Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides
Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the ambient may influence the device stability of 2D TMDs over time. Engineering the doping of 2D TMDs, especially hole doping is highly desirable...
Saved in:
Published in | Nano research Vol. 13; no. 12; pp. 3439 - 3444 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Beijing
Tsinghua University Press
01.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1998-0124 1998-0000 |
DOI | 10.1007/s12274-020-3038-8 |
Cover
Loading…
Abstract | Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the ambient may influence the device stability of 2D TMDs over time. Engineering the doping of 2D TMDs, especially hole doping is highly desirable towards their device function. Herein, controllable oxygen-induced p-type doping in a range of hexagonal (MoTe
2
, WSe
2
, MoSe
2
and PtSe
2
) and pentagonal (PdSe
2
) 2D TMDs are demonstrated. Scanning tunneling microscopy, electrical transport and X-ray photoelectron spectroscopy are used to probe the origin of oxygen-derived hole doping. Three mechanisms are postulated that contribute to the hole doping in 2D TMDs, namely charge transfer from absorbed oxygen molecules, surface oxides, and chalcogen atom substitution. This work provides insights into the doping effects of oxygen, enabling the engineering of 2D TMDs properties for nanoelectronic applications. |
---|---|
AbstractList | Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the ambient may influence the device stability of 2D TMDs over time. Engineering the doping of 2D TMDs, especially hole doping is highly desirable towards their device function. Herein, controllable oxygen-induced p-type doping in a range of hexagonal (MoTe
2
, WSe
2
, MoSe
2
and PtSe
2
) and pentagonal (PdSe
2
) 2D TMDs are demonstrated. Scanning tunneling microscopy, electrical transport and X-ray photoelectron spectroscopy are used to probe the origin of oxygen-derived hole doping. Three mechanisms are postulated that contribute to the hole doping in 2D TMDs, namely charge transfer from absorbed oxygen molecules, surface oxides, and chalcogen atom substitution. This work provides insights into the doping effects of oxygen, enabling the engineering of 2D TMDs properties for nanoelectronic applications. Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the ambient may influence the device stability of 2D TMDs over time. Engineering the doping of 2D TMDs, especially hole doping is highly desirable towards their device function. Herein, controllable oxygen-induced p-type doping in a range of hexagonal (MoTe2, WSe2, MoSe2 and PtSe2) and pentagonal (PdSe2) 2D TMDs are demonstrated. Scanning tunneling microscopy, electrical transport and X-ray photoelectron spectroscopy are used to probe the origin of oxygen-derived hole doping. Three mechanisms are postulated that contribute to the hole doping in 2D TMDs, namely charge transfer from absorbed oxygen molecules, surface oxides, and chalcogen atom substitution. This work provides insights into the doping effects of oxygen, enabling the engineering of 2D TMDs properties for nanoelectronic applications. |
Author | Zhang, Qian Gou, Jian Zhang, Wenjing Arramel Wee, Andrew Thye Shen Liang, Qijie |
Author_xml | – sequence: 1 givenname: Qijie surname: Liang fullname: Liang, Qijie organization: SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University, Department of Physics, National University of Singapore – sequence: 2 givenname: Jian surname: Gou fullname: Gou, Jian organization: Department of Physics, National University of Singapore – sequence: 3 surname: Arramel fullname: Arramel organization: Department of Physics, National University of Singapore – sequence: 4 givenname: Qian surname: Zhang fullname: Zhang, Qian email: elezhqi@nus.edu.sg organization: Department of Materials Science and Engineering, National University of Singapore – sequence: 5 givenname: Wenjing surname: Zhang fullname: Zhang, Wenjing email: wjzhang@szu.edu.cn organization: SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, College of Optoelectronic Engineering, Shenzhen University – sequence: 6 givenname: Andrew Thye Shen surname: Wee fullname: Wee, Andrew Thye Shen email: phyweets@nus.edu.sg organization: Department of Physics, National University of Singapore, Centre for Advanced 2D Materials, National University of Singapore |
BookMark | eNp9kE1LAzEQhoMoWD9-gLeA5-gkGzfZo9RPKHjRqyFNsjVlm6xJCvbfm1JFEHQuM4f3mZn3PUL7IQaH0BmFCwogLjNlTHACDEgDjSRyD01o10kCtfa_Z8r4ITrKeQnQMsrlBL0-fWwWLhAf7No4i00MJcVh0PPB4ZGUzeiwjaMPC-wDZjc4u5WvoqouMeGSdMi--BjwyhU9YOvNmx5MrDu9dfkEHfR6yO70qx-jl7vb5-kDmT3dP06vZ8Q0tC1EikbwXohu3oCEK2E6B0wwyww1PbS81VdWWugEl71gTWN1Z4RruYC5mPcdb47R-W7vmOL72uWilnGdQj2pWAuccSlFV1V0pzIp5pxcr8bkVzptFAW1jVHtYlQ1RrWNUcnKiF-M8UVvHVfvfviXZDsy1yth4dLPT39Dn3XniMk |
CitedBy_id | crossref_primary_10_1002_smll_202402727 crossref_primary_10_1002_admi_202200569 crossref_primary_10_1007_s40820_024_01378_5 crossref_primary_10_1021_acs_chemrev_3c00147 crossref_primary_10_1063_5_0165837 crossref_primary_10_1002_anie_202414209 crossref_primary_10_1088_2752_5724_ad7c6c crossref_primary_10_1063_5_0062633 crossref_primary_10_1007_s12274_024_6949_y crossref_primary_10_3390_nano13233034 crossref_primary_10_1007_s12274_021_3414_7 crossref_primary_10_1016_j_apsusc_2023_157958 crossref_primary_10_1002_adpr_202200231 crossref_primary_10_1021_acsami_3c07806 crossref_primary_10_1088_2516_1075_ad46b8 crossref_primary_10_3390_nano14191573 crossref_primary_10_1016_j_apcatb_2025_125061 crossref_primary_10_1002_adma_202410783 crossref_primary_10_1002_smtd_202300345 crossref_primary_10_1016_j_jallcom_2022_168697 crossref_primary_10_1002_adma_202407098 crossref_primary_10_1088_1361_6528_ac0d7c crossref_primary_10_1103_PhysRevB_106_115433 crossref_primary_10_3390_app12083840 crossref_primary_10_35848_1882_0786_acdbb9 crossref_primary_10_1002_adfm_202105722 crossref_primary_10_3390_ijms252313104 crossref_primary_10_1007_s12274_023_6196_7 crossref_primary_10_1021_acsnano_3c08996 crossref_primary_10_1016_j_isci_2022_105346 crossref_primary_10_1002_adma_202206816 crossref_primary_10_1039_D1TC01245B crossref_primary_10_1063_5_0031151 crossref_primary_10_1002_aelm_202100449 crossref_primary_10_1016_j_triboint_2022_107951 crossref_primary_10_1002_smll_202306068 crossref_primary_10_1021_acs_nanolett_4c02654 crossref_primary_10_1016_j_apsusc_2022_155160 crossref_primary_10_1021_acsanm_2c01957 crossref_primary_10_1002_advs_202407175 crossref_primary_10_1016_j_isci_2021_103532 crossref_primary_10_1016_j_physb_2023_415314 crossref_primary_10_1002_adma_202104935 crossref_primary_10_1002_ange_202414209 crossref_primary_10_1002_adfm_202007587 crossref_primary_10_3390_nano11040832 crossref_primary_10_1002_admi_202202016 crossref_primary_10_1002_adfm_202203555 crossref_primary_10_1007_s12274_021_3434_8 crossref_primary_10_1103_PhysRevLett_133_236201 crossref_primary_10_1002_adfm_202316733 crossref_primary_10_3390_nano12111936 crossref_primary_10_1039_D2NR04196K crossref_primary_10_1016_j_mser_2025_100946 crossref_primary_10_1063_5_0156077 crossref_primary_10_1016_j_cap_2023_01_003 crossref_primary_10_1021_acsnano_0c09666 crossref_primary_10_1002_adfm_202108061 crossref_primary_10_1021_acsanm_2c01458 crossref_primary_10_1103_PhysRevB_111_094107 crossref_primary_10_1016_j_cclet_2021_12_080 crossref_primary_10_1002_adfm_202205567 crossref_primary_10_1007_s12598_021_01794_1 |
Cites_doi | 10.1021/nl4043505 10.1002/adma.201906646 10.1021/nn500532f 10.1063/1.443047 10.1038/ncomms7485 10.1126/science.1256815 10.1002/adma.201601991 10.1021/jp506964m 10.1002/adma.201806411 10.1039/C9NR04212A 10.1021/nn5048712 10.1002/adfm.201704539 10.1039/C5CP07194A 10.1038/s41467-018-03354-1 10.1002/adma.201601002 10.1038/ncomms15881 10.1038/s41557-018-0136-2 10.1021/acsnano.7b08261 10.1002/adma.201706995 10.1038/nphys3183 10.1021/acsnano.8b09130 10.1038/nmat2318 10.1021/acsnano.5b06529 10.1002/adma.201807609 10.1021/jacs.7b04865 10.1021/acsnano.9b03239 10.1021/acs.nanolett.7b01322 10.1002/adma.201606793 10.1063/1.4933302 10.1007/s12274-018-2090-0 10.1021/acsnano.7b04984 10.1021/acsnano.0c00180 10.1038/nphoton.2015.282 10.1038/nnano.2017.100 10.1002/anie.201512038 10.1038/s41467-019-11342-2 |
ContentType | Journal Article |
Copyright | Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
Copyright_xml | – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020 – notice: Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2020. |
DBID | AAYXX CITATION 3V. 7QF 7QO 7QQ 7SE 7SR 7U5 7X7 7XB 8AO 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ H8G HCIFZ JG9 K9. KB. L7M LK8 M0S M7P P64 PDBOC PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI |
DOI | 10.1007/s12274-020-3038-8 |
DatabaseName | CrossRef ProQuest Central (Corporate) Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Corrosion Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest Pharma Collection METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Health & Medical Complete (Alumni) Materials Science Database Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Biological Science Database Biotechnology and BioEngineering Abstracts Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Materials Research Database ProQuest Central Student ProQuest Central Essentials SciTech Premium Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Biological Science Collection ProQuest Central (New) Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Copper Technical Reference Library Biotechnology Research Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Materials Science Database Advanced Technologies Database with Aerospace ProQuest Materials Science Collection ProQuest SciTech Collection METADEX Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1998-0000 |
EndPage | 3444 |
ExternalDocumentID | 10_1007_s12274_020_3038_8 |
GroupedDBID | -58 -5G -BR -EM -~C 06C 06D 0R~ 0VY 123 1N0 29M 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 3V. 4.4 406 408 40D 6NX 7X7 8AO 8FE 8FG 8FH 8FI 8FJ 95- 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACCUX ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACZOJ ADBBV ADFRT ADHHG ADHIR ADINQ ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEUYN AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ASPBG AVWKF AXYYD AZFZN BBNVY BENPR BGLVJ BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP CW9 D1I DDRTE DNIVK DPUIP DU5 E3Z EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRJ FRP FRRFC FSGXE FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HCIFZ HF~ HG6 HH5 HMCUK HMJXF HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD J-C JBSCW JZLTJ KB. KOV LK8 LLZTM M4Y M7P N2Q NPVJJ NQJWS NU0 O9- O9J OK1 P2P P9N PDBOC PQQKQ PROAC PT4 Q2X QOR R89 R9I RNS ROL RSV S1Z S27 S3B SCL SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG U2A UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 Z7R Z7S Z7V Z7W Z7X Z7Y Z7Z Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABFSG ACMFV ACSTC ADHKG AEZWR AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT TGP 7QF 7QO 7QQ 7SE 7SR 7U5 7XB 8BQ 8FD 8FK AZQEC DWQXO FR3 GNUQQ H8G JG9 K9. L7M P64 PKEHL PQEST PQGLB PQUKI PUEGO |
ID | FETCH-LOGICAL-c316t-87374f779b308057c9e0272d2c1cf0646a5d8d09748f7233da9c7e6470b7bf943 |
IEDL.DBID | 7X7 |
ISSN | 1998-0124 |
IngestDate | Sat Aug 23 14:32:01 EDT 2025 Tue Jul 01 01:46:57 EDT 2025 Thu Apr 24 22:57:27 EDT 2025 Fri Feb 21 02:47:36 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | two-dimensional transition metal dichalcogenides oxygen substitution oxygen induced doping charge transfer |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c316t-87374f779b308057c9e0272d2c1cf0646a5d8d09748f7233da9c7e6470b7bf943 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2604248879 |
PQPubID | 326270 |
PageCount | 6 |
ParticipantIDs | proquest_journals_2604248879 crossref_primary_10_1007_s12274_020_3038_8 crossref_citationtrail_10_1007_s12274_020_3038_8 springer_journals_10_1007_s12274_020_3038_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201200 2020-12-00 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
PublicationDecade | 2020 |
PublicationPlace | Beijing |
PublicationPlace_xml | – name: Beijing |
PublicationTitle | Nano research |
PublicationTitleAbbrev | Nano Res |
PublicationYear | 2020 |
Publisher | Tsinghua University Press |
Publisher_xml | – name: Tsinghua University Press |
References | Oyedele, Yang, Liang, Puretzky, Wang, Zhang, Yu, Pudasaini, Ghosh, Liu (CR25) 2017; 139 Li, Wang, Fan, Zhang, Zhang, Li, Mao, Wang, Lin, Du (CR27) 2018; 11 Qian, Liu, Fu, Li (CR5) 2014; 346 Zhang, Liao, Kang, Liu, Ou, Du, Xiao, Gao, Shan, Luo (CR20) 2019; 13 Cai, McClellan, Koh, Li, Yalon, Pop, Zheng (CR35) 2017; 17 Sun, Shi, Siegrist, Singh (CR26) 2015; 107 Pető, Ollár, Vancsó, Popov, Magda, Dobrik, Hwang, Sorokin, Tapaszto (CR15) 2018; 10 Lu, Zhu, Xiao, Chuu, Han, Chiu, Cheng, Yang, Wei, Yang (CR2) 2017; 12 Nan, Wang, Wang, Liang, Lu, Chen, He, Tan, Miao, Wang (CR14) 2014; 8 Wang, Zhao, Giustiniano, Eda (CR21) 2016; 18 Xiang, Han, Wu, Zhong, Liu, Lin, Zhang, Hu, Özyilmaz, Neto (CR36) 2015; 6 Zhuang, Ge, Yang, Li, Jia, Yao, Zhu (CR11) 2017; 29 Nipane, Karmakar, Kaushik, Karande, Lodha (CR30) 2016; 10 Chuang, Battaglia, Azcatl, McDonnell, Kang, Yin, Tosun, Kapadia, Fang, Wallace (CR34) 2014; 14 Li, Lin, Basile, Hus, Puretzky, Lee, Kuo, Chang, Wang, Idrobo (CR33) 2016; 28 Liang, Wang, Zhang, Wei, Lim, Zhu, Hu, Wei, Lee, Sow (CR24) 2019; 31 Zhu, Wang, Cheng, Addou, Kim, Kim, Wallace (CR31) 2017; 11 Zhao, Wang, Huang, Xiao, Xu, Guo, Xie, Shao, Sun, Han (CR9) 2016; 55 Park, Dugasani, Kang, Jeon, Jang, Lee, Roh, Park, Park (CR18) 2014; 8 Sipos, Kusmartseva, Akrap, Berger, Forró, Tutiš (CR4) 2008; 7 Fleisch, Mains (CR32) 1982; 76 Mak, Shan (CR1) 2016; 10 Zheng, Wei, Liu, Wang, Shi, Yang, Peng, Deng, Luo, Zhao (CR23) 2019; 11 Tang, Yu, Huang, Chai, Wong, Deng, Yang, Gong, Wang, Ang (CR29) 2018; 12 Berghäuser, Bernal-Villamil, Schmidt, Schneider, Niehues, Erhart, De Vasconcellos, Bratschitsch, Knorr, Malic (CR3) 2018; 9 Gao, Liao, Zhang, Liu, Gu, Liu, Du, Ou, Xiao, Kang (CR8) 2020; 32 Shim, Oh, Kang, Oh, Jang, Jeon, Jeon, Kim, Choi, Lee (CR13) 2016; 28 Barja, Refaely-Abramson, Schuler, Qiu, Pulkin, Wickenburg, Ryu, Ugeda, Kastl, Chen (CR28) 2019; 10 Liang, Zhang, Gou, Song, Arramel, Chen, Yang, Lim, Wang, Zhu (CR22) 2020; 14 López-Polín, Gómez-Navarro, Parente, Guinea, Katsnelson, Pérez-Murano, Gómez-Herrero (CR10) 2015; 11 Chang, Yang, Lin, Chen, Lien, Jian, Ueno, Suen, Tsukagoshi, Lin (CR17) 2018; 30 Kang, Paudel, Leuenberger, Tetard, Khondaker (CR12) 2014; 118 Liu, Liao, Zhang, Du, Ou, Xiao, Kang, Zhang, Zhang (CR7) 2019; 13 Luo, Zhu, Peng, Zheng, Miao, Bai, Zhang, Qin (CR16) 2018; 28 Zhang, Liao, Liu, Kang, Zhang, Du, Li, Zhang, Xiao, Liu (CR19) 2017; 8 Zhang, Lin, Liao, Kang, Si, Zhang (CR6) 2019; 31 X M Zheng (3038_CR23) 2019; 11 K F Mak (3038_CR1) 2016; 10 G Berghäuser (3038_CR3) 2018; 9 L Z Zhuang (3038_CR11) 2017; 29 Q J Liang (3038_CR22) 2020; 14 X F Li (3038_CR33) 2016; 28 B S Liu (3038_CR7) 2019; 13 L L Cai (3038_CR35) 2017; 17 Y M Chang (3038_CR17) 2018; 30 J F Sun (3038_CR26) 2015; 107 H Y Nan (3038_CR14) 2014; 8 J Shim (3038_CR13) 2016; 28 J Pető (3038_CR15) 2018; 10 E Li (3038_CR27) 2018; 11 A Y Lu (3038_CR2) 2017; 12 W Luo (3038_CR16) 2018; 28 B Sipos (3038_CR4) 2008; 7 D Xiang (3038_CR36) 2015; 6 X K Zhang (3038_CR19) 2017; 8 A Nipane (3038_CR30) 2016; 10 X F Qian (3038_CR5) 2014; 346 L Gao (3038_CR8) 2020; 32 N Kang (3038_CR12) 2014; 118 X K Zhang (3038_CR20) 2019; 13 Z Zhang (3038_CR6) 2019; 31 H Zhu (3038_CR31) 2017; 11 H Y Park (3038_CR18) 2014; 8 T H Fleisch (3038_CR32) 1982; 76 S Chuang (3038_CR34) 2014; 14 G López-Polín (3038_CR10) 2015; 11 A D Oyedele (3038_CR25) 2017; 139 Q J Liang (3038_CR24) 2019; 31 S Barja (3038_CR28) 2019; 10 B S Tang (3038_CR29) 2018; 12 Y T Zhao (3038_CR9) 2016; 55 S F Wang (3038_CR21) 2016; 18 |
References_xml | – volume: 14 start-page: 1337 year: 2014 end-page: 1342 ident: CR34 article-title: MoS P-type transistors and diodes enabled by high work function MoO contacts publication-title: Nano Lett. doi: 10.1021/nl4043505 – volume: 32 start-page: 1906646 year: 2020 ident: CR8 article-title: Defect-engineered atomically thin MoS homogeneous electronics for logic inverters publication-title: Adv. Mater. doi: 10.1002/adma.201906646 – volume: 8 start-page: 5738 year: 2014 end-page: 5745 ident: CR14 article-title: Strong photoluminescence enhancement of MoS through defect engineering and oxygen bonding publication-title: ACS Nano doi: 10.1021/nn500532f – volume: 76 start-page: 780 year: 1982 end-page: 786 ident: CR32 article-title: An XPS study of the UV reduction and photochromism of MoO and WO publication-title: J. Chem. Phys. doi: 10.1063/1.443047 – volume: 6 start-page: 6485 year: 2015 ident: CR36 article-title: Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus publication-title: Nat. Commun. doi: 10.1038/ncomms7485 – volume: 346 start-page: 1344 year: 2014 end-page: 1347 ident: CR5 article-title: Quantum spin Hall effect in two-dimensional transition metal dichalcogenides publication-title: Science doi: 10.1126/science.1256815 – volume: 28 start-page: 8240 year: 2016 end-page: 8247 ident: CR33 article-title: Isoelectronic tungsten doping in monolayer MoSe for carrier type modulation publication-title: Adv. Mater. doi: 10.1002/adma.201601991 – volume: 118 start-page: 21258 year: 2014 end-page: 21263 ident: CR12 article-title: Photoluminescence quenching in single-layer MoS via oxygen plasma treatment publication-title: J. Phys. Chem. C doi: 10.1021/jp506964m – volume: 31 start-page: 1806411 year: 2019 ident: CR6 article-title: Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics publication-title: Adv. Mater. doi: 10.1002/adma.201806411 – volume: 11 start-page: 13469 year: 2019 end-page: 13476 ident: CR23 article-title: A homogeneous p-n junction diode by selective doping of few layer MoSe using ultraviolet ozone for high-performance photovoltaic devices publication-title: Nanoscale doi: 10.1039/C9NR04212A – volume: 8 start-page: 11603 year: 2014 end-page: 11613 ident: CR18 article-title: N- and P-type doping phenomenon by artificial DNA and M-DNA on two-dimensional transition metal dichalcogenides publication-title: ACS Nano doi: 10.1021/nn5048712 – volume: 28 start-page: 1704539 year: 2018 ident: CR16 article-title: Carrier modulation of ambipolar few-layer MoTe transistors by MgO surface charge transfer doping publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704539 – volume: 18 start-page: 4304 year: 2016 end-page: 4309 ident: CR21 article-title: Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe field effect transistors publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07194A – volume: 9 start-page: 971 year: 2018 ident: CR3 article-title: Inverted valley polarization in optically excited transition metal dichalcogenides publication-title: Nat. Commun. doi: 10.1038/s41467-018-03354-1 – volume: 28 start-page: 6985 year: 2016 end-page: 6992 ident: CR13 article-title: High-performance 2D rhenium disulfide (ReS ) transistors and photodetectors by oxygen plasma treatment publication-title: Adv. Mater. doi: 10.1002/adma.201601002 – volume: 8 start-page: 15881 year: 2017 ident: CR19 article-title: Poly(4-styrenesulfonate)-induced sulfur vacancy self-healing strategy for monolayer MoS homojunction photodiode publication-title: Nat. Commun. doi: 10.1038/ncomms15881 – volume: 10 start-page: 1246 year: 2018 end-page: 1251 ident: CR15 article-title: Spontaneous doping of the basal plane of MoS single layers through oxygen substitution under ambient conditions publication-title: Nat. Chem. doi: 10.1038/s41557-018-0136-2 – volume: 12 start-page: 2506 year: 2018 end-page: 2513 ident: CR29 article-title: Direct n- to p-Type channel conversion in monolayer/few-layer WS field-effect transistors by atomic nitrogen treatment publication-title: ACS Nano doi: 10.1021/acsnano.7b08261 – volume: 30 start-page: 1706995 year: 2018 ident: CR17 article-title: Reversible and precisely controllable p/n-Type doping of MoTe transistors through electrothermal doping publication-title: Adv. Mater. doi: 10.1002/adma.201706995 – volume: 11 start-page: 26 year: 2015 end-page: 31 ident: CR10 article-title: Increasing the elastic modulus of graphene by controlled defect creation publication-title: Nat. Phys. doi: 10.1038/nphys3183 – volume: 13 start-page: 3280 year: 2019 end-page: 3291 ident: CR20 article-title: Self-healing originated van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes publication-title: ACS Nano doi: 10.1021/acsnano.8b09130 – volume: 7 start-page: 960 year: 2008 end-page: 965 ident: CR4 article-title: From Mott state to superconductivity in 1T-TaS publication-title: Nat. Mater. doi: 10.1038/nmat2318 – volume: 10 start-page: 2128 year: 2016 end-page: 2137 ident: CR30 article-title: Few-layer MoS p-Type devices enabled by selective doping using low energy phosphorus implantation publication-title: ACS Nano doi: 10.1021/acsnano.5b06529 – volume: 31 start-page: 1807609 year: 2019 ident: CR24 article-title: High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe publication-title: Adv. Mater. doi: 10.1002/adma.201807609 – volume: 139 start-page: 14090 year: 2017 end-page: 14097 ident: CR25 article-title: PdSe : Pentagonal two-dimensional layers with high air stability for electronics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04865 – volume: 13 start-page: 9057 year: 2019 end-page: 9066 ident: CR7 article-title: Strain-engineered van der waals interfaces of mixed-dimensional heterostructure arrays publication-title: ACS Nano doi: 10.1021/acsnano.9b03239 – volume: 17 start-page: 3854 year: 2017 end-page: 3861 ident: CR35 article-title: Rapid flame synthesis of atomically thin MoO down to monolayer thickness for effective hole doping of WSe publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01322 – volume: 29 start-page: 1606793 year: 2017 ident: CR11 article-title: Ultrathin iron-cobalt oxide nanosheets with abundant oxygen vacancies for the oxygen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201606793 – volume: 107 start-page: 153902 year: 2015 ident: CR26 article-title: Electronic, transport, and optical properties of bulk and mono-layer PdSe publication-title: Appl. Phys. Lett. doi: 10.1063/1.4933302 – volume: 11 start-page: 5858 year: 2018 end-page: 5865 ident: CR27 article-title: Construction of bilayer PdSe on epitaxial graphene publication-title: Nano Res. doi: 10.1007/s12274-018-2090-0 – volume: 11 start-page: 11005 year: 2017 end-page: 11014 ident: CR31 article-title: Defects and surface structural stability of MoTe under vacuum annealing publication-title: ACS Nano doi: 10.1021/acsnano.7b04984 – volume: 14 start-page: 5668 year: 2020 end-page: 5677 ident: CR22 article-title: Performance improvement by ozone treatment of 2D PdSe publication-title: ACS Nano doi: 10.1021/acsnano.0c00180 – volume: 10 start-page: 216 year: 2016 end-page: 226 ident: CR1 article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.282 – volume: 12 start-page: 744 year: 2017 end-page: 749 ident: CR2 article-title: Janus monolayers of transition metal dichalcogenides publication-title: Nat. Nanotech. doi: 10.1038/nnano.2017.100 – volume: 55 start-page: 5003 year: 2016 end-page: 5007 ident: CR9 article-title: Surface coordination of black phosphorus for robust air and water stability publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201512038 – volume: 10 start-page: 3382 year: 2019 ident: CR28 article-title: Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides publication-title: Nat. Commun. doi: 10.1038/s41467-019-11342-2 – volume: 10 start-page: 2128 year: 2016 ident: 3038_CR30 publication-title: ACS Nano doi: 10.1021/acsnano.5b06529 – volume: 28 start-page: 6985 year: 2016 ident: 3038_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.201601002 – volume: 13 start-page: 9057 year: 2019 ident: 3038_CR7 publication-title: ACS Nano doi: 10.1021/acsnano.9b03239 – volume: 31 start-page: 1806411 year: 2019 ident: 3038_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201806411 – volume: 8 start-page: 5738 year: 2014 ident: 3038_CR14 publication-title: ACS Nano doi: 10.1021/nn500532f – volume: 55 start-page: 5003 year: 2016 ident: 3038_CR9 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201512038 – volume: 11 start-page: 13469 year: 2019 ident: 3038_CR23 publication-title: Nanoscale doi: 10.1039/C9NR04212A – volume: 12 start-page: 2506 year: 2018 ident: 3038_CR29 publication-title: ACS Nano doi: 10.1021/acsnano.7b08261 – volume: 29 start-page: 1606793 year: 2017 ident: 3038_CR11 publication-title: Adv. Mater. doi: 10.1002/adma.201606793 – volume: 10 start-page: 3382 year: 2019 ident: 3038_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11342-2 – volume: 11 start-page: 11005 year: 2017 ident: 3038_CR31 publication-title: ACS Nano doi: 10.1021/acsnano.7b04984 – volume: 10 start-page: 216 year: 2016 ident: 3038_CR1 publication-title: Nat. Photon. doi: 10.1038/nphoton.2015.282 – volume: 13 start-page: 3280 year: 2019 ident: 3038_CR20 publication-title: ACS Nano doi: 10.1021/acsnano.8b09130 – volume: 17 start-page: 3854 year: 2017 ident: 3038_CR35 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01322 – volume: 32 start-page: 1906646 year: 2020 ident: 3038_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201906646 – volume: 11 start-page: 26 year: 2015 ident: 3038_CR10 publication-title: Nat. Phys. doi: 10.1038/nphys3183 – volume: 7 start-page: 960 year: 2008 ident: 3038_CR4 publication-title: Nat. Mater. doi: 10.1038/nmat2318 – volume: 14 start-page: 5668 year: 2020 ident: 3038_CR22 publication-title: ACS Nano doi: 10.1021/acsnano.0c00180 – volume: 18 start-page: 4304 year: 2016 ident: 3038_CR21 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP07194A – volume: 11 start-page: 5858 year: 2018 ident: 3038_CR27 publication-title: Nano Res. doi: 10.1007/s12274-018-2090-0 – volume: 28 start-page: 8240 year: 2016 ident: 3038_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201601991 – volume: 107 start-page: 153902 year: 2015 ident: 3038_CR26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4933302 – volume: 10 start-page: 1246 year: 2018 ident: 3038_CR15 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0136-2 – volume: 28 start-page: 1704539 year: 2018 ident: 3038_CR16 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704539 – volume: 139 start-page: 14090 year: 2017 ident: 3038_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04865 – volume: 76 start-page: 780 year: 1982 ident: 3038_CR32 publication-title: J. Chem. Phys. doi: 10.1063/1.443047 – volume: 346 start-page: 1344 year: 2014 ident: 3038_CR5 publication-title: Science doi: 10.1126/science.1256815 – volume: 30 start-page: 1706995 year: 2018 ident: 3038_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201706995 – volume: 9 start-page: 971 year: 2018 ident: 3038_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03354-1 – volume: 6 start-page: 6485 year: 2015 ident: 3038_CR36 publication-title: Nat. Commun. doi: 10.1038/ncomms7485 – volume: 12 start-page: 744 year: 2017 ident: 3038_CR2 publication-title: Nat. Nanotech. doi: 10.1038/nnano.2017.100 – volume: 8 start-page: 11603 year: 2014 ident: 3038_CR18 publication-title: ACS Nano doi: 10.1021/nn5048712 – volume: 8 start-page: 15881 year: 2017 ident: 3038_CR19 publication-title: Nat. Commun. doi: 10.1038/ncomms15881 – volume: 118 start-page: 21258 year: 2014 ident: 3038_CR12 publication-title: J. Phys. Chem. C doi: 10.1021/jp506964m – volume: 31 start-page: 1807609 year: 2019 ident: 3038_CR24 publication-title: Adv. Mater. doi: 10.1002/adma.201807609 – volume: 14 start-page: 1337 year: 2014 ident: 3038_CR34 publication-title: Nano Lett. doi: 10.1021/nl4043505 |
SSID | ssj0062148 |
Score | 2.5260355 |
Snippet | Exposure to oxygen alters the physical and chemical properties of two-dimensional (2D) transition metal dichalcogenides (TMDs). In particular, oxygen in the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 3439 |
SubjectTerms | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chalcogenides Charge transfer Chemical properties Chemistry and Materials Science Collaboration Condensed Matter Physics Doping Electrodes Engineering Materials Science Microscopy Nanotechnology Oxygen P-type semiconductors Photoelectron spectroscopy Photoelectrons Research Article Scanning tunneling microscopy Science Spectrum analysis Transition metal compounds |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA66XvQgPnF1lRw8KYE2SZvkuKiLCOrFhT0Z2iSFhbW72Ar6751kW6uigudOc5iZznxf5xGETnOZuIw5RUThcsINYDjpOCcydRm4k41Z2Ftwe5dej_nNJJk0c9xV2-3eliRDpO6G3SgwKOLpDoRdSeQqWkuAunu3HtNhG35TGocrs5azY5C92lLmT0d8TUYdwvxWFA25ZrSFNhuQiIdLq26jFVfuoI1PqwN30eP96xvYngClBuNY3LScz_wkFF4Q_2cV2zAMhaclppe48l3wcy8NLBvXPkWFbi385AB_Y-vb52dmDmdOrav20Hh09XBxTZq7EohhcVpDUGOCF0KonAEGTIRRDggntdTEpgDYkWaJlTYC9iALQRmzmTLCpVxEucgLxdk-6pXz0h0gDFyb8oKmQDUsL-JIWZXlKmORNQoAk-ijqFWaNs0icX-fxUx3K5C9njXoWXs9a9lHZx-vLJZbNP4SHrSW0M0HVWmgXZxCsBGqj85b63SPfz3s8F_SR2ideu8I7SoD1KufX9wxgI46PwlO9g7wL8zG priority: 102 providerName: Springer Nature |
Title | Oxygen-induced controllable p-type doping in 2D semiconductor transition metal dichalcogenides |
URI | https://link.springer.com/article/10.1007/s12274-020-3038-8 https://www.proquest.com/docview/2604248879 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NT8IwFG8ULnowfkYUSQ-eNI1bW9b2ZFBBohGNkQQvLlvbJSQIKJjof-9r2UBN5LIlW9fDe2-vv1_7PhA6TmXdJswqIjKbEq4Bw0nLOZGRTcCcTMh83YK7TtTu8ptevZdvuE3ysMrCJ3pHbUba7ZGfAe7mFKxNqPPxG3Fdo9zpat5CYxWVXekyR75Eb064Ihr67lmzNDJYyIpTTZ86R4GPEUeewIlLIn-vSwuw-ed81C87rU20keNF3JgpeAut2OE2Wv9RRXAHvdx_foEZEGDXoCeD8-jzgUuKwmPiNlmx8XlRuD_E9ApPXED8yI0Gwo2nbrXygVv41QIUx8ZF0g_0CObsGzvZRd1W8-myTfK2CUSzMJqCf2OCZ0KolAEcrAutLHBPaqgOdQYIJErqRpoAiITMBGXMJEoLG3ERpCLNFGd7qDQcDe0-wkC7Kc9oBKzD8CwMlFFJqhIWGK0AO4kKCgqhxTqvKe5aWwziRTVkJ-cY5Bw7Oceygk7mn4xnBTWWDa4Wmojzf2sSLyyhgk4L7Sxe_zvZwfLJDtEadebgQ1WqqDR9_7BHADimac1bFVxl67qGyo3r59sm3C-anYdHeNqljW-R-NVY |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbhMxFL0KYQFdVOUl0gd4ARuQxYztjO1FVVUNISFp2bRSVgwztkeKFJK0martT_Ube-3MNIBEdlmPx4vrY99z7PsA-JCrtsu401QWLqfCIIdTTgiqEpchnGzMQ92C07OkdyG-j9qjBtzXuTA-rLI-E8NBbWfG35F_Qd4tGKJN6qP5JfVdo_zrat1CYwmLgbu7Qcm2OOx3cH0_Mtb9en7So1VXAWp4nJS4_bkUhZQ658iW2tJoh9KMWWZiU6CDTrK2VTZCnq0KyTi3mTbSJUJGucwLLTjO-wSeCs61DyFU3W_1yZ-wOHTrWqatoeOsX1FDqh5D_Ue9WEOnoaj62w-uyO0_77HBzXV3YLvip-R4CagX0HDTl7D1R9XCV_Dzx-0dwo6imkdcWFJFu098EhaZU3-pS2zIwyLjKWEdsvAB-DM_GgU-Kb13DIFi5LdD6k-sj9yfmBnOObZu8RouNmLQN9CczqbuLRCU-UwULEGVY0URR9rqLNcZj6zRyNVkC6LaaKmpapj7VhqTdFV92ds5RTun3s6pasGnx1_mywIe6wbv1yuRVnt5ka6Q14LP9eqsPv93st31k72HZ73z02E67J8N9uA589AIYTL70Cyvrt0Bkp0yfxcQRuDXpiH9AInwC24 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSAgOiFWU1Qe4gCwS243jA0KIUrHDAaSeCIntSJVKW2gR8Gt8HWM3oYAEN85xfBg_e96zZwHYzOKqTblVVOY2o0Ijh4utEDSObIpwMiH3dQsuLqPjW3HaqDZG4L3MhXFhleWZ6A9q09HujnwXebdgiDapdvMiLOK6Vt_vPlLXQcq9tJbtNAYQObNvLyjfensnNVzrLcbqRzeHx7ToMEA1D6M-HgVcilxKlXFkTlWplUWZxgzToc7RWUdp1cQmQM4d55JxblKlpY2EDDKZ5UpwnHcUxiVHt4l7STY-xV7EQt-5a5DChk60fFH1aXsMtSB1wg0dSEzj7z5xSHR_vM16l1efgemCq5KDAbhmYcS252DqSwXDebi7en1DCFJU9ogRQ4rI95ZLyCJd6i54ifE5WaTZJqxGei4Yv-NGo9gnfecpfdAYebAoA4hxUfwt3cE5m8b2FuD2Xwy6CGPtTtsuAUHJz0TOIlQ8RuRhoIxKM5XywGiFvE1WICiNluiinrlrq9FKhpWYnZ0TtHPi7JzEFdj-_KU7KObx1-DVciWSYl_3kiEKK7BTrs7w86-TLf892QZMIJiT85PLsxWYZA4ZPmJmFcb6T892DXlPP1v3ACNw_9-I_gD6VQ-b |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Oxygen-induced+controllable+p-type+doping+in+2D+semiconductor+transition+metal+dichalcogenides&rft.jtitle=Nano+research&rft.au=Liang+Qijie&rft.au=Gou+Jian&rft.au=Arramel&rft.au=Zhang%2C+Qian&rft.date=2020-12-01&rft.pub=Tsinghua+University+Press&rft.issn=1998-0124&rft.eissn=1998-0000&rft.volume=13&rft.issue=12&rft.spage=3439&rft.epage=3444&rft_id=info:doi/10.1007%2Fs12274-020-3038-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1998-0124&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1998-0124&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1998-0124&client=summon |