOObZu8RouNmLQN9CczqbuLRCU-UwULEGVY0URR9rqLNcZj6zRyNVkC6LaaKmpapj7VhqTdFV92ds5RTun3s6pasGnx1_mywIe6wbv1yuRVnt5ka6Q14LP9eqsPv93st31k72HZ73z02E67J8N9uA589AIYTL70Cyvrt0Bkp0yfxcQRuDXpiH9AInwC24
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSAgOiFWU1Qe4gCwS243jA0KIUrHDAaSeCIntSJVKW2gR8Gt8HWM3oYAEN85xfBg_e96zZwHYzOKqTblVVOY2o0Ijh4utEDSObIpwMiH3dQsuLqPjW3HaqDZG4L3MhXFhleWZ6A9q09HujnwXebdgiDapdvMiLOK6Vt_vPlLXQcq9tJbtNAYQObNvLyjfensnNVzrLcbqRzeHx7ToMEA1D6M-HgVcilxKlXFkTlWplUWZxgzToc7RWUdp1cQmQM4d55JxblKlpY2EDDKZ5UpwnHcUxiVHt4l7STY-xV7EQt-5a5DChk60fFH1aXsMtSB1wg0dSEzj7z5xSHR_vM16l1efgemCq5KDAbhmYcS252DqSwXDebi7en1DCFJU9ogRQ4rI95ZLyCJd6i54ifE5WaTZJqxGei4Yv-NGo9gnfecpfdAYebAoA4hxUfwt3cE5m8b2FuD2Xwy6CGPtTtsuAUHJz0TOIlQ8RuRhoIxKM5XywGiFvE1WICiNluiinrlrq9FKhpWYnZ0TtHPi7JzEFdj-_KU7KObx1-DVciWSYl_3kiEKK7BTrs7w86-TLf892QZMIJiT85PLsxWYZA4ZPmJmFcb6T892DXlPP1v3ACNw_9-I_gD6VQ-b
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen-induced+controllable+p-type+doping+in+2D+semiconductor+transition+metal+dichalcogenides&rft.jtitle=Nano+research&rft.au=Liang+Qijie&rft.au=Gou+Jian&rft.au=Arramel&rft.au=Zhang%2C+Qian&rft.date=2020-12-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=13&rft.issue=12&rft.spage=3439&rft.epage=3444&rft_id=info:doi/10.1007%2Fs12274-020-3038-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon